
Understanding the Linux®

Virtual Memory Manager



BRUCE PERENS’ OPEN SOURCE SERIES
http://www.phptr.com/perens

♦ C++ GUI Programming with Qt 3
Jasmin Blanchette, Mark Summerfield

♦ Managing Linux Systems with Webmin: System
Administration and Module Development

Jamie Cameron

♦ Understanding the Linux Virtual Memory Manager
Mel Gorman

♦ Implementing CIFS: The Common Internet File System
Christopher R. Hertel

♦ Embedded Software Development with eCos
Anthony J. Massa

♦ Rapid Application Development with Mozilla
Nigel McFarlane

♦ The Linux Development Platform: Configuring, Using, and
Maintaining a Complete Programming Environment

Rafeeq Ur Rehman, Christopher Paul

♦ Intrusion Detection Systems with Snort:
Advanced IDS Techniques with Snort, Apache, MySQL,
PHP, and ACID

Rafeeq Ur Rehman

♦ The Official Samba-3 HOWTO and Reference Guide
John H. Terpstra, Jelmer R. Vernooij, Editors

♦ Samba-3 by Example: Practical Exercises to Successful
Deployment

John H. Terpstra



Understanding the Linux®

Virtual Memory Manager

Mel Gorman

PRENTICE HALL
PROFESSIONAL TECHNICAL REFERENCE

UPPER SADDLE RIVER, NJ 07458
WWW.PHPTR.COM



Library of Congress Cataloging-in-Publication Data

Gorman, Mel.
Understanding the Linux Virtual Memory Manager / Mel Gorman.

p. cm.—(Bruce Perens’ Open source series)
Includes bibliographical references and index.
ISBN 0-13-145348-3
1. Linux. 2. Virtual computer systems. 3. Virtual storage (Computer science) I. Title. II.

Series.
QA76.9.V5G67 2004
005.4’3—dc22 2004043864

Editorial/production supervision: Jane Bonnell
Composition: TechBooks
Cover design director: Jerry Votta
Manufacturing buyer: Maura Zaldivar
Executive Editor: Mark L. Taub
Editorial assistant: Noreen Regina
Marketing manager: Dan DePasquale

c© 2004 Pearson Education, Inc.
Publishing as Prentice Hall Professional Technical Reference
Upper Saddle River, New Jersey 07458

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Prentice Hall PTR offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact: U.S. Corporate and Government Sales,
1-800-382-3419, corpsales@pearsontechgroup.com. For sales outside of the U.S., please contact:
International Sales, 1-317-581-3793, international@pearsontechgroup.com.

Company and product names mentioned herein are the trademarks or registered trademarks
of their respective owners.

Printed in the United States of America

First Printing

ISBN 0-13-145348-3

Pearson Education LTD.
Pearson Education Australia PTY, Limited
Pearson Education South Asia Pte. Ltd.
Pearson Education Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education—Japan
Pearson Malaysia SDN BHD



To John O’Gorman (RIP) for teaching me the joys of operating
systems and for making memory management interesting.

To my parents and family for their continuous support of my work.

To Karen for making all the work seem worthwhile.





Contents

PREFACE xiii

1 INTRODUCTION 1
1.1 Getting Started 2
1.2 Managing the Source 4
1.3 Browsing the Code 9
1.4 Reading the Code 11
1.5 Submitting Patches 12

2 DESCRIBING PHYSICAL MEMORY 15
2.1 Nodes 16
2.2 Zones 18
2.3 Zone Initialization 23
2.4 Initializing mem map 24
2.5 Pages 24
2.6 Mapping Pages to Zones 29
2.7 High Memory 29
2.8 What’s New in 2.6 30

3 PAGE TABLE MANAGEMENT 33
3.1 Describing the Page Directory 33
3.2 Describing a Page Table Entry 36
3.3 Using Page Table Entries 37
3.4 Translating and Setting Page Table Entries 39
3.5 Allocating and Freeing Page Tables 39
3.6 Kernel Page Tables 40
3.7 Mapping Addresses to a struct page 42
3.8 Translation Lookaside Buffer (TLB) 43

vii



viii Contents

3.9 Level 1 CPU Cache Management 44
3.10 What’s New in 2.6 47

4 PROCESS ADDRESS SPACE 53
4.1 Linear Address Space 53
4.2 Managing the Address Space 55
4.3 Process Address Space Descriptor 57
4.4 Memory Regions 61
4.5 Exception Handling 79
4.6 Page Faulting 80
4.7 Copying to/from Userspace 87
4.8 What’s New in 2.6 90

5 BOOT MEMORY ALLOCATOR 95
5.1 Representing the Boot Map 96
5.2 Initializing the Boot Memory Allocator 98
5.3 Initializing bootmem data 98
5.4 Allocating Memory 99
5.5 Freeing Memory 100
5.6 Retiring the Boot Memory Allocator 101
5.7 What’s New in 2.6 102

6 PHYSICAL PAGE ALLOCATION 105
6.1 Managing Free Blocks 105
6.2 Allocating Pages 106
6.3 Free Pages 109
6.4 Get Free Page (GFP) Flags 110
6.5 Process Flags 111
6.6 Avoiding Fragmentation 112
6.7 What’s New in 2.6 113

7 NONCONTIGUOUS MEMORY ALLOCATION 117
7.1 Describing Virtual Memory Areas 117
7.2 Allocating a Noncontiguous Area 118
7.3 Freeing a Noncontiguous Area 120
7.4 What’s New in 2.6 121

8 SLAB ALLOCATOR 123
8.1 Caches 125
8.2 Slabs 137



Contents ix

8.3 Objects 144
8.4 Sizes Cache 146
8.5 Per-CPU Object Cache 148
8.6 Slab Allocator Initialization 150
8.7 Interfacing With the Buddy Allocator 151
8.8 What’s New in 2.6 151

9 HIGH MEMORY MANAGEMENT 153
9.1 Managing the PKMap Address Space 153
9.2 Mapping High Memory Pages 154
9.3 Unmapping Pages 156
9.4 Mapping High Memory Pages Atomically 156
9.5 Bounce Buffers 157
9.6 Emergency Pools 159
9.7 What’s New in 2.6 160

10 PAGE FRAME RECLAMATION 163
10.1 Page Replacement Policy 164
10.2 Page Cache 165
10.3 LRU Lists 169
10.4 Shrinking All Caches 173
10.5 Swapping Out Process Pages 173
10.6 Pageout Daemon (kswapd) 175
10.7 What’s New in 2.6 177

11 SWAP MANAGEMENT 179
11.1 Describing the Swap Area 180
11.2 Mapping Page Table Entries to Swap Entries 183
11.3 Allocating a Swap Slot 184
11.4 Swap Cache 185
11.5 Reading Pages From Backing Storage 189
11.6 Writing Pages to Backing Storage 189
11.7 Reading/Writing Swap Area Blocks 192
11.8 Activating a Swap Area 192
11.9 Deactivating a Swap Area 193
11.10 What’s New in 2.6 194

12 SHARED MEMORY VIRTUAL FILESYSTEM 195
12.1 Initializing the Virtual Filesystem 196
12.2 Using shmem Functions 197



x Contents

12.3 Creating Files in tmpfs 199
12.4 Page Faulting Within a Virtual File 201
12.5 File Operations in tmpfs 203
12.6 Inode Operations in tmpfs 203
12.7 Setting Up Shared Regions 204
12.8 System V IPC 204
12.9 What’s New in 2.6 207

13 OUT OF MEMORY MANAGEMENT 209
13.1 Checking Available Memory 209
13.2 Determining OOM Status 210
13.3 Selecting a Process 211
13.4 Killing the Selected Process 211
13.5 Is That It? 211
13.6 What’s New in 2.6 211

14 THE FINAL WORD 213

CODE COMMENTARY

A INTRODUCTION 217

B DESCRIBING PHYSICAL MEMORY 219
B.1 Initializing Zones 220
B.2 Page Operations 234

C PAGE TABLE MANAGEMENT 239
C.1 Page Table Initialization 240
C.2 Page Table Walking 248

D PROCESS ADDRESS SPACE 251
D.1 Process Memory Descriptors 254
D.2 Creating Memory Regions 261
D.3 Searching Memory Regions 309
D.4 Locking and Unlocking Memory Regions 315
D.5 Page Faulting 328
D.6 Page-Related Disk I/O 355

E BOOT MEMORY ALLOCATOR 395
E.1 Initializing the Boot Memory Allocator 396



Contents xi

E.2 Allocating Memory 399
E.3 Freeing Memory 409
E.4 Retiring the Boot Memory Allocator 411

F PHYSICAL PAGE ALLOCATION 419
F.1 Allocating Pages 420
F.2 Allocation Helper Functions 433
F.3 Free Pages 435
F.4 Free Helper Functions 440

G NONCONTIGUOUS MEMORY ALLOCATION 441
G.1 Allocating a Noncontiguous Area 442
G.2 Freeing a Noncontiguous Area 452

H SLAB ALLOCATOR 457
H.1 Cache Manipulation 459
H.2 Slabs 479
H.3 Objects 486
H.4 Sizes Cache 501
H.5 Per-CPU Object Cache 504
H.6 Slab Allocator Initialization 511
H.7 Interfacing with the Buddy Allocator 512

I HIGH MEMORY MANAGEMENT 513
I.1 Mapping High Memory Pages 514
I.2 Mapping High Memory Pages Atomically 519
I.3 Unmapping Pages 521
I.4 Unmapping High Memory Pages Atomically 523
I.5 Bounce Buffers 524
I.6 Emergency Pools 532

J PAGE FRAME RECLAMATION 535
J.1 Page Cache Operations 537
J.2 LRU List Operations 547
J.3 Refilling inactive list 552
J.4 Reclaiming Pages From the LRU Lists 554
J.5 Shrinking All Caches 562
J.6 Swapping Out Process Pages 566
J.7 Page Swap Daemon 577



xii Contents

K SWAP MANAGEMENT 583
K.1 Scanning for Free Entries 585
K.2 Swap Cache 590
K.3 Swap Area I/O 597
K.4 Activating a Swap Area 607
K.5 Deactivating a Swap Area 619

L SHARED MEMORY VIRTUAL FILESYSTEM 633
L.1 Initializing shmfs 635
L.2 Creating Files in tmpfs 641
L.3 File Operations in tmpfs 645
L.4 Inode Operations in tmpfs 659
L.5 Page Faulting Within a Virtual File 668
L.6 Swap Space Interaction 679
L.7 Setting Up Shared Regions 686
L.8 System V IPC 689

M OUT OF MEMORY MANAGEMENT 697
M.1 Determining Available Memory 698
M.2 Detecting and Recovering From OOM 700

REFERENCES 707

CODE COMMENTARY INDEX 711

INDEX 717

ABOUT THE AUTHOR 729



Preface

Linux is developed with a stronger practical emphasis than a theoretical one. When
new algorithms or changes to existing implementations are suggested, it is common
to request code to match the argument. Many of the algorithms used in the Virtual
Memory (VM) system were designed by theorists, but the implementations have now
diverged considerably from the theory. In part, Linux does follow the traditional
development cycle of design to implementation, but changes made in reaction to
how the system behaved in the “real world” and intuitive decisions by developers
are more common.

This means that the VM performs well in practice. However, very little VM
documentation is available except for a few incomplete overviews on a small number
of Web sites, except the Web site containing an earlier draft of this book, of course!
This lack of documentation has led to the situation where the VM is fully understood
only by a small number of core developers. New developers looking for information
on how VM functions are generally told to read the source. Little or no information
is available on the theoretical basis for the implementation. This requires that even
a casual observer invest a large amount of time reading the code and studying the
field of Memory Management.

This book gives a detailed tour of the Linux VM as implemented in 2.4.22
and gives a solid introduction of what to expect in 2.6. As well as discussing the
implementation, the theory that Linux VM is based on will also be introduced.
This is not intended to be a memory management theory book, but understanding
why the VM is implemented in a particular fashion is often much simpler if the
underlying basis is known in advance.

To complement the description, the appendices include a detailed code com-
mentary on a significant percentage of the VM. This should drastically reduce the
amount of time a developer or researcher needs to invest in understanding what is
happening inside the Linux VM because VM implementations tend to follow similar
code patterns even between major versions. This means that, with a solid under-
standing of the 2.4 VM, the later 2.5 development VMs and the 2.6 final release
will be decipherable in a number of weeks.

xiii
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The Intended Audience

Anyone interested in how the VM, a core kernel subsystem, works will find answers
to many of their questions in this book. The VM, more than any other subsystem,
affects the overall performance of the operating system. The VM is also one of
the most poorly understood and badly documented subsystems in Linux, partially
because there is, quite literally, so much of it. It is very difficult to isolate and
understand individual parts of the code without first having a strong conceptual
model of the whole VM, so this book intends to give a detailed description of what
to expect before going to the source.

This material should be of prime interest to new developers who want to adapt
the VM to their needs and to readers who simply would like to know how the VM
works. It also will benefit other subsystem developers who want to get the most
from the VM when they interact with it and operating systems researchers looking
for details on how memory management is implemented in a modern operating
system. For others, who just want to learn more about a subsystem that is the
focus of so much discussion, they will find an easy-to-read description of the VM
functionality that covers all the details without the need to plow through source
code.

However, it is assumed that the reader has read at least one general operat-
ing system book or one general Linux kernel-orientated book and has a general
knowledge of C before tackling this book. Although every effort is made to make
the material approachable, some prior knowledge of general operating systems is
assumed.

Book Overview

In Chapter 1, we go into detail on how the source code may be managed and
deciphered. Three tools are introduced that are used for analysis, easy browsing
and management of code. The main tools are the Linux Cross Referencing (LXR)
tool, which allows source code to be browsed as a Web page, and CodeViz, which
was developed while researching this book, for generating call graphs. The last
tool, PatchSet, is for managing kernels and the application of patches. Applying
patches manually can be time consuming, and using version control software, such
as Concurrent Versions Systems (CVS) (http://www.cvshome.org/ ) or BitKeeper
(http://www.bitmover.com), is not always an option. With PatchSet, a simple spec-
ification file determines what source to use, what patches to apply and what kernel
configuration to use.

In the subsequent chapters, each part of the Linux VM implementation is dis-
cussed in detail, such as how memory is described in an architecture-independent
manner, how processes manage their memory, how the specific allocators work and
so on. Each chapter will refer to other sources that describe the behavior of Linux,
as well as covering in depth the implementation, the functions used and their call
graphs so that the reader will have a clear view of how the code is structured. The
end of each chapter has a “What’s New” section, which introduces what to expect
in the 2.6 VM.
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The appendices are a code commentary of a significant percentage of the VM.
They give a line-by-line description of some of the more complex aspects of the VM.
The style of the VM tends to be reasonably consistent, even between major releases
of the kernel, so an in-depth understanding of the 2.4 VM will be an invaluable aid
to understanding the 2.6 kernel when it is released.

What’s New in 2.6

At the time of writing, 2.6.0-test4 has just been released, so 2.6.0-final is due
“any month now.” Fortunately, the 2.6 VM, in most ways, is still quite recognizable
in comparison with 2.4. However, 2.6 has some new material and concepts, and
it would be a pity to ignore them. Therefore the book has the “What’s New in
2.6” sections. To some extent, these sections presume you have read the rest of the
book, so only glance at them during the first reading. If you decide to start reading
2.5 and 2.6 VM code, the basic description of what to expect from the “What’s
New” sections should greatly aid your understanding. The sections based on the
2.6.0-test4 kernel should not change significantly before 2.6. Because they are
still subject to change, though, you should treat the “What’s New” sections as
guidelines rather than definite facts.

Companion CD

A companion CD is included with this book, and it is highly recommended the
reader become familiar with it, especially as you progress more through the book
and are using the code commentary. It is recommended that the CD is used with a
GNU/Linux system, but it is not required.

The text of the book is contained on the CD in HTML, PDF and plain text
formats so the reader can perform basic text searches if the index does not have the
desired information. If you are reading the first edition of the book, you may notice
small differences between the CD version and the paper version due to printing
deadlines, but the differences are minor.

Almost all the tools used to research the book’s material are contained on the
CD. Each of the tools may be installed on virtually any GNU/Linux installation,
references are included to available documentation and the project home sites, so
you can check for further updates.

With many GNU/Linux installations, there is the additional bonus of being able
to run a Web server directly from the CD. The server has been tested with Red Hat
7.3 and Debian Woody but should work with any distribution. The small Web site
it provides at http://localhost:10080 offers a number of useful features:

• A searchable index for functions that have a code commentary available. If a
function is searched for that does not have a commentary, the browser will be
automatically redirected to LXR.

• A Web browsable copy of the Linux 2.4.22 source. This allows code to be
browsed and identifiers to be searched for.
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• A live version of CodeViz, the tool used to generate call graphs for the book,
is available. If you feel that the book’s graphs are lacking some detail you
want, generate them yourself.

• The VMRegress, CodeViz and PatchSet packages, which are discussed
in Chapter 1, are available in /cdrom/software. gcc-3.0.4 is also provided
because it is required for building CodeViz.

Mount the CD on /cdrom as follows:

root@joshua:/$ mount /dev/cdrom /cdrom -o exec

The Web server is Apache 1.3.27 (http://www.apache.org/) and has been built
and configured to run with its root as /cdrom/. If your distribution normally uses
another directory, you will need to use this one instead. To start it, run the script
/cdrom/start server. If no errors occur, the output should look like:

mel@joshua:~$ /cdrom/start_server
Starting CodeViz Server: done
Starting Apache Server: done

The URL to access is http://localhost:10080/

When the server starts successfully, point your browser to http://localhost:10080
to avail of the CD’s Web services. To shut down the server, run the script
/cdrom/stop server, and the CD may then be unmounted.

Typographic Conventions

The conventions used in this document are simple. New concepts that are in-
troduced, as well as URLs, are in italicized font. Binaries and package names
are in bold. Structures, field names, compile time defines and variables are in a
constant-width font. At times, when talking about a field in a structure, both the
structure and field name will be included as page→list, for example. File names
are in a constant-width font, but include files have angle brackets around them like
<linux/mm.h> and may be found in the include/ directory of the kernel source.
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CHAPTER 1

Introduction

Linux is a relatively new operating system that has begun to enjoy a lot of attention
from the business, academic and free software worlds. As the operating system
matures, its feature set, capabilities and performance grow, but so, out of necessity
does its size and complexity. Table 1.1 shows the size of the kernel source code in
bytes and lines of code of the mm/ part of the kernel tree. This size does not include
the machine-dependent code or any of the buffer management code and does not
even pretend to be an accurate metric for complexity, but it still serves as a small
indicator.

Version Release Date Total Size Size of mm/ Line Count
1.0 March 13, 1992 5.9MiB 96KiB 3,109
1.2.13 February 8, 1995 11MiB 136KiB 4,531
2.0.39 January 9, 2001 35MiB 204KiB 6,792
2.2.22 September 16, 2002 93MiB 292KiB 9,554
2.4.22 August 25, 2003 181MiB 436KiB 15,724
2.6.0-test4 August 22, 2003 261MiB 604KiB 21,714

Table 1.1. Kernel Size as an Indicator of Complexity

Out of habit, open source developers tell new developers with questions to refer
directly to the source with the “polite” acronym RTFS1, or refer them to the kernel
newbies mailing list (http://www.kernelnewbies.org). With the Linux VM manager,
this used to be a suitable response because the time required to understand the VM
could be measured in weeks. Moreover, the books available devoted enough time
to the memory management chapters to make the relatively small amount of code
easy to navigate.

The books that describe the operating system such as Understanding the Linux
Kernel [BC00] [BC03] tend to cover the entire kernel rather than one topic with the
notable exception of device drivers [RC01]. These books, particularly Understanding
the Linux Kernel, provide invaluable insight into kernel internals, but they miss the
details that are specific to the VM and not of general interest. But the book you are
holding details why ZONE NORMAL is exactly 896MiB and exactly how per-cpu caches

1Read The Flaming Source. It doesn’t really stand for Flaming, but children could be reading.

1



2 Introduction Chapter 1

are implemented. Other aspects of the VM, such as the boot memory allocator and
the VM filesystem, which are not of general kernel interest, are also covered in this
book.

Increasingly, to get a comprehensive view on how the kernel functions, one is
required to read through the source code line by line. This book tackles the VM
specifically so that this investment of time to understand the kernel functions will
be measured in weeks and not months. The details that are missed by the main
part of the book are caught by the code commentary.

In this chapter, there will be an informal introduction to the basics of acquiring
information on an open source project and some methods for managing, browsing
and comprehending the code. If you do not intend to be reading the actual source,
you may skip to Chapter 2.

1.1 Getting Started

One of the largest initial obstacles to understanding code is deciding where to start
and how to easily manage, browse and get an overview of the overall code structure.
If requested on mailing lists, people will provide some suggestions on how to proceed,
but a comprehensive methodology is rarely offered aside from suggestions to keep
reading the source until it makes sense. The following sections introduce some useful
rules of thumb for open source code comprehension and specific guidelines for how
the rules may be applied to the kernel.

1.1.1 Configuration and Building

With any open source project, the first step is to download the source and read
the installation documentation. By convention, the source will have a README or
INSTALL file at the top level of the source tree [FF02]. In fact, some automated
build tools such as automake require the install file to exist. These files contain
instructions for configuring and installing the package or give a reference to where
more information may be found. Linux is no exception because it includes a README
that describes how the kernel may be configured and built.

The second step is to build the software. In earlier days, the requirement for
many projects was to edit the Makefile by hand, but this is rarely the case now.
Free software usually uses at least autoconf2 to automate testing of the build
environment and automake3 to simplify the creation of Makefiles, so building is
often as simple as:

mel@joshua: project $ ./configure && make

Some older projects, such as the Linux kernel, use their own configuration tools,
and some large projects such as the Apache Web server have numerous configuration
options, but usually the configure script is the starting point. In the case of the

2http://www.gnu.org/software/autoconf/
3http://www.gnu.org/software/automake/
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kernel, the configuration is handled by the Makefiles and supporting tools. The
simplest means of configuration is to:

mel@joshua: linux-2.4.22 $ make config

This asks a long series of questions on what type of kernel should be built. After
all the questions have been answered, compiling the kernel is simply:

mel@joshua: linux-2.4.22 $ make bzImage && make modules

A comprehensive guide on configuring and compiling a kernel is available with
the Kernel HOWTO4 and will not be covered in detail with this book. For now,
we will presume you have one fully built kernel, and it is time to begin figuring out
how the new kernel actually works.

1.1.2 Sources of Information

Open source projects will usually have a home page, especially because free project
hosting sites such as http://www.sourceforge.net are available. The home site will
contain links to available documentation and instructions on how to join the mailing
list, if one is available. Some sort of documentation always exists, even if it is as
minimal as a simple README file, so read whatever is available. If the project is
old and reasonably large, the Web site will probably feature a Frequently Asked
Questions (FAQ) page.

Next, join the development mailing list and lurk, which means to subscribe to
a mailing list and read it without posting. Mailing lists are the preferred form of
developer communication followed by, to a lesser extent, Internet Relay Chat (IRC)
and online newgroups, commonly referred to as UseNet . Because mailing lists often
contain discussions on implementation details, it is important to read at least the
previous months archives to get a feel for the developer community and current
activity. The mailing list archives should be the first place to search if you have
a question or query on the implementation that is not covered by available docu-
mentation. If you have a question to ask the developers, take time to research the
questions and ask it the “Right Way” [RM01]. Although people will answer “ob-
vious” questions, you will not help your credibility by constantly asking questions
that were answered a week previously or are clearly documented.

Now, how does all this apply to Linux? First, the documentation. A README
is at the top of the source tree, and a wealth of information is available in the
Documentation/ directory. A number of books on UNIX design [Vah96], Linux
specifically [BC00] and of course this book are available to explain what to expect
in the code.

One of the best online sources of information available on kernel devel-
opment is the “Kernel Page” in the weekly edition of Linux Weekly News
(http://www.lwn.net). This page also reports on a wide range of Linux-related
topics and is worth a regular read. The kernel does not have a home Web site
as such, but the closest equivalent is http://www.kernelnewbies.org , which is a vast

4http://www.tldp.org/HOWTO/Kernel-HOWTO/index.html
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source of information on the kernel that is invaluable to new and experienced people
alike.

An FAQ is available for the Linux Kernel Mailing List (LKML) at
http://www.tux.org/lkml/ that covers questions ranging from the kernel develop-
ment process to how to join the list itself. The list is archived at many sites,
but a common choice to reference is http://marc.theaimsgroup.com/?l=linux-kernel.
Be aware that the mailing list is a very high volume list that can be a very
daunting read, but a weekly summary is provided by the Kernel Traffic site at
http://kt.zork.net/kernel-traffic/.

The sites and sources mentioned so far contain general kernel information, but
memory management-specific sources are available too. A Linux-MM Web site at
http://www.linux-mm.org contains links to memory management-specific documen-
tation and a linux-mm mailing list. The list is relatively light in comparison to the
main list and is archived at http://mail.nl.linux.org/linux-mm/.

The last site to consult is the Kernel Trap site at http://www.kerneltrap.org.
The site contains many useful articles on kernels in general. It is not specific to
Linux, but it does contain many Linux-related articles and interviews with kernel
developers.

As is clear, a vast amount of information is available that may be consulted
before resorting to the code. With enough experience, it will eventually be faster
to consult the source directly, but, when getting started, check other sources of
information first.

1.2 Managing the Source

The mainline or stock kernel is principally distributed as a compressed tape archive
(.tar.bz) file that is available from your nearest kernel source repository. In Ireland’s
case, it is ftp://ftp.ie.kernel.org/. The stock kernel is always considered to be the one
released by the tree maintainer. For example, at time of writing, the stock kernels
for 2.2.x are those released by Alan Cox5, for 2.4.x by Marcelo Tosatti and for 2.5.x
by Linus Torvalds. At each release, the full tar file is available as well as a smaller
patch, which contains the differences between the two releases. Patching is the
preferred method of upgrading because of bandwidth considerations. Contributions
made to the kernel are almost always in the form of patches, which are unified diffs
generated by the GNU tool diff .

Why patches Sending patches to the mailing list initially sounds clumsy, but
it is remarkably efficient in the kernel development environment. The principal
advantage of patches is that it is much easier to read what changes have been made
than to compare two full versions of a file side by side. A developer familiar with the
code can easily see what impact the changes will have and if it should be merged.
In addition, it is very easy to quote the email that includes the patch and request
more information about it.

5Last minute update, Alan just announced he was going on sabbatical and will no longer
maintain the 2.2.x tree. There is no maintainer at the moment.
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Subtrees At various intervals, individual influential developers may have their own
version of the kernel distributed as a large patch to the main tree. These subtrees
generally contain features or cleanups that have not been merged to the mainstream
yet or are still being tested. Two notable subtrees are the -rmap tree maintained by
Rik Van Riel, a long-time influential VM developer, and the -mm tree maintained
by Andrew Morton, the current maintainer of the stock development VM. The -
rmap tree contains a large set of features that, for various reasons, are not available
in the mainline. It is heavily influenced by the FreeBSD VM and has a number
of significant differences from the stock VM. The -mm tree is quite different from
-rmap in that it is a testing tree with patches that are being tested before merging
into the stock kernel.

BitKeeper In more recent times, some developers have started using a source
code control system called BitKeeper (http://www.bitmover.com), a proprietary
version control system that was designed with Linux as the principal consideration.
BitKeeper allows developers to have their own distributed version of the tree, and
other users may “pull” sets of patches called changesets from each others’ trees.
This distributed nature is a very important distinction from traditional version
control software that depends on a central server.

BitKeeper allows comments to be associated with each patch, and these are
displayed as part of the release information for each kernel. For Linux, this means
that the email that originally submitted the patch is preserved, making the progress
of kernel development and the meaning of different patches a lot more transparent.
On release, a list of the patch titles from each developer is announced, as well as a
detailed list of all patches included.

Because BitKeeper is a proprietary product, email and patches are still con-
sidered the only method for generating discussion on code changes. In fact, some
patches will not be considered for acceptance unless some discussion occurs first on
the main mailing list because code quality is considered to be directly related to
the amount of peer review [Ray02]. Because the BitKeeper maintained source tree
is exported in formats accessible to open source tools like CVS, patches are still the
preferred means of discussion. This means that developers are not required to use
BitKeeper for making contributions to the kernel, but the tool is still something
that developers should be aware of.

1.2.1 Diff and Patch

The two tools for creating and applying patches are diff and patch, both of which
are GNU utilities available from the GNU website6. diff is used to generate patches,
and patch is used to apply them. Although the tools have numerous options, there
is a “preferred usage.”

Patches generated with diff should always be unified diff, include the C function
that the change affects and be generated from one directory above the kernel source
root. A unified diff includes more information that just the differences between two
lines. It begins with a two-line header with the names and creation date of the

6http://www.gnu.org
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two files that diff is comparing. After that, the “diff” will consist of one or more
“hunks.” The beginning of each hunk is marked with a line beginning with @@,
which includes the starting line in the source code and how many lines there are
before and after the hunk is applied. The hunk includes “context” lines that show
lines above and below the changes to aid a human reader. Each line begins with a
+, - or blank. If the mark is +, the line is added. If it is a -, the line is removed,
and a blank is to leave the line alone because it is there just to provide context.
The reasoning behind generating from one directory above the kernel root is that
it is easy to see quickly what version the patch has been applied against. It also
makes the scripting of applying patches easier if each patch is generated the same
way.

Let us take, for example, a very simple change that has been made to
mm/page alloc.c, which adds a small piece of commentary. The patch is gen-
erated as follows. Note that this command should be all on one line minus the
backslashes.

mel@joshua: kernels/ $ diff -up \
linux-2.4.22-clean/mm/page_alloc.c \
linux-2.4.22-mel/mm/page_alloc.c > example.patch

This generates a unified context diff (-u switch) between two files and places the
patch in example.patch as shown in Figure 1.1. It also displays the name of the
affected C function.

From this patch, it is clear even at a casual glance which files are affected
(page alloc.c) and which line it starts at (76), and the new lines added are clearly
marked with a + . In a patch, there may be several “hunks” that are marked
with a line starting with @@ . Each hunk will be treated separately during patch
application.

Broadly speaking, patches come in two varieties: plain text such as the previous
one that is sent to the mailing list and compressed patches that are compressed with
either gzip (.gz extension) or bzip2 (.bz2 extension). It is usually safe to assume
that patches were generated one directory above the root of the kernel source tree.
This means that, although the patch is generated one directory above, it may be
applied with the option -p1 while the current directory is the kernel source tree root.

Broadly speaking, this means a plain text patch to a clean tree can be easily
applied as follows:

mel@joshua: kernels/ $ cd linux-2.4.22-clean/
mel@joshua: linux-2.4.22-clean/ $ patch -p1 < ../example.patch
patching file mm/page_alloc.c
mel@joshua: linux-2.4.22-clean/ $

To apply a compressed patch, it is a simple extension to just decompress the
patch to standard out (stdout) first.

mel@joshua: linux-2.4.22-mel/ $ gzip -dc ../example.patch.gz|patch -p1
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--- linux-2.4.22-clean/mm/page_alloc.c Thu Sep 4 03:53:15 2003
+++ linux-2.4.22-mel/mm/page_alloc.c Thu Sep 3 03:54:07 2003
@@ -76,8 +76,23 @@
* triggers coalescing into a block of larger size.
*
* -- wli

+ *
+ * There is a brief explanation of how a buddy algorithm works at
+ * http://www.memorymanagement.org/articles/alloc.html . A better
+ * idea is to read the explanation from a book like UNIX Internals
+ * by Uresh Vahalia
+ *
*/

+/**
+ *
+ * __free_pages_ok - Returns pages to the buddy allocator
+ * @page: The first page of the block to be freed
+ * @order: 2^order number of pages are freed
+ *
+ * This function returns the pages allocated by __alloc_pages and
+ * tries to merge buddies if possible. Do not call directly, use
+ * free_pages()
+ **/
static void FASTCALL(__free_pages_ok (struct page *page, unsigned
int order));
static void __free_pages_ok (struct page *page, unsigned int order)
{

Figure 1.1. Example Patch

If a hunk can be applied, but the line numbers are different, the hunk number
and the number of lines that need to be offset will be output. These are generally
safe warnings and may be ignored. If there are slight differences in the context,
the hunk will be applied, and the level of fuzziness will be printed, which should
be double-checked. If a hunk fails to apply, it will be saved to filename.c.rej,
and the original file will be saved to filename.c.orig and have to be applied
manually.

1.2.2 Basic Source Management With PatchSet

The untarring of sources, management of patches and building of kernels is ini-
tially interesting, but quickly palls. To cut down on the tedium of patch man-
agement, a simple tool was developed while writing this book called PatchSet,
which is designed to easily manage the kernel source and patches and to eliminate
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a large amount of the tedium. It is fully documented and freely available from
http://www.csn.ul.ie/∼mel/projects/patchset/ and on the companion CD.

Downloading Downloading kernels and patches in itself is quite tedious, and
scripts are provided to make the task simpler. First, the configuration file
etc/patchset.conf should be edited, and the KERNEL MIRROR parameter should
be updated for your local http://www.kernel.org/ mirror. After that is done, use
the script download to download patches and kernel sources. A simple use of the
script is as follows:

mel@joshua: patchset/ $ download 2.4.18
# Will download the 2.4.18 kernel source

mel@joshua: patchset/ $ download -p 2.4.19
# Will download a patch for 2.4.19

mel@joshua: patchset/ $ download -p -b 2.4.20
# Will download a bzip2 patch for 2.4.20

After the relevant sources or patches have been downloaded, it is time to con-
figure a kernel build.

Configuring Builds Files called set configuration files are used to specify what
kernel source tar to use, what patches to apply, what kernel configuration (generated
by make config) to use and what the resulting kernel is to be called. A sample
specification file to build kernel 2.4.20-rmap15f is:

linux-2.4.18.tar.gz
2.4.20-rmap15f
config_generic

1 patch-2.4.19.gz
1 patch-2.4.20.bz2
1 2.4.20-rmap15f

This first line says to unpack a source tree starting with linux-2.4.18.tar.gz.
The second line specifies that the kernel will be called 2.4.20-rmap15f. 2.4.20
was selected for this example because rmap patches against a later stable release
were not available at the time of writing. To check for updated rmap patches, see
http://surriel.com/patches/. The third line specifies which kernel .config file to
use for compiling the kernel. Each line after that has two parts. The first part says
what patch depth to use, that is, what number to use with the -p switch to patch.
As discussed earlier in Section 1.2.1, this is usually 1 for applying patches while in
the source directory. The second is the name of the patch stored in the patches
directory. The previous example will apply two patches to update the kernel from
2.4.18 to 2.4.20 before building the 2.4.20-rmap15f kernel tree.

If the kernel configuration file required is very simple, use the createset script
to generate a set file for you. It simply takes a kernel version as a parameter and
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guesses how to build it based on available sources and patches.

mel@joshua: patchset/ $ createset 2.4.20

Building a Kernel The package comes with three scripts. The first script, called
make-kernel.sh, will unpack the kernel to the kernels/ directory and build it
if requested. If the target distribution is Debian, it can also create Debian pack-
ages for easy installation by specifying the -d switch. The second script, called
make-gengraph.sh, will unpack the kernel, but, instead of building an installable
kernel, it will generate the files required to use CodeViz, discussed in the next
section, for creating call graphs. The last, called make-lxr.sh, will install a kernel
for use with LXR.

Generating Diffs Ultimately, you will need to see the difference between files in two
trees or generate a “diff” of changes you have made yourself. Three small scripts are
provided to make this task easier. The first is setclean, which sets the source tree
to compare from. The second is setworking to set the path of the kernel tree you
are comparing against or working on. The third is difftree, which will generate
diffs against files or directories in the two trees. To generate the diff shown in
Figure 1.1, the following would have worked:

mel@joshua: patchset/ $ setclean linux-2.4.22-clean
mel@joshua: patchset/ $ setworking linux-2.4.22-mel
mel@joshua: patchset/ $ difftree mm/page_alloc.c

The generated diff is a unified diff with the C function context included and com-
plies with the recommended use of diff . Two additional scripts are available that
are very useful when tracking changes between two trees. They are diffstruct and
difffunc. These are for printing out the differences between individual structures
and functions. When used first, the -f switch must be used to record what source
file the structure or function is declared in, but it is only needed the first time.

1.3 Browsing the Code

When code is small and manageable, browsing through the code is not particularly
difficult because operations are clustered together in the same file, and there is
not much coupling between modules. The kernel, unfortunately, does not always
exhibit this behavior. Functions of interest may be spread across multiple files or
contained as inline functions in headers. To complicate matters, files of interest
may be buried beneath architecture-specific directories, which makes tracking them
down time consuming.

One solution for easy code browsing is ctags(http://ctags.sourceforge.net/ ),
which generates tag files from a set of source files. These tags can be used to
jump to the C file and line where the identifier is declared with editors such as Vi
and Emacs. In the event there are multiple instances of the same tag, such as
with multiple functions with the same name, the correct one may be selected from
a list. This method works best when editing the code because it allows very fast
navigation through the code to be confined to one terminal window.
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A more friendly browsing method is available with the LXR tool hosted at
http://lxr.linux.no/. This tool provides the ability to represent source code as
browsable Web pages. Identifiers such as global variables, macros and functions
become hyperlinks. When clicked, the location where the identifier is defined is
displayed along with every file and line referencing the definition. This makes code
navigation very convenient and is almost essential when reading the code for the
first time.

The tool is very simple to install, and a browsable version of the kernel 2.4.22
source is available on the CD included with this book. All code extracts throughout
the book are based on the output of LXR so that the line numbers would be clearly
visible in excerpts.

1.3.1 Analyzing Code Flow

Because separate modules share code across multiple C files, it can be difficult to
see what functions are affected by a given code path without tracing through all the
code manually. For a large or deep code path, this can be extremely time consuming
to answer what should be a simple question.

One simple, but effective, tool to use is CodeViz, which is a call graph gen-
erator and is included with the CD. It uses a modified compiler for either C or
C++ to collect information necessary to generate the graph. The tool is hosted at
http://www.csn.ul.ie/∼mel/projects/codeviz/.

During compilation with the modified compiler, files with a .cdep extension are
generated for each C file. This .cdep file contains all function declarations and
calls made in the C file. These files are distilled with a program called genfull to
generate a full call graph of the entire source code, which can be rendered with dot,
part of the GraphViz project hosted at http://www.graphviz.org/.

In the kernel compiled for the computer this book was written on, a total of
40,165 entries were in the full.graph file generated by genfull. This call graph is
essentially useless on its own because of its size, so a second tool is provided called
gengraph. This program, at basic usage, takes the name of one or more functions
as an argument and generates a postscript file with the call graph of the requested
function as the root node. The postscript file may be viewed with ghostview or gv.

The generated graphs can be to an unnecessary depth or show functions that
the user is not interested in, so there are three limiting options to graph generation.
The first is limit by depth where functions that are greater than N levels deep in a
call chain are ignored. The second is to totally ignore a function so that it will not
appear on the call graph or any of the functions it calls. The last is to display a
function, but not traverse it, which is convenient when the function is covered on a
separate call graph or is a known API with an implementation that is not currently
of interest.

All call graphs shown in these documents are generated with the CodeViz tool
because it is often much easier to understand a subsystem at first glance when a
call graph is available. The tool has been tested with a number of other open source
projects based on C and has a wider application than just the kernel.
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1.3.2 Simple Graph Generation

If both PatchSet and CodeViz are installed, the first call graph in this book shown
in Figure 3.4 can be generated and viewed with the following set of commands. For
brevity, the output of the commands is omitted:

mel@joshua: patchset $ download 2.4.22
mel@joshua: patchset $ createset 2.4.22
mel@joshua: patchset $ make-gengraph.sh 2.4.22
mel@joshua: patchset $ cd kernels/linux-2.4.22
mel@joshua: linux-2.4.22 $ gengraph -t -s "alloc_bootmem_low_pages \

zone_sizes_init" -f paging_init
mel@joshua: linux-2.4.22 $ gv paging_init.ps

1.4 Reading the Code

When new developers or researchers ask how to start reading the code, experienced
developers often recommend starting with the initialization code and working from
there. This may not be the best approach for everyone because initialization is
quite architecture dependent and requires detailed hardware knowledge to decipher
it. It also gives very little information on how a subsystem like the VM works. It is
during the late stages of initialization that memory is set up in the way the running
system sees it.

The best starting point to understand the VM is this book and the code com-
mentary. It describes a VM that is reasonably comprehensive without being overly
complicated. Later VMs are more complex, but are essentially extensions of the
one described here.

For when the code has to be approached afresh with a later VM, it is always best
to start in an isolated region that has the minimum number of dependencies. In
the case of the VM, the best starting point is the Out Of Memory (OOM) manager
in mm/oom kill.c. It is a very gentle introduction to one corner of the VM where
a process is selected to be killed in the event that memory in the system is low.
Because this function touches so many different aspects of the VM, it is covered
last in this book. The second subsystem to then examine is the noncontiguous
memory allocator located in mm/vmalloc.c and discussed in Chapter 7 because it
is reasonably contained within one file. The third system should be the physical page
allocator located in mm/page alloc.c and discussed in Chapter 6 for similar reasons.
The fourth system of interest is the creation of Virtual Memory Addresses (VMAs)
and memory areas for processes discussed in Chapter 4. Between these systems,
they have the bulk of the code patterns that are prevalent throughout the rest of the
kernel code, which makes the deciphering of more complex systems such as the page
replacement policy or the buffer Input/Output (I/O) much easier to comprehend.

The second recommendation that is given by experienced developers is to bench-
mark and test the VM. Many benchmark programs are available, but commonly
used ones are ConTest(http://members.optusnet.com.au/ckolivas/contest/ ),
SPEC(http://www.specbench.org/), lmbench(http://www.bitmover.com/lmbench/)
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and dbench(http://freshmeat.net/projects/dbench/ ). For many purposes, these
benchmarks will fit the requirements.

Unfortunately, it is difficult to test just the VM accurately and benchmarking
it is frequently based on timing a task such as a kernel compile. A tool called VM
Regress is available at http://www.csn.ul.ie/∼mel/projects/vmregress/ that lays
the foundation required to build a fully fledged testing, regression and benchmarking
tool for the VM. VM Regress uses a combination of kernel modules and userspace
tools to test small parts of the VM in a reproducible manner and has one benchmark
for testing the page replacement policy using a large reference string. It is intended
as a framework for the development of a testing utility and has a number of Perl
libraries and helper kernel modules to do much of the work. However, it is still in
the early stages of development, so use it with care.

1.5 Submitting Patches

Two files, SubmittingPatches and CodingStyle, are in the Documentation/ direc-
tory that cover the important basics. However, very little documentation describes
how to get patches merged. This section will give a brief introduction on how,
broadly speaking, patches are managed.

First and foremost, the coding style of the kernel needs to be adhered to because
having a style inconsistent with the main kernel will be a barrier to getting merged
regardless of the technical merit. After a patch has been developed, the first problem
is to decide where to send it. Kernel development has a definite, if nonapparent,
hierarchy of who handles patches and how to get them submitted. As an example,
we’ll take the case of 2.5.x development.

The first check to make is if the patch is very small or trivial. If it is, post it
to the main kernel mailing list. If no bad reaction occurs, it can be fed to what
is called the Trivial Patch Monkey7. The trivial patch monkey is exactly what it
sounds like. It takes small patches and feeds them en masse to the correct people.
This is best suited for documentation, commentary or one-liner patches.

Patches are managed through what could be loosely called a set of rings with
Linus in the very middle having the final say on what gets accepted into the main
tree. Linus, with rare exceptions, accepts patches only from who he refers to as his
“lieutenants,” a group of around 10 people who he trusts to “feed” him correct code.
An example lieutenant is Andrew Morton, the VM maintainer at time of writing.
Any change to the VM has to be accepted by Andrew before it will get to Linus.
These people are generally maintainers of a particular system, but sometimes will
“feed” him patches from another subsystem if they feel it is important enough.

Each of the lieutenants are active developers on different subsystems. Just like
Linus, they have a small set of developers they trust to be knowledgeable about the
patch they are sending, but will also pick up patches that affect their subsystem
more readily. Depending on the subsystem, the list of people they trust will be
heavily influenced by the list of maintainers in the MAINTAINERS file. The second
major area of influence will be from the subsystem-specific mailing list if there is

7http://www.kernel.org/pub/linux/kernel/people/rusty/trivial/
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one. The VM does not have a list of maintainers, but it does have a mailing list8.
The maintainers and lieutenants are crucial to the acceptance of patches. Linus,

broadly speaking, does not appear to want to be convinced with argument alone on
the merit for a significant patch, but prefers to hear it from one of his lieutenants,
which is understandable considering the volume of patches that exist.

In summary, a new patch should be emailed to the subsystem mailing list and
cc’d to the main list to generate discussion. If no reaction occurs, it should be sent
to the maintainer for that area of code if there is one and to the lieutenant if there
is not. After it has been picked up by a maintainer or lieutenant, chances are it will
be merged. The important key is that patches and ideas must be released early and
often so developers have a chance to look at them while they are still manageable.
There are notable cases where massive patches merged with the main tree because
there were long periods of silence with little or no discussion. A recent example
of this is the Linux Kernel Crash Dump project, which still has not been merged
into the mainstream because there has not been enough favorable feedback from
lieutenants or strong support from vendors.

8http://www.linux-mm.org/mailinglists.shtml





CHAPTER 2

Describing Physical Memory

Linux is available for a wide range of architectures, so an architecture-independent
way of describing memory is needed. This chapter describes the structures used to
keep account of memory banks, pages and flags that affect VM behavior.

The first principal concept prevalent in the VM is Non Uniform Memory Access
(NUMA). With large-scale machines, memory may be arranged into banks that
incur a different cost to access depending on their distance from the processor. For
example, a bank of memory might be assigned to each CPU, or a bank of memory
very suitable for Direct Memory Access (DMA) near device cards might be assigned.

Each bank is called a node, and the concept is represented under Linux by a
struct pglist data even if the architecture is Uniform Memory Access (UMA).
This struct is always referenced by its typedef pg data t. Every node in the system
is kept on a NULL terminated list called pgdat list, and each node is linked to
the next with the field pg data t→node next. For UMA architectures like PC
desktops, only one static pg data t structure called contig page data is used.
Nodes are discussed further in Section 2.1.

Each node is divided into a number of blocks called zones, which represent ranges
within memory. Zones should not be confused with zone-based allocators because
they are unrelated. A zone is described by a struct zone struct, type-deffed to
zone t, and each one is of type ZONE DMA, ZONE NORMAL or ZONE HIGHMEM. Each
zone type is suitable for a different type of use. ZONE DMA is memory in the lower
physical memory ranges that certain Industry Standard Architecture (ISA) devices
require. Memory within ZONE NORMAL is directly mapped by the kernel into the
upper region of the linear address space, which is discussed further in Section 4.1.
ZONE HIGHMEM is the remaining available memory in the system and is not directly
mapped by the kernel.

With the x86, the zones are the following:
ZONE DMA First 16MiB of memory
ZONE NORMAL 16MiB - 896MiB
ZONE HIGHMEM 896 MiB - End

Many kernel operations can only take place using ZONE NORMAL, so it is the most
performance-critical zone. Zones are discussed further in Section 2.2. The system’s
memory is comprised of fixed-size chunks called page frames. Each physical page
frame is represented by a struct page, and all the structs are kept in a global
mem map array, which is usually stored at the beginning of ZONE NORMAL or just after
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pg_data_t

node_zones

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

zone_mem_map zone_mem_map  zone_mem_map 

struct page  struct page struct page  struct page struct page   struct page  

Figure 2.1. Relationship Between Nodes, Zones and Pages

the area reserved for the loaded kernel image in low memory machines. Section 2.4
discusses struct pages in detail, and Section 3.7 discusses the global mem map array
in detail. The basic relationship between all these structs is illustrated in Figure 2.1.

Because the amount of memory directly accessible by the kernel (ZONE NORMAL)
is limited in size, Linux supports the concept of high memory, which is discussed
further in Section 2.7. This chapter discusses how nodes, zones and pages are
represented before introducing high memory management.

2.1 Nodes

As I have mentioned, each node in memory is described by a pg data t, which is a
typedef for a struct pglist data. When allocating a page, Linux uses a node-local
allocation policy to allocate memory from the node closest to the running CPU.
Because processes tend to run on the same CPU, it is likely the memory from the
current node will be used. The struct is declared as follows in <linux/mmzone.h>:

129 typedef struct pglist_data {
130 zone_t node_zones[MAX_NR_ZONES];
131 zonelist_t node_zonelists[GFP_ZONEMASK+1];
132 int nr_zones;
133 struct page *node_mem_map;
134 unsigned long *valid_addr_bitmap;
135 struct bootmem_data *bdata;
136 unsigned long node_start_paddr;
137 unsigned long node_start_mapnr;
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138 unsigned long node_size;
139 int node_id;
140 struct pglist_data *node_next;
141 } pg_data_t;

We now briefly describe each of these fields:

node zones The zones for this node are ZONE HIGHMEM, ZONE NORMAL, ZONE DMA.

node zonelists This is the order of zones that allocations are preferred from.
build zonelists() in mm/page alloc.c sets up the order when called by
free area init core(). A failed allocation in ZONE HIGHMEM may fall back
to ZONE NORMAL or back to ZONE DMA.

nr zones This is the number of zones in this node between one and three. Not
all nodes will have three. A CPU bank may not have ZONE DMA, for example.

node mem map This is the first page of the struct page array that represents
each physical frame in the node. It will be placed somewhere within the global
mem map array.

valid addr bitmap This is a bitmap that describes “holes” in the memory node
that no memory exists for. In reality, this is only used by the Sparc and
Sparc64 architectures and is ignored by all others.

bdata This is only of interest to the boot memory allocator discussed in
Chapter 5.

node start paddr This is the starting physical address of the node. An unsigned
long does not work optimally because it breaks for ia32 with Physical Address
Extension (PAE) and for some PowerPC variants such as the PPC440GP.
PAE is discussed further in Section 2.7. A more suitable solution would be
to record this as a Page Frame Number (PFN). A PFN is simply an index
within physical memory that is counted in page-sized units. PFN for a physical
address could be trivially defined as (page phys addr >> PAGE SHIFT).

node start mapnr This gives the page offset within the global mem map. It
is calculated in free area init core() by calculating the number of pages
between mem map and the local mem map for this node called lmem map.

node size This is the total number of pages in this zone.

node id This is the Node ID (NID) of the node and starts at 0.

node next Pointer to next node in a NULL terminated list.

All nodes in the system are maintained on a list called pgdat list. The nodes
are placed on this list as they are initialized by the init bootmem core() function,
which is described later in Section 5.3. Up until late 2.4 kernels (> 2.4.18), blocks
of code that traversed the list looked something like the following:
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pg_data_t * pgdat;
pgdat = pgdat_list;
do {

/* do something with pgdata_t */
...

} while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for each pgdat(), which is trivially defined as
a for loop, is provided to improve code readability.

2.2 Zones

Each zone is described by a struct zone struct. zone structs keep track of
information like page usage statistics, free area information and locks. They are
declared as follows in <linux/mmzone.h>:

37 typedef struct zone_struct {
41 spinlock_t lock;
42 unsigned long free_pages;
43 unsigned long pages_min, pages_low, pages_high;
44 int need_balance;
45
49 free_area_t free_area[MAX_ORDER];
50
76 wait_queue_head_t * wait_table;
77 unsigned long wait_table_size;
78 unsigned long wait_table_shift;
79
83 struct pglist_data *zone_pgdat;
84 struct page *zone_mem_map;
85 unsigned long zone_start_paddr;
86 unsigned long zone_start_mapnr;
87
91 char *name;
92 unsigned long size;
93 } zone_t;

This is a brief explanation of each field in the struct.

lock Spinlock protects the zone from concurrent accesses.

free pages The total number of free pages in the zone.

pages min, pages low and pages high These are zone watermarks that are
described in the next section.

need balance This flag tells the pageout kswapd to balance the zone. A zone
is said to need balance when the number of available pages reaches one of the
zone watermarks. Watermarks are discussed in the next section.



2.2. Zones 19

free area These are free area bitmaps used by the buddy allocator.

wait table This is a hash table of wait queues of processes waiting on a page
to be freed. This is of importance to wait on page() and unlock page().
Although processes could all wait on one queue, this would cause all waiting
processes to race for pages still locked when woken up. A large group of
processes contending for a shared resource like this is sometimes called a
thundering herd. Wait tables are discussed further in Section 2.2.3.

wait table size This is the number of queues in the hash table, which is a power
of 2.

wait table shift This is defined as the number of bits in a long minus the binary
logarithm of the table size above.

zone pgdat This points to the parent pg data t.

zone mem map This is the first page in the global mem map that this zone refers
to.

zone start paddr This uses the same principle as node start paddr.

zone start mapnr This uses the same principle as node start mapnr.

name This is the string name of the zone: “DMA”, “Normal” or “HighMem”.

size This is the size of the zone in pages.

2.2.1 Zone Watermarks

When available memory in the system is low, the pageout daemon kswapd is woken
up to start freeing pages (see Chapter 10). If the pressure is high, the process will
free up memory synchronously, sometimes referred to as the direct-reclaim path.
The parameters affecting pageout behavior are similar to those used by FreeBSD
[McK96] and Solaris [MM01].

Each zone has three watermarks called pages low, pages min and pages high,
which help track how much pressure a zone is under. The relationship between
them is illustrated in Figure 2.2. The number of pages for pages min is calculated
in the function free area init core() during memory init and is based on a ratio
to the size of the zone in pages. It is calculated initially as ZoneSizeInPages/128.
The lowest value it will be is 20 pages (80K on a x86), and the highest possible
value is 255 pages (1MiB on a x86).

At each watermark a different action is taken to address the memory shortage.

pages low When the pages low number of free pages is reached, kswapd is
woken up by the buddy allocator to start freeing pages. This is equivalent to
when lotsfree is reached in Solaris and freemin in FreeBSD. The value is
twice the value of pages min by default.
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Figure 2.2. Zone Watermarks

pages min When pages min is reached, the allocator will do the kswapd work
in a synchronous fashion, sometimes referred to as the direct-reclaim path.
Solaris does not have a real equivalent, but the closest is the desfree or
minfree, which determine how often the pageout scanner is woken up.

pages high After kswapd has been woken to start freeing pages, it will not
consider the zone to be “balanced” when pages high pages are free. After
the watermark has been reached, kswapd will go back to sleep. In Solaris,
this is called lotsfree, and, in BSD, it is called free target. The default
for pages high is three times the value of pages min.

Whatever the pageout parameters are called in each operating system, the mean-
ing is the same. It helps determine how hard the pageout daemon or processes work
to free up pages.

2.2.2 Calculating the Size of Zones

The size of each zone is calculated during setup memory(), shown in Figure 2.3.
The PFN is an offset, counted in pages, within the physical memory map. The

first PFN usable by the system, min low pfn, is located at the beginning of the
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first page after end, which is the end of the loaded kernel image. The value is
stored as a file scope variable in mm/bootmem.c for use with the boot memory
allocator.

How the last page frame in the system, max pfn, is calculated is quite archi-
tecture specific. In the x86 case, the function find max pfn() reads through the
whole e820 map for the highest page frame. The value is also stored as a file scope
variable in mm/bootmem.c. The e820 is a table provided by the BIOS describing
what physical memory is available, reserved or nonexistent.

The value of max low pfn is calculated on the x86 with find max low pfn(),
and it marks the end of ZONE NORMAL. This is the physical memory directly accessible
by the kernel and is related to the kernel/userspace split in the linear address space
marked by PAGE OFFSET. The value, with the others, is stored in mm/bootmem.c. In
low memory machines, the max pfn will be the same as the max low pfn.

With the three variables min low pfn, max low pfn and max pfn, it is straight-
forward to calculate the start and end of high memory and place them as file scope
variables in arch/i386/mm/init.c as highstart pfn and highend pfn. The val-
ues are used later to initialize the high memory pages for the physical page allocator,
as we will see in Section 5.6.

2.2.3 Zone Wait Queue Table

When I/O is being performed on a page, such as during page-in or page-out, the I/O
is locked to prevent accessing it with inconsistent data. Processes that want to use it
have to join a wait queue before the I/O can be accessed by calling wait on page().
When the I/O is completed, the page will be unlocked with UnlockPage(), and any
process waiting on the queue will be woken up. Each page could have a wait queue,
but it would be very expensive in terms of memory to have so many separate queues.
Instead, the wait queue is stored in the zone t. The basic process is shown in
Figure 2.4.

It is possible to have just one wait queue in the zone, but that would mean
that all processes waiting on any page in a zone would be woken up when one
was unlocked. This would cause a serious thundering herd problem. Instead, a
hash table of wait queues is stored in zone t→wait table. In the event of a hash
collision, processes may still be woken unnecessarily, but collisions are not expected
to occur frequently.

The table is allocated during free area init core(). The size of the table is
calculated by wait table size() and is stored in zone t→wait table size. The
maximum size it will be is 4,096 wait queues. For smaller tables, the size of the ta-
ble is the minimum power of 2 required to store NoPages / PAGES PER WAITQUEUE
number of queues, where NoPages is the number of pages in the zone and
PAGE PER WAITQUEUE is defined to be 256. In other words, the size of the table
is calculated as the integer component of the following equation:

wait table size = log2(
NoPages ∗ 2

PAGE PER WAITQUEUE
− 1)
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Figure 2.4. Sleeping on a Locked Page

The field zone t→wait table shift is calculated as the number of bits a page
address must be shifted right to return an index within the table. The function
page waitqueue() is responsible for returning which wait queue to use for a page
in a zone. It uses a simple multiplicative hashing algorithm based on the virtual
address of the struct page being hashed.

page waitqueue works by simply multiplying the address by
GOLDEN RATIO PRIME and shifting the result zone t→wait table shift bits right
to index the result within the hash table. GOLDEN RATIO PRIME[Lev00] is the largest
prime that is closest to the golden ratio[Knu68] of the largest integer that may be
represented by the architecture.

2.3 Zone Initialization

The zones are initialized after the kernel page tables have been fully set up by
paging init(). Page table initialization is covered in Section 3.6. Predictably,
each architecture performs this task differently, but the objective is always the
same: to determine what parameters to send to either free area init() for UMA
architectures or free area init node() for NUMA. The only parameter required
for UMA is zones size. The full list of parameters follows:

nid is the NodeID that is the logical identifier of the node whose zones are being
initialized.
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pgdat is the node’s pg data t that is being initialized. In UMA, this will simply
be contig page data.

pmap is set later by free area init core() to point to the beginning of the
local lmem map array allocated for the node. In NUMA, this is ignored because
NUMA treats mem map as a virtual array starting at PAGE OFFSET. In UMA,
this pointer is the global mem map variable, which is now mem map, and gets
initialized in UMA.

zones sizes is an array containing the size of each zone in pages.

zone start paddr is the starting physical address for the first zone.

zone holes is an array containing the total size of memory holes in the zones.

The core function free area init core() is responsible for filling in each
zone t with the relevant information and the allocation of the mem map array for
the node. Information on what pages are free for the zones is not determined at
this point. That information is not known until the boot memory allocator is being
retired, which will be discussed in Chapter 5.

2.4 Initializing mem map

The mem map area is created during system startup in one of two fashions. On
NUMA systems, the global mem map is treated as a virtual array starting at
PAGE OFFSET. free area init node() is called for each active node in the system,
which allocates the portion of this array for the node being initialized. On UMA
systems, free area init() uses contig page data as the node and the global
mem map as the local mem map for this node. The call graph for both functions is
shown in Figure 2.5.

The core function free area init core() allocates a local lmem map for the
node being initialized. The memory for the array is allocated from the boot memory
allocator with alloc bootmem node() (see Chapter 5). With UMA architectures,
this newly allocated memory becomes the global mem map, but it is slightly different
for NUMA.

NUMA architectures allocate the memory for lmem map within their own memory
node. The global mem map never gets explicitly allocated, but instead is set to
PAGE OFFSET where it is treated as a virtual array. The address of the local map
is stored in pg data t→node mem map, which exists somewhere within the virtual
mem map. For each zone that exists in the node, the address within the virtual
mem map for the zone is stored in zone t→zone mem map. All the rest of the code
then treats mem map as a real array bacause only valid regions within it will be used
by nodes.

2.5 Pages

Every physical page frame in the system has an associated struct page that is
used to keep track of its status. In the 2.2 kernel [BC00], this structure resembled
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free_area_init

free_area_init_core

alloc_bootmem_node set_page_zone build_zonelists

set_page_address

free_area_init_node

Figure 2.5. Call Graph: free area init()

its equivalent in System V [GC94], but like the other UNIX variants, the structure
changed considerably. It is declared as follows in <linux/mm.h>:

152 typedef struct page {
153 struct list_head list;
154 struct address_space *mapping;
155 unsigned long index;
156 struct page *next_hash;
158 atomic_t count;
159 unsigned long flags;
161 struct list_head lru;
163 struct page **pprev_hash;
164 struct buffer_head * buffers;
175
176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
177 void *virtual;
179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
180 } mem_map_t;

Here is a brief description of each of the fields:

list Pages may belong to many lists, and this field is used as the list head. For
example, pages in a mapping will be in one of three circular linked links kept by
the address space. These are clean pages, dirty pages and locked pages.
In the slab allocator, this field is used to store pointers to the slab and cache
structures managing the page when it has been allocated by the slab allocator.
It is also used to link blocks of free pages together.

mapping When files or devices are memory mapped, their inode has an associated
address space. This field will point to this address space if the page belongs
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to the file. If the page is anonymous and mapping is set, the address space
is swapper space, which manages the swap address space.

index This field has two uses, and the state of the page determines what it means.
If the page is part of a file mapping, it is the offset within the file. If the page
is part of the swap cache, this will be the offset within the address space for
the swap address space (swapper space). Second, if a block of pages is being
freed for a particular process, the order (power of two number of pages being
freed) of the block being freed is stored in index. This is set in the function
free pages ok().

next hash Pages that are part of a file mapping are hashed on the inode and
offset. This field links pages together that share the same hash bucket.

count This is the reference count to the page. If it drops to zero, it may be freed.
If it is any greater, it is in use by one or more processes or is in use by the
kernel like when waiting for I/O.

flags These are flags that describe the status of the page. All of them are declared
in <linux/mm.h> and are listed in Table 2.1. A number of macros defined for
testing, clearing and setting the bits are all listed in Table 2.2. The only really
interesting flag is SetPageUptodate(), which calls an architecture-specific
function, arch set page uptodate(), if it is defined before setting the bit.

lru For the page replacement policy, pages that may be swapped out will exist
on either the active list or the inactive list declared in page alloc.c.
This is the list head for these Least Recently Used (LRU) lists. These two
lists are discussed in detail in Chapter 10.

pprev hash This complement to next hash is so that the hash can work as a
doubly linked list.

buffers If a page has buffers for a block device associated with it, this field is
used to keep track of the buffer head. An anonymous page mapped by a
process may also have an associated buffer head if it is backed by a swap
file. This is necessary because the page has to be synced with backing storage
in block-sized chunks defined by the underlying file system.

virtual Normally only pages from ZONE NORMAL are directly mapped by the kernel.
To address pages in ZONE HIGHMEM, kmap() is used to map the page for the
kernel, which is described further in Chapter 9. Only a fixed number of pages
may be mapped. When a page is mapped, this is its virtual address.

The type mem map t is a typedef for struct page, so it can be easily referred
to within the mem map array.
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Bit Name Description
PG active This bit is set if a page is on the active list LRU and cleared

when it is removed. It marks a page as being hot.
PG arch 1 Quoting directly from the code, PG arch 1 is an architecture-

specific page state bit. The generic code guarantees that this
bit is cleared for a page when it first is entered into the page
cache. This allows an architecture to defer the flushing of
the D-Cache (See Section 3.9) until the page is mapped by a
process.

PG checked This is only used by the Ext2 file system.
PG dirty This indicates if a page needs to be flushed to disk. When

a page is written to that is backed by disk, it is not flushed
immediately. This bit is needed to ensure a dirty page is not
freed before it is written out.

PG error If an error occurs during disk I/O, this bit is set.
PG fs 1 This bit is reserved for a file system to use for its own purposes.

Currently, only NFS uses it to indicate if a page is in sync with
the remote server.

PG highmem Pages in high memory cannot be mapped permanently by the
kernel. Pages that are in high memory are flagged with this
bit during mem init().

PG launder This bit is important only to the page replacement policy.
When the VM wants to swap out a page, it will set this bit
and call the writepage() function. When scanning, if it en-
counters a page with this bit and PG locked set, it will wait
for the I/O to complete.

PG locked This bit is set when the page must be locked in memory for
disk I/O. When I/O starts, this bit is set and released when
it completes.

PG lru If a page is on either the active list or the inactive list,
this bit will be set.

PG referenced If a page is mapped and it is referenced through the map-
ping, index hash table, this bit is set. It is used during page
replacement for moving the page around the LRU lists.

PG reserved This is set for pages that can never be swapped out. It is
set by the boot memory allocator (See Chapter 5) for pages
allocated during system startup. Later it is used to flag empty
pages or ones that do not even exist.

PG slab This will flag a page as being used by the slab allocator.
PG skip This was used by some Sparc architectures to skip over parts

of the address space but is no longer used. In 2.6, it is totally
removed.

PG unused This bit is literally unused.
PG uptodate When a page is read from disk without error, this bit will be

set.

Table 2.1. Flags Describing Page Status
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2.6 Mapping Pages to Zones

Up until as recently as kernel 2.4.18, a struct page stored a reference to its zone
with page→zone, which was later considered wasteful, because even such a small
pointer consumes a lot of memory when thousands of struct pages exist. In more
recent kernels, the zone field has been removed and instead the top ZONE SHIFT
(8 in the x86) bits of the page→flags are used to determine the zone that a page
belongs to. First, a zone table of zones is set up. It is declared in mm/page alloc.c
as:

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
34 EXPORT_SYMBOL(zone_table);

MAX NR ZONES is the maximum number of zones that can be in a node, i.e.,
three. MAX NR NODES is the maximum number of nodes that may exist. The function
EXPORT SYMBOL() makes zone table accessible to loadable modules. This table is
treated like a multidimensional array. During free area init core(), all the pages
in a node are initialized. First, it sets the value for the table

733 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone t struct. For
each page, the function set page zone() is called as:

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

The parameter page is the page for which the zone is being set. Therefore,
clearly the index in the zone table is stored in the page.

2.7 High Memory

Because the address space usable by the kernel (ZONE NORMAL) is limited in size,
the kernel has support for the concept of high memory. Two thresholds of high
memory exist on 32-bit x86 systems, one at 4GiB and a second at 64GiB. The
4GiB limit is related to the amount of memory that may be addressed by a 32-bit
physical address. To access memory between the range of 1GiB and 4GiB, the
kernel temporarily maps pages from high memory into ZONE NORMAL with kmap().
This is discussed further in Chapter 9.

The second limit at 64GiB is related to PAE, which is an Intel invention to
allow more RAM to be used with 32-bit systems. It makes four extra bits available
for the addressing of memory, allowing up to 236 bytes (64GiB) of memory to be
addressed.

PAE allows a processor to address up to 64GiB in theory but, in practice,
processes in Linux still cannot access that much RAM because, the virtual address
space is still only 4GiB. This has led to some disappointment from users who have
tried to malloc() all their RAM with one process.

Second, PAE does not allow the kernel itself to have this much RAM avail-
able. The struct page used to describe each page frame still requires 44 bytes,
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and this uses kernel virtual address space in ZONE NORMAL. That means that to
describe 1GiB of memory, approximately 11MiB of kernel memory is required.
Thus, with 16GiB, 176MiB of memory is consumed, putting significant pressure
on ZONE NORMAL. This does not sound too bad until other structures are taken into
account that use ZONE NORMAL. Even very small structures, such as Page Table En-
tries (PTEs), require about 16MiB in the worst case. This makes 16GiB about the
practical limit for available physical memory of Linux on an x86. If more memory
needs to be accessed, the advice given is simple and straightforward. Buy a 64-bit
machine.

2.8 What’s New in 2.6

Nodes At first glance, there have not been many changes made to how memory is
described, but the seemingly minor changes are wide reaching. The node descriptor
pg data t has a few new fields that are as follows:

node start pfn replaces the node start paddr field. The only difference is that
the new field is a PFN instead of a physical address. This was changed because
PAE architectures can address more memory than 32 bits can address, so
nodes starting over 4GiB would be unreachable with the old field.

kswapd wait is a new wait queue for kswapd. In 2.4, there was a global wait
queue for the page swapper daemon. In 2.6, there is one kswapdN for each
node where N is the node identifier and each kswapd has its own wait queue
with this field.

The node size field has been removed and replaced instead with two fields.
The change was introduced to recognize the fact that nodes may have holes in them
where no physical memory is backing the address.

node present pages is the total number of physical pages that are present in
the node.

node spanned pages is the total area that is addressed by the node, including
any holes that may exist.

Zones Even at first glance, zones look very different. They are no longer called
zone t, but instead are referred to as simply struct zone. The second major
difference is the LRU lists. As we’ll see in Chapter 10, kernel 2.4 has a global list
of pages that determine the order pages are freed or paged out. These lists are now
stored in the struct zone. The relevant fields are the following:

lru lock is the spinlock for the LRU lists in this zone. In 2.4, this is a global lock
called pagemap lru lock.

active list is the active list for this zone. This list is the same as described in
Chapter 10 except it is now per-zone instead of global.

inactive list is the inactive list for this zone. In 2.4, it is global.
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refill counter is the number of pages to remove from the active list in one
pass and only of interest during page replacement.

nr active is the number of pages on the active list.

nr inactive is the number of pages on the inactive list.

all unreclaimable field is set to 1 if the pageout daemon scans through all the
pages in the zone twice and still fails to free enough pages.

pages scanned is the number of pages scanned since the last bulk amount of
pages has been reclaimed. In 2.6, lists of pages are freed at once rather than
freeing pages individually, which is what 2.4 does.

pressure measures the scanning intensity for this zone. It is a decaying average
that affects how hard a page scanner will work to reclaim pages.

Three other fields are new, but they are related to the dimensions of the zone.
They are the following:

zone start pfn is the starting PFN of the zone. It replaces the zone start paddr
and zone start mapnr fields in 2.4.

spanned pages is the number of pages this zone spans, including holes in memory
that exist with some architectures.

present pages is the number of real pages that exist in the zone. For many
architectures, this will be the same value as spanned pages.

The next addition is struct per cpu pageset, which is used to maintain lists of
pages for each CPU to reduce spinlock contention. The zone→pageset field is an
NR CPU-sized array of struct per cpu pageset where NR CPU is the compiled upper
limit of number of CPUs in the system. The per-cpu struct is discussed further at
the end of the section.

The last addition to struct zone is the inclusion of padding of zeros in the
struct. Development of the 2.6 VM recognized that some spinlocks are very heavily
contended and are frequently acquired. Because it is known that some locks are
almost always acquired in pairs, an effort should be made to ensure they use different
cache lines, which is a common cache programming trick [Sea00]. This padding
in the struct zone is marked with the ZONE PADDING() macro and is used to
ensure the zone→lock, zone→lru lock and zone→pageset fields use different
cache lines.

Pages The first noticeable change is that the ordering of fields has been changed
so that related items are likely to be in the same cache line. The fields are essentially
the same except for two additions. The first is a new union used to create a PTE
chain. PTE chains are related to page table management, so will be discussed
at the end of Chapter 3. The second addition is the page→private field, which
contains private information specific to the mapping. For example, the field is used
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to store a pointer to a buffer head if the page is a buffer page. This means that
the page→buffers field has also been removed. The last important change is that
page→virtual is no longer necessary for high memory support and will only exist
if the architecture specifically requests it. How high memory pages are supported
is discussed further in Chapter 9.

Per-CPU Page Lists In 2.4, only one subsystem actively tries to maintain per-cpu
lists for any object, and that is the Slab Allocator, which is discussed in Chapter 8.
In 2.6, the concept is much more widespread, and there is a formalized concept of
hot and cold pages.

The struct per cpu pageset, declared in <linux/mmzone.h>, has one field,
which is an array with two elements of type per cpu pages. The zeroth element
of this array is for hot pages, and the first element is for cold pages where hot and
cold determines how active the page is currently in the cache. When it is known
for a fact that the pages are not to be referenced soon, such as with I/O readahead,
they will be allocated as cold pages.

The struct per cpu pages maintains a count of the number of pages currently
in the list, a high and low watermark that determines when the set should be
refilled or pages freed in bulk, a variable that determines how many pages should
be allocated in one block and, finally, the actual list head of pages.

To build upon the per-cpu page lists, there is also a per-cpu page accounting
mechanism. A struct page state holds a number of accounting variables, such
as the pgalloc field, which tracks the number of pages allocated to this CPU,
and pswpin, which tracks the number of swap readins. The struct is heavily
commented in <linux/page-flags.h>. A single function mod page state() is
provided for updating fields in the page state for the running CPU, and three
helper macros are provided and are called inc page state(), dec page state()
and sub page state().



CHAPTER 3

Page Table Management

Linux layers the machine independent/dependent layer in an unusual manner in
comparison to other operating systems [CP99]. Other operating systems have ob-
jects that manage the underlying physical pages, such as the pmap object in BSD.
Linux instead maintains the concept of a three-level page table in the architecture-
independent code even if the underlying architecture does not support it. Although
this is conceptually easy to understand, it also means that the distinction between
different types of pages is very blurry, and page types are identified by their flags
or what lists they exist on rather than the objects they belong to.

Architectures that manage their Memory Management Unit (MMU) differently
are expected to emulate the three-level page tables. For example, on the x86 without
PAE enabled, only two page table levels are available. The Page Middle Directory
(PMD) is defined to be of size 1 and “folds back” directly onto the Page Global
Directory (PGD), which is optimized out at compile time. Unfortunately, for ar-
chitectures that do not manage their cache or Translation Lookaside Buffer (TLB)
automatically, hooks that are architecture dependent have to be explicitly left in
the code for when the TLB and CPU caches need to be altered and flushed, even
if they are null operations on some architectures like the x86. These hooks are
discussed further in Section 3.8.

This chapter will begin by describing how the page table is arranged and what
types are used to describe the three separate levels of the page table. Next is how
a virtual address is broken up into its component parts for navigating the table.
After this is covered, I discuss the lowest level entry, the PTE, and what bits are
used by the hardware. After that, the macros used for navigating a page table and
setting and checking attributes will be discussed before talking about how the page
table is populated and how pages are allocated and freed for the use with page
tables. The initialization stage is then discussed, which shows how the page tables
are initialized during boot strapping. Finally, I cover how the TLB and CPU caches
are utilized.

3.1 Describing the Page Directory

Each process is a pointer (mm struct→pgd) to its own PGD which is a physical
page frame. This frame contains an array of type pgd t, which is an architecture-
specific type defined in <asm/page.h>. The page tables are loaded differently
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Figure 3.1. Page Table Layout

depending on the architecture. On the x86, the process page table is loaded by
copying mm struct→pgd into the cr3 register, which has the side effect of flushing
the TLB. In fact, this is how the function flush tlb() is implemented in the
architecture-dependent code.

Each active entry in the PGD table points to a page frame containing an array
of PMD entries of type pmd t, which in turn points to page frames containing PTEs
of type pte t, which finally point to page frames containing the actual user data.
In the event that the page has been swapped out to backing storage, the swap
entry is stored in the PTE and used by do swap page() during page fault to find
the swap entry containing the page data. The page table layout is illustrated in
Figure 3.1.

Any given linear address may be broken up into parts to yield offsets within
these three page table levels and an offset within the actual page. To help break
up the linear address into its component parts, a number of macros are provided in
triplets for each page table level, namely a SHIFT, a SIZE and a MASK macro. The
SHIFT macros specify the length in bits that are mapped by each level of the page
tables as illustrated in Figure 3.2.

The MASK values can be ANDd with a linear address to mask out all the upper
bits and are frequently used to determine if a linear address is aligned to a given
level within the page table. The SIZE macros reveal how many bytes are addressed
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Figure 3.2. Linear Address Bit Size Macros

by each entry at each level. The relationship between the SIZE and MASK macros is
illustrated in Figure 3.3.

For the calculation of each of the triplets, only SHIFT is important because the
other two are calculated based on it. For example, the three macros for page level
on the x86 are:

5 #define PAGE_SHIFT 12
6 #define PAGE_SIZE (1UL << PAGE_SHIFT)
7 #define PAGE_MASK (~(PAGE_SIZE-1))

PAGE SHIFT is the length in bits of the offset part of the linear address space,
which is 12 bits on the x86. The size of a page is easily calculated as 2PAGE SHIFT

which is the equivalent of the previous code. Finally, the mask is calculated as the
negation of the bits that make up the PAGE SIZE - 1. If a page needs to be aligned
on a page boundary, PAGE ALIGN() is used. This macro adds PAGE SIZE - 1 to
the address before simply ANDing it with the PAGE MASK to zero out the page
offset bits.

PMD SHIFT is the number of bits in the linear address that are mapped by the
second-level part of the table. The PMD SIZE and PMD MASK are calculated in a
similar way to the page-level macros.

Figure 3.3. Linear Address Size and Mask Macros
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PGDIR SHIFT is the number of bits that are mapped by the top, or first level,
of the page table. The PGDIR SIZE and PGDIR MASK are calculated in the same
manner.

The last three macros of importance are the PTRS PER x, which determines the
number of entries in each level of the page table. PTRS PER PGD is the number of
pointers in the PGD, which is 1,024 on an x86 without PAE. PTRS PER PMD is for
the PMD, which is one on the x86 without PAE, and PTRS PER PTE is for the lowest
level, which is 1,024 on the x86.

3.2 Describing a Page Table Entry

As mentioned, each entry is described by the structs pte t, pmd t and pgd t for
PTEs, PMDs and PGDs respectively. Even though these are often just unsigned
integers, they are defined as structs for two reasons. The first is for type protection
so that they will not be used inappropriately. The second is for features like PAE
on the x86 where an additional 4 bits is used for addressing more than 4GiB of
memory. To store the protection bits, pgprot t is defined, which holds the relevant
flags and is usually stored in the lower bits of a page table entry.

For type casting, four macros are provided in asm/page.h, which takes the
previous types and returns the relevant part of the structs. They are pte val(),
pmd val(), pgd val() and pgprot val(). To reverse the type casting, four more
macros are provided: pte(), pmd(), pgd() and pgprot().

Where exactly the protection bits are stored is architecture dependent. For
illustration purposes, we will examine the case of an x86 architecture without PAE
enabled, but the same principles apply across architectures. On an x86 without
PAE, the pte t is simply a 32-bit integer within a struct. Each pte t points to
an address of a page frame, and all the addresses pointed to are guaranteed to be
page aligned. Therefore, there are PAGE SHIFT (12) bits in that 32-bit value that
are free for status bits of the page table entry. A number of the protection and
status bits are listed in Table 3.1, but what bits exist and what they mean varies
between architectures.

Bit Function
PAGE PRESENT Page is resident in memory and not swapped out.
PAGE PROTNONE Page is resident, but not accessible.
PAGE RW Set if the page may be written to
PAGE USER Set if the page is accessible from userspace
PAGE DIRTY Set if the page is written to
PAGE ACCESSED Set if the page is accessed

Table 3.1. Page Table Entry Protection and Status Bits

These bits are self-explanatory except for the PAGE PROTNONE, which I will dis-
cuss further. On the x86 with Pentium III and higher, this bit is called the Page
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Attribute Table (PAT) while earlier architectures such as the Pentium II had this
bit reserved. The PAT bit is used to indicate the size of the page that the PTE is
referencing. In a PGD entry, this same bit is instead called the Page Size Extension
(PSE) bit, so obviously these bits are meant to be used in conjunction.

Because Linux does not use the PSE bit for user pages, the PAT bit is free in
the PTE for other purposes. There is a requirement for having a page resident
in memory, but inaccessible to the user space process, such as when a region is
protected with mprotect() with the PROT NONE flag. When the region is to be
protected, the PAGE PRESENT bit is cleared, and the PAGE PROTNONE bit is set.
The macro pte present() checks if either of these bits are set, so the kernel itself
knows the PTE is present. It is just inaccessible to userspace, which is a subtle, but
important, point. Because the hardware bit PAGE PRESENT is clear, a page fault
will occur if the page is accessed so that Linux can enforce the protection while still
knowing the page is resident if it needs to swap it out or the process exits.

3.3 Using Page Table Entries

Macros are defined in <asm/pgtable.h>, which is important for the navigation
and examination of page table entries. To navigate the page directories, three
macros are provided that break up a linear address space into its component parts.
pgd offset() takes an address and the mm struct for the process and returns the
PGD entry that covers the requested address. pmd offset() takes a PGD entry
and an address and returns the relevant PMD. pte offset() takes a PMD and
returns the relevant PTE. The remainder of the linear address provided is the offset
within the page. The relationship between these fields is illustrated in Figure 3.1.

The second round of macros determine if the page table entries are present or
may be used.

• pte none(), pmd none() and pgd none() return 1 if the corresponding entry
does not exist.

• pte present(), pmd present() and pgd present() return 1 if the corre-
sponding page table entries have the PRESENT bit set.

• pte clear(), pmd clear() and pgd clear() will clear the corresponding
page table entry.

• pmd bad() and pgd bad() are used to check entries when passed as input
parameters to functions that may change the value of the entries. Whether
they return 1 varies between the few architectures that define these macros.
However, for those that actually define it, making sure the page entry is
marked as present and accessed are the two most important checks.

Many parts of the VM are littered with page table walk code, and it is impor-
tant to recognize it. A very simple example of a page table walk is the function
follow page() in mm/memory.c. The following is an excerpt from that function.
The parts unrelated to the page table walk are omitted.
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407 pgd_t *pgd;
408 pmd_t *pmd;
409 pte_t *ptep, pte;
410
411 pgd = pgd_offset(mm, address);
412 if (pgd_none(*pgd) || pgd_bad(*pgd))
413 goto out;
414
415 pmd = pmd_offset(pgd, address);
416 if (pmd_none(*pmd) || pmd_bad(*pmd))
417 goto out;
418
419 ptep = pte_offset(pmd, address);
420 if (!ptep)
421 goto out;
422
423 pte = *ptep;

It simply uses the three offset macros to navigate the page tables and the none()
and bad() macros to make sure it is looking at a valid page table.

The third set of macros examine and set the permissions of an entry. The
permissions determine what a userspace process can and cannot do with a particular
page. For example, the kernel page table entries are never readable by a userspace
process.

• The read permissions for an entry are tested with pte read(), set with
pte mkread() and cleared with pte rdprotect().

• The write permissions are tested with pte write(), set with pte mkwrite()
and cleared with pte wrprotect().

• The execute permissions are tested with pte exec(), set with pte mkexec()
and cleared with pte exprotect(). It is worth noting that, with the x86
architecture, there is no means of setting execute permissions on pages, so
these three macros act the same way as the read macros.

• The permissions can be modified to a new value with pte modify(), but its
use is almost nonexistent. It is only used in the function change pte range()
in mm/mprotect.c.

The fourth set of macros examine and set the state of an entry. There are only
two bits that are important in Linux, the dirty bit and the accessed bit. To check
these bits, the macros pte dirty() and pte young() are used. To set the bits, the
macros pte mkdirty() and pte mkyoung() are used. To clear them, the macros
pte mkclean() and pte old() are available.
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3.4 Translating and Setting Page Table Entries

This set of functions and macros deal with the mapping of addresses and pages to
PTEs and the setting of the individual entries.

The macro mk pte() takes a struct page and protection bits and combines
them together to form the pte t that needs to be inserted into the page table.
A similar macro mk pte phys() exists, which takes a physical page address as a
parameter.

The macro pte page() returns the struct page, which corresponds to
the PTE entry. pmd page() returns the struct page containing the set of
PTEs.

The macro set pte() takes a pte t such as that returned by mk pte() and
places it within the process’s page table. pte clear() is the reverse operation. An
additional function is provided called ptep get and clear(), which clears an entry
from the process page table and returns the pte t. This is important when some
modification needs to be made to either the PTE protection or the struct page
itself.

3.5 Allocating and Freeing Page Tables

The last set of functions deal with the allocation and freeing of page tables. Page
tables, as stated, are physical pages containing an array of entries, and the allocation
and freeing of physical pages is a relatively expensive operation, both in terms of
time and the fact that interrupts are disabled during page allocation. The allocation
and deletion of page tables, at any of the three levels, is a very frequent operation,
so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of different
lists called quicklists. Each architecture implements these caches differently, but
the principles used are the same. For example, not all architectures cache PGDs
because the allocation and freeing of them only happens during process creation
and exit. Because both of these are very expensive operations, the allocation of
another page is negligible.

PGDs, PMDs and PTEs have two sets of functions each for the allocation and
freeing of page tables. The allocation functions are pgd alloc(), pmd alloc() and
pte alloc(), respectively, and the free functions are, predictably enough, called
pgd free(), pmd free() and pte free().

Broadly speaking, the three implement caching with the use of three caches
called pgd quicklist, pmd quicklist and pte quicklist. Architectures imple-
ment these three lists in different ways, but one method is through the use of a Last
In, First Out (LIFO) type structure. Ordinarily, a page table entry contains point-
ers to other pages containing page tables or data. While cached, the first element
of the list is used to point to the next free page table. During allocation, one page
is popped off the list, and, during free, one is placed as the new head of the list. A
count is kept of how many pages are used in the cache.

The quick allocation function from the pgd quicklist is not externally defined
outside of the architecture, although get pgd fast() is a common choice for the
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function name. The cached allocation function for PMDs and PTEs are publicly
defined as pmd alloc one fast() and pte alloc one fast().

If a page is not available from the cache, a page will be allocated using the
physical page allocator (see Chapter 6). The functions for the three levels of page
tables are get pgd slow(), pmd alloc one() and pte alloc one().

Obviously, a large number of pages may exist on these caches, so a mechanism is
in place for pruning them. Each time the caches grow or shrink, a counter is incre-
mented or decremented, and it has a high and low watermark. check pgt cache()
is called in two places to check these watermarks. When the high watermark is
reached, entries from the cache will be freed until the cache size returns to the low
watermark. The function is called after clear page tables() when a large number
of page tables are potentially reached and is also called by the system idle task.

3.6 Kernel Page Tables

When the system first starts, paging is not enabled because page tables do not
magically initialize themselves. Each architecture implements this differently so
only the x86 case will be discussed. The page table initialization is divided into two
phases. The bootstrap phase sets up page tables for just 8MiB so that the paging
unit can be enabled. The second phase initializes the rest of the page tables. We
discuss both of these phases in the following sections.

3.6.1 Bootstrapping

The assembler function startup 32() is responsible for enabling the paging unit in
arch/i386/kernel/head.S. While all normal kernel code in vmlinuz is compiled
with the base address at PAGE OFFSET + 1MiB, the kernel is actually loaded begin-
ning at the first megabyte (0x00100000) of memory. The first megabyte is used
by some devices for communication with the BIOS and is skipped. The bootstrap
code in this file treats 1MiB as its base address by subtracting PAGE OFFSET from
any address until the paging unit is enabled. Therefore before the paging unit is
enabled, a page table mapping has to be established that translates the 8MiB of
physical memory to the virtual address PAGE OFFSET.

Initialization begins at compile time with statically defining an array called
swapper pg dir, which is placed using linker directives at 0x00101000. It then
establishes page table entries for two pages, pg0 and pg1. If the processor supports
the Page Size Extension (PSE) bit, it will be set so that pages that will be translated
are 4MiB pages, not 4KiB as is the normal case. The first pointers to pg0 and pg1
are placed to cover the region 1-9MiB; the second pointers to pg0 and pg1 are placed
at PAGE OFFSET+1MiB. This means that, when paging is enabled, they will map to
the correct pages using either physical or virtual addressing for just the kernel
image. The rest of the kernel page tables will be initialized by paging init().

After this mapping has been established, the paging unit is turned on by setting a
bit in the cr0 register, and a jump takes places immediately to ensure the Instruction
Pointer (EIP register) is correct.
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3.6.2 Finalizing

The function responsible for finalizing the page tables is called paging init(). The
call graph for this function on the x86 can be seen on Figure 3.4.

paging_init

pagetable_init kmap_init zone_sizes_init

alloc_bootmem_low_pages

fixrange_init kmap_get_fixmap_pte

Figure 3.4. Call Graph: paging init()

The function first calls pagetable init() to initialize the page tables necessary
to reference all physical memory in ZONE DMA and ZONE NORMAL. Remember that
high memory in ZONE HIGHMEM cannot be directly referenced and that mappings
are set up for it temporarily. For each pgd t used by the kernel, the boot memory
allocator (see Chapter 5) is called to allocate a page for the PGD, and the PSE
bit will be set if available to use 4MiB TLB entries instead of 4KiB. If the PSE
bit is not supported, a page for PTEs will be allocated for each pmd t. If the CPU
supports the PGE flag, it also will be set so that the page table entry will be global
and visible to all processes.

Next, pagetable init() calls fixrange init() to set up the fixed address
space mappings at the end of the virtual address space starting at FIXADDR START.
These mappings are used for purposes such as the local Advanced Programmable
Interrupt Controller (APIC) and the atomic kmappings between FIX KMAP BEGIN
and FIX KMAP END required by kmap atomic(). Finally, the function calls
fixrange init() to initialize the page table entries required for normal high mem-
ory mappings with kmap().

After pagetable init() returns, the page tables for kernel space are now fully
initialized, so the static PGD (swapper pg dir) is loaded into the CR3 register so
that the static table is now being used by the paging unit.

The next task of the paging init() is responsible for calling kmap init() to
initialize each of the PTEs with the PAGE KERNEL protection flags. The final task is
to call zone sizes init(), which initializes all the zone structures used.
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3.7 Mapping Addresses to a struct page

There is a requirement for Linux to have a fast method of mapping virtual addresses
to physical addresses and for mapping struct pages to their physical address.
Linux achieves this by knowing where, in both virtual and physical memory, the
global mem map array is because the global array has pointers to all struct pages
representing physical memory in the system. All architectures achieve this with
very similar mechanisms, but, for illustration purposes, we will only examine the
x86 carefully. This section will first discuss how physical addresses are mapped to
kernel virtual addresses and then what this means to the mem map array.

3.7.1 Mapping Physical to Virtual Kernel Addresses

As we saw in Section 3.6, Linux sets up a direct mapping from the physical address
0 to the virtual address PAGE OFFSET at 3GiB on the x86. This means that any
virtual address can be translated to the physical address by simply subtracting
PAGE OFFSET, which is essentially what the function virt to phys() with the macro
pa() does:

/* from <asm-i386/page.h> */
132 #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

/* from <asm-i386/io.h> */
76 static inline unsigned long virt_to_phys(volatile void * address)
77 {
78 return __pa(address);
79 }

Obviously, the reverse operation involves simply adding PAGE OFFSET, which is
carried out by the function phys to virt() with the macro va(). Next we see
how this helps the mapping of struct pages to physical addresses.

There is one exception where virt to phys() cannot be used to convert vir-
tual addresses to physical ones.1 Specifically, on the PPC and ARM architectures,
virt to phys() cannot be used to convert addresses that have been returned by
the function consistent alloc(). consistent alloc() is used on PPC and ARM
architectures to return memory from non-cached for use with DMA.

3.7.2 Mapping struct pages to Physical Addresses

As we saw in Section 3.6.1, the kernel image is located at the physical address 1MiB,
which of course translates to the virtual address PAGE OFFSET + 0x00100000, and
a virtual region totaling about 8MiB is reserved for the image, which is the region
that can be addressed by two PGDs. This would imply that the first available
memory to use is located at 0xC0800000, but that is not the case. Linux tries
to reserve the first 16MiB of memory for ZONE DMA, so the first virtual area used

1This tricky issue was pointed out to me by Jeffrey Haran.
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for kernel allocations is actually 0xC1000000. This is where the global mem map is
usually located. ZONE DMA will still get used, but only when absolutely necessary.

Physical addresses are translated to struct pages by treating them as an index
into the mem map array. Shifting physical address PAGE SHIFT bits to the right will
treat them as a Page Frame Number (PFN) from physical address 0, which is also
an index within the mem map array. This is exactly what the macro virt to page()
does, which is declared as follows in <asm-i386/page.h>:

#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

The macro virt to page() takes the virtual address kaddr, converts it to
the physical address with pa(), converts it into an array index by bit shifting
PAGE SHIFT bits right and indexing into the mem map by simply adding them to-
gether. No macro is available for converting struct pages to physical addresses,
but, at this stage, you should see how it could be calculated.

3.8 Translation Lookaside Buffer (TLB)

Initially, when the processor needs to map a virtual address to a physical address, it
must traverse the full page directory searching for the PTE of interest. This would
normally imply that each assembly instruction that references memory actually
requires several separate memory references for the page table traversal [Tan01].
To avoid this considerable overhead, architectures take advantage of the fact that
most processes exhibit a locality of reference, or, in other words, large numbers of
memory references tend to be for a small number of pages. They take advantage of
this reference locality by providing a Translation Lookaside Buffer (TLB), which is
a small associative memory that caches virtual to physical page table resolutions.

Linux assumes that most architectures support some type of TLB, although the
architecture-independent code does not care how it works. Instead, architecture-
dependent hooks are dispersed throughout the VM code at points where it is known
that some hardware with a TLB would need to perform a TLB-related operation.
For example, when the page tables have been updated, such as after a page fault
has completed, the processor may need to update the TLB for that virtual address
mapping.

Not all architectures require these type of operations, but, because some do,
the hooks have to exist. If the architecture does not require the operation to be
performed, the function for that TLB operation will be a null operation that is
optimized out at compile time.

A quite large list of TLB API hooks, most of which are declared in
<asm/pgtable.h>, are listed in Tables 3.2 and 3.3, and the APIs are quite well doc-
umented in the kernel source by Documentation/cachetlb.txt [Mil00]. It is pos-
sible to have just one TLB flush function, but, because both TLB flushes and TLB
refills are very expensive operations, unnecessary TLB flushes should be avoided if
at all possible. For example, when context switching, Linux will avoid loading new
page tables using Lazy TLB Flushing, discussed further in Section 4.3.
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void flush tlb all(void)
This flushes the entire TLB on all processors running in the system, which

makes it the most expensive TLB flush operation. After it completes, all modi-
fications to the page tables will be visible globally. This is required after the
kernel page tables, which are global in nature, have been modified, such as
after vfree() (see Chapter 7) completes or after the PKMap is flushed (see
Chapter 9).

void flush tlb mm(struct mm struct *mm)
This flushes all TLB entries related to the userspace portion (i.e., below

PAGE OFFSET) for the requested mm context. In some architectures, such as
MIPS, this will need to be performed for all processors, but usually it is confined
to the local processor. This is only called when an operation has been performed
that affects the entire address space, such as after all the address mapping has
been duplicated with dup mmap() for fork or after all memory mappings have
been deleted with exit mmap().

void flush tlb range(struct mm struct *mm, unsigned long start,
unsigned long end)

As the name indicates, this flushes all entries within the requested user
space range for the mm context. This is used after a new region has been
moved or changed as during mremap(), which moves regions, or mprotect(),
which changes the permissions. The function is also indirectly used during un-
mapping a region with munmap(), which calls tlb finish mmu(), which tries
to use flush tlb range() intelligently. This API is provided for architec-
tures that can remove ranges of TLB entries quickly rather than iterating with
flush tlb page().

Table 3.2. Translation Lookaside Buffer Flush API

3.9 Level 1 CPU Cache Management

Because Linux manages the CPU cache in a very similar fashion to the TLB, this
section covers how Linux uses and manages the CPU cache. CPU caches, like
TLB caches, take advantage of the fact that programs tend to exhibit a locality
of reference [Sea00] [CS98]. To avoid having to fetch data from main memory for
each reference, the CPU will instead cache very small amounts of data in the CPU
cache. Frequently, there are two levels called the Level 1 and Level 2 CPU caches.
The Level 2 CPU caches are larger, but slower than the L1 cache, but Linux only
concerns itself with the Level 1 or L1 cache.

CPU caches are organized into lines. Each line is typically quite small, usually
32 bytes, and each line is aligned to its boundary size. In other words, a cache line
of 32 bytes will be aligned on a 32-byte address. With Linux, the size of the line is
L1 CACHE BYTES, which is defined by each architecture.

How addresses are mapped to cache lines vary between architectures, but the
mappings come under three headings, direct mapping , associative mapping and set
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void flush tlb page(struct vm area struct *vma, unsigned long addr)
Predictably, this API is responsible for flushing a single page from the TLB.

The two most common uses of it are for flushing the TLB after a page has been
faulted in or has been paged out.

void flush tlb pgtables(struct mm struct *mm, unsigned long start,
unsigned long end)

This API is called when the page tables are being torn down and freed. Some
platforms cache the lowest level of the page table, i.e., the actual page frame
storing entries, which needs to be flushed when the pages are being deleted.
This is called when a region is being unmapped and the page directory entries
are being reclaimed.

void update mmu cache(struct vm area struct *vma, unsigned long
addr, pte t pte)

This API is only called after a page fault completes. It tells the architecture-
dependent code that a new translation now exists at pte for the virtual address
addr. Each architecture decides how this information should be used. For ex-
ample, Sparc64 uses the information to decide if the local CPU needs to flush its
data cache or does it need to send an Inter Processor Interrupt (IPI) to a remote
processor.

Table 3.3. Translation Lookaside Buffer Flush API (cont.)

associative mapping . Direct mapping is the simplest approach where each block
of memory maps to only one possible cache line. With associative mapping, any
block of memory can map to any cache line. Set associative mapping is a hybrid
approach where any block of memory can map to any line, but only within a subset
of the available lines. Regardless of the mapping scheme, they each have one thing
in common. Addresses that are close together and aligned to the cache size are
likely to use different lines. Hence Linux employs simple tricks to try and maximize
cache use:

• Frequently accessed structure fields are at the start of the structure to increase
the chance that only one line is needed to address the common fields.

• Unrelated items in a structure should try to be at least cache-size bytes in
part to avoid false sharing between CPUs.

• Objects in the general caches, such as the mm struct cache, are aligned to the
L1 CPU cache to avoid false sharing.

If the CPU references an address that is not in the cache, a cache miss occurs,
and the data is fetched from main memory. The cost of cache misses is quite high
because a reference to a cache can typically be performed in less than 10ns where a
reference to main memory typically will cost between 100ns and 200ns. The basic
objective is then to have as many cache hits and as few cache misses as possible.
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Just as some architectures do not automatically manage their TLBs, some do
not automatically manage their CPU caches. The hooks are placed in locations
where the virtual to physical mapping changes, such as during a page table update.
The CPU cache flushes should always take place first because some CPUs require a
virtual to physical mapping to exist when the virtual address is being flushed from
the cache. The three operations that require proper ordering are important and are
listed in Table 3.4.

Flushing Full MM Flushing Range Flushing Page
flush cache mm() flush cache range() flush cache page()
Change all page tables Change page table range Change single PTE
flush tlb mm() flush tlb range() flush tlb page()

Table 3.4. Cache and TLB Flush Ordering

The API used for flushing the caches is declared in <asm/pgtable.h> and is
listed in Table 3.5. In many respects, it is very similar to the TLB flushing API.

void flush cache all(void)
This flushes the entire CPU cache system, which makes it the most severe

flush operation to use. It is used when changes to the kernel page tables, which
are global in nature, are to be performed.

void flush cache mm(struct mm struct mm)
This flushes all entries related to the address space. On completion, no cache

lines will be associated with mm.

void flush cache range(struct mm struct *mm, unsigned long start,
unsigned long end)

This flushes lines related to a range of addresses in the address space. Like
its TLB equivalent, it is provided in case the architecture has an efficient way of
flushing ranges instead of flushing each individual page.

void flush cache page(struct vm area struct *vma, unsigned long
vmaddr)

This is for flushing a single-page-sized region. The VMA is supplied because
the mm struct is easily accessible through vma→vm mm. Additionally, by testing
for the VM EXEC flag, the architecture will know if the region is executable for
caches that separate the instructions and data caches. VMAs are described
further in Chapter 4.

Table 3.5. CPU Cache Flush API

It does not end there, though. A second set of interfaces is required to avoid
virtual aliasing problems. The problem is that some CPUs select lines based on
the virtual address, which means that one physical address can exist on multiple
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lines leading to cache coherency problems. Architectures with this problem may
try and ensure that shared mappings will only use addresses as a stop-gap measure.
However, a proper API to address this problem is also supplied, which is listed in
Table 3.6.

void flush page to ram(unsigned long address)
This is a deprecated API that should no longer be used and, in fact, will be

removed totally for 2.6. It is covered here for completeness and because it is still
used. The function is called when a new physical page is about to be placed in
the address space of a process. It is required to avoid writes from kernel space
being invisible to userspace after the mapping occurs.

void flush dcache page(struct page *page)
This function is called when the kernel writes to or copies from a page cache

page because these are likely to be mapped by multiple processes.

void flush icache range(unsigned long address, unsigned long
endaddr)

This is called when the kernel stores information in addresses that is likely
to be executed, such as when a kernel module has been loaded.

void flush icache user range(struct vm area struct *vma, struct
page *page, unsigned long addr, int len)

This is similar to flush icache range() except it is called when a userspace
range is affected. Currently, this is only used for ptrace() (used when
debugging) when the address space is being accessed by access process vm().

void flush icache page(struct vm area struct *vma, struct page
*page)

This is called when a page-cache page is about to be mapped. It is up to the
architecture to use the VMA flags to determine whether the I-Cache or D-Cache
should be flushed.

Table 3.6. CPU D-Cache and I-Cache Flush API

3.10 What’s New in 2.6

Most of the mechanics for page table management are essentially the same for
2.6, but the changes that have been introduced are quite wide reaching and the
implementations are in depth.

MMU-less Architecture Support A new file has been introduced called
mm/nommu.c. This source file contains replacement code for functions that assume
the existence of a MMU, like mmap() for example. This is to support architectures,
usually microcontrollers, that have no MMU. Much of the work in this area was
developed by the uCLinux Project (www.uclinux.org).
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Reverse Mapping The most significant and important change to page table man-
agement is the introduction of Reverse Mapping (rmap). Referring to it as “rmap” is
deliberate because it is the common use of the acronym and should not be confused
with the -rmap tree developed by Rik van Riel, which has many more alterations
to the stock VM than just the reverse mapping.

In a single sentence, rmap grants the ability to locate all PTEs that map a
particular page given just the struct page. In 2.4, the only way to find all PTEs
that mapped a shared page, such as a memory mapped shared library, is to linearly
search all page tables belonging to all processes. This is far too expensive, and
Linux tries to avoid the problem by using the swap cache (see Section 11.4). This
means that, with many shared pages, Linux may have to swap out entire processes
regardless of the page age and usage patterns. 2.6 instead has a PTE chain asso-
ciated with every struct page, which may be traversed to remove a page from all
page tables that reference it. This way, pages in the LRU can be swapped out in
an intelligent manner without resorting to swapping entire processes.

As might be imagined by the reader, the implementation of this simple con-
cept is a little involved. The first step in understanding the implementation is the
union pte that is a field in struct page. This union has two fields, a pointer
to a struct pte chain called chain and a pte addr t called direct. The union
is an optization whereby direct is used to save memory if there is only one PTE
mapping the entry. Otherwise, a chain is used. The type pte addr t varies between
architectures, but, whatever its type, it can be used to locate a PTE, so we will
treat it as a pte t for simplicity.

The struct pte chain is a little more complex. The struct itself is very sim-
ple, but it is compact with overloaded fields, and a lot of development effort has
been spent on making it small and efficient. Fortunately, this does not make it
indecipherable.

First, it is the responsibility of the slab allocator to allocate and manage
struct pte chains because it is this type of task that the slab allocator is best at.
Each struct pte chain can hold up to NRPTE pointers to PTE structures. After
that many PTEs have been filled, a struct pte chain is allocated and added to
the chain.

The struct pte chain has two fields. The first is unsigned long
next and idx, which has two purposes. When next and idx is ANDed with NRPTE,
it returns the number of PTEs currently in this struct pte chain and indicates
where the next free slot is. When next and idx is ANDed with the negation of
NRPTE (i.e., ∼NRPTE), a pointer to the next struct pte chain in the chain is re-
turned2. This is basically how a PTE chain is implemented.

To give you a taste of the rmap intricacies, I’ll give an example of what happens
when a new PTE needs to map a page. The basic process is to have the caller
allocate a new pte chain with pte chain alloc(). This allocated chain is passed
with the struct page and the PTE to page add rmap(). If the existing PTE
chain associated with the page has slots available, it will be used, and the pte chain

2I told you it was compact.
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allocated by the caller is returned. If no slots were available, the allocated pte chain
will be added to the chain, and NULL returned.

There is a quite substantial API associated with rmap for tasks such as creating
chains and adding and removing PTEs to a chain, but a full listing is beyond
the scope of this section. Fortunately, the API is confined to mm/rmap.c, and the
functions are heavily commented so that their purpose is clear.

There are two main benefits, both related to pageout, with the introduction of
reverse mapping. The first is with the set up and tear down of page tables. As
will be seen in Section 11.4, pages being paged out are placed in a swap cache,
and information is written into the PTE that is necessary to find the page again.
This can lead to multiple minor faults because pages are put into the swap cache
and then faulted again by a process. With rmap, the setup and removal of PTEs
is atomic. The second major benefit is when pages need to paged out, finding all
PTEs referencing the pages is a simple operation, but impractical with 2.4, hence
the swap cache.

Reverse mapping is not without its cost, though. The first, and obvious one,
is the additional space requirements for the PTE chains. Arguably, the second is
a CPU cost associated with reverse mapping, but it has not been proved to be
significant. What is important to note, though, is that reverse mapping is only a
benefit when pageouts are frequent. If the machines workload does not result in
much pageout or memory is ample, reverse mapping is all cost with little or no
benefit. At the time of writing, the merits and downsides to rmap are still the
subject of a number of discussions.

Object-Based Reverse Mapping The reverse mapping required for each page can
have very expensive space requirements. To compound the problem, many of the
reverse mapped pages in a VMA will be essentially identical. One way of addressing
this is to reverse map based on the VMAs rather than individual pages. That
is, instead of having a reverse mapping for each page, all the VMAs that map
a particular page would be traversed and unmap the page from each. Note that
objects in this case refer to the VMAs, not an object in the object-orientated sense
of the word3. At the time of writing, this feature has not been merged yet and was
last seen in kernel 2.5.68-mm1, but a strong incentive exists to have it available
if the problems with it can be resolved. For the very curious, the patch for just
file/device backed objrmap at this release is available4, but it is only for the very
very curious reader.

Two tasks require all PTEs that map a page to be traversed. The first task is
page referenced(), which checks all PTEs that map a page to see if the page has
been referenced recently. The second task is when a page needs to be unmapped
from all processes with try to unmap(). To complicate matters further, two types
of mappings must be reverse mapped, those that are backed by a file or device
and those that are anonymous. In both cases, the basic objective is to traverse all

3Don’t blame me, I didn’t name it. In fact, the original patch for this feature came with the
comment “From Dave. Crappy name.”

4ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.5/2.5.68/2.5.68-
mm2/experimental
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VMAs that map a particular page and then walk the page table for that VMA to
get the PTE. The only difference is how it is implemented. The case where it is
backed by some sort of file is the easiest case and was implemented first so I’ll deal
with it first. For the purposes of illustrating the implementation, I’ll discuss how
page referenced() is implemented.

page referenced() calls page referenced obj(), which is the top-level func-
tion for finding all PTEs within VMAs that map the page. As the page is mapped
for a file or device, page→mapping contains a pointer to a valid address space.
The address space has two linked lists that contain all VMAs that use the mapping
with the address space→i mmap and address space→i mmap shared fields. For
every VMA that is on these linked lists, page referenced obj one() is called with
the VMA and the page as parameters. The function page referenced obj one()
first checks if the page is in an address managed by this VMA and, if so, traverses
the page tables of the mm struct using the VMA (vma→vm mm) until it finds the
PTE mapping the page for that mm struct.

Anonymous page tracking is a lot trickier and was implented in a number of
stages. It only made a very brief appearance and was removed again in 2.5.65-
mm4 because it conflicted with a number of other changes. The first stage in
the implementation was to use page→mapping and page→index fields to track
mm struct and address pairs. These fields previously had been used to store a
pointer to swapper space and a pointer to the swp entry t (See Chapter 11).
Exactly how it is addressed is beyond the scope of this section, but the summary is
that swp entry t is stored in page→private.

try to unmap obj() works in a similar fashion, but, obviously, all the PTEs
that reference a page with this method can do so without needing to reverse map
the individual pages. A serious search complexity problem prevents it from being
merged. The scenario that describes the problem is as follows.

Take a case where 100 processes have 100 VMAs mapping a single file. To
unmap a single page in this case with object-based reverse mapping would require
10,000 VMAs to be searched, most of which are totally unnecessary. With page-
based reverse mapping, only 100 pte chain slots need to be examined, one for each
process. An optimization was introduced to order VMAs in the address space
by virtual address, but the search for a single page is still far too expensive for
object-based reverse mapping to be merged.

PTEs in High Memory In 2.4, page table entries exist in ZONE NORMAL because
the kernel needs to be able to address them directly during a page table walk. This
was acceptable until it was found that, with high memory machines, ZONE NORMAL
was being consumed by the third-level page table PTEs. The obvious answer is to
move PTEs to high memory, which is exactly what 2.6 does.

As we will see in Chapter 9, addressing information in high memory is far from
free, so moving PTEs to high memory is a compile-time configuration option. In
short, the problem is that the kernel must map pages from high memory into the
lower address space before it can be used but a very limited number of slots are
available for these mappings, which introduces a troublesome bottleneck. However,
for applications with a large number of PTEs, there is little other option. At the
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time of writing, a proposal has been made for having a User Kernel Virtual Area
(UKVA), which would be a region in kernel space private to each process, but it is
unclear if it will be merged for 2.6 or not.

To take the possibility of high memory mapping into account, the macro
pte offset() from 2.4 has been replaced with pte offset map() in 2.6. If PTEs
are in low memory, this will behave the same as pte offset() and return the ad-
dress of the PTE. If the PTE is in high memory, it will first be mapped into low
memory with kmap atomic(), so it can be used by the kernel. This PTE must be
unmapped as quickly as possible with pte unmap().

In programming terms, this means that page table walk code looks slightly
different. In particular, to find the PTE for a given address, the code now reads as
(taken from mm/memory.c):

640 ptep = pte_offset_map(pmd, address);
641 if (!ptep)
642 goto out;
643
644 pte = *ptep;
645 pte_unmap(ptep);

Additionally, the PTE allocation API has changed. Instead of pte alloc(),
there is now a pte alloc kernel() for use with kernel PTE mappings and
pte alloc map() for userspace mapping. The principal difference between them
is that pte alloc kernel() will never use high memory for the PTE.

In memory management terms, the overhead of having to map the PTE from
high memory should not be ignored. Only one PTE at a time may be mapped
per CPU, although a second may be mapped with pte offset map nested().
This introduces a penalty when all PTEs need to be examined, such as during
zap page range() when all PTEs in a given range need to be unmapped.

At the time of writing, a patch has been submitted that places PMDs in high
memory using essentially the same mechanism and API changes. It is likely that it
will be merged.

Huge TLB Filesystem Most modern architectures support more than one page
size. For example, on many x86 architectures, there is an option to use 4KiB pages
or 4MiB pages. Traditionally, Linux only used large pages for mapping the actual
kernel image and nowhere else. Because TLB slots are a scarce resource, it is
desirable to be able to take advantage of the large pages, especially on machines
with large amounts of physical memory.

In 2.6, Linux allows processes to use huge pages, the size of which is determined
by HPAGE SIZE. The number of available huge pages is determined by the system
administrator by using the /proc/sys/vm/nr hugepages proc interface, which ul-
timately uses the function set hugetlb mem size(). Because the success of the
allocation depends on the availability of physically contiguous memory, the alloca-
tion should be made during system startup.

The root of the implementation is a Huge TLB Filesystem (hugetlbfs),
which is a pseudofilesystem implemented in fs/hugetlbfs/inode.c. Basically,
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each file in this filesystem is backed by a huge page. During initialization,
init hugetlbfs fs() registers the file system and mounts it as an internal filesys-
tem with kern mount().

There are two ways that huge pages may be accessed by a process. The first is
by using shmget() to set up a shared region backed by huge pages, and the second
is the call mmap() on a file opened in the huge page filesystem.

When a shared memory region should be backed by huge pages, the process
should call shmget() and pass SHM HUGETLB as one of the flags. This results in
hugetlb zero setup() being called, which creates a new file in the root of the
internal hugetlbfs. A file is created in the root of the internal filesystem. The name
of the file is determined by an atomic counter called hugetlbfs counter, which is
incremented every time a shared region is set up.

To create a file backed by huge pages, a filesystem of type hugetlbfs must first be
mounted by the system administrator. Instructions on how to perform this task are
detailed in Documentation/vm/hugetlbpage.txt. After the filesystem is mounted,
files can be created as normal with the system call open(). When mmap() is called
on the open file, the file operations struct hugetlbfs file operations ensures
that hugetlbfs file mmap() is called to set up the region properly.

Huge TLB pages have their own function for the management of page tables,
address space operations and filesystem operations. The names of the functions
for page table management can all be seen in <linux/hugetlb.h>, and they are
named very similar to their normal page equivalents. The implementation of the
hugetlbfs functions are located near their normal page equivalents, so are easy to
find.

Cache Flush Management The changes here are minimal. The API function
flush page to ram() has been totally removed, and a new API
flush dcache range() has been introduced.



CHAPTER 4

Process Address Space

One of the principal advantages of virtual memory is that each process has its own
virtual address space, which is mapped to physical memory by the operating system.
In this chapter I discuss the process address space and how Linux manages it.

The kernel treats the userspace portion of the address space very differently from
the kernel portion. For example, allocations for the kernel are satisfied immediately
and are visible globally no matter what process is on the CPU. vmalloc() is an
exception because a minor page fault will occur to sync the process page tables
with the reference page tables, but the page will still be allocated immediately
upon request. With a process, space is simply reserved in the linear address space
by pointing a page table entry to a read-only globally visible page filled with zeros.
On writing, a page fault is triggered, which results in a new page being allocated,
filled with zeros, placed in the page table entry and marked writable. The new page
is filled with zeros so that it will appear exactly the same as the global zero-filled
page.

The userspace portion is not trusted or presumed to be constant. After each
context switch, the userspace portion of the linear address space can potentially
change except when a Lazy TLB switch is used as discussed later in Section 4.3. As
a result of this, the kernel must be prepared to catch all exceptions and to address
errors raised from the userspace. This is discussed in Section 4.5.

This chapter begins with how the linear address space is broken up and what
the purpose of each section is. I then cover the structures maintained to describe
each process, how they are allocated, initialized and then destroyed. Next, I cover
how individual regions within the process space are created and all the various
functions associated with them. That will bring us to exception handling related to
the process address space, page faulting and the various cases that occur to satisfy
a page fault. Finally, I cover how the kernel safely copies information to and from
userspace.

4.1 Linear Address Space

From a user perspective, the address space is a flat linear address space, but, pre-
dictably, the kernel’s perspective is very different. The address space is split into
two parts: the userspace part, which potentially changes with each full context
switch, and the kernel address space, which remains constant. The location of the
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split is determined by the value of PAGE OFFSET, which is at 0xC0000000 on the
x86. This means that 3GiB is available for the process to use while the remaining
1GiB is always mapped by the kernel. The linear virtual address space as the kernel
sees it is illustrated in Figure 4.1.

To load the kernel image to run, 8MiB (the amount of memory addressed by two
PGDs) is reserved at PAGE OFFSET. The 8MiB is simply a reasonable amount of space
to reserve for the purposes of loading the kernel image. The kernel image is placed
in this reserved space during kernel page table initialization as discussed in Section
3.6.1. Somewhere shortly after the image, the mem map for UMA architectures,
as discussed in Chapter 2, is stored. The location of the array is usually at the
16MiB mark to avoid using ZONE DMA, but not always. With NUMA architectures,
portions of the virtual mem map will be scattered throughout this region. Where
they are actually located is architecture dependent.

The region between PAGE OFFSET and VMALLOC START - VMALLOC OFFSET is the
physical memory map, and the size of the region depends on the amount of available
RAM. As we saw in Section 3.6, page table entries exist to map physical memory
to the virtual address range beginning at PAGE OFFSET. Between the physical mem-
ory map and the vmalloc address space, there is a gap of space VMALLOC OFFSET
in size, which on the x86 is 8MiB, to guard against out-of-bounds errors. For
illustration, on a x86 with 32MiB of RAM, VMALLOC START will be located at
PAGE OFFSET + 0x02000000 + 0x00800000.

In low memory systems, the remaining amount of the virtual address space,
minus a 2 page gap, is used by vmalloc() for representing noncontiguous mem-
ory allocations in a contiguous virtual address space. In high-memory systems,
the vmalloc area extends as far as PKMAP BASE minus the two-page gap, and two
extra regions are introduced. The first, which begins at PKMAP BASE, is an area
reserved for the mapping of high memory pages into low memory with kmap()
as discussed in Chapter 9. The second is for fixed virtual address mappings that
extend from FIXADDR START to FIXADDR TOP. Fixed virtual addresses are needed
for subsystems that need to know the virtual address at compile time such as the
APIC. FIXADDR TOP is statically defined to be 0xFFFFE000 on the x86 which is one
page before the end of the virtual address space. The size of the fixed mapping
region is calculated at compile time in FIXADDR SIZE and used to index back from
FIXADDR TOP to give the start of the region FIXADDR START

The region required for vmalloc(), kmap() and the fixed virtual address map-
ping is what limits the size of ZONE NORMAL. As the running kernel needs these
functions, a region of at least VMALLOC RESERVE will be reserved at the top of the
address space. VMALLOC RESERVE is architecture specific but on the x86, it is defined
as 128MiB. This is why ZONE NORMAL is generally referred to being only 896MiB in
size; it is the 1GiB of the upper potion of the linear address space minus the mini-
mum 128MiB that is reserved for the vmalloc region.

4.2 Managing the Address Space

The address space usable by the process is managed by a high level mm struct
which is roughly analogous to the vmspace struct in BSD [McK96].
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Each address space consists of a number of page-aligned regions of memory
that are in use. They never overlap and represent a set of addresses which con-
tain pages that are related to each other in terms of protection and purpose.
These regions are represented by a struct vm area struct and are roughly anal-
ogous to the vm map entry struct in BSD. For clarity, a region may represent the
process heap for use with malloc(), a memory mapped file such as a shared li-
brary or a block of anonymous memory allocated with mmap(). The pages for
this region may still have to be allocated, be active and resident or have been
paged out.

If a region is backed by a file, its vm file field will be set. By traversing
vm file→f dentry→d inode→i mapping, the associated address space for the
region may be obtained. The address space has all the filesystem specific infor-
mation required to perform page-based operations on disk.

The relationship between the different address space related structures is illus-
traed in Figure 4.2. A number of system calls are provided which affect the address
space and regions. These are listed in Table 4.1.

Figure 4.2. Data Structures Related to the Address Space
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System Call Description
fork() Creates a new process with a new address space. All the pages

are marked Copy-On-Write (COW) and are shared between the
two processes until a page fault occurs. Once a write-fault oc-
curs, a copy is made of the COW page for the faulting process.
This is sometimes referred to as breaking a COW page.

clone() clone() allows a new process to be created that shares parts of
its context with its parent and is how threading is implemented
in Linux. clone() without the CLONE VM set will create a new
address space, which is essentially the same as fork().

mmap() mmap() creates a new region within the process linear address
space.

mremap() Remaps or resizes a region of memory. If the virtual address
space is not available for the mapping, the region may be moved
unless the move is forbidden by the caller.

munmap() Destroys part or all of a region. If the region being unmapped
is in the middle of an existing region, the existing region is split
into two separate regions.

shmat() Attaches a shared memory segment to a process address space.
shmdt() Removes a shared memory segment from an address space.
execve() Loads a new executable file and replaces the current address

space.
exit() Destroys an address space and all regions.

Table 4.1. System Calls Related to Memory Regions

4.3 Process Address Space Descriptor

The process address space is described by the mm struct struct, meaning that only
one exists for each process and is shared between userspace threads. In fact, threads
are identified in the task list by finding all task structs that have pointers to the
same mm struct.

A unique mm struct is not needed for kernel threads because they will never
page fault or access the userspace portion. The only exception is page faulting
within the vmalloc space. The page fault handling code treats this as a special
case and updates the current page table with information in the master page table.
Because an mm struct is not needed for kernel threads, the task struct→mm field
for kernel threads is always NULL. For some tasks, such as the boot idle task, the
mm struct is never set up, but, for kernel threads, a call to daemonize() will call
exit mm() to decrement the usage counter.

Because TLB flushes are extremely expensive, especially with architectures such
as the PowerPC (PPC), a technique called lazy TLB is employed, which avoids
unnecessary TLB flushes by processes that do not access the userspace page ta-
bles because the kernel portion of the address space is always visible. The call to
switch mm(), which results in a TLB flush, is avoided by borrowing the mm struct
used by the previous task and placing it in task struct→active mm. This tech-
nique has made large improvements to context switch times.



58 Process Address Space Chapter 4

When entering lazy TLB, the function enter lazy tlb() is called to ensure
that a mm struct is not shared between processors in Symmetric Multiprocessing
(SMP) machines, making it a NULL operation on UP machines. The second-time
use of lazy TLB is during process exit when start lazy tlb() is used briefly while
the process is waiting to be reaped by the parent.

The struct has two reference counts called mm users and mm count for two types
of users. mm users is a reference count of processes accessing the userspace por-
tion of this mm struct, such as the page tables and file mappings. Threads and
the swap out() code, for instance, will increment this count and make sure an
mm struct is not destroyed early. When it drops to 0, exit mmap() will delete all
mappings and tear down the page tables before decrementing the mm count.

mm count is a reference count of the anonymous users for the mm struct initial-
ized at 1 for the real user. An anonymous user is one that does not necessarily care
about the userspace portion and is just borrowing the mm struct. Example users
are kernel threads that use lazy TLB switching. When this count drops to 0, the
mm struct can be safely destroyed. Both reference counts exist because anonymous
users need the mm struct to exist even if the userspace mappings get destroyed and
there is no point delaying the teardown of the page tables.

The mm struct is defined in <linux/sched.h> as follows:

206 struct mm_struct {
207 struct vm_area_struct * mmap;
208 rb_root_t mm_rb;
209 struct vm_area_struct * mmap_cache;
210 pgd_t * pgd;
211 atomic_t mm_users;
212 atomic_t mm_count;
213 int map_count;
214 struct rw_semaphore mmap_sem;
215 spinlock_t page_table_lock;
216
217 struct list_head mmlist;
221
222 unsigned long start_code, end_code, start_data, end_data;
223 unsigned long start_brk, brk, start_stack;
224 unsigned long arg_start, arg_end, env_start, env_end;
225 unsigned long rss, total_vm, locked_vm;
226 unsigned long def_flags;
227 unsigned long cpu_vm_mask;
228 unsigned long swap_address;
229
230 unsigned dumpable:1;
231
232 /* Architecture-specific MM context */
233 mm_context_t context;
234 };
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The meaning of each of the fields in this sizeable struct is as follows:

mmap The head of a linked list of all VMA regions in the address space.

mm rb The VMAs are arranged in a linked list and in a red-black tree for fast
lookups. This is the root of the tree.

mmap cache The VMA found during the last call to find vma() is stored in this
field on the assumption that the area will be used again soon.

pgd The PGD for this process.

mm users A reference count of users accessing the userspace portion of the ad-
dress space as explained at the beginning of the section.

mm count A reference count of the anonymous users for the mm struct that
starts at 1 for the real user as explained at the beginning of this section.

map count Number of VMAs in use.

mmap sem This is a long-lived lock that protects the VMA list for readers and
writers. Because users of this lock require it for a long time and may need to
sleep, a spinlock is inappropriate. A reader of the list takes this semaphore
with down read(). If they need to write, it is taken with down write(), and
the page table lock spinlock is later acquired while the VMA linked lists are
being updated.

page table lock This protects most fields on the mm struct. As well as the page
tables, it protects the Resident Set Size (RSS) (see rss) count and the VMA
from modification.

mmlist All mm structs are linked together by this field.

start code, end code The start and end address of the code section.

start data, end data The start and end address of the data section.

start brk, brk The start and end address of the heap.

start stack Predictably enough, the start of the stack region.

arg start, arg end The start and end address of command-line arguments.

env start, env end The start and end address of environment variables.

rss RSS is the number of resident pages for this process. It should be noted that
the global zero page is not accounted for by RSS.

total vm The total memory space occupied by all VMA regions in the process.

locked vm The number of resident pages locked in memory.
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def flags Only one possible value, VM LOCKED. It is used to determine if all future
mappings are locked by default.

cpu vm mask A bitmask representing all possible CPUs in an SMP system. The
mask is used by an InterProcessor Interrupt (IPI) to determine if a processor
should execute a particular function or not. This is important during TLB
flush for each CPU.

swap address Used by the pageout daemon to record the last address that was
swapped from when swapping out entire processes.

dumpable Set by prctl(). This flag is important only when tracing a process.

context Architecture-specific MMU context.

There are a small number of functions for dealing with mm structs. They are
described in Table 4.2.

Function Description
mm init() Initializes an mm struct by setting starting values for each

field, allocating a PGD, initializing spinlocks, etc.
allocate mm() Allocates an mm struct() from the slab allocator
mm alloc() Allocates an mm struct using allocate mm() and calls

mm init() to initialize it
exit mmap() Walks through an mm struct and unmaps all VMAs associated

with it
copy mm() Makes an exact copy of the current tasks mm struct needs for

a new task. This is only used during fork.
free mm() Returns the mm struct to the slab allocator

Table 4.2. Functions Related to Memory Region Descriptors

4.3.1 Allocating a Descriptor

Two functions are provided to allocate an mm struct. To be slightly confusing, they
are essentially the same, but with small important differences. allocate mm() is
just a preprocessor macro that allocates an mm struct from the slab allocator (see
Chapter 8). mm alloc() allocates from slab and then calls mm init() to initialize
it.

4.3.2 Initializing a Descriptor

The first mm struct in the system that is initialized is called init mm. All subse-
quent mm structs are copies of a parent mm struct. That means that init mm has
to be statically initialized at compile time. This static initialization is performed
by the macro INIT MM().
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238 #define INIT_MM(name) \
239 { \
240 mm_rb: RB_ROOT, \
241 pgd: swapper_pg_dir, \
242 mm_users: ATOMIC_INIT(2), \
243 mm_count: ATOMIC_INIT(1), \
244 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \
245 page_table_lock: SPIN_LOCK_UNLOCKED, \
246 mmlist: LIST_HEAD_INIT(name.mmlist), \
247 }

After it is established, new mm structs are created using their parent mm struct
as a template. The function responsible for the copy operation is copy mm(), and
it uses init mm() to initialize process-specific fields.

4.3.3 Destroying a Descriptor

While a new user increments the usage count with atomic inc(&mm->mm users), it
is decremented with a call to mmput(). If the mm users count reaches zero, all the
mapped regions are destroyed with exit mmap(), and the page tables are destroyed
because there are no longer any users of the userspace portions. The mm count count
is decremented with mmdrop() because all the users of the page tables and VMAs
are counted as one mm struct user. When mm count reaches zero, the mm struct
will be destroyed.

4.4 Memory Regions

The full address space of a process is rarely used. Only sparse regions are. Each
region is represented by a vm area struct, which never overlaps and represents a
set of addresses with the same protection and purpose. Examples of a region include
a read-only shared library loaded into the address space or the process heap. A full
list of mapped regions that a process has may be viewed using the proc interface at
/proc/PID/maps where PID is the process ID of the process that is to be examined.

The region may have a number of different structures associated with it as
illustrated in Figure 4.2. At the top, there is the vm area struct, which, on its
own, is enough to represent anonymous memory.

If the region is backed by a file, the struct file is available through the vm file
field, which has a pointer to the struct inode. The inode is used to get the
struct address space, which has all the private information about the file, in-
cluding a set of pointers to filesystem functions that perform the filesystem-specific
operations, such as reading and writing pages to disk.

The struct vm area struct is declared as follows in <linux/mm.h>:
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44 struct vm_area_struct {
45 struct mm_struct * vm_mm;
46 unsigned long vm_start;
47 unsigned long vm_end;
49
50 /* linked list of VM areas per task, sorted by address */
51 struct vm_area_struct *vm_next;
52
53 pgprot_t vm_page_prot;
54 unsigned long vm_flags;
55
56 rb_node_t vm_rb;
57
63 struct vm_area_struct *vm_next_share;
64 struct vm_area_struct **vm_pprev_share;
65
66 /* Function pointers to deal with this struct. */
67 struct vm_operations_struct * vm_ops;
68
69 /* Information about our backing store: */
70 unsigned long vm_pgoff;
72 struct file * vm_file;
73 unsigned long vm_raend;
74 void * vm_private_data;
75 };

Here is a brief description of the fields.

vm mm The mm struct this VMA belongs to.

vm start The starting address of the region.

vm end The end address of the region.

vm next All the VMAs in an address space are linked together in an address-
ordered singly linked list by this field It is interesting to note that the VMA
list is one of the very rare cases where a singly linked list is used in the kernel.

vm page prot The protection flags that are set for each PTE in this VMA. The
different bits are described in Table 3.1.

vm flags A set of flags describing the protections and properties of the VMA.
They are all defined in <linux/mm.h> and are described in Table 4.3.

vm rb As well as being in a linked list, all the VMAs are stored on a red-black tree
for fast lookups. This is important for page fault handling when finding the
correct region quickly is important, especially for a large number of mapped
regions.



4.4. Memory Regions 63

Protection Flags
Flags Description
VM READ Pages may be read.
VM WRITE Pages may be written.
VM EXEC Pages may be executed.
VM SHARED Pages may be shared.
VM DONTCOPY VMA will not be copied on fork.
VM DONTEXPAND Prevents a region from being resized. Flag is unused.
mmap Related Flags
VM MAYREAD Allows the VM READ flag to be set.
VM MAYWRITE Allows the VM WRITE flag to be set.
VM MAYEXEC Allows the VM EXEC flag to be set.
VM MAYSHARE Allows the VM SHARE flag to be set.
VM GROWSDOWN Shared segment (probably stack) may grow down.
VM GROWSUP Shared segment (probably heap) may grow up.
VM SHM Pages are used by shared SHM memory segment.
VM DENYWRITE What MAP DENYWRITE for mmap() translates to. It is now un-

used.
VM EXECUTABLE What MAP EXECUTABLE for mmap() translates to. It is now

unused.
VM STACK FLAGS Flags used by setup arg flags() to set up the stack.
Locking Flags
VM LOCKED If set, the pages will not be swapped out. It is set by mlock().
VM IO Signals that the area is an mmaped region for I/O to a device.

It will also prevent the region from being core dumped.
VM RESERVED Do not swap out this region. It is used by device drivers.
madvise() Flags
VM SEQ READ A hint that pages will be accessed sequentially.
VM RAND READ A hint stating that read-ahead in the region is useless.

Table 4.3. Memory Region Flags

vm next share Links together shared VMA regions based on file mappings (such
as shared libraries).

vm pprev share The complement of vm next share.

vm ops The vm ops field contains functions pointers for open(), close() and
nopage(). These are needed for syncing with information from the disk.

vm pgoff The page aligned offset within a file that is memory mapped.

vm file The struct file pointer to the file being mapped.

vm raend The end address of a read-ahead window. When a fault occurs, a
number of additional pages after the desired page will be paged in. This field
determines how many additional pages are faulted in.
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vm private data Used by some device drivers to store private information and
is not of concern to the memory manager.

All the regions are linked together on a linked list ordered by address through the
vm next field. When searching for a free area, it is a simple matter of traversing the
list, but a frequent operation is to search for the VMA for a particular address, such
as during page faulting, for example. In this case, the red-black tree is traversed
because it has O( log N) search time on average. The tree is ordered so that lower
addresses than the current node are on the left leaf and higher addresses are on the
right.

4.4.1 Memory Region Operations

There are three operations which a VMA may support called open(), close() and
nopage(). VMA supports these with a vm operations struct in the VMA called
vma→vm ops. The struct contains three function pointers and is declared as follows
in <linux/mm.h>:

133 struct vm_operations_struct {
134 void (*open)(struct vm_area_struct * area);
135 void (*close)(struct vm_area_struct * area);
136 struct page * (*nopage)(struct vm_area_struct * area,

unsigned long address,
int unused);

137 };

The open() and close() functions are called every time a region is created or
deleted. These functions are only used by a small number of devices, one filesystem
and System V shared regions, which need to perform additional operations when
regions are opened or closed. For example, the System V open() callback will
increment the number of VMAs using a shared segment (shp→shm nattch).

The main operation of interest is the nopage() callback. This callback is used
during a page-fault by do no page(). The callback is responsible for locating the
page in the page cache or allocating a page and populating it with the required data
before returning it.

Most files that are mapped will use a generic vm operations struct()
called generic file vm ops. It registers only a nopage() function called
filemap nopage(). This nopage() function will either locate the page in the
page cache or read the information from disk. The struct is declared as follows
in mm/filemap.c:

2243 static struct vm_operations_struct generic_file_vm_ops = {
2244 nopage: filemap_nopage,
2245 };

4.4.2 File/Device-Backed Memory Regions

In the event the region is backed by a file, the vm file leads to an associated
address space as shown in Figure 4.2. The struct contains information of relevance
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to the filesystem such as the number of dirty pages that must be flushed to disk. It
is declared as follows in <linux/fs.h>:

406 struct address_space {
407 struct list_head clean_pages;
408 struct list_head dirty_pages;
409 struct list_head locked_pages;
410 unsigned long nrpages;
411 struct address_space_operations *a_ops;
412 struct inode *host;
413 struct vm_area_struct *i_mmap;
414 struct vm_area_struct *i_mmap_shared;
415 spinlock_t i_shared_lock;
416 int gfp_mask;
417 };

A brief description of each field is as follows:

clean pages is a list of clean pages that need no synchronization with backing
storage.

dirty pages is a list of dirty pages that need synchronization with backing storage.

locked pages is a list of pages that are locked in memory.

nrpages is the number of resident pages in use by the address space.

a ops is a struct of function for manipulating the filesystem. Each filesystem
provides its own address space operations, although they sometimes use
generic functions.

host is the host inode the file belongs to.

i mmap is a list of private mappings using this address space.

i mmap shared is a list of VMAs that share mappings in this address space.

i shared lock is a spinlock to protect this structure.

gfp mask is the mask to use when calling alloc pages() for new pages.

Periodically, the memory manager will need to flush information to disk. The
memory manager does not know and does not care how information is written to
disk, so the a ops struct is used to call the relevant functions. It is declared as
follows in <linux/fs.h>:
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385 struct address_space_operations {
386 int (*writepage)(struct page *);
387 int (*readpage)(struct file *, struct page *);
388 int (*sync_page)(struct page *);
389 /*
390 * ext3 requires that a successful prepare_write() call be
391 * followed by a commit_write() call - they must be balanced
392 */
393 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);
394 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);
395 /* Unfortunately this kludge is needed for FIBMAP.

* Don’t use it */
396 int (*bmap)(struct address_space *, long);
397 int (*flushpage) (struct page *, unsigned long);
398 int (*releasepage) (struct page *, int);
399 #define KERNEL_HAS_O_DIRECT
400 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);
401 #define KERNEL_HAS_DIRECT_FILEIO
402 int (*direct_fileIO)(int, struct file *, struct kiobuf *,

unsigned long, int);
403 void (*removepage)(struct page *);
404 };

These fields are all function pointers and are described in the following:

writepage Writes a page to disk. The offset within the file to write to is stored
within the page struct. It is up to the filesystem-specific code to find the
block. See buffer.c:block write full page().

readpage Reads a page from disk. See buffer.c:block read full page().

sync page Syncs a dirty page with disk. See buffer.c:block sync page().

prepare write This is called before data is copied from userspace into a page that
will be written to disk. With a journaled filesystem, this ensures the filesystem
log is up to date. With normal filesystems, it makes sure the needed buffer
pages are allocated. See buffer.c:block prepare write().

commit write After the data has been copied from userspace, this
function is called to commit the information to disk. See
buffer.c:block commit write().

bmap Maps a block so that raw I/O can be performed. It is mainly of concern
to filesystem-specific code, although it is also used when swapping out pages
that are backed by a swap file instead of a swap partition.
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flushpage Makes sure there is no I/O pending on a page before releasing it. See
buffer.c:discard bh page().

releasepage Tries to flush all the buffers associated with a page before freeing the
page itself. See try to free buffers().

direct I/O This function is used when performing direct I/O to an inode. The
#define exists so that external modules can determine at compile time if the
function is available because it was only introduced in 2.4.21.

direct fileI/O Used to perform direct I/O with a struct file. Again, the
#define exists for external modules because this API was only introduced
in 2.4.22.

removepage An optional callback that is used when a page is removed from the
page cache in remove page from inode queue().

4.4.3 Creating a Memory Region

The system call mmap() is provided for creating new memory regions within a pro-
cess. For the x86, the function calls sys mmap2(), which calls do mmap2(), directly
with the same parameters. do mmap2() is responsible for acquiring the parameters
needed by do mmap pgoff(), which is the principal function for creating new areas
for all architectures.

do mmap2() first clears the MAP DENYWRITE and MAP EXECUTABLE bits from the
flags parameter because they are ignored by Linux, which is confirmed by the
mmap() manual page. If a file is being mapped, do mmap2(), shown in Figure 4.3,
will look up the struct file based on the file descriptor passed as a parameter and
will acquire the mm struct→mmap sem semaphore before calling do mmap pgoff().

do mmap pgoff() begins by performing some basic sanity checks. It first checks
that the appropriate filesystem or device functions are available if a file or device is
being mapped. It then ensures the size of the mapping is page aligned and that it
does not attempt to create a mapping in the kernel portion of the address space. It
then makes sure the size of the mapping does not overflow the range of pgoff and
finally that the process does not have too many mapped regions already.

This rest of the function is large, but, broadly speaking, it takes the following
steps:

1. Sanity check the parameters.

2. Find a free linear address space large enough for the memory mapping. If a
filesystem or device specific get unmapped area() function is provided, it will
be used. Otherwise, arch get unmapped area() is called.

3. Calculate the VM flags and check them against the file access permissions.

4. If an old area exists where the mapping is to take place, fix it up so that it is
suitable for the new mapping.

5. Allocate a vm area struct from the slab allocator and fill in its entries.
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6. Link in the new VMA.

7. Call the filesystem or device-specific mmap function.

8. Update statistics and exit.

4.4.4 Finding a Mapped Memory Region

A common operation is to find the VMA that a particular address belongs to,
such as during operations like page faulting, and the function responsible for this is
find vma(). The function find vma() and other API functions affecting memory
regions are listed in Table 4.4.

It first checks the mmap cache field, which caches the result of the last call to
find vma() because it is quite likely the same region will be needed a few times in
succession. If it is not the desired region, the red-black tree stored in the mm rb field
is traversed. If the desired address is not contained within any VMA, the function
will return the VMA closest to the requested address, so it is important callers
double-check to ensure the returned VMA contains the desired address.

A second function called find vma prev() is provided, which is functionally the
same as find vma() except that it also returns a pointer to the VMA preceding the
desired VMA, which is required as the list is a singly linked list. find vma prev() is
rarely used, but notably it is used when two VMAs are being compared to determine
if they may be merged. It is also used when removing a memory region so that the
singly linked list may be updated.

The last function of note for searching VMAs is find vma intersection(),
which is used to find a VMA that overlaps a given address range. The most notable
use of this is during a call to do brk() when a region is growing up. It is important
to ensure that the growing region will not overlap an old region.

4.4.5 Finding a Free Memory Region

When a new area is to be memory mapped, a free region has to be found that is
large enough to contain the new mapping. The function responsible for finding a
free area is get unmapped area().

As the call graph in Figure 4.4 indicates, little work is involved with finding an
unmapped area. The function is passed a number of parameters. A struct file
is passed that represents the file or device to be mapped as well as pgoff, which
is the offset within the file that is being mapped. The requested address for the
mapping is passed as well as its length. The last parameter is the protection flags
for the area.

If a device is being mapped, such as a video card, the associated
f op→get unmapped area() is used. This is because devices or files may have
additional requirements for mapping that generic code cannot be aware of, such as
the address having to be aligned to a particular virtual address.

If there are no special requirements, the architecture-specific function
arch get unmapped area() is called. Not all architectures provide their own func-
tion. For those that don’t, a generic version is provided in mm/mmap.c.
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struct vm area struct * find vma(struct mm struct * mm, unsigned
long addr)

Finds the VMA that covers a given address. If the region does not exist, it
returns the VMA closest to the requested address.

struct vm area struct * find vma prev(struct mm struct * mm,
unsigned long addr, struct vm area struct **pprev)

The same as find vma() except that it also also gives the VMA pointing to
the returned VMA. It is not often used, with sys mprotect() being the notable
exception, because usually find vma prepare() is required.

struct vm area struct * find vma prepare(struct mm struct * mm,
unsigned long addr, struct vm area struct ** pprev, rb node t ***
rb link, rb node t ** rb parent)

The same as find vma() except that it will also find the preceeding VMA in
the linked list as well as the red-black tree nodes needed to perform an insertion
into the tree.

struct vm area struct * find vma intersection(struct mm struct *
mm, unsigned long start addr, unsigned long end addr)

Returns the VMA that intersects a given address range. It is useful when
checking if a linear address region is in use by any VMA.

int vma merge(struct mm struct * mm, struct vm area struct * prev,
rb node t * rb parent, unsigned long addr, unsigned long end,
unsigned long vm flags)

Attempts to expand the supplied VMA to cover a new address range. If the
VMA cannot be expanded forward, the next VMA is checked to see if it may be
expanded backward to cover the address range instead. Regions may be merged
if there is no file/device mapping and the permissions match.

unsigned long get unmapped area(struct file *file, unsigned long
addr, unsigned long len, unsigned long pgoff, unsigned long flags)

Returns the address of a free region of memory large enough to cover the
requested size of memory. It is used principally when a new VMA is to be
created.

void insert vm struct(struct mm struct *, struct vm area struct *)
Inserts a new VMA into a linear address space.

Table 4.4. Memory Region VMA API

4.4.6 Inserting a Memory Region

The principal function for inserting a new memory region is insert vm struct()
that has the call graph seen in Figure 4.5. It is a very simple function that first
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get_unmapped_area

arch_get_unmapped_area

find_vma

Figure 4.4. Call Graph: get unmapped area()

calls find vma prepare() to find the appropriate VMAs that the new region is to
be inserted between. It also finds the correct nodes within the red-black tree. It
then calls vma link() to do the work of linking in the new VMA.

insert_vm_struct

find_vma_prepare vma_link

lock_vma_mappings __vma_link unlock_vma_mappings

__vma_link_list __vma_link_rb __vma_link_file

rb_link_node rb_insert_color

__rb_rotate_left __rb_rotate_right

Figure 4.5. Call Graph: insert vm struct()

The function insert vm struct() is rarely used because it does not increase
the map count field. Instead, the function commonly used is insert vm struct(),
which performs the same tasks except that it increments map count.
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Two varieties of linking functions are provided, vma link() and vma link().
vma link() is intended for use when no locks are held. It will acquire all the
necessary locks, including locking the file if the VMA is a file mapping, before
calling vma link(), which places the VMA in the relevant lists.

Many functions do not use the insert vm struct() functions, but instead prefer
to call find vma prepare() themselves, followed by a later vma link() to avoid
having to traverse the tree multiple times.

The linking in vma link() consists of three stages that are contained in three
separate functions. vma link list() inserts the VMA into the linear, singly
linked list. If it is the first mapping in the address space (i.e., prev is NULL), it
will become the red-black tree root node. The second stage is linking the node into
the red-black tree with vma link rb(). The final stage is fixing up the file share
mapping with vma link file(), which basically inserts the VMA into the linked
list of VMAs using the vm pprev share and vm next share fields.

4.4.7 Merging Contiguous Regions

Linux used to have a function called merge segments() [Hac02] that was responsible
for merging adjacent regions of memory together if the file and permissions matched.
The objective was to remove the number of VMAs required, especially because
many operations resulted in a number of mappings being created, such as calls to
sys mprotect(). This was an expensive operation because it could result in large
portions of the mappings been traversed and was later removed as applications,
especially those with many mappings, spent a long time in merge segments().

The equivalent function that exists now is called vma merge(), and it is only used
in two places. The first is user in sys mmap(), which calls it if an anonymous region
is being mapped because anonymous regions are frequently mergeable. The second
time is during do brk(), which is expanding one region into a newly allocated one
where the two regions should be merged. Rather than merging two regions, the
function vma merge() checks if an existing region may be expanded to satisfy the
new allocation, which negates the need to create a new region. A region may be
expanded if there are no file or device mappings and the permissions of the two
areas are the same.

Regions are merged elsewhere, although no function is explicitly called to per-
form the merging. The first is during a call to sys mprotect() during the fixup of
areas where the two regions will be merged if the two sets of permissions are the
same after the permissions in the affected region change. The second is during a call
to move vma() when it is likely that similar regions will be located beside each other.

4.4.8 Remapping and Moving a Memory Region

mremap() is a system call provided to grow or shrink an existing memory mapping.
This is implemented by the function sys mremap(), which may move a memory
region if it is growing or it would overlap another region and if MREMAP FIXED is not
specified in the flags. The call graph is illustrated in Figure 4.6.

If a region is to be moved, do mremap() first calls get unmapped area() to find a
region large enough to contain the new resized mapping and then calls move vma()
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to move the old VMA to the new location. See Figure 4.7 for the call graph to
move vma().

First move vma() checks if the new location may be merged with the VMAs
adjacent to the new location. If they cannot be merged, a new VMA is allocated
literally one PTE at a time. Next move page tables() is called(see Figure 4.8
for its call graph), which copies all the page table entries from the old map-
ping to the new one. Although there may be better ways to move the page ta-
bles, this method makes error recovery trivial because backtracking is relatively
straightforward.

move_page_tables

move_one_page zap_page_range

get_one_pte copy_one_pte alloc_one_pte

pmd_alloc pte_alloc

zap_pmd_range

zap_pte_range

Figure 4.8. Call Graph: move page tables()

The contents of the pages are not copied. Instead, zap page range() is called
to swap out or remove all the pages from the old mapping, and the normal page
fault handling code will swap the pages back in from backing storage or from files
or will call the device specific do nopage() function.

4.4.9 Locking a Memory Region

Linux can lock pages from an address range into memory using the system call
mlock(), which is implemented by sys mlock(), for which the call graph is shown
in Figure 4.9. At a high level, the function is simple; it creates a VMA for the
address range to be locked, sets the VM LOCKED flag on it and forces all the pages to
be present with make pages present(). A second system call mlockall(), which
maps to sys mlockall(), is also provided. This is a simple extension to do the same
work as sys mlock() except that it affects every VMA on the calling process. Both
functions rely on the core function do mlock() to perform the real work of finding
the affected VMAs and deciding what function is needed to fix up the regions as
described later.
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There are some limitations to what memory may be locked. The address range
must be page aligned because VMAs are page aligned. This is addressed by simply
rounding the range up to the nearest page-aligned range. The second proviso is
that the process limit RLIMIT MLOCK imposed by the system administrator may not
be exceeded. The last proviso is that each process may only lock half of physical
memory at a time. This is a bit nonfunctional because there is nothing to stop a
process forking a number of times and each child locking a portion, but, because
only root processes are allowed to lock pages, it does not make much difference.
It is safe to presume that a root process is trusted and knows what it is doing. If
it does not, the system administrator with the resulting broken system probably
deserves it and gets to keep both parts of it.

4.4.10 Unlocking the Region

The system calls munlock() and munlockall() to provide the corollary for the
locking functions and mapping to sys munlock() and sys munlockall(), respec-
tively. The functions are much simpler than the locking functions because they do
not have to make numerous checks. They both rely on the same do mmap() function
to fix up the regions.

4.4.11 Fixing Up Regions After Locking

When locking or unlocking, VMAs will be affected in one of four ways, each of
which must be fixed up by mlock fixup(). The locking may affect the whole
VMA, in which case mlock fixup all() is called. The second condition, handled
by mlock fixup start(), is where the start of the region is locked, requiring that
a new VMA be allocated to map the new area. The third condition, handled by
mlock fixup end(), is predictably enough where the end of the region is locked.
Finally, mlock fixup middle() handles the case where the middle of a region is
mapped requiring two new VMAs to be allocated.

It is interesting to note that VMAs created as a result of locking are never
merged, even when unlocked. It is presumed that processes that lock regions will
need to lock the same regions over and over again, and it is not worth the processor
power to constantly merge and split regions.

4.4.12 Deleting a Memory Region

The function responsible for deleting memory regions, or parts thereof, is
do munmap(), which is shown in Figure 4.10. It is a relatively simple operation
in comparison with the other memory region-related operations and is basically di-
vided up into three parts. The first is to fix up the red-black tree for the region that
is about to be unmapped. The second is to release the pages and PTEs related to
the region to be unmapped, and the third is to fix up the regions if a hole has been
generated.

To ensure the red-black tree is ordered correctly, all VMAs to be affected by the
unmap are placed on a linked list called free and then deleted from the red-black
tree with rb erase(). The regions, if they still exist, will be added with their new
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addresses later during the fixup.
Next the linked-list VMAs on free are walked through and checked to en-

sure it is not a partial unmapping. Even if a region is just to be partially un-
mapped, remove shared vm struct() is still called to remove the shared file map-
ping. Again, if this is a partial unmapping, it will be recreated during fixup.
zap page range() is called to remove all the pages associated with the region about
to be unmapped before unmap fixup() is called to handle partial unmappings.

Last, free pgtables() is called to try and free up all the page table entries
associated with the unmapped region. It is important to note that the page table
entry freeing is not exhaustive. It will only unmap full PGD directories and their
entries, so, for example, if only half a PGD was used for the mapping, no page table
entries will be freed. This is because a finer grained freeing of page table entries
would be too expensive to free up data structures that are both small and likely to
be used again.

4.4.13 Deleting All Memory Regions

During process exit, it is necessary to unmap all VMAs associated with an
mm struct. The function responsible is exit mmap(). It is a very simple func-
tion that flushes the CPU cache before walking through the linked list of VMAs,
unmapping each of them in turn and freeing up the associated pages before flushing
the TLB and deleting the page table entries. It is covered in detail in the Code
Commentary.

4.5 Exception Handling

A very important part of VM is how kernel address space exceptions, which are not
bugs, are caught.1 This section does not cover the exceptions that are raised with
errors such as divide by zero. I am only concerned with the exception raised as the
result of a page fault. There are two situations where a bad reference may occur.
The first is where a process sends an invalid pointer to the kernel by a system
call, which the kernel must be able to safely trap because the only check made
initially is that the address is below PAGE OFFSET. The second is where the kernel
uses copy from user() or copy to user() to read or write data from userspace.

At compile time, the linker creates an exception table in the ex table sec-
tion of the kernel code segment, which starts at start ex table and ends at
stop ex table. Each entry is of type exception table entry, which is a pair

consisting of an execution point and a fixup routine. When an exception occurs
that the page fault handler cannot manage, it calls search exception table()
to see if a fixup routine has been provided for an error at the faulting instruc-
tion. If module support is compiled, each module’s exception table will also be
searched.

1Many thanks go to Ingo Oeser for clearing up the details of how this is implemented.
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If the address of the current exception is found in the table, the corresponding
location of the fixup code is returned and executed. We will see in Section 4.7 how
this is used to trap bad reads and writes to userspace.

4.6 Page Faulting

Pages in the process linear address space are not necessarily resident in memory.
For example, allocations made on behalf of a process are not satisfied immediately
because the space is just reserved within the vm area struct. Other examples of
nonresident pages include the page having been swapped out to backing storage or
writing a read-only page.

Linux, like most operating systems, has a Demand Fetch policy as its fetch
policy for dealing with pages that are not resident. This states that the page is only
fetched from backing storage when the hardware raises a page fault exception, which
the operating system traps and allocates a page. The characteristics of backing
storage imply that some sort of page prefetching policy would result in less page
faults [MM87], but Linux is fairly primitive in this respect. When a page is paged
in from swap space, a number of pages after it, up to 2page cluster are read in by
swapin readahead() and placed in the swap cache. Unfortunately, there is only a
chance that pages likely to be used soon will be adjacent in the swap area, which
makes it a poor prepaging policy. Linux would likely benefit from a prepaging policy
that adapts to program behavior [KMC02].

There are two types of page fault, major and minor faults. Major page faults
occur when data has to be read from disk, which is an expensive operation, or
the fault is referred to as a minor, or soft, page fault. Linux maintains statistics
on the number of these types of page faults with the task struct→maj flt and
task struct→min flt fields, respectively.

The page fault handler in Linux is expected to recognize and act on a number
of different types of page faults listed in Table 4.5, which will be discussed in detail
later in this chapter.

Each architecture registers an architecture-specific function for the handling of
page faults. Although the name of this function is arbitrary, a common choice is
do page fault(), for which the call graph for the x86 is shown in Figure 4.11.

This function is provided with a wealth of information such as the address of
the fault, whether the page was simply not found or was a protection error, whether
it was a read or write fault and whether it is a fault from user or kernel space. It
is responsible for determining which type of fault has occurred and how it should
be handled by the architecture-independent code. The flow chart, in Figure 4.12,
shows broadly speaking what this function does. In the figure, identifiers with a
colon after them correspond to the label as shown in the code.

handle mm fault() is the architecture-independent, top-level function for fault-
ing in a page from backing storage, performing Copy-On-Write (COW), and so on.
If it returns 1, it was a minor fault, 2 was a major fault, 0 sends a SIGBUS error and
any other value invokes the out of memory handler.
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Exception Type Action
Region valid, but page not allo-
cated

Minor Allocate a page frame from the
physical page allocator.

Region not valid but is beside an
expandable region like the stack

Minor Expand the region and allocate a
page.

Page swapped out, but present in
swap cache

Minor Re-establish the page in the pro-
cess page tables and drop a refer-
ence to the swap cache.

Page swapped out to backing stor-
age

Major Find where the page with informa-
tion is stored in the PTE and read
it from disk.

Page write when marked read-only Minor If the page is a COW page, make
a copy of it, mark it writable and
assign it to the process. If it is in
fact a bad write, send a SIGSEGV
signal.

Region is invalid or process has no
permissions to access

Error Send a SEGSEGV signal to the pro-
cess.

Fault occurred in the kernel por-
tion address space

Minor If the fault occurred in the
vmalloc area of the address space,
the current process page tables are
updated against the master page
table held by init mm. This is the
only valid kernel page fault that
may occur.

Fault occurred in the userspace re-
gion while in kernel mode

Error If a fault occurs, it means a ker-
nel system did not copy from
userspace properly and caused a
page fault. This is a kernel bug
that is treated quite severely.

Table 4.5. Reasons for Page Faulting

4.6.1 Handling a Page Fault

After the exception handler has decided the fault is a valid page fault in a valid
memory region, the architecture-independent function handle mm fault(), which
has its call graph shown in Figure 4.13, takes over. It allocates the required page
table entries if they do not already exist and calls handle pte fault().

Based on the properties of the PTE, one of the handler functions shown in Figure
4.13 will be used. The first stage of the decision is to check if the PTE is marked
not present or if it has been allocated with, which is checked by pte present()
and pte none(). If no PTE has been allocated (pte none() returned true),
do no page() is called, which handles Demand Allocation. Otherwise, it is a page
that has been swapped out to disk and do swap page() performs Demand Paging .
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Figure 4.12. do page fault() Flow Diagram

There is a rare exception where swapped-out pages belonging to a virtual file are
handled by do no page(). This particular case is covered in Section 12.4.

The second option is if the page is being written to. If the PTE is write protected,
do wp page() is called because the page is a COW page. A COW page is one
that is shared between multiple processes(usually a parent and child) until a write
occurs, after which a private copy is made for the writing process. A COW page
is recognized because the VMA for the region is marked writable even though the
individual PTE is not. If it is not a COW page, the page is simply marked dirty
because it has been written to.

The last option is if the page has been read and is present, but a fault still
occurred. This can occur with some architectures that do not have a three-level
page table. In this case, the PTE is simply established and marked young.
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handle_mm_fault

pmd_alloc pte_alloc handle_pte_fault

do_no_page do_swap_page do_wp_page

do_anonymous_page alloc_page

Figure 4.13. Call Graph: handle mm fault()

4.6.2 Demand Allocation

When a process accesses a page for the very first time, the page has to be allo-
cated and possibly filled with data by the do no page() function, whose call graph
is shown in Figure 4.14. If the vm operations struct associated with the parent
VMA (vma→vm ops) provides a nopage() function, it is called. This is of impor-
tance to a memory-mapped device such as a video card, which needs to allocate the
page and supply data on access or to a mapped file that must retrieve its data from
backing storage. We will first discuss the case where the faulting page is anonymous
because this is the simpliest case.

do_no_page

do_anonymous_page

alloc_page lru_cache_addmark_page_accessed

Figure 4.14. Call Graph: do no page()

Handling Anonymous Pages If the vm area struct→vm ops field is not filled or
a nopage() function is not supplied, the function do anonymous page() is called
to handle an anonymous access. There are only two cases to handle, first time read
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and first time write. Because it is an anonymous page, the first read is an easy case
because no data exists. In this case, the systemwide empty zero page, which is
just a page of zeros, is mapped for the PTE, and the PTE is write protected. The
write protection is set so that another page fault will occur if the process writes
to the page. On the x86, the global zero-filled page is zeroed out in the function
mem init().

If this is the first write to the page, alloc page() is called to allocate a free page
(see Chapter 6) and is zero filled by clear user highpage(). Assuming the page
was successfully allocated, the RSS field in the mm struct will be incremented;
flush page to ram() is called as required when a page has been inserted into a
userspace process by some architectures to ensure cache coherency. The page is then
inserted on the LRU lists so that it may be reclaimed later by the page reclaiming
code. Finally the page table entries for the process are updated for the new mapping.

Handling File/Device-Backed Pages If backed by a file or device, a nopage()
function will be provided within the VMA’s vm operations struct. In the file-
backed case, the function filemap nopage() is frequently the nopage() function
for allocating a page and reading a page-sized amount of data from disk. Pages
backed by a virtual file, such as those provided by shmfs, will use the func-
tion shmem nopage() (See Chapter 12). Each device driver provides a different
nopage(). Their internals are unimportant to us here as long as it returns a valid
struct page to use.

On return of the page, a check is made to ensure a page was successfully allocated
and appropriate errors were returned if not. A check is then made to see if an early
COW break should take place. An early COW break will take place if the fault is a
write to the page and the VM SHARED flag is not included in the managing VMA. An
early break is a case of allocating a new page and copying the data across before
reducing the reference count to the page returned by the nopage() function.

In either case, a check is then made with pte none() to ensure a PTE is not
already in the page table that is about to be used. It is possible with SMP that two
faults would occur for the same page at close to the same time, and because the
spinlocks are not held for the full duration of the fault, this check has to be made
at the last instant. If there has been no race, the PTE is assigned, statistics are
updated and the architecture hooks for cache coherency are called.

4.6.3 Demand Paging

When a page is swapped out to backing storage, the function do swap page(),
shown in Figure 4.15, is responsible for reading the page back in, with the exception
of virtual files, which are covered in Section 12. The information needed to find it
is stored within the PTE itself. The information within the PTE is enough to find
the page in swap. Because pages may be shared between multiple processes, they
cannot always be swapped out immediately. Instead, when a page is swapped out,
it is placed within the swap cache.
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A shared page cannot be swapped out immediately because there is no way
of mapping a struct page to the PTEs of each process it is shared between.
Searching the page tables of all processes is simply far too expensive. It is
worth noting that the late 2.5.x kernels and 2.4.x with a custom patch have
what is called Reverse Mapping (RMAP), which is discussed at the end of the
chapter.

With the swap cache existing, it is possible that, when a fault occurs, it still
exists in the swap cache. If it is, the reference count to the page is simply increased,
and it is placed within the process page tables again and registers as a minor page
fault.

If the page exists only on disk, swapin readahead() is called, which reads in
the requested page and a number of pages after it. The number of pages read
in is determined by the variable page cluster defined in mm/swap.c. On low
memory machines with less than 16MiB of RAM, it is initialized as 2 or 3. The
number of pages read in is 2page cluster unless a bad or empty swap entry is en-
countered. This works on the premise that a seek is the most expensive opera-
tion in time, so after the seek has completed, the succeeding pages should also be
read in.

4.6.4 COW Pages

Once upon a time, the full parent address space was duplicated for a child when
a process forked. This was an extremely expensive operation because it is pos-
sible a significant percentage of the process would have to be swapped in from
backing storage. To avoid this considerable overhead, a technique called COW
is employed.

During a fork, the PTEs of the two processes are made read-only so that, when
a write occurs, there will be a page fault. Linux recognizes a COW page because,
even though the PTE is write protected, the controlling VMA shows the region is
writable. It uses the function do wp page(), shown in Figure 4.16, to handle it by
making a copy of the page and assigning it to the writing process. If necessary, a
new swap slot will be reserved for the page. With this method, only the page table
entries have to be copied during a fork.

4.7 Copying to/from Userspace

It is not safe to access memory in the process address space directly because there
is no way to quickly check if the page addressed is resident or not. Linux re-
lies on the MMU to raise exceptions when the address is invalid and have the
Page Fault Exception handler catch the exception and fix it up. In the x86 case,
an assembler is provided by the copy user() to trap exceptions where the ad-
dress is totally useless. The location of the fixup code is found when the func-
tion search exception table() is called. Linux provides an ample API (mainly
macros) for copying data to and from the user address space safely as shown in
Table 4.6.
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unsigned long copy from user(void *to, const void *from, unsigned
long n)

Copies n bytes from the user address(from) to the kernel address space(to).

unsigned long copy to user(void *to, const void *from, unsigned
long n)

Copies n bytes from the kernel address(from) to the user address space(to).

void copy user page(void *to, void *from, unsigned long address)
Copies data to an anonymous or COW page in userspace. Ports are responsi-

ble for avoiding D-cache aliases. It can do this by using a kernel virtual address
that would use the same cache lines as the virtual address.

void clear user page(void *page, unsigned long address)
Similar to copy user page(), except it is for zeroing a page.

void get user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to).

void put user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to).

long strncpy from user(char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from userspace

(src) to kernel space (dst).

long strlen user(const char *s, long n)
Returns the length, upper bound by n, of the userspace string including the

terminating NULL.

int access ok(int type, unsigned long addr, unsigned long size)
Returns nonzero if the userspace block of memory is valid and zero otherwise.

Table 4.6. Accessing Process Address Space API

All the macros map on to assembler functions, which all follow similar patterns of
implementation. For illustration purposes, we’ll just trace how copy from user()
is implemented on the x86.

If the size of the copy is known at compile time, copy from user() calls
constant copy from user(), or generic copy from user() is used. If the size

is known, there are different assembler optimizations to copy data in 1, 2 or 4 byte
strides. Otherwise, the distinction between the two copy functions is not important.

The generic copy function eventually calls the function copy user zeroing()
in <asm-i386/uaccess.h>, which has three important parts. The first part is the
assembler for the actual copying of size number of bytes from userspace. If any
page is not resident, a page fault will occur, and, if the address is valid, it will get
swapped in as normal. The second part is fixup code, and the third part is the



90 Process Address Space Chapter 4

ex table mapping the instructions from the first part to the fixup code in the
second part.

These pairings, as described in Section 4.5, copy the location of the copy in-
structions and the location of the fixup code to the kernel exception handle table
by the linker. If an invalid address is read, the function do page fault() will fall
through, call search exception table(), find the Enhanced Instruction Pointer
(EIP) where the faulty read took place and jump to the fixup code, which copies
zeros into the remaining kernel space, fixes up registers and returns. In this manner,
the kernel can safely access userspace with no expensive checks and let the MMU
hardware handle the exceptions.

All the other functions that access userspace follow a similar pattern.

4.8 What’s New in 2.6

Linear Address Space The linear address space remains essentially the same as
2.4 with no modifications that cannot be easily recognized. The main change is the
addition of a new page usable from userspace that has been entered into the fixed
address virtual mappings. On the x86, this page is located at 0xFFFFF000 and called
the vsyscall page. Code is located at this page, which provides the optimal method
for entering kernel space from userspace. A userspace program now should use call
0xFFFFF000 instead of the traditional int 0x80 when entering kernel space.

struct mm struct This struct has not changed significantly. The first change is
the addition of a free area cache field, which is initialized as TASK UNMAPPED BASE.
This field is used to remember where the first hole is in the linear address space to
improve search times. A small number of fields have been added at the end of the
struct, which are related to core dumping and are beyond the scope of this book.

struct vm area struct This struct also has not changed significantly. The main
difference is that the vm next share and vm pprev share have been replaced with a
proper linked list with a new field called shared. The vm raend has been removed al-
together because file readahead is implemented very differently in 2.6. Readahead is
mainly managed by a struct file ra state struct stored in struct file→f ra.
How readahead is implemented is described in a lot of detail in mm/readahead.c.

struct address space The first change is relatively minor. The gfp mask field
has been replaced with a flags field where the first GFP BITS SHIFT bits are used
as the gfp mask and accessed with mapping gfp mask(). The remaining bits are
used to store the status of asynchronous I/O. The two flags that may be set are
AS EIO to indicate an I/O error and AS ENOSPC to indicate the filesystem ran out
of space during an asynchronous write.

This struct has a number of significant additions, mainly related to the page
cache and file readahead. Because the fields are quite unique, we’ll introduce them
in detail:

page tree This is a radix tree of all pages in the page cache for this mapping
indexed by the block that the data is located on the physical disk. In 2.4,
searching the page cache involved traversing a linked list. In 2.6, it is a
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radix tree lookup, which considerably reduces search times. The radix tree is
implemented in lib/radix-tree.c.

page lock This is a spinlock that protects page tree.

io pages When dirty pages are to be written out, they are added to this list
before do writepages() is called. As explained in the previous comment,
mpage writepages() in fs/mpage.c, pages to be written out are placed on
this list to avoid deadlocking by locking a page that is already locked for I/O.

dirtied when This field records, in jiffies, the first time an inode was dirtied.
This field determines where the inode is located on the super block→s dirty
list. This prevents a frequently dirtied inode from remaining at the top of the
list and starving writeout on other inodes.

backing dev info This field records readahead-related information. The struct
is declared in include/linux/backing-dev.h with comments explaining the
fields.

private list This is a private list available to the address space. If the
helper functions mark buffer dirty inode() and sync mapping buffers()
are used, this list links buffer heads through the
buffer head→b assoc buffers field.

private lock This spinlock is available for the address space. The use of
this lock is very convoluted, but some of the uses are explained in the long
ChangeLog for 2.5.17 (lwn.net/2002/0523/a/2.5.17.php3 ). It is mainly re-
lated to protecting lists in other mappings that share buffers in this map-
ping. The lock would not protect this private list, but it would protect the
private list of another address space sharing buffers with this mapping.

assoc mapping This is the address space that backs buffers contained in this
mapping’s private list.

truncate count This is incremented when a region is being truncated by the
function invalidate mmap range(). The counter is examined during page
fault by do no page() to ensure that a page is not faulted that was just
invalidated.

struct address space operations Most of the changes to this struct initially
look quite simple, but are actually quite involved. The changed fields are the
following:

writepage The writepage() callback has been changed to take an additional pa-
rameter struct writeback control. This struct is responsible for recording
information about the writeback, such as if it is congested or not or if the
writer is the page allocator for direct reclaim or kupdated and contains a
handle to the backing backing dev info to control readahead.



92 Process Address Space Chapter 4

writepages This moves all pages from dirty pages to io pages before writing
them all out.

set page dirty This is an address space-specific method of dirtying a page.
This is mainly used by the backing storage address space operations and
for anonymous shared pages where there are no buffers associated with the
page to be dirtied.

readpages This is used when reading in pages so that readahead can be accurately
controlled.

bmap This has been changed to deal with disk sectors rather than unsigned longs
for devices larger than 232 bytes.

invalidatepage This is a renaming change. block flushpage() and the call-
back flushpage() have been renamed to block invalidatepage() and
invalidatepage().

direct I/O This has been changed to use the new I/O mechanisms in 2.6. The
new mechanisms are beyond the scope of this book.

Memory Regions The operation of mmap() has two important changes. The first
is that it is possible for security modules to register a callback. This callback
is called security file mmap(), which looks up a security ops struct for the
relevant function. By default, this will be a NULL operation.

The second is that much stricter address space accounting code is in place.
vm area structs that are to be accounted will have the VM ACCOUNT flag set,
which will be all userspace mappings. When userspace regions are created or
destroyed, the functions vm acct memory() and vm unacct memory() update the
variable vm committed space. This gives the kernel a much better view of how
much memory has been committed to userspace.

4GiB/4GiB User/Kernel Split One limitation that exists for the 2.4.x kernels is
that the kernel has only 1GiB of virtual address space available, which is visible to
all processes. At time of writing, a patch has been developed by Ingo Molnar2 which
allows the kernel to optionally have its own full 4GiB address space. The patches
are available from http://redhat.com/∼mingo/4g-patches/ and are included in the
-mm test trees, but it is unclear if it will be merged into the mainstream.

This feature is intended for 32-bit systems that have very large amounts
(>16GiB) of RAM. The traditional 3/1 split adequately supports up to 1GiB of
RAM. After that, high-memory support allows larger amounts to be supported by
temporarily mapping high-memory pages. However, with more RAM, this forms a
significant bottleneck. For example, as the amount of physical RAM approached
the 60GiB range, almost all the low memory is consumed by mem map. By giving the
kernel its own 4GiB virtual address space, it is much easier to support the memory.
The serious penalty, though, is that there is a per-syscall TLB flush, which heavily
impacts performance.

2See lwn.net/Articles/39283/ for the first announcement of the patch.
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With the patch, only a small 16MiB region of memory is shared between
userspace and kernelspace, and this is used to store the Global Descriptor Table
(GDT), Interrupt Descriptor Table (IDT), Task State Segments (TSS), Local De-
scriptor Table (LDT), vsyscall page and the kernel stack. The code for doing the
actual switch between the page tables is then contained in the trampoline code for
entering/exiting kernelspace. There are a few changes made to the core, such as
the removal of direct pointers for accessing userspace buffers, but, by and large, the
core kernel is unaffected by this patch.

Nonlinear VMA Population In 2.4, a VMA backed by a file is populated in a
linear fashion. This can be optionally changed in 2.6 with the introduction of the
MAP POPULATE flag to mmap() and the new system call remap file pages(), which
are implemented by sys remap file pages(). This system call allows arbitrary
pages in an existing VMA to be remapped to an arbitrary location on the backing
file by manipulating the page tables.

On page-out, the nonlinear address for the file is encoded within the PTE so that
it can be installed again correctly on page fault. How it is encoded is architecture
specific, so two macros are defined, pgoff to pte() and pte to pgoff(), for the
task.

This feature is largely of benefit to applications with a large number of mappings,
such as database servers and virtualizing applications such as emulators. It was
introduced for a number of reasons. First, VMAs are per-process and can have
considerable space requirements, especially for applications with a large number of
mappings. Second, the search get unmapped area() uses for finding a free area
in the virtual address space is a linear search, which is very expensive for large
numbers of mappings. Third, nonlinear mappings will prefault most of the pages
into memory whereas normal mappings may cause a major fault for each page.
This can be avoided though, by using the new MAP POPULATE flag with mmap() or
by using mlock(). The last reason is to avoid sparse mappings, which, at worst
case, would require one VMA for every file page mapped.

However, this feature is not without some serious drawbacks. The first is that
the system calls, truncate() and mincore(), are broken with respect to non-
linear mappings. Both system calls depend on vm area struct→vm pgoff, which
is meaningless for nonlinear mappings. If a file mapped by a nonlinear mapping
is truncated, the pages that exist within the VMA will still remain. It has been
proposed that the proper solution is to leave the pages in memory, but make them
anonymous. At the time of writing, no solution has been implemented.

The second major drawback is TLB invalidations. Each remapped page will re-
quire that the MMU be told the remapping took place with flush icache page(),
but the more important penalty is with the call to flush tlb page(). Some pro-
cessors are able to invalidate just the TLB entries related to the page, but other
processors implement this by flushing the entire TLB. If remappings are frequent,
the performance will degrade due to increased TLB misses and the overhead of con-
stantly entering kernel space. In some ways, these penalties are the worst because
the impact is heavily processor dependent.

It is currently unclear what the future of this feature, if it remains, will be. At
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the time of writing, there are still ongoing arguments on how the issues with the
feature will be fixed, but it is likely that nonlinear mappings are going to be treated
very differently from normal mappings with respect to pageout, truncation and the
reverse mapping of pages. Because the main user of this feature is likely to be
databases, this special treatment is not likely to be a problem.

Page Faulting The changes to the page faulting routines are more cosmetic
than anything else, other than the necessary changes to support reverse mapping
and PTEs in high memory. The main cosmetic change is that the page fault-
ing routines return self-explanatory compile time definitions rather than magic
numbers. The possible return values for handle mm fault() are VM FAULT MINOR,
VM FAULT MAJOR, VM FAULT SIGBUS and VM FAULT OOM.



CHAPTER 5

Boot Memory Allocator

It is impractical to statically initialize all the core kernel memory structures at
compile time because there are simply far too many permutations of hardware con-
figurations. To set up even the basic structures, though, requires memory because
even the physical page allocator, discussed in the next chapter, needs to allocate
memory to initialize itself. But how can the physical page allocator allocate memory
to initialize itself?

To address this, a specialized allocator called the Boot Memory Allocator is used.
It is based on the most basic of allocators, a First Fit allocator, which uses a bitmap
to represent memory [Tan01] instead of linked lists of free blocks. If a bit is 1, the
page is allocated, and if the bit is 0, it is unallocated. To satisfy allocations of sizes
smaller than a page, the allocator records the Page Frame Number (PFN) of the
last allocation and the offset the allocation ended at. Subsequent small allocations
are merged together and stored on the same page.

The reader may ask why this allocator is not used for the running system. One
compelling reason is that, although the first fit allocator does not suffer badly from
fragmentation [JW98], memory frequently has to be linearly searched to satisfy
an allocation. Because this is examining bitmaps, it gets very expensive, especially
because the first fit algorithm tends to leave many small free blocks at the beginning
of physical memory that still get scanned for large allocations, thus making the
process very wasteful [WJNB95].

There are two very similar but distinct APIs for the allocator. One is for UMA
architectures listed in Table 5.1, and the other is for NUMA listed in Table 5.2. The
principal difference is that the NUMA API must be supplied with the node affected
by the operation, but, because the callers of these APIs exist in the architecture-
dependent layer, it is not a significant problem.

This chapter begins with a description of the structure that the allocator uses
to describe the physical memory available for each node. I then illustrate how the
limits of physical memory and the sizes of each zone are discovered before talking
about how the information is used to initialize the boot memory allocator structures.
The allocation and free routines are then discussed before finally talking about how
the boot memory allocator is retired.

95
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unsigned long init bootmem(unsigned long start, unsigned long
page)

Initializes the memory between 0 and the PFN page. The beginning of usable
memory is at the PFN start.

void reserve bootmem(unsigned long addr, unsigned long size)
Marks the pages between the address addr and addr+size reserved. Requests

to partially reserve a page will result in the full page being reserved.

void free bootmem(unsigned long addr, unsigned long size)
Marks the pages between the address addr and addr+size as free.

void * alloc bootmem(unsigned long size)
Allocates size number of bytes from ZONE NORMAL. The allocation will be

aligned to the L1 hardware cache to get the maximum benefit from the hardware
cache.

void * alloc bootmem low(unsigned long size)
Allocates size number of bytes from ZONE DMA. The allocation will be aligned

to the L1 hardware cache.

void * alloc bootmem pages(unsigned long size)
Allocates size number of bytes from ZONE NORMAL aligned on a page size so

that full pages will be returned to the caller.

void * alloc bootmem low pages(unsigned long size)
Allocates size number of bytes from ZONE DMA aligned on a page size so that

full pages will be returned to the caller.

unsigned long bootmem bootmap pages(unsigned long pages)
Calculates the number of pages required to store a bitmap representing the

allocation state of pages number of pages.

unsigned long free all bootmem()
Used at the boot allocator end of life. It cycles through all pages in the

bitmap. For each one that is free, the flags are cleared, and the page is freed to
the physical page allocator (see next chapter) so that the runtime allocator can
set up its free lists.

Table 5.1. Boot Memory Allocator API for UMA Architectures

5.1 Representing the Boot Map

A bootmem data struct exists for each node of memory in the system. It contains
the information needed for the boot memory allocator to allocate memory for a
node, such as the bitmap representing allocated pages and where the memory is
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unsigned long init bootmem node(pg data t *pgdat, unsigned long
freepfn, unsigned long startpfn, unsigned long endpfn)

For use with NUMA architectures. It initializes the memory between PFNs
startpfn and endpfn with the first usable PFN at freepfn. After it is initial-
ized, the pgdat node is inserted into the pgdat list.

void reserve bootmem node(pg data t *pgdat, unsigned long physaddr,
unsigned long size)

Marks the pages between the address addr and addr+size on the specified
node pgdat reserved. Requests to partially reserve a page will result in the full
page being reserved.

void free bootmem node(pg data t *pgdat, unsigned long physaddr,
unsigned long size)

Marks the pages between the address addr and addr+size on the specified
node pgdat free.

void * alloc bootmem node(pg data t *pgdat, unsigned long size)
Allocates size number of bytes from ZONE NORMAL on the specified node

pgdat. The allocation will be aligned to the L1 hardware cache to get the
maximum benefit from the hardware cache.

void * alloc bootmem pages node(pg data t *pgdat, unsigned long
size)

Allocates size number of bytes from ZONE DMA on the specified node pgdat
aligned on a page size so that full pages will be returned to the caller.

void * alloc bootmem low pages node(pg data t *pgdat, unsigned long
size)

Allocates size number of bytes from ZONE DMA on the specified node pgdat
aligned on a page size so that full pages will be returned to the caller.

unsigned long free all bootmem node(pg data t *pgdat)
Used at the boot allocator end of life. It cycles through all pages in the bitmap

for the specified node. For each one that is free, the page flags are cleared, and
the page is freed to the physical page allocator (see next chapter) so that the
runtime allocator can set up its free lists.

Table 5.2. Boot Memory Allocator API for NUMA Architectures

located. It is declared as follows in <linux/bootmem.h>:

25 typedef struct bootmem_data {
26 unsigned long node_boot_start;
27 unsigned long node_low_pfn;
28 void *node_bootmem_map;
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29 unsigned long last_offset;
30 unsigned long last_pos;
31 } bootmem_data_t;

The fields of this struct are as follows:

node boot start This is the starting physical address of the represented block.

node low pfn This is the end physical address, in other words, the end of the
ZONE NORMAL this node represents.

node bootmem map This is the location of the bitmap representing allocated
or free pages with each bit.

last offset This is the offset within the the page of the end of the last allocation.
If 0, the page used is full.

last pos This is the the PFN of the page used with the last allocation. By using
this with the last offset field, a test can be made to see if allocations can
be merged with the page used for the last allocation rather than using up a
full new page.

5.2 Initializing the Boot Memory Allocator

Each architecture is required to supply a setup arch() function, which, among
other tasks, is responsible for acquiring the necessary parameters to initialize the
boot memory allocator.

Each architecture has its own function to get the necessary parameters. On
the x86, it is called setup memory() as discussed in Section 2.2.2, but, on other
architectures such as MIPS or Sparc, it is called bootmem init() or, in the case
of the PPC, do init bootmem(). Regardless of the architecture, the tasks are
essentially the same. The parameters it calculates are the following:

min low pfn This is the lowest PFN that is available in the system.

max low pfn This is the highest PFN that may be addressed by low memory
(ZONE NORMAL).

highstart pfn This is the PFN of the beginning of high memory (ZONE HIGHMEM).

highend pfn This is the last PFN in high memory.

max pfn Finally, this is the last PFN available to the system.

5.3 Initializing bootmem data

After the limits of usable physical memory are discovered by setup memory(), one
of two boot memory initialization functions is selected and provided with the start
and end PFN for the node to be initialized. init bootmem(), which initializes



5.4. Allocating Memory 99

contig page data, is used by UMA architectures, while init bootmem node() is
for NUMA to initialize a specified node. Both functions are trivial and rely on
init bootmem core() to do the real work.

The first task of the core function is to insert this pgdat data t into the
pgdat list because, at the end of this function, the node is ready for use. It then
records the starting and end address for this node in its associated bootmem data t
and allocates the bitmap representing page allocations. The size in bytes, hence the
division by eight, of the bitmap required is calculated as:

mapsize =
(end pfn − start pfn) + 7

8

The bitmap in stored at the physical address pointed to by
bootmem data t→node boot start, and the virtual address to the map is
placed in bootmem data t→node bootmem map. Because there is no architecture-
independent way to detect holes in memory, the entire bitmap is initialized to 1,
effectively marking all pages allocated. It is up to the architecture-dependent
code to set the bits of usable pages to 0, although, in reality, the Sparc ar-
chitecture is the only one that uses this bitmap. In the case of the x86,
the function register bootmem low pages() reads through the e820 map and
calls free bootmem() for each usable page to set the bit to 0 before using
reserve bootmem() to reserve the pages needed by the actual bitmap.

5.4 Allocating Memory

The reserve bootmem() function may be used to reserve pages for use by the
caller, but is very cumbersome to use for general allocations. Four functions
are provided for easy allocations on UMA architectures called alloc bootmem(),
alloc bootmem low(), alloc bootmem pages() and alloc bootmem low pages(),
which are fully described in Table 5.1. All of these macros call alloc bootmem()
with different parameters. The call graph for these functions is shown in in Figure
5.1.

Similar functions exist for NUMA that take the node as an additional

alloc_bootmem

__alloc_bootmem

__alloc_bootmem_core

alloc_bootmem_low alloc_bootmem_pages alloc_bootmem_low_pages

Figure 5.1. Call Graph: alloc bootmem()
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parameter as listed in Table 5.2. They are called alloc bootmem node(),
alloc bootmem pages node() and alloc bootmem low pages node(). All of these
macros call alloc bootmem node() with different parameters.

The parameters to alloc bootmem() and alloc bootmem node() are essen-
tially the same. They are the following:

pgdat This is the node to allocate from. It is omitted in the UMA case because
it is assumed to be contig page data.

size This is the size in bytes of the requested allocation.

align This is the number of bytes that the request should be aligned to. For
small allocations, they are aligned to SMP CACHE BYTES, which, on the x86,
will align to the L1 hardware cache.

goal This is the preferred starting address to begin allocating from. The low
functions will start from physical address 0 whereas the others will begin
from MAX DMA ADDRESS, which is the maximum address DMA transfers may
be made from on this architecture.

The core function for all the allocation APIs is alloc bootmem core(). It is
a large function, but with simple steps that can be broken down. The function
linearly scans memory starting from the goal address for a block of memory large
enough to satisfy the allocation. With the API, this address will either be 0 for
DMA-friendly allocations or MAX DMA ADDRESS otherwise.

The clever part, and the main bulk of the function, deals with deciding if this
new allocation can be merged with the previous one. It may be merged if the
following conditions hold:

• The page used for the previous allocation (bootmem data→pos) is adjacent
to the page found for this allocation.

• The previous page has some free space in it (bootmem data→offset != 0).

• The alignment is less than PAGE SIZE.

Regardless of whether the allocations may be merged or not, the pos and offset
fields will be updated to show the last page used for allocating and how much of
the last page was used. If the last page was fully used, the offset is 0.

5.5 Freeing Memory

In contrast to the allocation functions, only two free functions are provided, which
are free bootmem() for UMA and free bootmem node() for NUMA. They both
call free bootmem core(), and the only difference is that a pgdat is supplied with
NUMA.

The core function is relatively simple in comparison to the rest of the allocator.
For each full page affected by the free, the corresponding bit in the bitmap is set
to 0. If it already was 0, BUG() is called to show a double-free occurred. BUG()
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is used when an unrecoverable error due to a kernel bug occurs. It terminates the
running process and causes a kernel oops, which shows a stack trace and debugging
information that a developer can use to fix the bug.

An important restriction with the free functions is that only full pages may be
freed. It is never recorded when a page is partially allocated, so, if only partially
freed, the full page remains reserved. This is not as major a problem as it appears
because the allocations always persist for the lifetime of the system. However, it is
still an important restriction for developers during boot time.

5.6 Retiring the Boot Memory Allocator

Late in the bootstrapping process, the function start kernel() is called, which
knows it is safe to remove the boot allocator and all its associated data struc-
tures. Each architecture is required to provide a function mem init(), shown in
Figure 5.2, that is responsible for destroying the boot memory allocator and its
associated structures.

mem_init

set_max_mapnr_init free_pages_init nr_free_pages test_wp_bit

free_all_bootmem

page_is_ram

one_highpage_init

free_all_bootmem_core

ClearPageReserved__free_page

free_pages

Figure 5.2. Call Graph: mem init()

The purpose of the function is quite simple. It is responsible for calculating
the dimensions of low and high memory and printing out an informational mes-
sage to the user, as well as performing final initializations of the hardware if
necessary. On the x86, the principle function of concern for the VM is the
free pages init().

This function first tells the boot memory allocator to retire itself by call-
ing free all bootmem() for UMA architectures or free all bootmem node() for
NUMA. Both call the core function free all bootmem core() with different
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parameters. The core function is simple in principle and performs the following
tasks:

• For all unallocated pages known to the allocator for this node, it does the
following:

– Clear the PG reserved flag in its struct page.

– Set the count to 1.

– Call free pages() so that the buddy allocator (discussed in the next
chapter) can build its free lists.

• Free all pages used for the bitmap and give them to the buddy allocator.

At this stage, the buddy allocator now has control of all the pages in low mem-
ory, which leaves only the high memory pages. After free all bootmem() returns,
it first counts the number of reserved pages for accounting purposes. The remain-
der of the free pages init() function is responsible for the high memory pages.
However, at this point, it should be clear how the global mem map array is allo-
cated and initialized and how the pages are given to the main allocator. The basic
flow used to initialize pages in low memory in a single node system is shown in
Figure 5.3.

After free all bootmem() returns, all the pages in ZONE NORMAL have
been given to the buddy allocator. To initialize the high memory pages,
free pages init() calls one highpage init() for every page between
highstart pfn and highend pfn. one highpage init() simply clears the
PG reserved flag, sets the PG highmem flag, sets the count to 1 and calls
free pages() to release it to the buddy allocator in the same manner

free all bootmem core() did.
At this point, the boot memory allocator is no longer required, and the buddy

allocator is the main physical page allocator for the system. An interesting feature
to note is that not only is the data for the boot allocator removed, but also all code
that was used to bootstrap the system. All initilization functions that are required
only during system start-up are marked init, such as the following:

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On
the x86, the function free initmem() walks through all pages from init begin
to init end and frees up the pages to the buddy allocator. With this method,
Linux can free up a considerable amount of memory that is used by bootstrapping
code that is no longer required. For example, 27 pages were freed while booting the
kernel running on the machine this document was composed on.

5.7 What’s New in 2.6

The boot memory allocator has not changed significantly since 2.4 and is mainly
concerned with optimizations and some minor NUMA-related modifications. The
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first optimization is the addition of a last success field to the bootmem data t
struct. As the name suggests, it keeps track of the location of the last successful
allocation to reduce search times. If an address is freed before last success, it
will be changed to the freed location.

The second optimization is also related to the linear search. When searching
for a free page, 2.4 tests every bit, which is expensive. 2.6 instead tests if a block
of BITS PER LONG is all ones. If it’s not, it will test each of the bits individually in
that block. To help the linear search, nodes are ordered in order of their physical
addresses by init bootmem().

The last change is related to NUMA and contiguous architectures. Contiguous
architectures now define their own init bootmem() function and any architecture
can optionally define their own reserve bootmem() function.



CHAPTER 6

Physical Page Allocation

This chapter describes how physical pages are managed and allocated in Linux.
The principal algorithm used is the Binary Buddy Allocator , devised by Knowlton
[Kno65] and further described by Knuth [Knu68]. The binary buddy allocator is
has been shown to be extremely fast in comparison to other allocators [KB85].

This is an allocation scheme that combines a normal power-of-two allocator
with free buffer coalescing [Vah96], and the basic concept behind it is quite simple.
Memory is broken up into large blocks of pages where each block is a power of two
number of pages. If a block of the desired size is not available, a large block is
broken up in half, and the two blocks are buddies to each other. One half is used
for the allocation, and the other is free. The blocks are continuously halved as
necessary until a block of the desired size is available. When a block is later freed,
the buddy is examined, and the two are coalesced if it is free.

This chapter will begin with describing how Linux remembers what blocks of
memory are free. After that the methods for allocating and freeing pages will
be discussed in detail. The subsequent section will cover the flags that affect the
allocator behavior and finally the problem of fragmentation and how the allocator
handles it.

6.1 Managing Free Blocks

As stated, the allocator maintains blocks of free pages where each block is a power
of two number of pages. The exponent for the power of two-sized block is re-
ferred to as the order . An array of free area t structs are maintained for each
order that points to a linked list of blocks of pages that are free as indicated by
Figure 6.1.

Hence, the 0th element of the array will point to a list of free page blocks of size
20 or 1 page, the 1st element will be a list of 21 (2) pages up to 2MAX ORDER−1

number of pages, where the MAX ORDER is currently defined as 10. This eliminates
the chance that a larger block will be split to satisfy a request where a smaller block
would have sufficed. The page blocks are maintained on a linear linked list using
page→list.

Each zone has a free area t struct array called free area[MAX ORDER]. It is
declared in <linux/mm.h> as follows:

105
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Figure 6.1. Free Page Block Management

22 typedef struct free_area_struct {
23 struct list_head free_list;
24 unsigned long *map;
25 } free_area_t;

The fields in this struct are as follows:

free list A linked list of free page blocks

map A bitmap representing the state of a pair of buddies

Linux saves memory by only using one bit instead of two to represent each pair
of buddies. Each time a buddy is allocated or freed, the bit representing the pair
of buddies is toggled so that the bit is zero if the pair of pages are both free or
both full and 1 if only one buddy is in use. To toggle the correct bit, the macro
MARK USED() in page alloc.c is used, which is declared as follows:

164 #define MARK_USED(index, order, area) \
165 __change_bit((index) >> (1+(order)), (area)->map)

index is the index of the page within the global mem map array. By shifting it
right by 1+order bits, the bit within the map representing the pair of buddies is
revealed.

6.2 Allocating Pages

Linux provides a quite sizable API for the allocation of page frames. All of them
take a gfp mask as a parameter, which is a set of flags that determine how the
allocator will behave. The flags are discussed in Section 6.4.

As shown in Figure 6.2, the allocation API functions all use the core function
alloc pages(), but the APIs exist so that the correct node and zone will be

chosen. Different users will require different zones, such as ZONE DMA for certain
device drivers or ZONE NORMAL for disk buffers, and callers should not have to be
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alloc_pages

_alloc_pages

__alloc_pages

rmqueue balance_classzone

expand try_to_free_pages_zone __free_pages_ok

Figure 6.2. Call Graph: alloc pages()

aware of what node is being used. A full list of page allocation APIs are listed in
Table 6.1.

Allocations are always for a specified order: 0 in the case where a single page
is required. If a free block cannot be found of the requested order, a higher order
block is split into two buddies. One is allocated, and the other is placed on the
free list for the lower order. Figure 6.3 shows where a 24 block is split and how the
buddies are added to the free lists until a block for the process is available.

When the block is later freed, the buddy will be checked. If both are free, they
are merged to form a higher order block and placed on the higher free list where its
buddy is checked and so on. If the buddy is not free, the freed block is added to the
free list at the current order. During these list manipulations, interrupts have to be
disabled to prevent an interrupt handler manipulating the lists while a process has
them in an inconsistent state. This is achieved by using an interrupt safe spinlock.

The second decision to make is which memory node or pg data t to use.
Linux uses a node-local allocation policy, which aims to use the memory bank
associated with the CPU running the page-allocating process. Here, the function
alloc pages() is what is important because this function is different depending

on whether the kernel is built for a UMA (function in mm/page alloc.c) or NUMA
(function in mm/numa.c) machine.

Regardless of which API is used, alloc pages() in mm/page alloc.c is the
heart of the allocator. This function, which is never called directly, examines the
selected zone and checks if it is suitable to allocate from based on the number of
available pages. If the zone is not suitable, the allocator may fall back to other
zones. The order of zones to fall back on is decided at boot time by the function



108 Physical Page Allocation Chapter 6

struct page * alloc page(unsigned int gfp mask)
Allocates a single page and returns a struct address.

struct page * alloc pages(unsigned int gfp mask, unsigned int
order)

Allocates 2order number of pages and returns a struct page.

unsigned long get free page(unsigned int gfp mask)
Allocates a single page, zeros it, and returns a virtual address.

unsigned long get free page(unsigned int gfp mask)
Allocates a single page and returns a virtual address.

unsigned long get free pages(unsigned int gfp mask, unsigned int
order)

Allocates 2order number of pages and returns a virtual address.

struct page * get dma pages(unsigned int gfp mask, unsigned int
order)

Allocates 2order number of pages from the DMA zone and returns a struct
page.

Table 6.1. Physical Pages Allocation API

build zonelists(), but generally ZONE HIGHMEM will fall back to ZONE NORMAL and
that in turn will fall back to ZONE DMA. If number of free pages reaches the pages low
watermark, it will wake kswapd to begin freeing up pages from zones, and, if
memory is extremely tight, the caller will do the work of kswapd itself.

After the zone has finally been decided on, the function rmqueue() is called to
allocate the block of pages or split higher level blocks if one of the appropriate size
is not available.

Figure 6.3. Allocating Physical Pages
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6.3 Free Pages

The API for the freeing of pages is a lot simpler and exists to help remember the
order of the block to free. One disadvantage of a buddy allocator is that the caller
has to remember the size of the original allocation. The API for freeing is listed in
Table 6.2.

void free pages(struct page *page, unsigned int order)
Frees an order number of pages from the given page.

void free page(struct page *page)
Frees a single page.

void free page(void *addr)
Frees a page from the given virtual address.

Table 6.2. Physical Pages Free API

The principal function for freeing pages is free pages ok(), and it should not
be called directly. Instead the function free pages() is provided, which performs
simple checks first as indicated in Figure 6.4.

When a buddy is freed, Linux tries to coalesce the buddies together immediately
if possible. This is not optimal because the worst-case scenario will have many
coalitions followed by the immediate splitting of the same blocks [Vah96].

To detect if the buddies can be merged, Linux checks the bit corresponding to
the affected pair of buddies in free area→map. Because one buddy has just been
freed by this function, it is obviously known that at least one buddy is free. If the
bit in the map is 0 after toggling, we know that the other buddy must also be free

__free_pages

__free_pages_ok

lru_cache_del

__lru_cache_del

Figure 6.4. Call Graph: free pages()
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because, if the bit is 0, it means both buddies are either both free or both allocated.
If both are free, they may be merged.

Calculating the address of the buddy is a well known concept [Knu68]. Because
the allocations are always in blocks of size 2k, the address of the block, or at least
its offset within zone mem map, will also be a power of 2k. The end result is that
there will always be at least k number of zeros to the right of the address. To get
the address of the buddy, the kth bit from the right is examined. If it is 0, the
buddy will have this bit flipped. To get this bit, Linux creates a mask, which is
calculated as

mask = (∼ 0 << k)

The mask we are interested in is

imask = 1+ ∼ mask

Linux takes a shortcut in calculating this by noting that

imask = −mask = 1+ ∼ mask

After the buddy is merged, it is removed for the free list, and the newly coalesced
pair moves to the next higher order to see if it may also be merged.

6.4 Get Free Page (GFP) Flags

A persistent concept through the whole VM is the Get Free Page (GFP) flags.
These flags determine how the allocator and kswapd will behave for the allocation
and freeing of pages. For example, an interrupt handler may not sleep, so it will not
have the GFP WAIT flag set because this flag indicates the caller may sleep. There
are three sets of GFP flags, which are all defined in <linux/mm.h>.

The first of the three is the set of zone modifiers listed in Table 6.3. These flags
indicate that the caller must try to allocate from a particular zone. ZONE NORMAL
does not have a zone modifier. This is because the zone modifier flag is used as an
offset within an array, and 0 implicitly means allocate from ZONE NORMAL.

Flag Description
GFP DMA Allocate from ZONE DMA if possible.
GFP HIGHMEM Allocate from ZONE HIGHMEM if possi-

ble.
GFP DMA Act as alias for GFP DMA.

Table 6.3. Low-Level GFP Flags Affecting Zone Allocation

The next flags are action modifiers listed in Table 6.4. They change the behavior
of the VM and what the calling process may do. The low-level flags on their own
are too primitive to be easily used.
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Flag Description
GFP WAIT Indicates that the caller is not high priority and can sleep or

reschedule.
GFP HIGH Used by a high priority or kernel process. Kernel 2.2.x used it to

determine if a process could access emergency pools of memory.
In 2.4.x kernels, it does not appear to be used.

GFP IO Indicates that the caller can perform low-level I/O. In 2.4.x, the
main effect this has is determining if try to free buffers()
can flush buffers. It is used by at least one journaled filesystem.

GFP HIGHIO Determines that I/O can be performed on pages mapped in high
memory. It is only used in try to free buffers().

GFP FS Indicates if the caller can make calls to the filesystem layer. This
is used when the caller is filesystem related, the buffer cache, for
instance, and wants to avoid recursively calling itself.

Table 6.4. Low-Level GFP Flags Affecting Allocator Behavior

It is difficult to know what the correct combinations are for each instance, so a
few high-level combinations are defined and listed in Table 6.5. For clarity the GFP
is removed from the table combinations, so the GFP HIGH flag will read as HIGH
in the table. The combinations to form the high-level flags are listed in Table 6.6.
To help understand this, take GFP ATOMIC as an example. It has only the GFP HIGH
flag set. This means it is high priority, will use emergency pools (if they exist), but
it will not sleep, perform I/O, or access the filesystem. This flag would be used by
an interrupt handler, for example.

Flag Low-Level Flag Combination
GFP ATOMIC HIGH
GFP NOIO HIGH — WAIT
GFP NOHIGHIO HIGH — WAIT — IO
GFP NOFS HIGH — WAIT — IO — HIGHIO
GFP KERNEL HIGH — WAIT — IO — HIGHIO — FS
GFP NFS HIGH — WAIT — IO — HIGHIO — FS
GFP USER WAIT — IO — HIGHIO — FS
GFP HIGHUSER WAIT — IO — HIGHIO — FS — HIGHMEM
GFP KSWAPD WAIT — IO — HIGHIO — FS

Table 6.5. Low-Level GFP Flag Combinations for High-Level Use

6.5 Process Flags

A process may also set flags in the task struct, which affects allocator behavior.
The full list of process flags is defined in <linux/sched.h>, but only the ones
affecting VM behavior are listed in Table 6.7.
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Flag Description
GFP ATOMIC This flag is used whenever the caller cannot sleep and must

be serviced if at all possible. Any interrupt handler that re-
quires memory must use this flag to avoid sleeping or perform-
ing I/O. Many subsystems during init will use this system, such
as buffer init() and inode init().

GFP NOIO This is used by callers who are already performing an I/O-
related function. For example, when the loopback device is
trying to get a page for a buffer head, it uses this flag to make
sure it will not perform some action that would result in more
I/O. If fact, it appears the flag was introduced specifically to
avoid a deadlock in the loopback device.

GFP NOHIGHIO This is only used in one place in alloc bounce page() during
the creating of a bounce buffer for I/O in high memory.

GFP NOFS This is only used by the buffer cache and filesystems to make
sure they do not recursively call themselves by accident.

GFP KERNEL This is the most liberal of the combined flags. It indicates that
the caller is free to do whatever it pleases. Strictly speaking the
difference between this flag and GFP USER is that this could use
emergency pools of pages, but that is a no-op on 2.4.x kernels.

GFP USER This is another flag of historical significance. In the 2.2.x series,
an allocation was given a LOW, MEDIUM or HIGH priority.
If memory was tight, a request with GFP USER (low) would fail
whereas the others would keep trying. Now it has no significance
and is not treated any differently to GFP KERNEL.

GFP HIGHUSER This flag indicates that the allocator should allocate from
ZONE HIGHMEM if possible. It is used when the page is allocated
on behalf of a user process.

GFP NFS This flag is defunct. In the 2.0.x series, this flag determined
what the reserved page size was. Normally, 20 free pages were
reserved. If this flag was set, only five would be reserved. Now
it is not treated differently anywhere.

GFP KSWAPD This has more historical significance. In reality, this is not
treated any differently to GFP KERNEL.

Table 6.6. High-Level GFP Flags Affecting Allocator Behavior

6.6 Avoiding Fragmentation

One important problem that must be addressed with any allocator is the problem
of internal and external fragmentation. External fragmentation is the inability to
service a request because the available memory exists only in small blocks. Internal
fragmentation is defined as the wasted space where a large block had to be assigned
to service a small request. In Linux, external fragmentation is not a serious problem
because large requests for contiguous pages are rare, and usually vmalloc() (see
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Flag Description
PF MEMALLOC This flags the process as a memory allocator. kswapd sets

this flag, and it is set for any process that is about to be killed
by the OOM killer, which is discussed in Chapter 13. It tells
the buddy allocator to ignore zone watermarks and assigns the
pages if at all possible.

PF MEMDIE This is set by the OOM killer and functions the same as the
PF MEMALLOC flag by telling the page allocator to give pages if
at all possible because the process is about to die.

PF FREE PAGES This is set when the buddy allocator calls
try to free pages() itself to indicate that free pages should
be reserved for the calling process in free pages ok()
instead of returning to the free lists.

Table 6.7. Process Flags Affecting Allocator Behavior

Chapter 7) is sufficient to service the request. The lists of free blocks ensure that
large blocks do not have to be split unnecessarily.

Internal fragmentation is the single-most serious failing of the binary buddy
system. Although fragmentation is expected to be in the region of 28 per-
cent [WJNB95], it has been shown that it can be in the region of 60 percent,
in comparison to just 1 percent with the first fit allocator [JW98]. It has also been
shown that using variations of the buddy system will not help the situation signifi-
cantly [PN77]. To address this problem, Linux uses a slab allocator [Bon94] to carve
up pages into small blocks of memory for allocation [Tan01], which is discussed fur-
ther in Chapter 8. With this combination of allocators, the kernel can ensure that
the amount of memory wasted due to internal fragmentation is kept to a minimum.

6.7 What’s New in 2.6

Allocating Pages The first noticeable difference seems cosmetic at first. The func-
tion alloc pages() is now a macro and is defined in <linux/gfp.h> instead of
a function defined in <linux/mm.h>. The new layout is still very recognizable,
and the main difference is a subtle, but important one. In 2.4, specific code was
dedicated to selecting the correct node to allocate from based on the running CPU,
but 2.6 removes this distinction between NUMA and UMA architectures.

In 2.6, the function alloc pages() calls numa node id() to return the logical
ID of the node associated with the current running CPU. This NID is passed to
alloc pages(), which calls NODE DATA() with the NID as a parameter. On UMA

architectures, this will unconditionally result in contig page data being returned,
but NUMA architectures instead set up an array that NODE DATA() uses NID as an
offset into. In other words, architectures are responsible for setting up a CPU ID
to NUMA memory node mapping. This is effectively still a node-local allocation
policy as is used in 2.4, but it is a lot more clearly defined.
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Per-CPU Page Lists The most important addition to the page allocation is the
addition of the per-cpu lists, first discussed in Section 2.8.

In 2.4, a page allocation requires an interrupt-safe spinlock to be held while the
allocation takes place. In 2.6, pages are allocated from a struct per cpu pageset
by buffered rmqueue(). If the low watermark (per cpu pageset→low) has not
been reached, the pages will be allocated from the pageset with no requirement for
a spinlock to be held. After the low watermark is reached, a large number of pages
will be allocated in bulk with the interrupt-safe spinlock held, added to the per-cpu
list and then one returned to the caller.

Higher order allocations, which are relatively rare, still require the interrupt-safe
spinlock to be held, and there will be no delay in the splits or coalescing. With 0
order allocations, splits will be delayed until the low watermark is reached in the
per-cpu set, and coalescing will be delayed until the high watermark is reached.

However, strictly speaking, this is not a lazy buddy algorithm [BL89]. Although
pagesets introduce a merging delay for order-0 allocations, it is a side effect rather
than an intended feature, and no method is available to drain the pagesets and
merge the buddies. In other words, despite the per-cpu and new accounting code
that bulks up the amount of code in mm/page alloc.c, the core of the buddy
algorithm remains the same as it was in 2.4.

The implication of this change is straightforward; the number of times the spin-
lock protecting the buddy lists must be acquired is reduced. Higher order allocations
are relatively rare in Linux, so the optimization is for the common case. This change
will be noticeable on a large number of CPU machines, but will make little difference
to single CPUs. There are a few issues with pagesets, but they are not recognized
as a serious problem. The first issue is that high-order allocations may fail if the
pagesets hold order-0 pages that would normally be merged into higher order con-
tiguous blocks. The second is that an order-0 allocation may fail if memory is low,
the current CPU pageset is empty and other CPUs’ pagesets are full because no
mechanism exists for reclaiming pages from remote pagesets. The last potential
problem is that buddies of newly freed pages could exist in other pagesets, leading
to possible fragmentation problems.

Freeing Pages Two new API functions have been introduced for the freeing of
pages called free hot page() and free cold page(). Predictably, they determine
if the freed pages are placed on the hot or cold lists in the per-cpu pagesets. However,
although the free cold page() is exported and available for use, it is actually never
called.

Order-0 page frees from free pages() and frees resulting from page cache re-
leases by page cache release() are placed on the hot list whereas higher order
allocations are freed immediately with free pages ok(). Order-0 are usually re-
lated to userspace and are the most common type of allocation and free. By keeping
them local to the CPU, lock contention will be reduced because most allocations
will also be of order-0.

Eventually, lists of pages must be passed to free pages bulk(), or the pageset
lists would hold all free pages. This free pages bulk() function takes a list of page
block allocations, the order of each block and the count number of blocks to free
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from the list. There are two principal cases where this is used. The first is higher
order frees passed to free pages ok(). In this case, the page block is placed on
a linked list of the specified order and a count of 1. The second case is where the
high watermark is reached in the pageset for the running CPU. In this case, the
pageset is passed with an order of 0 and a count of pageset→batch.

After the core function free pages bulk() is reached, the mechanisms for
freeing pages is very similar to the buddy lists in 2.4.

GFP Flags There are still only three zones, so the zone modifiers remain the same.
However, three new GFP flags have been added that affect how hard the VM will
work, or not work, to satisfy a request. The flags are the following:

GFP NOFAIL This flag is used by a caller to indicate that the allocation
should never fail and that the allocator should keep trying to allocate indefi-
nitely.

GFP REPEAT This flag is used by a caller to indicate that the request should
try to repeat the allocation if it fails. In the current implementation, it behaves
the same as GFP NOFAIL, but later the decision might be made to fail after
a while.

GFP NORETRY This flag is almost the opposite of GFP NOFAIL. It indi-
cates that, if the allocation fails, it should just return immediately.

At time of writing, these flags are not heavily used, but they have just been
introduced and are likely to be used more over time. The GFP REPEAT flag, in
particular, is likely to be heavily used because blocks of code which implement this
flag’s behavior exist throughout the kernel.

The next GFP flag that has been introduced is an allocation modifier called
GFP COLD, which is used to ensure that cold pages are allocated from the per-cpu

lists. From the perspective of the VM, the only user of this flag is the function
page cache alloc cold(), which is mainly used during I/O readahead. Usually,
page allocations will be taken from the hot pages list.

The last new flag is GFP NO GROW. This is an internal flag used only by the
slab allocator (discussed in Chapter 8), which aliases the flag to SLAB NO GROW. It is
used to indicate when new slabs should never be allocated for a particular cache. In
reality, the GFP flag has just been introduced to complement the old SLAB NO GROW
flag, which is currently unused in the main kernel.





CHAPTER 7

Noncontiguous Memory
Allocation

It is preferable when dealing with large amounts of memory to use physically con-
tiguous pages in memory both for cache-related and memory-access-latency reasons.
Unfortunately, due to external fragmentation problems with the buddy allocator,
this is not always possible. Linux provides a mechanism through vmalloc() where
noncontiguous physical memory can be used that is contiguous in virtual memory.

An area is reserved in the virtual address space between VMALLOC START and
VMALLOC END. The location of VMALLOC START depends on the amount of available
physical memory, but the region will always be at least VMALLOC RESERVE in size,
which on the x86 is 128MiB. The exact size of the region is discussed in Section 4.1.

The page tables in this region are adjusted as necessary to point to physical
pages, which are allocated with the normal physical page allocator. This means
that allocation must be a multiple of the hardware page size. Because alloca-
tions require altering the kernel page tables, there is a limitation on how much
memory can be mapped with vmalloc() because only the virtual addresses space
between VMALLOC START and VMALLOC END is available. As a result, vmalloc() is
used sparingly in the core kernel. In 2.4.22, it is only used for storing the swap map
information (see Chapter 11) and for loading kernel modules into memory.

This small chapter begins with a description of how the kernel tracks which areas
in the vmalloc address space are used and how regions are allocated and freed.

7.1 Describing Virtual Memory Areas

The vmalloc address space is managed with a resource map allocator [Vah96]. The
struct vm struct is responsible for storing the base,size pairs. It is defined in
<linux/vmalloc.h> as the following:

14 struct vm_struct {
15 unsigned long flags;
16 void * addr;
17 unsigned long size;
18 struct vm_struct * next;
19 };

117
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A fully-fledged VMA could have been used but it contains extra information that
does not apply to vmalloc areas and would be wasteful. Here is a brief description
of the fields in this small struct.

flags These set either to VM ALLOC, in the case of use with vmalloc(), or
VM IOREMAP, when ioremap() is used to map high memory into the kernel
virtual address space.

addr This is the starting address of the memory block.

size This is, predictably enough, the size in bytes.

next This is a pointer to the next vm struct. They are ordered by address, and
the list is protected by the vmlist lock lock.

As is clear, the areas are linked together by the next field and are ordered by
address for simple searches. Each area is separated by at least one page to protect
against overruns. This is illustrated by the gaps in Figure 7.1.

Figure 7.1. vmalloc Address Space

When the kernel wants to allocate a new area, the vm struct list is searched
linearly by the function get vm area(). Space for the struct is allocated with
kmalloc(). When the virtual area is used for remapping an area for I/O (commonly
referred to as ioremapping), this function will be called directly to map the requested
area.

7.2 Allocating a Noncontiguous Area

The functions vmalloc(), vmalloc dma() and vmalloc 32() are provided to al-
locate a memory area that is contiguous in virtual address space, as described in
Table 7.1. They all take a single parameter size, which is rounded up to the next
page alignment. They all return a linear address for the new allocated area.

As is clear from the call graph shown in Figure 7.2, there are two steps to
allocating the area. The first step taken by get vm area() is to find a region large
enough to store the request. It searches through a linear linked list of vm structs
and returns a new struct describing the allocated region.

The second step is to allocate the necessary PGD entries with
vmalloc area pages(), PMD entries with alloc area pmd() and PTE entries with
alloc area pte() before finally allocating the page with alloc page().
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void * vmalloc(unsigned long size)
Allocates a number of pages in vmalloc space that satisfy the requested size.

void * vmalloc dma(unsigned long size)
Allocates a number of pages from ZONE DMA.

void * vmalloc 32(unsigned long size)
Allocates memory that is suitable for 32-bit addressing. This ensures that

the physical page frames are in ZONE NORMAL, which 32-bit devices will require

Table 7.1. Noncontiguous Memory Allocation API

The page table updated by vmalloc() is not the current process, but the refer-
ence page table stored at init mm→pgd. This means that a process accessing the
vmalloc area will cause a page fault exception because its page tables are not point-
ing to the correct area. There is a special case in the page fault handling code that
knows that the fault occured in the vmalloc area and updates the current process
page tables using information from the master page table. How the use of vmalloc()
relates to the buddy allocator and page faulting is illustrated in Figure 7.3.

vmalloc

__vmalloc

get_vm_area __vmalloc_area_pages

pmd_alloc alloc_area_pmd

pte_alloc alloc_area_pte

alloc_page

Figure 7.2. Call Graph: vmalloc()
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Figure 7.3. Relationship Between vmalloc(), alloc page() and Page Faulting

7.3 Freeing a Noncontiguous Area

The function vfree() is responsible for freeing a virtual area as described in
Table 7.2. It linearly searches the list of vm structs looking for the desired re-
gion and then calls vmfree area pages() on the region of memory to be freed, as
shown in Figure 7.4.

void vfree(void *addr)
Frees a region of memory allocated with vmalloc(), vmalloc dma() or

vmalloc 32()

Table 7.2. Noncontiguous Memory Free API

vmfree area pages() is the exact opposite of vmalloc area pages(). It walks
the page tables and frees up the page table entries and associated pages for the
region.
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vfree

write_lock vmfree_area_pages kfree

free_area_pmd

free_area_pte

__free_page

Figure 7.4. Call Graph: vfree()

7.4 What’s New in 2.6

Noncontiguous memory allocation remains essentially the same in 2.6. The main
difference is a slightly different internal API, which affects when the pages are
allocated. In 2.4, vmalloc area pages() is responsible for beginning a page ta-
ble walk and then allocating pages when the PTE is reached in the function
alloc area pte(). In 2.6, all the pages are allocated in advance by vmalloc()
and placed in an array that is passed to map vm area() for insertion into the kernel
page tables.

The get vm area() API has changed very slightly. When called, it behaves the
same as previously because it searches the entire vmalloc virtual address space for
a free area. However, a caller can search just a subset of the vmalloc address space
by calling get vm area() directly and specifying the range. This is only used by
the Advance RISC Machine(ARM) architecture when loading modules.

The last significant change is the introduction of a new interface vmap() for the
insertion of an array of pages in the vmalloc address space and is only used by the
sound subsystem core. This interface was backported to 2.4.22, but it is totally
unused. It is either the result of an accidental backport or was merged to ease the
application of vendor-specific patches that require vmap().





CHAPTER 8

Slab Allocator

In this chapter, the general-purpose allocator is described. It is a slab alloca-
tor that is very similar in many respects to the general kernel allocator used in
Solaris [MM01]. Linux’s implementation is heavily based on the first slab allocator
paper by Bonwick [Bon94] with many improvements that bear a close resemblance
to those described in his later paper [BA01]. I begin with a quick overview of the
allocator, followed by a description of the different structures used before giving an
in-depth tour of each task the allocator is responsible for.

The basic idea behind the slab allocator is to have caches of commonly used
objects kept in an initialized state available for use by the kernel. Without an
object-based allocator, the kernel will spend much of its time allocating, initializing
and freeing the same object. The slab allocator aims to cache the freed object so
that the basic structure is preserved between uses [Bon94].

The slab allocator consists of a variable number of caches that are linked together
on a doubly linked circular list called a cache chain. A cache, in the context of the
slab allocator, is a manager for a number of objects of a particular type, like the
mm struct or fs cache cache, and is managed by a struct kmem cache s discussed
in detail later. The caches are linked by the next field in the cache struct.

Each cache maintains blocks of contiguous pages in memory called slabs that
are carved up into small chunks for the data structures and objects that the
cache manages. The relationship between these different structures is illustrated in
Figure 8.1.

The slab allocator has three principle aims:

• The allocation of small blocks of memory to help eliminate internal fragmen-
tation that would be otherwise caused by the buddy system.

• The caching of commonly used objects so that the system does not waste
time allocating, initializing and destroying objects. Benchmarks on Solaris
showed excellent speed improvements for allocations with the slab allocator
in use [Bon94].

• Better use of the hardware cache by aligning objects to the L1 or L2 caches.

To help eliminate internal fragmentation normally caused by a binary buddy
allocator, two sets of caches of small memory buffers ranging from 25 (32) bytes to
217 (131,072) bytes are maintained. One cache set is suitable for use with DMA

123
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Figure 8.1. Layout of the Slab Allocator

devices. These caches are called size-N and size-N(DMA) where N is the size of the
allocation, and a function kmalloc() (see Section 8.4.1) is provided for allocating
them. With this, the single greatest problem with the low-level page allocator is
addressed. The sizes caches are discussed in further detail in Section 8.4.

The second task of the slab allocator is to maintain caches of commonly used
objects. For many structures used in the kernel, the time needed to initialize an
object is comparable with, or exceeds, the cost of allocating space for it. When a
new slab is created, a number of objects are packed into it and initialized using a
constructor if available. When an object is freed, it is left in its initialized state so
that object allocation will be quick.

The final task of the slab allocator is optimal hardware cache use. If there is
space left over after objects are packed into a slab, the remaining space is used to
color the slab. Slab coloring is a scheme that attempts to have objects in different
slabs use different lines in the cache. By placing objects at a different starting offset
within the slab, objects will likely use different lines in the CPU cache, which helps
ensure that objects from the same slab cache will be unlikely to flush each other.
With this scheme, space that would otherwise be wasted fulfills a new function.
Figure 8.2 shows how a page allocated from the buddy allocator is used to store
objects that use coloring to align the objects to the L1 CPU cache.

Linux does not attempt to color page allocations based on their physical ad-
dress [Kes91] or to order where objects are placed, such as those described for
data [GAV95] or code segments [HK97], but the scheme used does help improve
cache line usage. Cache coloring is further discussed in Section 8.1.5. On an
SMP system, a further step is taken to help cache utilization where each cache



8.1. Caches 125

Figure 8.2. Slab Page Containing Objects Aligned to L1 CPU Cache

has a small array of objects reserved for each CPU. This is discussed further in
Section 8.5.

The slab allocator provides the additional option of slab debugging if the option
is set at compile time with CONFIG SLAB DEBUG. Two debugging features are pro-
vided called red zoning and object poisoning. With red zoning, a marker is placed
at either end of the object. If this mark is disturbed, the allocator knows the object
where a buffer overflow occurred and reports it. Poisoning an object will fill it with
a predefined bit pattern (defined 0x5A in mm/slab.c) at slab creation and after a
free. At allocation, this pattern is examined, and, if it is changed, the allocator
knows that the object was used before it was allocated and flags it.

The small, but powerful, API that the allocator exports is listed in Table 8.1.

8.1 Caches

One cache exists for each type of object that is to be cached. For a full list of
caches available on a running system, run cat /proc/slabinfo. This file gives
some basic information on the caches. An excerpt from the output of this file looks
like the following:
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kmem cache t * kmem cache create(const char *name, size t size,
size t offset, unsigned long flags,

void (*ctor)(void*, kmem cache t *, unsigned long),
void (*dtor)(void*, kmem cache t *, unsigned long))

Creates a new cache and adds it to the cache chain.

int kmem cache reap(int gfp mask)
Scans at most REAP SCANLEN caches and selects one for reaping all per-cpu

objects and free slabs from. It is called when memory is tight.

int kmem cache shrink(kmem cache t *cachep)
This function will delete all per-cpu objects associated with a cache and delete

all slabs in the slabs free list. It returns the number of pages freed.

void * kmem cache alloc(kmem cache t *cachep, int flags)
Allocates a single object from the cache and returns it to the caller.

void kmem cache free(kmem cache t *cachep, void *objp)
Frees an object and returns it to the cache.

void * kmalloc(size t size, int flags)
Allocates a block of memory from one of the sizes cache.

void kfree(const void *objp)
Frees a block of memory allocated with kmalloc.

int kmem cache destroy(kmem cache t * cachep)
Destroys all objects in all slabs and frees up all associated memory before

removing the cache from the chain.

Table 8.1. Slab Allocator API for Caches

slabinfo - version: 1.1 (SMP)
kmem_cache 80 80 248 5 5 1 : 252 126
urb_priv 0 0 64 0 0 1 : 252 126
tcp_bind_bucket 15 226 32 2 2 1 : 252 126
inode_cache 5714 5992 512 856 856 1 : 124 62
dentry_cache 5160 5160 128 172 172 1 : 252 126
mm_struct 240 240 160 10 10 1 : 252 126
vm_area_struct 3911 4480 96 112 112 1 : 252 126
size-64(DMA) 0 0 64 0 0 1 : 252 126
size-64 432 1357 64 23 23 1 : 252 126
size-32(DMA) 17 113 32 1 1 1 : 252 126
size-32 850 2712 32 24 24 1 : 252 126

Each of the column fields corresponds to a field in the struct kmem cache s
structure. The columns listed in the previous excerpt are the following:
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cache-name A human-readable name such as “tcp bind bucket”

num-active-objs Number of objects that are in use

total-objs How many objects are available in total including unused

obj-size The size of each object, typically quite small

num-active-slabs Number of slabs containing objects that are active

total-slabs How many slabs in total exist

num-pages-per-slab The pages required to create one slab, typically 1

If SMP is enabled like in the example excerpt, two more columns will be displayed
after a colon. They refer to the per-CPU cache described in Section 8.5. The
columns are the following:

limit This is the number of free objects the pool can have before half of it is given
to the global free pool.

batchcount This is the number of objects allocated for the processor in a block
when no objects are free.

To speed allocation and freeing of objects and slabs, they are arranged into
three lists: slabs full, slabs partial and slabs free. slabs full has all of its
objects in use. slabs partial has free objects in it, so is a prime candidate for
allocation of objects. slabs free has no allocated objects, so is a prime candidate
for slab destruction.

8.1.1 Cache Descriptor

All information describing a cache is stored in a struct kmem cache s declared in
mm/slab.c. This is an extremely large struct, so it will be described in parts.

190 struct kmem_cache_s {
193 struct list_head slabs_full;
194 struct list_head slabs_partial;
195 struct list_head slabs_free;
196 unsigned int objsize;
197 unsigned int flags;
198 unsigned int num;
199 spinlock_t spinlock;
200 #ifdef CONFIG_SMP
201 unsigned int batchcount;
202 #endif
203
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Most of these fields are of interest when allocating or freeing objects.

slabs * These are the three lists where the slabs are stored as described in the
previous section.

objsize This is the size of each object packed into the slab.

flags These flags determine how parts of the allocator will behave when dealing
with the cache. See Section 8.1.2.

num This is the number of objects contained in each slab.

spinlock This is a spinlock protecting the structure from concurrent accessses.

batchcount This is the number of objects that will be allocated in batch for the
per-cpu caches as described in the previous section.

206 unsigned int gfporder;
209 unsigned int gfpflags;
210
211 size_t colour;
212 unsigned int colour_off;
213 unsigned int colour_next;
214 kmem_cache_t *slabp_cache;
215 unsigned int growing;
216 unsigned int dflags;
217
219 void (*ctor)(void *, kmem_cache_t *, unsigned long);
222 void (*dtor)(void *, kmem_cache_t *, unsigned long);
223
224 unsigned long failures;
225

This block deals with fields of interest when allocating or freeing slabs from the
cache.

gfporder This indicates the size of the slab in pages. Each slab consumes 2gfporder

pages because these are the allocation sizes that the buddy allocator provides.

gfpflags The GFP flags used when calling the buddy allocator to allocate pages
are stored here. See Section 6.4 for a full list.

colour Each slab stores objects in different cache lines if possible. Cache coloring
will be further discussed in Section 8.1.5.

colour off This is the byte alignment to keep slabs at. For example, slabs for
the size-X caches are aligned on the L1 cache.

colour next This is the next colour line to use. This value wraps back to 0 when
it reaches colour;
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growing This flag is set to indicate if the cache is growing or not. If it is, it
is much less likely that this cache will be selected to reap free slabs under
memory pressure.

dflags These are the dynamic flags that change during the cache lifetime. See
Section 8.1.3.

ctor A complex object has the option of providing a constructor function to be
called to initialize each new object. This is a pointer to that function and
may be NULL.

dtor This is the complementing object destructor and may be NULL.

failures This field is not used anywhere in the code other than being initialized
to 0.

227 char name[CACHE_NAMELEN];
228 struct list_head next;

These are set during cache creation.

name This is the human-readable name of the cache.

next This is the next cache on the cache chain.

229 #ifdef CONFIG_SMP
231 cpucache_t *cpudata[NR_CPUS];
232 #endif

cpudata This is the per-cpu data and is discussed further in Section 8.5.

233 #if STATS
234 unsigned long num_active;
235 unsigned long num_allocations;
236 unsigned long high_mark;
237 unsigned long grown;
238 unsigned long reaped;
239 unsigned long errors;
240 #ifdef CONFIG_SMP
241 atomic_t allochit;
242 atomic_t allocmiss;
243 atomic_t freehit;
244 atomic_t freemiss;
245 #endif
246 #endif
247 };

These figures are only available if the CONFIG SLAB DEBUG option is set during
compile time. They are all bean counters and not of general interest. The statistics
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for /proc/slabinfo are calculated when the proc entry is read by another process
by examining every slab used by each cache rather than relying on these fields to
be available.

num active The current number of active objects in the cache is stored here.

num allocations A running total of the number of objects that have been allo-
cated on this cache is stored in this field.

high mark This is the highest value num active has had to date.

grown This is the number of times kmem cache grow() has been called.

reaped The number of times this cache has been reaped is kept here.

errors This field is never used.

allochit This is the total number of times an allocation has used the per-cpu
cache.

allocmiss To complement allochit, this is the number of times an allocation
has missed the per-cpu cache.

freehit This is the number of times a free was placed on a per-cpu cache.

freemiss This is the number of times an object was freed and placed on the global
pool.

8.1.2 Cache Static Flags

A number of flags are set at cache creation time that remain the same for the
lifetime of the cache. They affect how the slab is structured and how objects are
stored within it. All the flags are stored in a bitmask in the flags field of the
cache descriptor. The full list of possible flags that may be used are declared in
<linux/slab.h>.

There are three principle sets. The first set is internal flags, which are set only
by the slab allocator and are listed in Table 8.2. The only relevant flag in the set is
the CFGS OFF SLAB flag, which determines where the slab descriptor is stored.

Flag Description
CFGS OFF SLAB Indicates that the slab managers for this cache are kept off-

slab. This is discussed further in Section 8.2.1.
CFLGS OPTIMIZE This flag is only set and never used.

Table 8.2. Internal Cache Static Flags

The second set is set by the cache creator, and these flags determine how the
allocator treats the slab and how objects are stored. They are listed in Table 8.3.
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Flag Description
SLAB HWCACHE ALIGN Aligns the objects to the L1 CPU cache.
SLAB MUST HWCACHE ALIGN Forces alignment to the L1 CPU cache even if it is

very wasteful or slab debugging is enabled.
SLAB NO REAP Never reap slabs in this cache.
SLAB CACHE DMA Allocates slabs with memory from ZONE DMA.

Table 8.3. Cache Static Flags Set by Caller

The last flags are only available if the compile option CONFIG SLAB DEBUG is set;
they are listed in Table 8.4. They determine what additional checks will be made
to slabs and objects and are primarily of interest only when new caches are being
developed.

Flag Description
SLAB DEBUG FREE Perform expensive checks on free
SLAB DEBUG INITIAL On free, call the constructor as a verifier to ensure the

object is still initialized correctly
SLAB RED ZONE This places a marker at either end of objects to trap

overflows
SLAB POISON Poison objects with a known pattern for trapping

changes made to objects not allocated or initialized

Table 8.4. Cache Static Debug Flags

To prevent callers from using the wrong flags, a CREATE MASK is defined in
mm/slab.c that consists of all the allowable flags. When a cache is being cre-
ated, the requested flags are compared against the CREATE MASK and reported as a
bug if invalid flags are used.

8.1.3 Cache Dynamic Flags

The dflags field has only one flag, DFLGS GROWN, but it is important. The flag is set
during kmem cache grow() so that kmem cache reap() will be unlikely to choose
the cache for reaping. When the function does find a cache with this flag set, it
skips the cache and removes the flag.

8.1.4 Cache Allocation Flags

These flags, listed in Table 8.5, correspond to the GFP page flag options for al-
locating pages for slabs. Callers sometimes call with either SLAB * or GFP * flags,
but they really should use only SLAB * flags. They correspond directly to the flags
described in Section 6.4 so will not be discussed in detail here. It is presumed that
the existence of these flags is for clarity and in case the slab allocator needs to
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behave differently in response to a particular flag. However, in reality, there is no
difference.

Flag Description
SLAB ATOMIC Equivalent to GFP ATOMIC
SLAB DMA Equivalent to GFP DMA
SLAB KERNEL Equivalent to GFP KERNEL
SLAB NFS Equivalent to GFP NFS
SLAB NOFS Equivalent to GFP NOFS
SLAB NOHIGHIO Equivalent to GFP NOHIGHIO
SLAB NOIO Equivalent to GFP NOIO
SLAB USER Equivalent to GFP USER

Table 8.5. Cache Allocation Flags

A very small number of flags, listed in Table 8.6, may be passed to constructor
and destructor functions.

Flag Description
SLAB CTOR CONSTRUCTOR Set if the function is being called as a construc-

tor for caches that use the same function as a
constructor and a destructor.

SLAB CTOR ATOMIC Indicates that the constructor may not sleep.
SLAB CTOR VERIFY Indicates that the constructor should just verify

that the object is initialized correctly.

Table 8.6. Cache Constructor Flags

8.1.5 Cache Coloring

To use the hardware cache better, the slab allocator will offset objects in different
slabs by different amounts depending on the amount of space left over in the slab.
The offset is in units of BYTES PER WORD unless SLAB HWCACHE ALIGN is set, in which
case it is aligned to blocks of L1 CACHE BYTES for alignment to the L1 hardware
cache.

During cache creation, how many objects can fit on a slab (see Section 8.2.7)
and how many bytes would be wasted are calculated. Based on wastage, two figures
are calculated for the cache descriptor:

colour This is the number of different offsets that can be used.

colour off This is the multiple to offset each object in the slab.
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With the objects offset, they will use different lines on the associative hard-
ware cache. Therefore, objects from slabs are less likely to overwrite each other in
memory.

The result of this is best explained by an example. Let us say that s mem (the
address of the first object) on the slab is 0 for convenience, that 100 bytes are
wasted on the slab and alignment is to be at 32 bytes to the L1 Hardware Cache
on a Pentium II.

In this scenario, the first slab created will have its objects start at 0. The second
will start at 32, the third at 64, and the fourth at 96, and the fifth will start back
at 0. With this, objects from each of the slabs will not hit the same hardware cache
line on the CPU. The value of colour is 3 and colour off is 32.

8.1.6 Cache Creation

The function kmem cache create() is responsible for creating new caches and
adding them to the cache chain. The tasks that are taken to create a cache are
the following:

• Perform basic sanity checks for bad usage.

• Perform debugging checks if CONFIG SLAB DEBUG is set.

• Allocate a kmem cache t from the cache cache slab cache.

• Align the object size to the word size.

• Calculate how many objects will fit on a slab.

• Align the object size to the hardware cache.

• Calculate color offsets.

• Initialize remaining fields in the cache descriptor.

• Add the new cache to the cache chain.

Figure 8.3 shows the call graph relevant to the creation of a cache; each function
is fully described in the Code Commentary.

8.1.7 Cache Reaping

When a slab is freed, it is placed on the slabs free list for future use. Caches
do not automatically shrink themselves, so, when kswapd notices that memory is
tight, it calls kmem cache reap() to free some memory. This function is responsible
for selecting a cache that will be required to shrink its memory usage. It is worth
noting that cache reaping does not take into account what memory node or zone
is under pressure. This means that, with a NUMA or high memory machine, it is
possible the kernel will spend a lot of time freeing memory from regions that are
under no memory pressure, but this is not a problem for architectures like the x86,
which has only one bank of memory.
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kmem_cache_reap

__free_block kmem_slab_destroy

kmem_cache_free_one kmem_freepages kmem_cache_free

Figure 8.4. Call Graph: kmem cache reap()

The call graph in Figure 8.4 is deceptively simple because the task of selecting
the proper cache to reap is quite long. In the event that the system has numerous
caches, only REAP SCANLEN (currently defined as 10) caches are examined in each
call. The last cache to be scanned is stored in the variable clock searchp so as not
to examine the same caches repeatedly. For each scanned cache, the reaper does
the following:

• Check flags for SLAB NO REAP and skip if set.

• If the cache is growing, skip it.

• If the cache has grown recently or is currently growing, DFLGS GROWN will be
set. If this flag is set, the slab is skipped, but the flag is cleared so that it will
be a reap candidate the next time.

• Count the number of free slabs in slabs free and calculate how many pages
that would free in the variable pages.

• If the cache has constructors or large slabs, adjust pages to make it less likely
for the cache to be selected.

• If the number of pages that would be freed exceeds REAP PERFECT, free half
of the slabs in slabs free.

• Otherwise, scan the rest of the caches and select the one that would free the
most pages for freeing half of its slabs in slabs free.

8.1.8 Cache Shrinking

When a cache is selected to shrink itself, the steps it takes are simple and brutal:

• Delete all objects in the per-CPU caches.

• Delete all slabs from slabs free unless the growing flag gets set.
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kmem_cache_shrink

__kmem_cache_shrink_locked

kmem_slab_destroy

Figure 8.5. Call Graph: kmem cache shrink()

Linux is nothing, if not subtle.
Two varieties of shrink functions are provided with confusingly similar names.

kmem cache shrink(), shown in Figure 8.5, removes all slabs from slabs free and
returns the number of pages freed as a result. This is the principal function exported
for use by the slab allocator users.

__kmem_cache_shrink

drain_cpu_caches __kmem_cache_shrink_locked

smp_call_function_all_cpus free_block kmem_slab_destroy

Figure 8.6. Call Graph: kmem cache shrink()

The second function, kmem cache shrink(), shown in Figure 8.6, frees all
slabs from slabs free and then verifies that slabs partial and slabs full are
empty. This is for internal use only and is important during cache destruction when
it doesn’t matter how many pages are freed, just that the cache is empty.

8.1.9 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache with the
function kmem cache destroy(), shown in Figure 8.7. It is important that the
cache is properly destroyed because two caches of the same human-readable name
are not allowed to exist. Core kernel code often does not bother to destroy its
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kmem_cache_destroy

__kmem_cache_shrink kfree kmem_cache_free

Figure 8.7. Call Graph: kmem cache destroy()

caches because their existence persists for the life of the system. The steps taken
to destroy a cache are the following:

• Delete the cache from the cache chain.

• Shrink the cache to delete all slabs.

• Free any per-CPU caches (kfree()).

• Delete the cache descriptor from the cache cache.

8.2 Slabs

This section will describe how a slab is structured and managed. The struct that
describes it is much simpler than the cache descriptor, but how the slab is arranged
is considerably more complex. It is declared as follows:

typedef struct slab_s {
struct list_head list;
unsigned long colouroff;
void *s_mem;
unsigned int inuse;
kmem_bufctl_t free;

} slab_t;

The fields in this simple struct are as follows:

list This is the linked list the slab belongs to. This will be either slab full,
slab partial or slab free from the cache manager.

colouroff This is the color offset from the base address of the first object within
the slab. The address of the first object is s mem + colouroff.

s mem This gives the starting address of the first object within the slab.

inuse This gives the number of active objects in the slab.

free This is an array of bufctls used for storing locations of free objects. See
Section 8.2.3 for further details.
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The reader will note that, given the slab manager or objects within the slab,
there does not appear to be an obvious way to determine what slab or cache
they belong to. This is addressed by using the list field in the struct page
that makes up the cache. SET PAGE CACHE() and SET PAGE SLAB() use the next
and prev fields on the page→list to track what cache and slab an object be-
longs to. To get the descriptors from the page, the macros, GET PAGE CACHE()
and GET PAGE SLAB(), are available. This set of relationships is illustrated in
Figure 8.8.

Figure 8.8. Page to Cache and Slab Relationship

The last issue is where the slab management struct is kept. Slab managers are
kept either on-(CFLGS OFF SLAB set in the static flags) or off-slab. Where they are
placed are determined by the size of the object during cache creation. In Figure 8.8,
the struct slab t could be stored at the beginning of the page frame although the
figure implies the struct slab is separate from the page frame.

8.2.1 Storing the Slab Descriptor

If the objects are larger than a threshold (512 bytes on x86), CFGS OFF SLAB is
set in the cache flags, and the slab descriptor is kept off-slab in one of the sizes
cache (see Section 8.4). The selected sizes cache is large enough to contain the
struct slab t, and kmem cache slabmgmt() allocates from it as necessary. This
limits the number of objects that can be stored on the slab because there is limited
space for the bufctls. However, that is unimportant because the objects are large,
so there should not be many stored in a single slab.

Alternatively, the slab manager is reserved at the beginning of the slab. When
stored on-slab, enough space is kept at the beginning of the slab to store both the
slab t and the kmem bufctl t, which is an array of unsigned integers. The array
is responsible for tracking the index of the next free object that is available for use,
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Figure 8.9. Slab With Descriptor On-Slab

which is discussed further in Section 8.2.3. The actual objects are stored after the
kmem bufctl t array.

Figure 8.9 should help clarify what a slab with the descriptor on-slab looks like,
and Figure 8.10 illustrates how a cache uses a sizes cache to store the slab descriptor
when the descriptor is kept off-slab.

8.2.2 Slab Creation

At this point, we have seen how the cache is created, but, on creation, it is an
empty cache with empty lists for its slab full, slab partial and slabs free.
New slabs are allocated to a cache by calling the function kmem cache grow() whose
call graph is shown in Figure 8.11. This is frequently called “cache growing” and
occurs when no objects are left in the slabs partial list and when there are no
slabs in slabs free. The tasks it fulfills are the following:

• Perform basic sanity checks to guard against bad usage.

• Calculate color offset for objects in this slab.

• Allocate memory for the slab and acquire a slab descriptor.

• Link the pages used for the slab to the slab and cache descriptors described
in Section 8.2.

• Initialize objects in the slab.

• Add the slab to the cache.
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kmem_cache_grow

kmem_getpages kmem_cache_slabmgmt PageSetSlab kmem_cache_init_objs

__get_free_pages kmem_cache_alloc

__kmem_cache_alloc

Figure 8.11. Call Graph: kmem cache grow()

8.2.3 Tracking Free Objects

The slab allocator has got to have a quick and simple means of tracking where
free objects are on the partially filled slabs. It achieves this by using an array of
unsigned integers called kmem bufctl t that is associated with each slab manager.
Obviously, it is up to the slab manager to know where its free objects are.

Historically, and according to the paper describing the slab allocator [Bon94],
kmem bufctl t was a linked list of objects. In Linux 2.2.x, this struct was a union
of three items: a pointer to the next free object, a pointer to the slab manager and
a pointer to the object. Which field in the union it was depended on the state of
the object.

Today, the slab and cache an object belongs to is determined by the
struct page, and kmem bufctl t is simply an integer array of object indices. The
number of elements in the array is the same as the number of objects on the slab.

141 typedef unsigned int kmem_bufctl_t;

Because the array is kept after the slab descriptor and there is no pointer to the
first element directly, a helper macro slab bufctl() is provided.

163 #define slab_bufctl(slabp) \
164 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

This seemingly cryptic macro is quite simple when broken down. The parameter
slabp is a pointer to the slab manager. The expression ((slab t*)slabp)+1 casts
slabp to a slab t struct and adds 1 to it. This will give a pointer to a slab t,
which is actually the beginning of the kmem bufctl t array. (kmem bufctl t *)
casts the slab t pointer to the required type. The results in blocks of code that
contain slab bufctl(slabp)[i]. Translated, that says “take a pointer to a slab
descriptor, offset it with slab bufctl() to the beginning of the kmem bufctl t
array and return the ith element of the array.”
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The index to the next free object in the slab is stored in slab t→free, which
eliminates the need for a linked list to track free objects. When objects are allocated
or freed, this pointer is updated based on information in the kmem bufctl t array.

8.2.4 Initializing the kmem bufctl t Array

When a cache is grown, all the objects and the kmem bufctl t array on the slab
are initialized. The array is filled with the index of each object beginning with 1
and ending with the marker BUFCTL END. For a slab with five objects, the elements
of the array would look like Figure 8.12.

1 2 3 4 BUFCTL_END

Figure 8.12. Initialized kmem bufctl t Array

The value 0 is stored in slab t→free because the 0th object is the first free
object to be used. The idea is that, for a given object n, the index of the next
free object will be stored in kmem bufctl t[n]. Looking at the previous array, the
next object free after 0 is 1. After 1, there is two and so on. As the array is used,
this arrangement will make the array act as an LIFO for free objects.

8.2.5 Finding the Next Free Object

When allocating an object, kmem cache alloc() performs the real work of updating
the kmem bufctl t() array by calling kmem cache alloc one tail(). The field
slab t→free has the index of the first free object. The index of the next free
object is at kmem bufctl t[slab t→free]. In code terms, this looks like

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;
1254 slabp->free=slab_bufctl(slabp)[slabp->free];

The field slabp→s mem is a pointer to the first object on the slab. slabp→free
is the index of the object to allocate, and it has to be multiplied by the size of an
object.

The index of the next free object is stored at kmem bufctl t[slabp→free].
There is no pointer directly to the array, so the helper macro slab bufctl() is
used. Note that the kmem bufctl t array is not changed during allocations, but
that the elements that are unallocated are unreachable. For example, after two
allocations, index 0 and 1 of the kmem bufctl t array are not pointed to by any
other element.

8.2.6 Updating kmem bufctl t

The kmem bufctl t list is only updated when an object is freed in the function
kmem cache free one(). The array is updated with this block of code:
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1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
1452
1453 slab_bufctl(slabp)[objnr] = slabp->free;
1454 slabp->free = objnr;

The pointer objp is the object about to be freed, and objnr is its index.
kmem bufctl t[objnr] is updated to point to the current value of slabp→free,
effectively placing the object pointed to by free on the pseudolinked list.
slabp→free is updated to the object being freed so that it will be the next one
allocated.

8.2.7 Calculating the Number of Objects on a Slab

During cache creation, the function kmem cache estimate() is called to calcu-
late how many objects may be stored on a single slab, which takes into account
whether the slab descriptor must be stored on-slab or off-slab and the size of each
kmem bufctl t needed to track if an object is free or not. It returns the number of
objects that may be stored and how many bytes are wasted. The number of wasted
bytes is important if cache coloring is to be used.

The calculation is quite basic and takes the following steps:

• Initialize wastage to be the total size of the slab, i.e., PAGE SIZEgfp order.

• Subtract the amount of space required to store the slab descriptor.

• Count up the number of objects that may be stored. Include the size of the
kmem bufctl t if the slab descriptor is stored on the slab. Keep increasing
the size of i until the slab is filled.

• Return the number of objects and bytes wasted.

8.2.8 Slab Destroying

When a cache is being shrunk or destroyed, the slabs will be deleted. Because the
objects may have destructors, these must be called, so the tasks of this function are
the following:

• If available, call the destructor for every object in the slab.

• If debugging is enabled, check the red marking and poison pattern.

• Free the pages the slab uses.

The call graph in Figure 8.13 is very simple.
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kmem_slab_destroy

kmem_freepages kmem_cache_free

Figure 8.13. Call Graph: kmem slab destroy()

8.3 Objects

This section will cover how objects are managed. At this point, most of the really
hard work has been completed by either the cache or slab managers.

8.3.1 Initializing Objects in a Slab

When a slab is created, all the objects in it are put in an initialized state. If a
constructor is available, it is called for each object, and it is expected that objects are
left in an initialized state upon free. Conceptually, the initialization is very simple.
Cycle through all objects, call the constructor, and initialize the kmem bufctl for
it. The function kmem cache init objs() is responsible for initializing the objects.

8.3.2 Object Allocation

The function kmem cache alloc() is responsible for allocating one object to the
caller, which behaves slightly different in the UP and SMP cases. Figure 8.14 shows
the basic call graph that is used to allocate an object in the SMP case.

There are four basic steps. The first step (kmem cache alloc head()) covers
basic checking to make sure the allocation is allowable. The second step is to select
which slab list to allocate from. This will be one of slabs partial or slabs free.
If slabs free does not have any, the cache is grown (see Section 8.2.2) to create a
new slab in slabs free. The final step is to allocate the object from the selected
slab.

The SMP case takes one further step. Before allocating one object, it will check
to see if one is available from the per-CPU cache and will use it if there is. If not,
it will allocate batchcount number of objects in bulk and place them in its per-cpu
cache. See Section 8.5 for more information on the per-cpu caches.

8.3.3 Object Freeing

kmem cache free(), whose call graph is shown in Figure 8.15, is used to free ob-
jects, and it has a relatively simple task. Just like kmem cache alloc(), it behaves
differently in the UP and SMP cases. The principal difference between the two cases
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kmem_cache_free

__kmem_cache_free

kmem_cache_free_one

Figure 8.15. Call Graph: kmem cache free()

is that, in the UP case, the object is returned directly to the slab, but, with the
SMP case, the object is returned to the per-cpu cache. In both cases, the destructor
for the object will be called if one is available. The destructor is responsible for
returning the object to the initialized state.

8.4 Sizes Cache

Linux keeps two sets of caches for small memory allocations for which the physical
page allocator is unsuitable. One set is for use with DMA, and the other is suitable
for normal use. The human-readable names for these caches are size-N cache and
size-N(DMA) cache, which are viewable from /proc/slabinfo. Information for
each sized cache is stored in a struct cache sizes, typedeffed to cache sizes t,
which is defined in mm/slab.c as the following:

331 typedef struct cache_sizes {
332 size_t cs_size;
333 kmem_cache_t *cs_cachep;
334 kmem_cache_t *cs_dmacachep;
335 } cache_sizes_t;

The fields in this struct are described as follows:

cs size The size of the memory block

cs cachep The cache of blocks for normal memory use

cs dmacachep The cache of blocks for use with DMA

Because a limited number of these caches exist, a static array called cache sizes
is initialized at compile time, beginning with 32 bytes on a 4KiB machine and 64
for greater page sizes.
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kmalloc

__kmem_cache_alloc

Figure 8.16. Call Graph: kmalloc()

337 static cache_sizes_t cache_sizes[] = {
338 #if PAGE_SIZE == 4096
339 { 32, NULL, NULL},
340 #endif
341 { 64, NULL, NULL},
342 { 128, NULL, NULL},
343 { 256, NULL, NULL},
344 { 512, NULL, NULL},
345 { 1024, NULL, NULL},
346 { 2048, NULL, NULL},
347 { 4096, NULL, NULL},
348 { 8192, NULL, NULL},
349 { 16384, NULL, NULL},
350 { 32768, NULL, NULL},
351 { 65536, NULL, NULL},
352 {131072, NULL, NULL},
353 { 0, NULL, NULL}

As is obvious, this is a static array that is zero terminated and that consists of
buffers of succeeding powers of 2 from 25 to 217. An array now exists that describes
each sized cache, which must be initialized with caches at system startup.

8.4.1 kmalloc()

With the existence of the sizes cache, the slab allocator is able to offer a new
allocator function, kmalloc(), for use when small memory buffers are required.
When a request is received, the appropriate sizes cache is selected, and an object is
assigned from it. The call graph in Figure 8.16 is therefore very simple because all
the hard work is in cache allocation.

8.4.2 kfree()

Just as there is a kmalloc() function to allocate small memory objects for use,
there is a kfree() for freeing it. As with kmalloc(), the real work takes place
during object freeing (See Section 8.3.3) so the call graph in Figure 8.17 is very
simple.



148 Slab Allocator Chapter 8

kfree

__kmem_cache_free

Figure 8.17. Call Graph: kfree()

8.5 Per-CPU Object Cache

One of the tasks that the slab allocator is dedicated to is improved hardware cache
use. An aim of high performance computing [CS98] in general is to use data on the
same CPU for as long as possible. Linux achieves this by trying to keep objects in
the same CPU cache with a per-CPU object cache, simply called a cpucache for
each CPU in the system.

When allocating or freeing objects, they are placed in the cpucache. When no
objects are free, a batch of objects is placed into the pool. When the pool gets
too large, half of them are removed and placed in the global cache. This way the
hardware cache will be used for as long as possible on the same CPU.

The second major benefit of this method is that spinlocks do not have to be held
when accessing the CPU pool because we are guaranteed another CPU won’t access
the local data. This is important because, without the caches, the spinlock would
have to be acquired for every allocation and free, which is unnecessarily expensive.

8.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache
descriptor as:

231 cpucache_t *cpudata[NR_CPUS];

This structure is very simple.

173 typedef struct cpucache_s {
174 unsigned int avail;
175 unsigned int limit;
176 } cpucache_t;

The fields are as follows:

avail This is the number of free objects available on this cpucache.

limit This is the total number of free objects that can exist.

A helper macro cc data() is provided to give the cpucache for a given cache
and processor. It is defined as:
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180 #define cc_data(cachep) \
181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the
cpucache array (cpudata). The index needed is the ID of the current processor,
smp processor id().

Pointers to objects on the cpucache are placed immediately after the cpucache t
struct. This is very similar to how objects are stored after a slab descriptor.

8.5.2 Adding/Removing Objects From the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the
array. To add an object (obj) to the CPU cache (cc), the following block of code
is used:

cc_entry(cc)[cc->avail++] = obj;

To remove an object, this block of code is used:

obj = cc_entry(cc)[--cc->avail];

There is a helper macro called cc entry(), which gives a pointer to the first
object in the cpucache. It is defined as:

178 #define cc_entry(cpucache) \
179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache and increments the value by the size of the
cpucache t descriptor and gives the first object in the cache.

8.5.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled, and memory has to be
allocated for it using kmalloc(). The function enable cpucache() is responsible
for deciding what size to make the cache and for calling kmem tune cpucache() to
allocate memory for it.

Obviously, a CPU cache cannot exist until after the various sizes caches have
been enabled, so a global variable g cpucache up is used to prevent CPU caches
from being enabled prematurely. The function enable all cpucaches() cycles
through all caches in the cache chain and enables their cpucache.

After the CPU cache has been set up, it can be accessed without locking because
a CPU will never access the wrong cpucache, so it is guaranteed safe access to it.

8.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU is signalled by
an IPI. It is not sufficient to change all the values in the cache descriptor because
that would lead to cache coherency issues and spinlocks would have to be used to
protect the CPU caches. Instead a ccupdate t struct is populated with all the
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information that each CPU needs, and each CPU swaps the new data with the
old information in the cache descriptor. The struct for storing the new cpucache
information is defined as follows:

868 typedef struct ccupdate_struct_s
869 {
870 kmem_cache_t *cachep;
871 cpucache_t *new[NR_CPUS];
872 } ccupdate_struct_t;

cachep is the cache being updated, and new is the array of the cpucache de-
scriptors for each CPU on the system. The function smp function all cpus() is
used to get each CPU to call the do ccupdate local() function, which swaps the
information from ccupdate struct t with the information in the cache descriptor.

After the information has been swapped, the old data can be deleted.

8.5.5 Draining a Per-CPU Cache

When a cache is being shrunk, its first step is to drain the cpucaches of any objects
they might have by calling drain cpu caches(). This is so that the slab allocator
will have a clearer view of what slabs can be freed or not. This is important because,
if just one object in a slab is placed in a per-cpu cache, that whole slab cannot be
freed. If the system is tight on memory, saving a few milliseconds on allocations
has a low priority.

8.6 Slab Allocator Initialization

Here I describe how the slab allocator initializes itself. When the slab alloca-
tor creates a new cache, it allocates the kmem cache t from the cache cache or
kmem cache cache. This is an obvious chicken and egg problem, so the cache cache
has to be statically initialized as:

357 static kmem_cache_t cache_cache = {
358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
361 objsize: sizeof(kmem_cache_t),
362 flags: SLAB_NO_REAP,
363 spinlock: SPIN_LOCK_UNLOCKED,
364 colour_off: L1_CACHE_BYTES,
365 name: "kmem_cache",
366 };

This code statically initialized the kmem cache t struct as follows:

358-360 This initializes the three lists as empty lists.

361 The size of each object is the size of a cache descriptor.
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362 The creation and deleting of caches is extremely rare, so do not ever consider
it for reaping.

363 This initializes the spinlock unlocked.

364 This aligns the objects to the L1 cache.

365 This records the human-readable name.

This code statically defines all the fields that can be calculated at compile
time. To initialize the rest of the struct, kmem cache init() is called from
start kernel().

8.7 Interfacing With the Buddy Allocator

The slab allocator does not come with pages attached; it must ask the physical page
allocator for its pages. Two APIs are provided for this task called kmem getpages()
and kmem freepages(). They are basically wrappers around the buddy allocators
API so that slab flags will be taken into account for allocations. For allocations,
the default flags are taken from cachep→gfpflags, and the order is taken from
cachep→gfporder where cachep is the cache requesting the pages. When freeing
the pages, PageClearSlab() will be called for every page being freed before calling
free pages().

8.8 What’s New in 2.6

The first obvious change is that the version of the /proc/slabinfo format has
changed from 1.1 to 2.0 and is a lot friendlier to read. The most helpful change is
that the fields now have a header negating the need to memorize what each column
means.

The principal algorithms and ideas remain the same. There are no major algo-
rithm shakeups, but the implementation is quite different. Particularly, there is a
greater emphasis on the use of per-cpu objects and the avoidance of locking. Sec-
ond, a lot more debugging code is mixed in, so keep an eye out for #ifdef DEBUG
blocks of code because they can be ignored when reading the code first. Last, some
changes are purely cosmetic with function name changes, but very similar behav-
ior. For example, kmem cache estimate() is now called cache estimate() even
though they are identical in every other respect.

Cache descriptor The changes to the kmem cache s are minimal. First, the ele-
ments are reordered to have commonly used elements, such as the per-cpu related
data, at the beginning of the struct (see Section 3.9 to for the reasoning). Second,
the slab lists (e.g. slabs full) and statistics related to them have been moved to
a separate struct kmem list3. Comments and the unusual use of macros indicate
that there is a plan to make the structure per-node.
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Cache Static Flags The flags in 2.4 still exist, and their use is the same.
CFLGS OPTIMIZE no longer exists, but its use in 2.4 was nonexistent. Two new
flags have been introduced, which are the following:

SLAB STORE USER This is a debugging-only flag for recording the function
that freed an object. If the object is used after it was freed, the poison bytes
will not match, and a kernel error message will be displayed. Because the last
function to use the object is known, it can simplify debugging.

SLAB RECLAIM ACCOUNT This flag is set for caches with objects that
are easily reclaimable, such as inode caches. A counter is maintained in a vari-
able called slab reclaim pages to record how many pages are used in slabs
allocated to these caches. This counter is later used in vm enough memory()
to help determine if the system is truly out of memory.

Cache Reaping This is one of the most interesting changes made to the slab
allocator. kmem cache reap() no longer exists because it is very indiscriminate in
how it shrinks caches when the cache user could have made a far superior selection.
Users of caches can now register a shrink cache callback with set shrinker()
for the intelligent aging and shrinking of slabs. This simple function populates a
struct shrinker with a pointer to the callback and a seeks weight, which indicates
how difficult it is to recreate an object before placing it in a linked list called
shrinker list.

During page reclaim, the function shrink slab() is called, which steps through
the full shrinker list and calls each shrinker callback twice. The first call passes
0 as a parameter, which indicates that the callback should return how many pages
it expects it could free if it was called properly. A basic heuristic is applied to
determine if it is worth the cost of using the callback. If it is, it is called a second
time with a parameter indicating how many objects to free.

How this mechanism accounts for the number of pages is a little tricky. Each
task struct has a field called reclaim state. When the slab allocator frees pages,
this field is updated with the number of pages that is freed. Before calling
shrink slab(), this field is set to 0 and then read again after shrink cache returns
to determine how many pages were freed.

Other changes The rest of the changes are essentially cosmetic. For example, the
slab descriptor is now called struct slab instead of slab t, which is consistent with
the general trend of moving away from typedefs. Per-cpu caches remain essentially
the same except the structs and APIs have new names. The same type of points
applies to most of the 2.6 slab allocator implementation.
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High Memory Management

The kernel may only directly address memory for which it has set up a page table
entry. In the most common case, the user/kernel address space split of 3GiB/1GiB
implies that, at best, only 896MiB of memory may be directly accessed at any given
time on a 32-bit machine as explained in Section 4.1. On 64-bit hardware, this is
not really an issue because there is more than enough virtual address space. It is
highly unlikely there will be machines running 2.4 kernels with more than terabytes
of RAM.

Many high end 32-bit machines have more than 1GiB of memory, and the in-
conveniently located memory cannot be simply ignored. The solution Linux uses is
to temporarily map pages from high memory into the lower page tables. This will
be discussed in Section 9.2.

High memory and I/O have a related problem that must be addressed because
not all devices are able to address high memory or all the memory available to the
CPU. This may be the case if the CPU has PAE extensions enabled, the device is
limited to addresses the size of a signed 32-bit integer (2GiB) or a 32-bit device is
being used on a 64-bit architecture. Asking the device to write to memory will fail
at best and possibly disrupt the kernel at worst. The solution to this problem is to
use a bounce buffer , and this will be discussed in Section 9.5.

This chapter begins with a brief description of how the Persistent Kernel Map
(PKMap) address space is managed before talking about how pages are mapped and
unmapped from high memory. The subsequent section will deal with the case where
the mapping must be atomic before discussing bounce buffers in depth. Finally, we
will talk about how emergency pools are used for when memory is very tight.

9.1 Managing the PKMap Address Space

Space is reserved at the top of the kernel page tables from PKMAP BASE to
FIXADDR START for a PKMap. The size of the space reserved varies slightly. On the
x86, PKMAP BASE is at 0xFE000000, and the address of FIXADDR START is a compile
time constant that varies with configure options, but that is typically only a few
pages located near the end of the linear address space. This means that there is
slightly below 32MiB of page table space for mapping pages from high memory into
usable space.

153
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For mapping pages, a single page set of PTEs is stored at the beginning of the
PKMap area to allow 1,024 high pages to be mapped into low memory for short
periods with the function kmap() and to be unmapped with kunmap(). The pool
seems very small, but the page is only mapped by kmap() for a very short time.
Comments in the code indicate that there was a plan to allocate contiguous page
table entries to expand this area, but it has remained just that, comments in the
code, so a large portion of the PKMap is unused.

The page table entry for use with kmap() is called pkmap page table, which is
located at PKMAP BASE and which is set up during system initialization. On the x86,
this takes place at the end of the pagetable init() function. The pages for the
PGD and PMD entries are allocated by the boot memory allocator to ensure they
exist.

The current state of the page table entries is managed by a simple array called
pkmap count, which has LAST PKMAP entries in it. On an x86 system without PAE,
this is 1,024, and, with PAE, it is 512. More accurately, albeit not expressed in
code, the LAST PKMAP variable is equivalent to PTRS PER PTE.

Each element is not exactly a reference count, but it is very close. If the entry
is 0, the page is free and has not been used since the last TLB flush. If it is 1, the
slot is unused, but a page is still mapped there waiting for a TLB flush. Flushes
are delayed until every slot has been used at least once because a global flush is
required for all CPUs when the global page tables are modified and is extremely
expensive. Any higher value is a reference count of n-1 users of the page.

9.2 Mapping High Memory Pages

The API for mapping pages from high memory is described in Table 9.1. The main
function for mapping a page is kmap(), whose call graph is shown in Figure 9.1. For
users that do not want to block, kmap nonblock() is available, and interrupt users
have kmap atomic(). The kmap pool is quite small, so it is important that users
of kmap() call kunmap() as quickly as possible because the pressure on this small
window grows incrementally worse as the size of high memory grows in comparison
to low memory.

The kmap() function itself is fairly simple. It first checks to make sure
an interrupt is not calling this function (because it may sleep) and calls
out of line bug() if true. An interrupt handler calling BUG() would panic the
system, so out of line bug() prints out bug information and exits cleanly. The
second check is that the page is below highmem start page because pages below
this mark are already visible and do not need to be mapped.

It then checks if the page is already in low memory and simply returns the
address if it is. This way, users that need kmap() may use it unconditionally knowing
that, if it is already a low memory page, the function is still safe. If it is a high
page to be mapped, kmap high() is called to begin the real work.

The kmap high() function begins with checking the page→virtual field, which
is set if the page is already mapped. If it is NULL, map new virtual() provides a
mapping for the page.
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void * kmap(struct page *page)
This takes a struct page from high memory and maps it into low memory.

The address returned is the virtual address of the mapping.

void * kmap nonblock(struct page *page)
This is the same as kmap() except it will not block if slots are not available

and will instead return NULL. This is not the same as kmap atomic(), which
uses specially reserved slots.

void * kmap atomic(struct page *page, enum km type type)
There are slots maintained in the map for atomic use by interrupts (see

Section 9.4). Their use is heavily discouraged and callers of this function may not
sleep or schedule. This function will map a page from high memory atomically
for a specific purpose.

Table 9.1. High Memory Mapping API

kmap

__kmap

out_of_line_bug kmap_high

map_new_virtual

add_wait_queue remove_wait_queue flush_all_zero_pkmaps

Figure 9.1. Call Graph: kmap()

Creating a new virtual mapping with map new virtual() is a simple case of lin-
early scanning pkmap count. The scan starts at last pkmap nr instead of 0 to pre-
vent searching the same areas repeatedly between kmap()s. When last pkmap nr
wraps around to 0, flush all zero pkmaps() is called to set all entries from 1 to
0 before flushing the TLB.

If, after another scan, an entry is still not found, the process sleeps on the
pkmap map wait wait queue until it is woken up after the next kunmap().
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After a mapping has been created, the corresponding entry in the pkmap count
array is incremented, and the virtual address in low memory is returned.

9.3 Unmapping Pages

The API for unmapping pages from high memory is described in Table 9.2. The
kunmap() function, like its complement, performs two checks. The first is an iden-
tical check to kmap() for usage from interrupt context. The second is that the page
is below highmem start page. If it is, the page already exists in low memory and
needs no further handling. After it is established that it is a page to be unmapped,
kunmap high() is called to perform the unmapping.

void kunmap(struct page *page)
This unmaps a struct page from low memory and frees up the page table

entry mapping it.

void kunmap atomic(void *kvaddr, enum km type type)
This unmaps a page that was mapped atomically.

Table 9.2. High Memory Unmapping API

The kunmap high() is simple in principle. It decrements the corresponding
element for this page in pkmap count. If it reaches 1 (remember this means no more
users but a TLB flush is required), any process waiting on the pkmap map wait
is woken up because a slot is now available. The page is not unmapped from
the page tables then because that would require a TLB flush. It is delayed until
flush all zero pkmaps() is called.

9.4 Mapping High Memory Pages Atomically

The use of kmap atomic() is discouraged, but slots are reserved for each CPU for
when they are necessary, such as when bounce buffers are used by devices from
interrupt. There are a varying number of different requirements an architecture has
for atomic high memory mapping, which are enumerated by km type. The total
number of uses is KM TYPE NR. On the x86, there are a total of six different uses for
atomic kmaps.

KM TYPE NR entries per processor are reserved at boot time for atomic mapping
at the location FIX KMAP BEGIN and ending at FIX KMAP END. Obviously, a user of
an atomic kmap may not sleep or exit before calling kunmap atomic() because the
next process on the processor may try to use the same entry and fail.

The function kmap atomic() has the very simple task of mapping the requested
page to the slot set aside in the page tables for the requested type of operation and
processor. The function kunmap atomic(), whose call graph is shown in Figure 9.2,
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is interesting because it will only clear the PTE with pte clear() if debugging
is enabled. It is considered unnecessary to bother unmapping atomic pages be-
cause the next call to kmap atomic() will simply replace it and make TLB flushes
unnecessary.

kunmap

out_of_line_bug kunmap_high

wake_up

Figure 9.2. Call Graph: kunmap()

9.5 Bounce Buffers

Bounce buffers are required for devices that cannot access the full range of memory
available to the CPU. An obvious example of this is when a device does not have an
address with as many bits as the CPU, such as 32-bit devices on 64-bit architectures
or recent Intel processors with PAE enabled.

The basic concept is very simple. A bounce buffer resides in memory low enough
for a device to copy from and write data to. It is then copied to the desired user page
in high memory. This additional copy is undesirable, but unavoidable. Pages are
allocated in low memory, which are used as buffer pages for DMA to and from the
device. This is then copied by the kernel to the buffer page in high memory when
I/O completes, so the bounce buffer acts as a type of bridge. There is significant
overhead to this operation because at the very least, it involves copying a full page,
but it is insignificant in comparison to swapping out pages in low memory.

9.5.1 Disk Buffering

Blocks, typically around 1KiB, are packed into pages and managed by a struct
buffer head allocated by the slab allocator. Users of buffer heads have the option of
registering a callback function. This function is stored in buffer head→b end io()
and called when I/O completes. It is this mechanism that bounce buffers use to
have data copied out of the bounce buffers. The callback registered is the function
bounce end io write().

Any other feature of buffer heads or how they are used by the block layer is
beyond the scope of this book and more the concern of the I/O layer.
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9.5.2 Creating Bounce Buffers

The creation of a bounce buffer is a simple affair, which is started by the
create bounce() function, shown in Figure 9.3. The principle is very simple: cre-
ate a new buffer using a provided buffer head as a template. The function takes two
parameters, which are a read/write parameter (rw) and the template buffer head,
to use (bh orig).

create_bounce

PageHighMem

alloc_bounce_bh alloc_bounce_pageset_bh_page copy_from_high_bh

wakeup_bdflush run_task_queue alloc_page

Figure 9.3. Call Graph: create bounce()

A page is allocated for the buffer itself with the function alloc bounce page(),
which is a wrapper around alloc page() with one important addition. If the
allocation is unsuccessful, there is an emergency pool of pages and buffer heads
available for bounce buffers. This is discussed further in Section 9.6.

The buffer head is, predictably enough, allocated with alloc bounce bh(),
which, similar in principle to alloc bounce page(), calls the slab allocator for
a buffer head and uses the emergency pool if one cannot be allocated. Addition-
ally, bdflush is woken up to start flushing dirty buffers out to disk so that buffers
are more likely to be freed soon.

After the page and buffer head have been allocated, information is copied
from the template buffer head into the new one. Because part of this operation
may use kmap atomic(), bounce buffers are only created with the Interrupt Re-
quest (IRQ) safe io request lock held. The I/O completion callbacks are changed
to be either bounce end io write() or bounce end io read()(both shown in
Figure 9.4), depending on whether this is a read or write buffer, so the data will be
copied to and from high memory.

The most important aspect of the allocations to note is that the GFP flags
specify that no I/O operations involving high memory may be used. This is specified
with SLAB NOHIGHIO to the slab allocator and GFP NOHIGHIO to the buddy allocator.
This is important because bounce buffers are used for I/O operations with high
memory. If the allocator tries to perform high memory I/O, it will recurse and
eventually crash.
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bounce_end_io_read

copy_to_high_bh_irq bounce_end_io

__free_page kmem_cache_free

bounce_end_io_write

Figure 9.4. Call Graph: bounce end io read/write()

9.5.3 Copying via Bounce Buffers

Data is copied via the bounce buffer differently depending on whether it is a read
or write buffer. If the buffer is for writes to the device, the buffer is populated
with the data from high memory during bounce buffer creation with the function
copy from high bh(). The callback function bounce end io write() will com-
plete the I/O later when the device is ready for the data.

If the buffer is for reading from the device, no data transfer may take place
until the device is ready. When it is, the interrupt handler for the device calls
the callback function bounce end io read() which copies the data to high memory
with copy to high bh irq().

In either case, the buffer head and page may be reclaimed by bounce end io()
after the I/O has completed and the I/O completion function for the template
buffer head() is called. If the emergency pools are not full, the resources are
added to the pools. Otherwise, they are freed back to the respective allocators.

9.6 Emergency Pools

Two emergency pools of buffer heads and pages are maintained for the express
use by bounce buffers. If memory is too tight for allocations, failing to complete
I/O requests is going to compound the situation because buffers from high memory
cannot be freed until low memory is available. This leads to processes halting, thus
preventing the possibility of them freeing up their own memory.

The pools are initialized by init emergency pool() to contain POOL SIZE en-
tries, each which is currently defined as 32. The pages are linked by the page→list
field on a list headed by emergency pages. Figure 9.5 illustrates how pages are
stored on emergency pools and acquired when necessary.

The buffer heads are very similar because they are linked by the
buffer head→inode buffers on a list headed by emergency bhs. The num-
ber of entries left on the pages and buffer lists are recorded by two counters,
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Figure 9.5. Acquiring Pages From Emergency Pools

nr emergency pages and nr emergency bhs, respectively, and the two lists are
protected by the emergency lock spinlock.

9.7 What’s New in 2.6

Memory Pools In 2.4, the high memory manager was the only subsystem that
maintained emergency pools of pages. In 2.6, memory pools are implemented as
a generic concept when a minimum amount of stuff needs to be reserved for when
memory is tight. Stuff in this case can be any type of object, such as pages in
the case of the high memory manager or, more frequently, some object managed
by the slab allocator. Pools are initialized with mempool create(), which takes a
number of arguments. They are the minimum number of objects that should be
reserved (min nr), an allocator function for the object type (alloc fn()), a free
function (free fn()) and optional private data that is passed to the allocate and
free functions.

The memory pool API provides two generic allocate and free functions called
mempool alloc slab() and mempool free slab(). When the generic functions are
used, the private data is the slab cache that objects are to be allocated and freed
from.

In the case of the high memory manager, two pools of pages are created. One
page pool is for normal use, and the second page pool is for use with ISA devices
that must allocate from ZONE DMA. The allocate function is page pool alloc(),
and the private data parameter passed indicates the GFP flags to use. The free
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function is page pool free(). The memory pools replace the emergency pool code
that exists in 2.4.

To allocate or free objects from the memory pool, the memory pool API func-
tions mempool alloc() and mempool free() are provided. Memory pools are de-
stroyed with mempool destroy().

Mapping High Memory Pages In 2.4, the field page→virtual was used to store
the address of the page within the pkmap count array. Due to the number of
struct pages that exist in a high memory system, this is a very large penalty to pay
for the relatively small number of pages that need to be mapped into ZONE NORMAL.
2.6 still has this pkmap count array, but it is managed very differently.

In 2.6, a hash table called page address htable is created. This table is
hashed based on the address of the struct page, and the list is used to locate
struct page address slot. This struct has two fields of interest, a struct page
and a virtual address. When the kernel needs to find the virtual address used by a
mapped page, it is located by traversing through this hash bucket. How the page
is actually mapped into lower memory is essentially the same as 2.4 except now
page→virtual is no longer required.

Performing I/O The last major change is that the struct bio is now used instead
of the struct buffer head when performing I/O. How bio structures work is
beyond the scope of this book. However, the principle reason that bio structures
were introduced is so that I/O could be performed in blocks of whatever size the
underlying device supports. In 2.4, all I/O had to be broken up into page-sized
chunks regardless of the transfer rate of the underlying device.





CHAPTER 10

Page Frame Reclamation

A running system will eventually use all available page frames for purposes like
disk buffers, dentries, inode entries, process pages and so on. Linux needs to select
old pages that can be freed and invalidated for new uses before physical memory
is exhausted. This chapter focuses exclusively on how Linux implements its page
replacement policy and how different types of pages are invalidated.

The methods Linux uses to select pages are rather empirical in nature and the
theory behind the approach is based on different ideas. It has been shown to work
well in practice, and adjustments are made based on user feedback and benchmarks.
The basics of the page replacement policy is the first item of discussion in this
chapter.

The second topic of discussion is the page cache. All data that is read from
disk is stored in the page cache to reduce the amount of disk I/O that must be
performed. Strictly speaking, this is not directly related to page frame reclamation,
but the LRU lists and page cache are closely related. The relevant section will focus
on how pages are added to the page cache and quickly located.

This will bring us to the third topic, the LRU lists. With the exception of the
slab allocator, all pages in use by the system are stored on LRU lists and linked
together by page→lru so that they can be easily scanned for replacement. The
slab pages are not stored on the LRU lists because it is considerably more difficult
to age a page based on the objects used by the slab. The section focuses on how
pages move through the LRU lists before they are reclaimed.

From there, I cover how pages belonging to other caches, such as the dcache and
the slab allocator, are reclaimed before talking about how process-mapped pages
are removed. Process-mapped pages are not easily swappable because there is no
way to map struct pages to PTEs except to search every page table, which is far
too expensive. If the page cache has a large number of process-mapped pages in it,
process page tables will be walked, and pages will be swapped out by swap out()
until enough pages have been freed, but swap out() will still have trouble with
shared pages. If a page is shared, a swap entry is allocated, the PTE filled with
the necessary information to find the page in swap again and the reference count is
decremented. Only when the count reaches zero will the page be freed. Pages like
this are considered to be in the swap cache.

Finally, this chaper will cover the page replacement daemon kswapd, how it is
implemented and what its responsibilities are.

163
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10.1 Page Replacement Policy

During discussions the page replacement policy is frequently said to be a LRU -
based algorithm, but this is not strictly speaking true because the lists are not
strictly maintained in LRU order. The LRU in Linux consists of two lists called
the active list and the inactive list. The objective is for the active list to
contain the working set [Den70] of all processes and the inactive list to contain
reclaim candidates. Because all reclaimable pages are contained in just two lists and
pages belonging to any process may be reclaimed, rather than just those belonging
to a faulting process, the replacement policy is a global one.

The lists resemble a simplified LRU 2Q [JS94] where two lists called Am and A1
are maintained. With LRU 2Q, pages when first allocated are placed on a First
In, First Out (FIFO) queue called A1. If they are referenced while on that queue,
they are placed in a normal LRU managed list called Am. This is roughly analogous
to using lru cache add() to place pages on a queue called inactive list (A1)
and using mark page accessed() to get moved to the active list (Am). The
algorithm describes how the size of the two lists have to be tuned, but Linux takes
a simpler approach by using refill inactive() to move pages from the bottom of
active list to inactive list to keep active list about two-thirds the size of
the total page cache. Figure 10.1 illustrates how the two lists are structured, how
pages are added and how pages move between the lists with refill inactive().

The lists described for 2Q presumes Am is an LRU list, but the list in Linux
closer resembles a clock algorithm [Car84] where the handspread is the size of the

Figure 10.1. Page Cache LRU Lists
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active list. When pages reach the bottom of the list, the referenced flag is checked.
If it is set, it is moved back to the top of the list, and the next page is checked. If
it is cleared, it is moved to the inactive list.

The Move-To-Front heuristic means that the lists behave in an LRU-like manner,
but there are too many differences between the Linux replacement policy and LRU
to consider it a stack algorithm [MM87]. Even if we ignore the problem of analyzing
multiprogrammed systems [CD80] and the fact the memory size for each process is
not fixed, the policy does not satisfy the inclusion property because the location of
pages in the lists depend heavily upon the size of the lists as opposed to the time of
last reference. The list priority is also not ordered because that would require list
updates with every reference. As a final nail in the stack algorithm coffin, the lists
are almost ignored when paging out from processes because pageout decisions are
related to their location in the virtual address space of the process rather than the
location within the page lists.

In summary, the algorithm does exhibit LRU-like behavior, and it has been
shown by benchmarks to perform well in practice. There are only two cases where
the algorithm is likely to behave really badly. The first is if the candidates for recla-
mation are principally anonymous pages. In this case, Linux will keep examining
a large number of pages before linearly scanning process page tables searching for
pages to reclaim, but this situation is fortunately rare.

The second situation is where there is a single process with many file-backed
resident pages in the inactive list that are being written to frequently. Processes
and kswapd may go into a loop of constantly laundering these pages and placing
them at the top of the inactive list without freeing anything. In this case, few
pages are moved from the active list to inactive list because the ratio between
the two lists, sizes remains do not change significantly.

10.2 Page Cache

The page cache is a set of data structures that contain pages that are backed by
regular files, block devices or swap. There are basically four types of pages that
exist in the cache:

• One is pages that were faulted in as a result of reading a memory mapped file.

• Blocks read from a block device or filesystem are packed into special pages
called buffer pages. The number of blocks that may fit depends on the size of
the block and the page size of the architecture.

• Anonymous pages exist in a special aspect of the page cache called the swap
cache when slots are allocated in the backing storage for page-out, which is
discussed further in Chapter 11.

• Pages belonging to shared memory regions are treated in a similar fashion to
anonymous pages. The only difference is that shared pages are added to the
swap cache and space reserved in backing storage immediately after the first
write to the page.
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The principal reason for the existence of this cache is to eliminate unnecessary
disk reads. Pages read from disk are stored in a page hash table, which is hashed
on the struct address space, and the offset, which is always searched before the
disk is accessed. An API is provided that is responsible for manipulating the page
cache, which is listed in Table 10.1.

void add to page cache(struct page * page, struct address space *
mapping, unsigned long offset)

This adds a page to the LRU with lru cache add() in addition to adding it
to the inode queue and page hash tables.

void add to page cache unique(struct page * page, struct
address space *mapping, unsigned long offset, struct page **hash)

This is similar to add to page cache() except it checks that the page is not
already in the page cache. This is required when the caller does not hold the
pagecache lock spinlock.

void remove inode page(struct page *page)
This function removes a page from the inode and hash queues with

remove page from inode queue() and remove page from hash queue(), effec-
tively removing the page from the page cache

struct page * page cache alloc(struct address space *x)
This is a wrapper around alloc pages() that uses x→gfp mask as the GFP

mask.

void page cache get(struct page *page)
This increases the reference count to a page already in the page cache.

int page cache read(struct file * file, unsigned long offset)
This function adds a page corresponding to an offset with a file if it

is not already there. If necessary, the page will be read from disk using an
address space operations→readpage function.

void page cache release(struct page *page)
This is an alias for free page(). The reference count is decremented, and,

if it drops to 0, the page will be freed

Table 10.1. Page Cache API

10.2.1 Page Cache Hash Table

There is a requirement that pages in the page cache be quickly located. To
facilitate this, pages are inserted into a table page hash table, and the fields
page→next hash and page→pprev hash are used to handle collisions.
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The table is declared as follows in mm/filemap.c:

45 atomic_t page_cache_size = ATOMIC_INIT(0);
46 unsigned int page_hash_bits;
47 struct page **page_hash_table;

The table is allocated during system initialization by page cache init(), which
takes the number of physical pages in the system as a parameter. The desired size
of the table (htable size) is enough to hold pointers to every struct page in the
system and is calculated by:

htable size = num physpages ∗ sizeof(struct page ∗)

To allocate a table, the system begins with an order allocation large enough to
contain the entire table. It calculates this value by starting at 0 and incrementing it
until 2order > htable size. This may be roughly expressed as the integer component
of the following simple equation:

order = log2((htable size ∗ 2) − 1))

An attempt is made to allocate this order of pages with get free pages(). If
the allocation fails, lower orders will be tried, and, if no allocation is satisfied, the
system panics.

The value of page hash bits is based on the size of the table for use with the
hashing function page hashfn(). The value is calculated by successive divides by
two, but, in real terms, this is equivalent to:

page hash bits = log2

∣∣∣∣
PAGE SIZE ∗ 2order

sizeof(struct page ∗)

∣∣∣∣

This makes the table a power-of-two hash table, which negates the need to use
a modulus, which is a common choice for hashing functions.

10.2.2 Inode Queue

The inode queue is part of the struct address space introduced in Section 4.4.2.
The struct contains three lists. clean pages is a list of clean pages associated
with the inode; dirty pages have been written to since the list sync to disk;
and locked pages are those currently locked. These three lists in combination
are considered to be the inode queue for a given mapping, and the page→list
field is used to link pages on it. Pages are added to the inode queue with
add page to inode queue(), which places pages on the clean pages lists and re-
moves them with remove page from inode queue().

10.2.3 Adding Pages to the Page Cache

Pages read from a file or block device are generally added to the page cache to avoid
further disk I/O. Most filesystems use the high-level function generic file read()
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as their file operations→read(), shown in Figure 10.2. The shared memory
filesystem, which is covered in Chapter 12, is one noteworthy exception, but, in
general, filesystems perform their operations through the page cache. For the pur-
poses of this section, we’ll illustrate how generic file read() operates and how
it adds pages to the page cache.

For normal I/O1, generic file read() begins with a few basic checks be-
fore calling do generic file read(). This searches the page cache by calling
find page nolock() with the pagecache lock held to see if the page already

exists in it. If it does not, a new page is allocated with page cache alloc(),
which is a simple wrapper around alloc pages() and is added to the page cache
with add to page cache(). After a page frame is present in the page cache,
generic file readahead() is called, which uses page cache read() to read the
page from disk. It reads the page using mapping→a ops→readpage(), where
mapping is the address space managing the file. readpage() is the filesystem-
specific function used to read a page on disk.

Anonymous pages are added to the swap cache when they are unmapped from
a process, which will be discussed further in Section 11.4. Until an attempt is made
to swap them out, they have no address space acting as a mapping or any offset
within a file, which leaves nothing to hash them into the page cache with. Note that
these pages still exist on the LRU lists, however. Once in the swap cache, the only
real difference between anonymous pages and file-backed pages is that anonymous
pages will use swapper space as their struct address space.

Shared memory pages are added during one of two cases. The first is during
shmem getpage locked(), which is called when a page has to be either fetched from
swap or allocated because it is the first reference. The second is when the swapout
code calls shmem unuse(). This occurs when a swap area is being deactivated and a
page, backed by swap space, is found that does not appear to belong to any process.
The inodes related to shared memory are exhaustively searched until the correct
page is found. In both cases, the page is added with add to page cache(), shown
in Figure 10.3.

10.3 LRU Lists

As stated in Section 10.1, the LRU lists consist of two lists called active list and
inactive list. They are declared in mm/page alloc.c and are protected by the
pagemap lru lock spinlock. They, broadly speaking, store the hot and cold pages
respectively, or, in other words, the active list contains all the working sets in
the system, and inactive list contains reclaim candidates. The API that deals
with the LRU lists is listed in Table 10.2.

10.3.1 Refilling inactive list

When caches are being shrunk, pages are moved from the active list to the
inactive list by the function refill inactive(). It takes as a parameter the

1Direct I/O is handled differently with generic file direct IO().
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add_to_page_cache

__add_to_page_cache lru_cache_add

page_cache_get add_page_to_inode_queue add_page_to_hash_queue

Figure 10.3. Call Graph: add to page cache()

number of pages to move, which is calculated in shrink caches() as a ratio de-
pending on nr pages, the number of pages in active list and the number of pages
in inactive list. The number of pages to move is calculated as:

pages = nr pages ∗ nr active pages
2 ∗ (nr inactive pages + 1)

This keeps the active list about two-thirds the size of the inactive list, and
the number of pages to move is determined as a ratio based on how many pages we
want to swap out (nr pages).

Pages are taken from the end of the active list. If the PG referenced flag is
set, it is cleared, and the page is put back at top of the active list because it has
been recently used and is still hot. This is sometimes referred to as rotating the list.
If the flag is cleared, it is moved to the inactive list, and the PG referenced
flag is set so that it will be quickly promoted to the active list if necessary.

10.3.2 Reclaiming Pages From the LRU Lists

The function shrink cache() is the part of the replacement algorithm that takes
pages from the inactive list and decides how they should be swapped out. The
two starting parameters that determine how much work will be performed are
nr pages and priority. nr pages starts out as SWAP CLUSTER MAX, currently de-
fined as 32 in mm/vmscan.c. The variable priority starts as DEF PRIORITY, cur-
rently defined as 6 in mm/vmscan.c.

Two parameters, max scan and max mapped, determine how much work the
function will do and are affected by the priority. Each time the function
shrink caches() is called without enough pages being freed, the priority will be
decreased until the highest priority 1 is reached.

The variable max scan is the maximum number of pages that will be scanned
by this function and is simply calculated as:

max scan =
nr inactive pages

priority
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void lru cache add(struct page * page)
Adds a cold page to the inactive list. It will be moved to active list

with a call to mark page accessed() if the page is known to be hot, such as
when a page is faulted in.

void lru cache del(struct page *page)
Removes a page from the LRU lists by calling either

del page from active list() or del page from inactive list(), whichever
is appropriate.

void mark page accessed(struct page *page)
Marks that the page has been accessed. If it was not recently referenced (in

the inactive list and PG referenced flag not set), the referenced flag is set.
If it is referenced a second time, activate page() is called, which marks the
page hot, and the referenced flag is cleared.

void activate page(struct page * page)
Removes a page from the inactive list and places it on active list.

It is very rarely called directly because the caller has to know the page is on
inactive list. mark page accessed() should be used instead.

Table 10.2. LRU List API

where nr inactive pages is the number of pages in the inactive list. This
means that, at lowest priority 6, at most one-sixth of the pages in the inactive list
will be scanned, and, at highest priority, all of them will be.

The second parameter is max mapped, which determines how many process pages
are allowed to exist in the page cache before whole processes will be swapped out.
This is calculated as the minimum of either one-tenth of max scan or

max mapped = nr pages ∗ 2(10−priority)

In other words, at lowest priority, the maximum number of mapped pages al-
lowed is either one-tenth of max scan or 16 times the number of pages to swap
out (nr pages), whichever is the lower number. At high priority, it is either one-
tenth of max scan or 512 times the number of pages to swap out.

From there, the function is basically a very large for-loop that scans at most
max scan pages to free up nr pages pages from the end of the inactive list or
until the inactive list is empty. After each page, it checks to see whether it
should reschedule itself so that the swapper does not monopolize the CPU.

For each type of page found on the list, it makes a different decision on what to
do. The different page types and actions taken are handled in this order:

1. Page is mapped by a process. This jumps to the page mapped label, which we
will meet again in a later case. The max mapped count is decremented. If it
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reaches 0, the page tables of processes will be linearly searched and swapped out
by the function swap out().

2. Page is locked, and the PG launder bit is set. The page is locked for I/O, so
it could be skipped over. However, if the PG launder bit is set, it means that
this is the second time that the page has been found locked, so it is better
to wait until the I/O completes and get rid of it. A reference to the page is
taken with page cache get() so that the page will not be freed prematurely,
and wait on page() is called, which sleeps until the I/O is complete. After it
is completed, the reference count is decremented with page cache release().
When the count reaches zero, the page will be reclaimed.

3. Page is dirty, is unmapped by all processes, has no buffers and belongs
to a device or file mapping. Because the page belongs to a file or
device mapping, it has a valid writepage() function available through
page→mapping→a ops→writepage. The PG dirty bit is cleared, and the
PG launder bit is set because it is about to start I/O. A reference is taken
for the page with page cache get() before calling the writepage() function to
synchronize the page with the backing file before dropping the reference with
page cache release(). Be aware that this case will also synchronize anony-
mous pages that are part of the swap cache with the backing storage because
swap cache pages use swapper space as a page→mapping. The page remains
on the LRU. When it is found again, it will be simply freed if the I/O has com-
pleted, and the page will be reclaimed. If the I/O has not completed, the kernel
will wait for the I/O to complete as described in the previous case.

4. Page has buffers associated with data on disk. A reference is taken to the page,
and an attempt is made to free the pages with try to release page(). If it
succeeds and is an anonymous page (no page→mapping), the page is removed
from the LRU, and page cache released() is called to decrement the usage
count. There is only one case where an anonymous page has associated buffers
and that is when it is backed by a swap file because the page needs to be written
out in block-sized chunk. If, on the other hand, it is backed by a file or device,
the reference is simply dropped, and the page will be freed as usual when the
count reaches 0.

5. Page is anonymous and is mapped by more than one process. The LRU is un-
locked, and the page is unlocked before dropping into the same page mapped
label that was encountered in the first case. In other words, the max mapped
count is decremented, and swap out is called when, or if, it reaches 0.

6. Page has no process referencing it. This is the final case that is fallen into rather
than explicitly checked for. If the page is in the swap cache, it is removed from it
because the page is now sychronized with the backing storage and has no process
referencing it. If it was part of a file, it is removed from the inode queue, deleted
from the page cache and freed.
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10.4 Shrinking All Caches

The function responsible for shrinking the various caches is shrink caches(), which
takes a few simple steps to free up some memory (see Figure 10.4). The maximum
number of pages that will be written to disk in any given pass is nr pages, which is
initialized by try to free pages zone() to be SWAP CLUSTER MAX. The limitation
is there so that, if kswapd schedules a large number of pages to be written to
disk, it will sleep occasionally to allow the I/O to take place. As pages are freed,
nr pages is decremented to keep count.

The amount of work that will be performed also depends on the priority
initialized by try to free pages zone() to be DEF PRIORITY. For each pass that
does not free up enough pages, the priority is decremented for the highest priority
of 1.

The function first calls kmem cache reap() (see Section 8.1.7), which selects a
slab cache to shrink. If nr pages number of pages are freed, the work is complete,
and the function returns. Otherwise, it will try to free nr pages from other caches.

If other caches are to be affected, refill inactive() will move pages from the
active list to the inactive list before shrinking the page cache by reclaiming
pages at the end of the inactive list with shrink cache().

Finally, it shrinks three special caches, the dcache (shrink dcache memory()),
the icache (shrink icache memory()) and thedqcache (shrink dqcache memory()).
These objects are quite small in themselves, but a cascading effect allows a lot more
pages to be freed in the form of buffer and disk caches.

10.5 Swapping Out Process Pages

When max mapped pages have been found in the page cache, swap out(), shown
in Figure 10.5, is called to start swapping out process pages. Starting from the
mm struct pointed to by swap mm and the address mm→swap address, the page
tables are searched forward until nr pages have been freed.

All process-mapped pages are examined regardless of where they are in the lists
or when they were last referenced, but pages that are part of the active list or
have been recently referenced will be skipped over. The examination of hot pages
is a bit costly, but insignificant in comparison to linearly searching all processes for
the PTEs that reference a particular struct page.

After it has been decided to swap out pages from a process, an attempt will
be made to swap out at least SWAP CLUSTER MAX number of pages, and the full
list of mm structs will only be examined once to avoid constant looping when no
pages are available. Writing out the pages in bulk increases the chance that pages
close together in the process address space will be written out to adjacent slots on
disk.

The marker swap mm is initialized to point to init mm, and the swap address is
initialized to 0 the first time it is used. A task has been fully searched when the
swap address is equal to TASK SIZE. After a task has been selected to swap pages
from, the reference count to the mm struct is incremented so that it will not be freed
early, and swap out mm() is called with the selected mm struct as a parameter.
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swap_out

swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 10.5. Call Graph: swap out()

This function walks each VMA the process holds and calls swap out vma() for
it. This is to avoid having to walk the entire page table, which will be largely sparse.
swap out pgd() and swap out pmd() walk the page tables for a given VMA until
finally try to swap out() is called on the actual page and PTE.

The function try to swap out() first checks to make sure that the page is not
part of the active list, has been recently referenced or belongs to a zone that we
are not interested in. After it has been established this is a page to be swapped
out, it is removed from the process page tables. The newly removed PTE is then
checked to see if it is dirty. If it is, the struct page flags will be updated to match
so that it will get synchronized with the backing storage. If the page is already
a part of the swap cache, the RSS is simply updated, and the reference to the
page is dropped. Otherwise, the process is added to the swap cache. How pages
are added to the swap cache and synchronized with backing storage is discussed in
Chapter 11.

10.6 Pageout Daemon (kswapd)

During system startup, a kernel thread called kswapd is started from
kswapd init(), which continuously executes the function kswapd() in
mm/vmscan.c, which usually sleeps. This daemon is responsible for reclaiming
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pages when memory is running low. Historically, kswapd used to wake up
every 10 seconds, but now it is only woken by the physical page allocator when
the pages low number of free pages in a zone is reached (see Section 2.2.1).

It is this daemon that performs most of the tasks needed to maintain the page
cache correctly, shrink slab caches and swap out processes if necessary. Unlike
swapout daemons such, as Solaris [MM01], which are woken up with increasing
frequency because there is memory pressure, kswapd keeps freeing pages until
the pages high watermark is reached. Under extreme memory pressure, pro-
cesses will do the work of kswapd synchronously by calling balance classzone(),
which calls try to free pages zone(). As shown in Figure 10.6, it is at
try to free pages zone() where the physical page allocator synchonously per-
forms the same task as kswapd when the zone is under heavy pressure.

When kswapd is woken up, it performs the following:

• It calls kswapd can sleep(), which cycles through all zones checking the
need balance field in the struct zone t. If any of them are set, it can
not sleep.

• If it cannot sleep, it is removed from the kswapd wait wait queue.

• It calls the functions kswapd balance(), which cycles through all zones. It
will free pages in a zone with try to free pages zone() if need balance is
set and will keep freeing until the pages high watermark is reached.

• The task queue for tq disk is run so that pages queued will be written out.

• It adds kswapd back to the kswapd wait queue and goes back to the first
step.

10.7 What’s New in 2.6

kswapd As stated in Section 2.8, there is now a kswapd for every memory node
in the system. These daemons are still started from kswapd(), and they all execute
the same code, except their work is now confined to their local node. The main
changes to the implementation of kswapd are related to the kswapd-per-node
change.

The basic operation of kswapd remains the same. Once woken, it calls
balance pgdat() for the pgdat it is responsible for. balance pgdat() has two
modes of operation. When called with nr pages == 0, it will continually try to
free pages from each zone in the local pgdat until pages high is reached. When
nr pages is specified, it will try and free either nr pages or MAX CLUSTER MAX * 8,
whichever is the smaller number of pages.

Balancing Zones The two main functions called by balance pgdat() to free pages
are shrink slab() and shrink zone(). shrink slab() was from Section 8.8 so
will not be repeated here. The function shrink zone() is called to free a number
of pages based on how urgent it is to free pages. This function behaves very similar
to how 2.4 works. refill inactive zone() will move a number of pages from
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zone→active list to zone→inactive list. Remember from Section 2.8 that
LRU lists are now per-zone and not global as they are in 2.4. shrink cache() is
called to remove pages from the LRU and, reclaim pages.

Pageout Pressure In 2.4, the pageout priority determined how many pages
would be scanned. In 2.6, there is a decaying average that is updated by
zone adj pressure(). This adjusts the zone→pressure field to indicate how
many pages should be scanned for replacement. When more pages are required,
this will be pushed up toward the highest value of DEF PRIORITY << 10 and then
decays over time. The value of this average affects how many pages will be scanned
in a zone for replacement. The objective is to have page replacement start working
and slow gracefully rather than act in a bursty nature.

Manipulating LRU Lists In 2.4, a spinlock would be acquired when removing
pages from the LRU list. This made the lock very heavily contended, so, to relieve
contention, operations involving the LRU lists take place using struct pagevec
structures. This allows pages to be added or removed from the LRU lists in batches
of up to PAGEVEC SIZE numbers of pages.

To illustrate, when refill inactive zone() and shrink cache() are removing
pages, they acquire the zone→lru lock lock, remove large blocks of pages and
store them on a temporary list. After the list of pages to remove is assembled,
shrink list() is called to perform the actual freeing of pages, which can now
perform most of its task without needing the zone→lru lock spinlock.

When adding the pages back, a new page vector struct is initialized with
pagevec init(). Pages are added to the vector with pagevec add() and then
committed to being placed on the LRU list in bulk with pagevec release().

A sizable API is associated with pagevec structs that can be seen in
<linux/pagevec.h> with most of the implementation in mm/swap.c.



CHAPTER 11

Swap Management

Just as Linux uses free memory for purposes such as buffering data from disk, there
eventually is a need to free up private or anonymous pages used by a process. These
pages, unlike those backed by a file on disk, cannot be simply discarded to be read
in later. Instead they have to be carefully copied to backing storage, sometimes
called the swap area. This chapter details how Linux uses and manages its backing
storage.

Strictly speaking, Linux does not swap because “swapping” refers to coping an
entire process address space to disk and “paging” to copying out individual pages.
Linux actually implements paging as modern hardware supports it, but traditionally
has called it swapping in discussions and documentation. To be consistent with the
Linux usage of the word, we, too, will refer to it as swapping.

There are two principal reasons that the existence of swap space is desirable.
First, it expands the amount of memory that a process may use. Virtual memory
and swap space allows a large process to run even if the process is only partially
resident. Because old pages may be swapped out, the amount of memory addressed
may easily exceed RAM because demand paging will ensure the pages are reloaded
if necessary.

The casual reader1 may think that, with a sufficient amount of memory, swap is
unnecessary, but this brings me to the second reason. A significant number of the
pages referenced by a process early in its life may only be used for initialization and
then never used again. It is better to swap out those pages and create more disk
buffers than leave them resident and unused.

Swap is not without its drawbacks, and the most important one is the most
obvious one. Disk is slow, very very slow. If processes are frequently addressing a
large amount of memory, no amount of swap or expensive high-performance disks
will make it run within a reasonable time, only more RAM will help. This is why
it is very important that the correct page be swapped out as discussed in Chapter
10, but also that related pages be stored close together in the swap space so they
are likely to be swapped in at the same time while reading ahead. I start with how
Linux describes a swap area.

This chapter begins with describing the structures Linux maintains about each
active swap area in the system and how the swap area information is organized
on disk. I cover how Linux remembers how to find pages in the swap after they

1Not to mention the affluent reader.
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have been paged out and how swap slots are allocated. After that the swap cache
is discussed, which is important for shared pages. At that point, there is enough
information to begin understanding how swap areas are activated and deactivated,
how pages are paged in and paged out and finally how the swap area is read and
written to.

11.1 Describing the Swap Area

Each active swap area, be it a file or partition, has a struct swap info struct
describing the area. All the structs in the running system are stored in a statically
declared array called swap info, which holds MAX SWAPFILES, which is statically
defined as 32, entries. This means that at most 32 swap areas can exist on a running
system. The swap info struct is declared as follows in <linux/swap.h>:

64 struct swap_info_struct {
65 unsigned int flags;
66 kdev_t swap_device;
67 spinlock_t sdev_lock;
68 struct dentry * swap_file;
69 struct vfsmount *swap_vfsmnt;
70 unsigned short * swap_map;
71 unsigned int lowest_bit;
72 unsigned int highest_bit;
73 unsigned int cluster_next;
74 unsigned int cluster_nr;
75 int prio;
76 int pages;
77 unsigned long max;
78 int next;
79 };

Here is a small description of each of the fields in this quite sizable struct.

flags This is a bit field with two possible values. SWP USED is set if the swap area is
currently active. SWP WRITEOK is defined as 3, the two lowest significant bits,
including the SWP USED bit. The flags are set to SWP WRITEOK when Linux is
ready to write to the area because it must be active to be written to.

swap device The device corresponding to the partition used for this swap area
is stored here. If the swap area is a file, this is NULL.

sdev lock As with many structs in Linux, this one has to be protected, too.
sdev lock is a spinlock protecting the struct, principally the swap map. It is
locked and unlocked with swap device lock() and swap device unlock().

swap file This is the dentry for the actual special file that is mounted as a swap
area. This could be the dentry for a file in the /dev/ directory, for example,



11.1. Describing the Swap Area 181

in the case that a partition is mounted. This field is needed to identify the
correct swap info struct when deactivating a swap area.

vfs mount This is the vfs mount object corresponding to where the device or
file for this swap area is stored.

swap map This is a large array with one entry for every swap entry, or page-sized
slot in the area. An entry is a reference count of the number of users of this
page slot. The swap cache counts as one user, and every PTE that has been
paged out to the slot counts as a user. If it is equal to SWAP MAP MAX, the
slot is allocated permanently. If equal to SWAP MAP BAD, the slot will never be
used.

lowest bit This is the lowest possible free slot available in the swap area and is
used to start from when linearly scanning to reduce the search space. It is
known that there are definitely no free slots below this mark.

highest bit This is the highest possible free slot available in this swap area.
Similar to lowest bit, there are definitely no free slots above this mark.

cluster next This is the offset of the next cluster of blocks to use. The swap area
tries to have pages allocated in cluster blocks to increase the chance related
pages will be stored together.

cluster nr This the number of pages left to allocate in this cluster.

prio Each swap area has a priority, which is stored in this field. Areas are arranged
in order of priority and determine how likely the area is to be used. By default
the priorities are arranged in order of activation, but the system administrator
may also specify it using the -p flag when using swapon.

pages Because some slots on the swap file may be unusable, this field stores the
number of usable pages in the swap area. This differs from max in that slots
marked SWAP MAP BAD are not counted.

max This is the total number of slots in this swap area.

next This is the index in the swap info array of the next swap area in the system.

The areas, though stored in an array, are also kept in a pseudolist called
swap list, which is a very simple type declared as follows in <linux/swap.h>:

153 struct swap_list_t {
154 int head; /* head of priority-ordered swapfile list */
155 int next; /* swapfile to be used next */
156 };

The field swap list t→head is the swap area of the highest priority swap area
in use, and swap list t→next is the next swap area that should be used. This is
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so areas may be arranged in order of priority when searching for a suitable area,
but still may be looked up quickly in the array when necessary.

Each swap area is divided up into a number of page-sized slots on disk, which
means that each slot is 4,096 bytes on the x86, for example. The first slot is always
reserved because it contains information about the swap area that should not be
overwritten. The first 1 KiB of the swap area is used to store a disk label for the
partition that can be picked up by userspace tools. The remaining space is used
for information about the swap area, which is filled when the swap area is created
with the system program mkswap. The information is used to fill in a union
swap header, which is declared as follows in <linux/swap.h>:

25 union swap_header {
26 struct
27 {
28 char reserved[PAGE_SIZE - 10];
29 char magic[10];
30 } magic;
31 struct
32 {
33 char bootbits[1024];
34 unsigned int version;
35 unsigned int last_page;
36 unsigned int nr_badpages;
37 unsigned int padding[125];
38 unsigned int badpages[1];
39 } info;
40 };

A description of each of the fields follows:

magic The magic part of the union is used just for identifying the magic string.
The string exists to make sure there is no chance a partition that is not a
swap area will be used and to decide what version of swap area is to be used.
If the string is SWAP-SPACE, it is version 1 of the swap file format. If it is
SWAPSPACE2, it is version 2. The large reserved array is just so that the
magic string will be read from the end of the page.

bootbits This is the reserved area containing information about the partition,
such as the disk label.

version This is the version of the swap area layout.

last page This is the last usable page in the area.

nr badpages The known number of bad pages that exist in the swap area are
stored in this field.

padding A disk section is usually about 512 bytes in size. The three fields
version, last page and nr badpages make up 12 bytes, and the padding
fills up the remaining 500 bytes to cover one sector.
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badpages The remainder of the page is used to store the indices of up to
MAX SWAP BADPAGES number of bad page slots. These slots are filled in by
the mkswap system program if the -c switch is specified to check the area.

MAX SWAP BADPAGES is a compile time constant that varies if the struct changes,
but it is 637 entries in its current form as given by the simple equation.

MAX SWAP BADPAGES =
PAGE SIZE − 1, 024 − 512 − 10

sizeof(long)

Where 1,024 is the size of the bootblock, 512 is the size of the padding and 10
is the size of the magic string identifying the format of the swap file.

11.2 Mapping Page Table Entries to Swap Entries

When a page is swapped out, Linux uses the corresponding PTE to store enough
information to locate the page on disk again. Obviously, a PTE is not large enough
in itself to store precisely where on disk the page is located, but it is more than
enough to store an index into the swap info array and an offset within the swap map.
This is precisely what Linux does.

Each PTE, regardless of architecture, is large enough to store a swp entry t,
which is declared as follows in <linux/shmem fs.h>:

16 typedef struct {
17 unsigned long val;
18 } swp_entry_t;

Two macros are provided for the translation of PTEs to swap entries and vice
versa. They are pte to swp entry() and swp entry to pte(), respectively.

Each architecture has to be able to determine if a PTE is present or swapped out.
For illustration, I show how this is implemented on the x86. In the swp entry t,
two bits are always kept free. On the x86, Bit 0 is reserved for the PAGE PRESENT
flag, and Bit 7 is reserved for PAGE PROTNONE. The requirement for both bits is
explained in Section 3.2. Bits 1 through 6 are for the type, which is the index
within the swap info array and are returned by the SWP TYPE() macro.

Bits 8 through 31 are used to store the offset within the swap map from the
swp entry t. On the x86, this means 24 bits are available, which limits the size of
the swap area to 64GiB. The macro SWP OFFSET() is used to extract the offset.

To encode a type and offset into a swp entry t, the macro SWP ENTRY() is avail-
able, which simply performs the relevant bit-shifting operations. The relationship
between all these macros is illustrated in Figure 11.1.

The six bits for type should allow up to 64 swap areas to exist in a 32-bit ar-
chitecture instead of the MAX SWAPFILES restriction of 32. The restriction is due
to the consumption of the vmalloc address space. If a swap area is the maximum
possible size, 32MiB is required for the swap map (224 ∗ sizeof(short)); remember
that each page uses one short for the reference count. For just MAX SWAPFILES
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Figure 11.1. Storing Swap Entry Information in swp entry t

maximum number of swap areas to exist, 1GiB of virtual malloc space is re-
quired, which is simply impossible because of the user/kernel linear address space
split.

This would imply that supporting 64 swap areas is not worth the additional com-
plexity, but there are cases where a large number of swap areas would be desirable
even if the overall swap available does not increase. Some modern machines2 have
many separate disks, which, between them, can create a large number of separate
block devices. In this case, it is desirable to create a large number of small swap
areas that are evenly distributed across all disks. This would allow a high degree
of parallelism in the page swapping behavior, which is important for swap-intensive
applications.

11.3 Allocating a Swap Slot

All page-sized slots are tracked by the array swap info struct→swap map, which
is of type unsigned short. Each entry is a reference count of the number of
users of the slot, which happens in the case of a shared page and is 0 when free.
If the entry is SWAP MAP MAX, the page is permanently reserved for that slot. It
is unlikely, if not impossible, for this condition to occur, but it exists to ensure
the reference count does not overflow. If the entry is SWAP MAP BAD, the slot is
unusable.

The task of finding and allocating a swap entry is divided into two major
tasks. The first is performed by the high-level function get swap page(), shown in
Figure 11.2. Starting with swap list→next, it searches swap areas for a suitable
slot. After a slot has been found, it records what the next swap area to be used will
be and returns the allocated entry.

2A Sun E450 could have in the region of 20 disks in it, for example.
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get_swap_page

scan_swap_map

Figure 11.2. Call Graph: get swap page()

The task of searching the map is the responsibility of scan swap map(). In
principle, it is very simple because it linearly scans the array for a free slot and
return. Predictably, the implementation is a bit more thorough.

Linux attempts to organize pages into clusters on disk of size SWAPFILE
CLUSTER. It allocates SWAPFILE CLUSTER number of pages sequentially in swap,
keeps count of the number of sequentially allocated pages in
swap info struct→cluster nr and records the current offset in swap
info struct→cluster next. After a sequential block has been allocated, it
searches for a block of free entries of size SWAPFILE CLUSTER. If a block large
enough can be found, it will be used as another cluster-sized sequence.

If no free clusters large enough can be found in the swap area, a simple first-free
search that starts from swap info struct→lowest bit is performed. The aim is
to have pages swapped out at the same time close together on the premise that
pages swapped out together are related. This premise, which seems strange at first
glance, is quite solid when it is considered that the page replacement algorithm will
use swap space most when linearly scanning the process address space swapping
out pages. Without scanning for large free blocks and using them, it is likely that
the scanning would degenerate to first-free searches and never improve. With it,
processes exiting are likely to free up large blocks of slots.

11.4 Swap Cache

Pages that are shared between many processes cannot be easily swapped out be-
cause, as mentioned, there is no quick way to map a struct page to every PTE
that references it. This leads to the rare condition where a page that is present for
one PTE and swapped out for another gets updated without being synced to disk,
thereby losing the update.

To address this problem, shared pages that have a reserved slot in backing stor-
age are considered to be part of the swap cache. The swap cache has a small
API associated with it and is shown in Table 11.1. The swap cache is purely
conceptual because it is simply a specialization of the page cache. The first prin-
cipal difference between pages in the swap cache rather than the page cache is
that pages in the swap cache always use swapper space as their address space in
page→mapping. The second difference is that pages are added to the swap cache
with add to swap cache(), shown in Figure 11.3, instead of add to page cache().
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swp entry t get swap page()
This function allocates a slot in a swap map by searching active swap areas.

This is covered in greater detail in Section 11.3, but included here because it is
principally used in conjunction with the swap cache.

int add to swap cache(struct page *page, swp entry t entry)
This function adds a page to the swap cache. It first checks if it already exists

by calling swap duplicate(), and, if not, it adds it to the swap cache using the
normal page cache interface function add to page cache unique().

struct page * lookup swap cache(swp entry t entry)
This searches the swap cache and returns the struct page corresponding

to the supplied entry. It works by searching the normal page cache based on
swapper space and the swap map offset.

int swap duplicate(swp entry t entry)
This function verifies a swap entry is valid and, if so, increments its swap

map count.

void swap free(swp entry t entry)
The complement function to swap duplicate(). It decrements the relevant

counter in the swap map. When the count reaches zero, the slot is effectively
free.

Table 11.1. Swap Cache API

Anonymous pages are not part of the swap cache until an attempt is made to
swap them out. The variable swapper space is declared as follows in swap state.c:

39 struct address_space swapper_space = {
40 LIST_HEAD_INIT(swapper_space.clean_pages),
41 LIST_HEAD_INIT(swapper_space.dirty_pages),
42 LIST_HEAD_INIT(swapper_space.locked_pages),
43 0,
44 &swap_aops,
45 };

A page is identified as being part of the swap cache after the page→mapping field
has been set to swapper space, which is tested by the PageSwapCache() macro.
Linux uses the exact same code for keeping pages between swap and memory in
sync as it uses for keeping file-backed pages and memory in sync. They both share
the page cache code, but the differences are just in the functions used.

The address space for backing storage, swapper space, uses swap ops for
its address space→a ops. The page→index field is then used to store the
swp entry t structure instead of a file offset, which is its normal purpose.
The address space operations struct swap aops is declared as follows in
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swap state.c:

34 static struct address_space_operations swap_aops = {
35 writepage: swap_writepage,
36 sync_page: block_sync_page,
37 };

When a page is being added to the swap cache, a slot is allocated with
get swap page(), added to the page cache with add to swap cache() and then
marked dirty. When the page is next laundered, it will actually be written to
backing storage on disk as the normal page cache would operate. This process is
illustrated in Figure 11.4.

Figure 11.4. Adding a Page to the Swap Cache

Subsequent swapping of the page from shared PTEs results in a call to
swap duplicate(), which simply increments the reference to the slot in the
swap map. If the PTE is marked dirty by the hardware as a result of a write,
the bit is cleared, and the struct page is marked dirty with set page dirty() so
that the on-disk copy will be synced before the page is dropped. This ensures that,
until all references to the page have been dropped, a check will be made to ensure
the data on disk matches the data in the page frame.

When the reference count to the page finally reaches 0, the page is eligible to
be dropped from the page cache, and the swap map count will have the count of
the number of PTEs the on-disk slot belongs to so that the slot will not be freed
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prematurely. It is laundered and finally dropped with the same LRU aging and
logic described in Chapter 10.

If, on the other hand, a page fault occurs for a page that is swapped out, the
logic in do swap page() will check to see if the page exists in the swap cache by
calling lookup swap cache(). If it does, the PTE is updated to point to the page
frame, the page reference count is incremented and the swap slot is decremented
with swap free().

11.5 Reading Pages From Backing Storage

The principal function used when reading in pages is read swap cache async(),
which is mainly called during page faulting (see Figure 11.5). The function begins
searching the swap cache with find get page(). Normally, swap cache searches
are performed by lookup swap cache(), but that function updates statistics on
the number of searches performed. Because the cache may need to be searched
multiple times, find get page() is used instead.

The page can already exist in the swap cache if another process has the same
page mapped or if multiple processes are faulting on the same page at the same
time. If the page does not exist in the swap cache, one must be allocated and filled
with data from backing storage.

After the page is allocated with alloc page(), it is added to the swap cache
with add to swap cache() because swap cache operations may only be performed
on pages in the swap cache. If the page cannot be added to the swap cache, the
swap cache will be searched again to make sure another process has not put the
data in the swap cache already.

To read information from backing storage, rw swap page() is called, which is
discussed in Section 11.7. After the function completes, page cache release() is
called to drop the reference to the page taken by find get page().

11.6 Writing Pages to Backing Storage

When any page is being written to disk, the address space→a ops is con-
sulted to find the appropriate write-out function. In the case of backing storage,
the address space is swapper space, and the swap operations are contained in
swap aops. The struct swap aops registers swap writepage() because of its write-
out function (see Figure 11.6).

The function swap writepage() behaves differently depending on whether the
writing process is the last user of the swap cache page or not. It knows this by
calling remove exclusive swap page(), which checks if there are any other pro-
cesses using the page. This is a simple case of examining the page count with the
pagecache lock held. If no other process is mapping the page, it is removed from
the swap cache and freed.

If remove exclusive swap page() removed the page from the swap cache and
freed it, swap writepage() will unlock the page because it is no longer in use.
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If it still exists in the swap cache, rw swap page() is called to write the data to the
backing storage.

11.7 Reading/Writing Swap Area Blocks

The top-level function for reading and writing to the swap area is rw swap page().
This function ensures that all operations are performed through the swap cache to
prevent lost updates. rw swap page base() is the core function that performs the
real work.

It begins by checking if the operation is a read. If it is, it clears the uptodate
flag with ClearPageUptodate() because the page is obviously not up to date if I/O
is required to fill it with data. This flag will be set again if the page is successfully
read from disk. It then calls get swaphandle info() to acquire the device for the
swap partition of the inode for the swap file. These are required by the block layer,
which will be performing the actual I/O.

The core function can work with either swap partition or files because it uses
the block layer function brw page() to perform the actual disk I/O. If the swap
area is a file, bmap() is used to fill a local array with a list of all blocks in the
filesystem that contain the page data. Remember that filesystems may have their
own method of storing files and disk, and it is not as simple as the swap partition
where information may be written directly to disk. If the backing storage is a
partition, only one page-sized block requires I/O, and, because no filesystem is
involved, bmap() is unnecessary.

After it is known what blocks must be read or written, a normal block I/O
operation takes place with brw page(). All I/O that is performed is asynchronous,
so the function returns quickly. After the I/O is complete, the block layer will
unlock the page, and any waiting process will wake up.

11.8 Activating a Swap Area

Now that you know what swap areas are, how they are represented and how pages
are tracked, it is time to see how they all tie together to activate an area. Activating
an area is conceptually quite simple: Open the file, load the header information from
disk, populate a swap info struct and add it to the swap list.

The function responsible for the activation of a swap area is sys swapon(), and
it takes two parameters, the path to the special file for the swap area and a set
of flags. While swap is being activated, the Big Kernel Lock (BKL) is held, which
prevents any application from entering kernel space while this operation is being
performed. The function is quite large, but can be broken down into the following
simple steps:

1. Find a free swap info struct in the swap info array and initialize it with de-
fault values.

2. Call user path walk(), which traverses the directory tree for the supplied
specialfile and populates a namidata structure with the available data on
the file, such as the dentry and the filesystem information for where it is stored
(vfsmount).
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3. Populate swap info struct fields pertaining to the dimensions of the swap area
and how to find it. If the swap area is a partition, the block size will be configured
to the PAGE SIZE before calculating the size. If it is a file, the information is
obtained directly from the inode.

4. Ensure the area is not already activated. If not, allocate a page from mem-
ory and read the first page-sized slot from the swap area. This page con-
tains information such as the number of good slots and how to populate the
swap info struct→swap map with the bad entries.

5. Allocate memory with vmalloc() for swap info struct→swap map and initial-
ize each entry with 0 for good slots and SWAP MAP BAD otherwise. Ideally, the
header information will be a version 2 file format because version 1 was limited
to swap areas of just under 128MiB for architectures with 4KiB page sizes like
the x86.3

6. After ensuring the information indicated in the header matches the actual swap
area, fill in the remaining information in the swap info struct, such as the
maximum number of pages and the available good pages. Update the global
statistics for nr swap pages and total swap pages.

7. The swap area is now fully active and initialized, so it is inserted into the swap
list in the correct position based on priority of the newly activated area.

At the end of the function, the BKL is released, and the system now has a new
swap area available for paging to.

11.9 Deactivating a Swap Area

In comparison to activating a swap area, deactivation is incredibly expensive. The
principal problem is that the area cannot be simply removed. Every page that is
swapped out must now be swapped back in again. Just as there is no quick way
of mapping a struct page to every PTE that references it, there is no quick way
to map a swap entry to a PTE either. This requires that all process page tables
be traversed to find PTEs that reference the swap area to be deactivated and swap
them in. This, of course, means that swap deactivation will fail if the physical
memory is not available.

The function responsible for deactivating an area is, predictably enough,
called sys swapoff(). This function is mainly concerned with updating the
swap info struct. The major task of paging in each paged-out page is the re-
sponsibility of try to unuse(), which is extremely expensive. For each slot used
in the swap map, the page tables for processes have to be traversed searching for
it. In the worst case, all page tables belonging to all mm structs may have to be
traversed. Therefore, the tasks taken for deactivating an area are the following,
broadly speaking:

1. Call user path walk() to acquire the information about the special file to be
deactivated and then take the BKL.

3See the Code Commentary for the comprehensive reason for this.
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2. Remove the swap info struct from the swap list and update the global statistics
on the number of swap pages available (nr swap pages) and the total number
of swap entries (total swap pages). After this is acquired, the BKL can be
released again.

3. Call try to unuse(), which will page in all pages from the swap area to be deac-
tivated. This function loops through the swap map using find next to unuse()
to locate the next used swap slot. For each used slot it finds, it performs the
following:

• Call read swap cache async() to allocate a page for the slot saved on disk.
Ideally, it exists in the swap cache already, but the page allocator will be
called if it is not.

• Wait on the page to be fully paged in and lock it. Once locked, call
unuse process() for every process that has a PTE referencing the page.
This function traverses the page table searching for the relevant PTE and
then updates it to point to the struct page. If the page is a shared memory
page with no remaining reference, shmem unuse() is called instead.

• Free all slots that were permanently mapped. It is believed that slots will
never become permanently reserved, so the risk is taken.

• Delete the page from the swap cache to prevent try to swap out() from
referencing a page in the event it still somehow has a reference in swap from
map.

4. If there was not enough available memory to page in all the entries, the swap area
is reinserted back into the running system because it cannot be simply dropped.
If it succeeded, the swap info struct is placed into an uninitialized state, and
the swap map memory is freed with vfree()

11.10 What’s New in 2.6

The most important addition to the struct swap info struct is the addition of
a linked list called extent list and a cache field called curr swap extent for the
implementation of extents.

Extents, which are represented by a struct swap extent, map a contiguous
range of pages in the swap area into a contiguous range of disk blocks. These
extents are set up at swapon time by the function setup swap extents(). For block
devices, there will only be one swap extent, and it will not improve performance,
but the extent it set up so that swap areas backed by block devices or regular files
can be treated the same.

It can make a large difference with swap files, which will have multiple ex-
tents representing ranges of pages clustered together in blocks. When search-
ing for the page at a particular offset, the extent list will be traversed. To
improve search times, the last extent that was searched will be cached in
swap extent→curr swap extent.
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Shared Memory Virtual Filesystem

Sharing a region of memory backed by a file or device is simply a case of calling
mmap() with the MAP SHARED flag. However, there are two important cases where an
anonymous region needs to be shared between processes. The first is when mmap()
with MAP SHARED is used without file backing. These regions will be shared between
a parent and child process after a fork() is executed. The second is when a region
is explicitly setting them up with shmget() and is attached to the virtual address
space with shmat().

When pages within a VMA are backed by a file on disk, the interface used is
straightforward. To read a page during a page fault, the required nopage() func-
tion is found in vm area struct→vm ops. To write a page to backing storage,
the appropriate writepage() function is found in the address space operations
using inode→i mapping→a ops or alternatively using page→mapping→a ops.
When normal file operations are taking place, such as mmap(), read()
and write(), the struct file operations with the appropriate functions is
found using inode→i fop and so on. These relationships were illustrated in
Figure 4.2.

This is a very clean interface that is conceptually easy to understand, but it
does not help anonymous pages because there is no file backing. To keep this nice
interface, Linux creates an artifical file backing for anonymous pages using a RAM-
based filesystem where each VMA is backed by a file in this filesystem. Every
inode in the filesystem is placed on a linked list called shmem inodes so that it
may always be easily located. This allows the same file-based interface to be used
without treating anonymous pages as a special case.

The filesystem comes in two variations called shm and tmpfs. They both share
core functionality and mainly differ in what they are used for. shm is for use by
the kernel for creating file backings for anonymous pages and for backing regions
created by shmget(). This filesystem is mounted by kern mount() so that it is
mounted internally and not visible to users. tmpfs is a temporary filesystem that
may be optionally mounted on /tmp/ to have a fast RAM-based temporary filesys-
tem. A secondary use for tmpfs is to mount it on /dev/shm/. Processes that
mmap() files in the tmpfs filesystem will be able to share information between them
as an alternative to System V Inter-Process Communication (IPC) mechanisms.
Regardless of the type of use, tmpfs must be explicitly mounted by the system
administrator.

195
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This chapter begins with a description of how the virtual filesystem is imple-
mented. From there, I discuss how shared regions are set up and destroyed before
talking about how the tools are used to implement System V IPC mechanisms.

12.1 Initializing the Virtual Filesystem

The virtual filesystem is initialized by the function init tmpfs(), shown in
Figure 12.1, either during system start or when the module is being loaded. This
function registers the two filesystems, tmpfs and shm, and mounts shm as an internal
filesystem with kern mount(). It then calculates the maximum number of blocks
and inodes that can exist in the filesystems. As part of the registration, the function
shmem read super() is used as a callback to populate a struct super block with
more information about the filesystems, such as making the block size equal to the
page size.

init_tmpfs

register_filesystem kern_mount shmem_set_size

do_kern_mount

Figure 12.1. Call Graph: init tmpfs()

Every inode created in the filesystem will have a struct shmem inode info
associated with it, which contains private information specific to the filesystem.
The function SHMEM I() takes an inode as a parameter and returns a pointer to a
struct of this type. It is declared as follows in <linux/shmem fs.h>:

20 struct shmem_inode_info {
21 spinlock_t lock;
22 unsigned long next_index;
23 swp_entry_t i_direct[SHMEM_NR_DIRECT];
24 void **i_indirect;
25 unsigned long swapped;
26 unsigned long flags;
27 struct list_head list;
28 struct inode *inode;
29 };



12.2. Using shmem Functions 197

The fields are the following:

lock is a spinlock protecting the inode information from concurrent accesses.

next index is an index of the last page being used in the file. This will be
different from inode→i size while a file is being truncated.

i direct is a direct block containing the first SHMEM NR DIRECT swap vectors in
use by the file. See Section 12.4.1.

i indirect is a pointer to the first indirect block. See Section 12.4.1.

swapped is a count of the number of pages belonging to the file that are currently
swapped out.

flags is currently only used to remember if the file belongs to a shared region set
up by shmget(). It is set by specifying SHM LOCK with shmctl() and unlocked
by specifying SHM UNLOCK.

list is a list of all inodes used by the filesystem.

inode is a pointer to the parent inode.

12.2 Using shmem Functions

Different structs contain pointers for shmem specific functions. In all cases, tmpfs
and shm share the same structs.

For faulting in pages and writing them to backing storage, two structs called
shmem aops and shmem vm ops of type struct address space operations and
struct vm operations struct, respectively, are declared.

The address space operations struct shmem aops contains pointers to a small
number of functions of which the most important one is shmem writepage(),
which is called when a page is moved from the page cache to the swap cache.
shmem removepage() is called when a page is removed from the page cache so
that the block can be reclaimed. shmem readpage() is not used by tmpfs, but
is provided so that the sendfile() system call may be used with tmpfs files.
shmem prepare write() and shmem commit write() are also unused, but are pro-
vided so that tmpfs can be used with the loopback device. shmem aops is declared
as follows in mm/shmem.c:

1500 static struct address_space_operations shmem_aops = {
1501 removepage: shmem_removepage,
1502 writepage: shmem_writepage,
1503 #ifdef CONFIG_TMPFS
1504 readpage: shmem_readpage,
1505 prepare_write: shmem_prepare_write,
1506 commit_write: shmem_commit_write,
1507 #endif
1508 };
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Anonymous VMAs use shmem vm ops as the vm operations struct so that
shmem nopage() is called when a new page is being faulted in. It is declared as
follows:

1426 static struct vm_operations_struct shmem_vm_ops = {
1427 nopage: shmem_nopage,
1428 };

To perform operations on files and inodes, two structs, file operations
and inode operations, are required. The file operations, called
shmem file operations, provides functions that implement mmap(), read(),
write() and fsync(). It is declared as follows:

1510 static struct file_operations shmem_file_operations = {
1511 mmap: shmem_mmap,
1512 #ifdef CONFIG_TMPFS
1513 read: shmem_file_read,
1514 write: shmem_file_write,
1515 fsync: shmem_sync_file,
1516 #endif
1517 };

Three sets of inode operations, are provided. The first is
shmem inode operations, which is used for file inodes. The second, called
shmem dir inode operations, is for directories. The last pair, called
shmem symlink inline operations and shmem symlink inode operations, is for
use with symbolic links.

The two file operations supported are truncate() and setattr(), which
are stored in a struct inode operations called shmem inode operations.
shmem truncate() is used to truncate a file. shmem notify change() is called
when the file attributes change. This allows, among other things, for a file to
be grown with truncate() and to use the global zero page as the data page.
shmem inode operations is declared as follows:

1519 static struct inode_operations shmem_inode_operations = {
1520 truncate: shmem_truncate,
1521 setattr: shmem_notify_change,
1522 };

The directory inode operations provides functions such as create(), link()
and mkdir(). They are declared as follows:

1524 static struct inode_operations shmem_dir_inode_operations = {
1525 #ifdef CONFIG_TMPFS
1526 create: shmem_create,
1527 lookup: shmem_lookup,
1528 link: shmem_link,
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1529 unlink: shmem_unlink,
1530 symlink: shmem_symlink,
1531 mkdir: shmem_mkdir,
1532 rmdir: shmem_rmdir,
1533 mknod: shmem_mknod,
1534 rename: shmem_rename,
1535 #endif
1536 };

The last pair of operations are for use with symlinks. They are declared as
follows:

1354 static struct inode_operations shmem_symlink_inline_operations = {
1355 readlink: shmem_readlink_inline,
1356 follow_link: shmem_follow_link_inline,
1357 };
1358
1359 static struct inode_operations shmem_symlink_inode_operations = {
1360 truncate: shmem_truncate,
1361 readlink: shmem_readlink,
1362 follow_link: shmem_follow_link,
1363 };

The difference between the two readlink() and follow link() functions is
related to where the link information is stored. A symlink inode does not require the
private inode information struct shmem inode information. If the length of the
symbolic link name is smaller than this struct, the space in the inode is used to store
the name, and shmem symlink inline operations becomes the inode operations
struct. Otherwise, a page is allocated with shmem getpage(), the symbolic link
is copied to it and shmem symlink inode operations is used. The second struct
includes a truncate() function so that the page will be reclaimed when the file is
deleted.

These various structs ensure that the shmem equivalent of inode-related oper-
ations will be used when regions are backed by virtual files. When they are used,
the majority of the VM sees no difference between pages backed by a real file and
ones backed by virtual files.

12.3 Creating Files in tmpfs

Because tmpfs is mounted as a proper filesystem that is visible to the user,
it must support directory inode operations such as open(), mkdir() and
link(). Pointers to functions that implement these for tmpfs are provided in
shmem dir inode operations, which is shown in Section 12.2.

The implementations of most of these functions are quite small, and, at some
level, they are all interconnected as can be seen from Figure 12.2. All of them
share the same basic principle of performing some work with inodes in the virtual
filesystem, and the majority of the inode fields are filled in by shmem get inode().
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When creating a new file, the top-level function called is shmem create().
This small function calls shmem mknod() with the S IFREG flag added so that
a regular file will be created. shmem mknod() is little more than a wrapper
around the shmem get inode(), which, predictably, creates a new inode and fills
in the struct fields. The three fields of principal interest that are filled are the
inode→i mapping→a ops, inode→i op and inode→i fop fields. After the in-
ode has been created, shmem mknod() updates the directory inode size and mtime
statistics before instantiating the new inode.

Files are created differently in shm even though the filesystems are essentially
identical in functionality. How these files are created is covered later in Section 12.7.

12.4 Page Faulting Within a Virtual File

When a page fault occurs, do no page() will call vma→vm ops→nopage if it exists.
In the case of the virtual filesystem, this means the function shmem nopage(), with
its call graph shown in Figure 12.3, will be called when a page fault occurs.

shmem_nopage

shmem_getpage mark_page_accessed

Figure 12.3. Call Graph: shmem nopage()

The core function in this case is shmem getpage(), which is responsible for
either allocating a new page or finding it in swap. This overloading of fault types
is unusual because do swap page() is normally responsible for locating pages that
have been moved to the swap cache or backing storage using information encoded
within the PTE. In this case, pages backed by virtual files have their PTE set to 0
when they are moved to the swap cache. The inode’s private filesystem data stores
direct and indirect block information, which is used to locate the pages later. This
operation is very similar in many respects to normal page faulting.

12.4.1 Locating Swapped Pages

When a page has been swapped out, a swp entry t will contain information needed
to locate the page again. Instead of using the PTEs for this task, the information
is stored within the filesystem-specific private information in the inode.

When faulting, the function called to locate the swap entry is
shmem alloc entry(). Its basic task is to perform basic checks and ensure that
shmem inode info→next index always points to the page index at the end of the
virtual file. Its principal task is to call shmem swp entry(), which searches for the
swap vector within the inode information with shmem swp entry(), and to allocate
new pages as necessary to store swap vectors.
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Figure 12.4. Traversing Indirect Blocks in a Virtual File

The first SHMEM NR DIRECT entries are stored in inode→i direct. This means
that, for the x86, files that are smaller than 64KiB (SHMEM NR DIRECT * PAGE SIZE)
will not need to use indirect blocks. Larger files must use indirect blocks starting
with the one located at inode→i indirect.

The initial indirect block (inode→i indirect) is broken into two halves. The
first half contains pointers to doubly indirect blocks, and the second half contains
pointers to triply indirect blocks. The doubly indirect blocks are pages containing
swap vectors (swp entry t). The triply indirect blocks contain pointers to pages,
which in turn are filled with swap vectors. The relationship between the different
levels of indirect blocks is illustrated in Figure 12.4. The relationship means that
the maximum number of pages in a virtual file (SHMEM MAX INDEX) is defined as
follows in mm/shmem.c:

44 #define SHMEM_MAX_INDEX (
SHMEM_NR_DIRECT +
(ENTRIES_PER_PAGEPAGE/2) *
(ENTRIES_PER_PAGE+1))

12.4.2 Writing Pages to Swap

The function shmem writepage() is the registered function in the filesystem’s
address space operations for writing pages to swap. The function is respon-
sible for simply moving the page from the page cache to the swap cache. This is
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implemented with a few simple steps:

1. Record the current page→mapping and information about the inode.

2. Allocate a free slot in the backing storage with get swap page().

3. Allocate a swp entry t with shmem swp entry().

4. Remove the page from the page cache.

5. Add the page to the swap cache. If it fails, free the swap slot, add back to the
page cache and try again.

12.5 File Operations in tmpfs

Four operations, mmap(), read(), write() and fsync(), are supported with virtual
files. Pointers to the functions are stored in shmem file operations, which was
shown in Section 12.2.

Little is unusual in the implementation of these operations, and they are cov-
ered in detail in the Code Commentary. The mmap() operation is implemented
by shmem mmap(), and it simply updates the VMA that is managing the mapped
region. read(), implemented by shmem read(), performs the operation of copy-
ing bytes from the virtual file to a userspace buffer, faulting in pages as necessary.
write(), implemented by shmem write(), is essentially the same. The fsync()
operation is implemented by shmem file sync(), but is essentially a NULL opera-
tion because it performs no task and simply returns 0 for success. Because the files
only exist in RAM, they do not need to be synchronized with any disk.

12.6 Inode Operations in tmpfs

The most complex operation that is supported for inodes is truncation and involves
four distinct stages. The first, in shmem truncate(), will truncate a partial page
at the end of the file and continually calls shmem truncate indirect() until the
file is truncated to the proper size. Each call to shmem truncate indirect() will
only process one indirect block at each pass, which is why it may need to be called
multiple times.

The second stage, in shmem truncate indirect(), understands both doubly
and triply indirect blocks. It finds the next indirect block that needs to be truncated.
This indirect block, which is passed to the third stage, will contain pointers to pages,
which in turn contain swap vectors.

The third stage in shmem truncate direct() works with pages that contain
swap vectors. It selects a range that needs to be truncated and passes the
range to the last stage shmem swp free(). The last stage frees entries with
free swap and cache(), which frees both the swap entry and the page contain-
ing data.

The linking and unlinking of files is very simple because most of the work is per-
formed by the filesystem layer. To link a file, the directory inode size is incremented,
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the ctime and mtime of the affected inodes is updated and the number of links to
the inode being linked to is incremented. A reference to the new dentry is then
taken with dget() before instantiating the new dentry with d instantiate().
Unlinking updates the same inode statistics before decrementing the reference to
the dentry with dput(). dput() will also call iput(), which will clear up the inode
when its reference count hits zero.

Creating a directory will use shmem mkdir() to perform the task. It simply
uses shmem mknod() with the S IFDIR flag before incrementing the parent directory
inode’s i nlink counter. The function shmem rmdir() will delete a directory by first
ensuring it is empty with shmem empty(). If it is, the function then decrements the
parent directory inode’s i nlink count and calls shmem unlink() to remove the
requested directory.

12.7 Setting Up Shared Regions

A shared region is backed by a file created in shm. There are two cases where a new
file will be created: during the setup of a shared region with shmget() and when an
anonymous region is set up with mmap() with the MAP SHARED flag. Both functions
use the core function shmem file setup() to create a file.

Because the filesystem is internal, the names of the files created do not have
to be unique because the files are always located by inode, not name. There-
fore, shmem zero setup() (see Figure 12.5) always says to create a file called
dev/zero, which is how it shows up in the file /proc/pid/maps. Files created by
shmget() are called SYSVNN where the NN is the key that is passed as a parameter to
shmget().

The core function shmem file setup() simply creates a new dentry and inode,
fills in the relevant fields and instantiates them.

12.8 System V IPC

The full internals of the IPC implementation are beyond the scope of this book.
This section will focus just on the implementations of shmget() and shmat() and
how they are affected by the VM. The system call shmget() is implemented by
sys shmget(), shown in Figure 12.6. It performs basic checks to the parameters and
sets up the IPC-related data structures. To create the segment, it calls newseg().
This is the function that creates the file in shmfs with shmem file setup() as
discussed in the previous section.

The system call shmat() is implemented by sys shmat(). There is little re-
markable about the function. It acquires the appropriate descriptor and makes sure
all the parameters are valid before calling do mmap() to map the shared region into
the process address space. Only two points of note are in the function.

The first is that it is responsible for ensuring that VMAs will not overlap if the
caller specifies the address. The second is that the shp→shm nattch counter is
maintained by a vm operations struct() called shm vm ops. It registers open()
and close() callbacks called shm open() and shm close(), respectively. The
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shm close() callback is also responsible for destroyed shared regions if the SHM DEST
flag is specified and the shm nattch counter reaches zero.

12.9 What’s New in 2.6

The core concept and functionality of the filesystem remains the same, and the
changes are either optimizations or extensions to the filesystem’s functionality. If
the reader understands the 2.4 implementation well, the 2.6 implementation will
not present much trouble.1

A new field has been added to the shmem inode info called alloced. The
alloced field stores how many data pages are allocated to the file, which had to be
calculated on the fly in 2.4 based on inode→i blocks. It both saves a few clock
cycles on a common operation as well as makes the code a bit more readable.

The flags field now uses the VM ACCOUNT flag as well as the VM LOCKED flag. The
VM ACCOUNT, always set, means that the VM will carefully account for the amount
of memory used to make sure that allocations will not fail.

Extensions to the file operations are the ability to seek with the system call
llseek(), implemented by generic file llseek(), and to use sendfile() with

virtual files, implemented by shmem file sendfile(). An extension has been
added to the VMA operations to allow nonlinear mappings, implemented by
shmem populate().

The last major change is that the filesystem is responsible for the allo-
cation and destruction of its own inodes, which are two new callbacks in
struct super operations. It is simply implemented by the creation of a slab
cache called shmem inode cache. A constructor function init once() is registered
for the slab allocator to use for initializing each new inode.

1I find that saying “How hard could it possibly be” always helps.





CHAPTER 13

Out of Memory Management

The last aspect of the VM I am going to discuss is the Out Of Memory (OOM)
manager. This intentionally is a very short chapter because it has one simple task:
check if there is enough available memory to satisfy, verify that the system is truly
out of memory and, if so, select a process to kill. This is a controversial part of the
VM and it has been suggested that it be removed on many occasions. Regardless of
whether it exists in the latest kernel, it still is a useful system to examine because
it touches off a number of other subsystems.

13.1 Checking Available Memory

For certain operations, such as expanding the heap with brk() or remapping an
address space with mremap(), the system will check if there is enough available
memory to satisfy a request. Note that this is separate to the out of memory()
path that is covered in the next section. This path is used to avoid the system
being in a state of OOM if at all possible.

When checking available memory, the number of required pages is passed as a
parameter to vm enough memory(). Unless the system administrator has specified
that the system should overcommit memory, the amount of available memory will
be checked. To determine how many pages are potentially available, Linux sums up
the following bits of data:

Total page cache because page cache is easily reclaimed.

Total free pages because they are already available.

Total free swap pages because userspace pages may be paged out.

Total pages managed by swapper space However, this double-counts the free
swap pages. This is balanced by the fact that slots are sometimes reserved,
but not used.

Total pages used by the dentry cache because they are easily reclaimed.

Total pages used by the inode cache because they are easily reclaimed.

If the total number of pages added here is sufficient for the request,
vm enough memory() returns true to the caller. If false is returned, the caller knows
that the memory is not available and usually decides to return -ENOMEM to userspace.

209
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13.2 Determining OOM Status

When the machine is low on memory, old page frames will be reclaimed (see
Chapter 10), but, despite reclaiming pages, it may find that it was unable to free
enough pages to satisfy a request even when scanning at highest priority. If it
does fail to free page frames, out of memory() is called to see if the system is
out of memory and needs to kill a process. The function’s call graph is shown in
Figure 13.1.

out_of_memory

oom_kill

select_bad_process oom_kill_task

badness

int_sqrt

force_sig

force_sig_info

Figure 13.1. Call Graph: out of memory()

Unfortunately, it is possible that the system is not out of memory and simply
needs to wait for I/O to complete or for pages to be swapped to backing storage.
This is unfortunate, not because the system has memory, but because the function is
being called unnecessarily, which opens the possibly of processes being unnecessarily
killed. Before deciding to kill a process, it goes through the following checklist.

• Is there enough swap space left (nr swap pages > 0)? If yes, it is not OOM.

• Has it been more than 5 seconds since the last failure? If yes, it is not OOM.

• Have we failed within the last second? If no, it is not OOM.

• If there have not been 10 failures at least in the last 5 seconds, it is not OOM.

• Has a process been killed within the last 5 seconds? If yes, it is not OOM.

It is only if the previous tests are passed that oom kill() is called to select a
process to kill.
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13.3 Selecting a Process

The function select bad process() is responsible for choosing a process to kill.
It decides by stepping through each running task and calculating how suitable it is
for killing with the function badness(). The badness is calculated as follows. The
square roots are integer approximations calculated with int sqrt():

badness for task =
total vm for task

√
(cpu time in seconds) ∗ 4

√
(cpu time in minutes)

This has been chosen to select a process that is using a large amount of memory,
but is not that long lived. Processes that have been running a long time are unlikely
to be the cause of memory shortage, so this calculation is likely to select a process
that uses a lot of memory, but has not been running long. If the process is a root
process or has CAP SYS ADMIN capabilities, the points are divided by four because
it is assumed that root privilege processes are well behaved. Similarly, if it has
CAP SYS RAWIO capabilities (access to raw devices) privileges, the points are further
divided by four because it is undesirable to kill a process that has direct access to
hardware.

13.4 Killing the Selected Process

After a task is selected, the list is walked again, and each process that shares the
same mm struct as the selected process (i.e., they are threads) is sent a signal. If
the process has CAP SYS RAWIO capabilities, a SIGTERM is sent to give the process a
chance of exiting cleanly. Otherwise, a SIGKILL is sent.

13.5 Is That It?

Yes, that is it. OOM management touches a lot of subsystems, but, otherwise, there
is not much to it.

13.6 What’s New in 2.6

The majority of OOM management remains essentially the same for 2.6 except for
the introduction of VM-accounted objects. These are VMAs that are flagged with
the VM ACCOUNT flag, first mentioned in Section 4.8. Additional checks will be made
to ensure there is memory available when performing operations on VMAs with this
flag set. The principal incentive for this complexity is to avoid the need of an OOM
killer.

Some regions that always have the VM ACCOUNT flag set are the process stack, the
process heap, regions mmap()ed with MAP SHARED, private regions that are writable
and regions that set up shmget(). In other words, most userspace mappings have
the VM ACCOUNT flag set.

Linux accounts for the amount of memory that is committed to these VMAs with
vm acct memory(), which increments a variable called committed space. When the
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VMA is freed, the committed space is decremented with vm unacct memory(). This
is a fairly simple mechanism, but it allows Linux to remember how much memory
it has already committed to userspace when deciding if it should commit more.

The checks are performed by calling security vm enough memory(), which in-
troduces another new feature. A feature is available in 2.6 that allows security-
related kernel modules to override certain kernel functions. The full list of hooks
available is stored in a struct security operations called security ops. There
are a number of dummy, or default, functions that may be used, which are
all listed in security/dummy.c, but the majority do nothing except return. If
no security modules are loaded, the security operations struct used is called
dummy security ops, which uses all the default functions.

By default, security vm enough memory() calls dummy vm enough memory(),
which is declared in security/dummy.c and is very similar to 2.4’s
vm enough memory() function. The new version adds the following pieces of in-
formation together to determine available memory:

Total page cache because page cache is easily reclaimed.

Total free pages because they are already available.

Total free swap pages because userspace pages may be paged out.

Slab pages with SLAB RECLAIM ACCOUNT set because they are easily reclaimed.

These pages, minus a 3 percent reserve for root processes, is the total amount
of memory that is available for the request. If the memory is available, it makes
a check to ensure the total amount of committed memory does not exceed the
allowed threshold. The allowed threshold is TotalRam * (OverCommitRatio/100)
+ TotalSwapPage, where OverCommitRatio is set by the system administrator. If
the total amount of committed space is not too high, 1 will be returned so that the
allocation can proceed.



CHAPTER 14

The Final Word

Make no mistake, memory management is a large, complex and time-consuming field
to research and difficult to apply to practical implementations. Because it is very
difficult to model how systems behave in real multiprogrammed systems [CD80],
developers often rely on intuition to guide them, and examination of virtual memory
algorithms depends on simulations of specific workloads. Simulations are necessary
because modeling how scheduling, paging behavior and multiple processes interact
presents a considerable challenge. Page replacement policies, a field that has been
the focus of considerable amounts of research, is a good example because it is
only ever shown to work well for specified workloads. The problem of adjusting
algorithms and policies to different workloads is addressed by having administrators
tune systems as much as by research and algorithms.

The Linux kernel is also large, complex and fully understood by a relatively small
core group of people. Its development is the result of contributions of thousands of
programmers with a varying range of specialties, backgrounds and spare time. The
first implementations are developed based on the all-important foundation that
theory provides. Contributors built upon this framework with changes based on
real-world observations.

It has been asserted on the Linux Memory Management mailing list that the
VM is poorly documented and difficult to pick up because “the implementation is
a nightmare to follow”1 and the lack of documentation on practical VMs is not just
confined to Linux. Matt Dillon, one of the principal developers of the FreeBSD
VM2 and considered a “VM guru” stated in an interview3 that documentation can
be “hard to come by.” One of the principal difficulties with deciphering the im-
plementation is the fact that the developer must have a background in memory
management theory to see why implementation decisions were made because a pure
understanding of the code is insufficient for any purpose other than microoptimiza-
tions.

This book attempted to bridge the gap between memory management theory
and the practical implementation in Linux and to tie both fields together in a single
place. It tried to describe what life is like in Linux as a memory manager in a

1http://mail.nl.linux.org/linux-mm/2002-05/msg00035.html
2His past involvement with the Linux VM is evident from http://mail.nl.linux.org/linux-

mm/2000-05/msg00419.html.
3http://kerneltrap.com/node.php?id=8
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manner that was relatively independent of hardware architecture considerations. I
hope after reading this and progressing onto the code commentary that you, the
reader, feels a lot more comfortable with tackling the VM subsystem. As a final
parting shot, Figure 14.1 broadly illustrates how the subsystems I discussed in detail
interact with each other.

On a final personal note, I hope that this book encourages other people to
produce similar works for other areas of the kernel. I know I’ll buy them!





APPENDIX A

Introduction

Welcome to the code commentary section of the book. If you are reading this, you
are looking for a heavily detailed tour of the code. The commentary presumes you
have read the equivalent section in the main part of the book, so, if you just started
reading here, you’re probably in the wrong place.

Each appendix section corresponds to the order and structure of the book. The
order in which the functions are presented is the same order as displayed in the call
graphs that are referenced throughout the commentary. At the beginning of each
appendix and subsection, there is a mini table of contents to help navigate your
way through the commentary. The code coverage is not 100 percent, but all the
principal code patterns that are found throughout the VM are here. If the function
you are interested in is not commented on, find a function similar to it.

Some of the code has been reformatted slightly for presentation, but the actual
code is not changed. It is recommended that you use the companion CD while
reading the code commentary. In particular use LXR to browse through the source
code so that you get a feel for reading the code with and without the aid of the
commentary.

Good Luck!
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B.1 Initializing Zones

Contents
B.1 Initializing Zones 220

B.1.1 Function: setup memory() 220
B.1.2 Function: zone sizes init() 223
B.1.3 Function: free area init() 224
B.1.4 Function: free area init node() 224
B.1.5 Function: free area init core() 226
B.1.6 Function: build zonelists() 232

B.1.1 Function: setup memory() (arch/i386/kernel/setup.c)
The call graph for this function is shown in Figure 2.3. This function gets the

necessary information to give to the boot memory allocator to initialize itself. It is
broken up into a number of different tasks.

• Find the start and ending PFN for low memory (min low pfn, max low pfn),
the start and end PFN for high memory (highstart pfn, highend pfn) and
the PFN for the last page in the system (max pfn).

• Initialize the bootmem data structure and declare which pages may be used
by the boot memory allocator.

• Mark all pages usable by the system as free, and then reserve the pages used
by the bitmap representing the pages.

• Reserve pages used by the SMP config or the initrd image if one exists.

991 static unsigned long __init setup_memory(void)
992 {
993 unsigned long bootmap_size, start_pfn, max_low_pfn;
994
995 /*
996 * partially used pages are not usable - thus
997 * we are rounding upwards:
998 */
999 start_pfn = PFN_UP(__pa(&_end));
1000
1001 find_max_pfn();
1002
1003 max_low_pfn = find_max_low_pfn();
1004
1005 #ifdef CONFIG_HIGHMEM
1006 highstart_pfn = highend_pfn = max_pfn;
1007 if (max_pfn > max_low_pfn) {
1008 highstart_pfn = max_low_pfn;
1009 }



B.1. Initializing Zones 221

1010 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
1011 pages_to_mb(highend_pfn - highstart_pfn));
1012 #endif
1013 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
1014 pages_to_mb(max_low_pfn));

999 PFN UP() takes a physical address, rounds it up to the next page and returns
the page frame number. end is the address of the end of the loaded kernel
image, so start pfn is now the offset of the first physical page frame that
may be used.

1001 find max pfn() loops through the e820 map searching for the highest avail-
able PFN.

1003 find max low pfn() finds the highest page frame addressable in
ZONE NORMAL.

1005-1011 If high memory is enabled, start with a high memory region of 0. If it
turns out memory is available after max low pfn, put the start of high memory
(highstart pfn) there and the end of high memory at max pfn. Print out an
informational message on the availability of high memory.

1013-1014 Print out an informational message on the amount of low memory.

1018 bootmap_size = init_bootmem(start_pfn, max_low_pfn);
1019
1020 register_bootmem_low_pages(max_low_pfn);
1021
1028 reserve_bootmem(HIGH_MEMORY, (PFN_PHYS(start_pfn) +
1029 bootmap_size + PAGE_SIZE-1) - (HIGH_MEMORY));
1030
1035 reserve_bootmem(0, PAGE_SIZE);
1036
1037 #ifdef CONFIG_SMP
1043 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);
1044 #endif
1045 #ifdef CONFIG_ACPI_SLEEP
1046 /*
1047 * Reserve low memory region for sleep support.
1048 */
1049 acpi_reserve_bootmem();
1050 #endif

1018 init bootmem()(See Section E.1.1) initializes the bootmem data struct for
the config page data node. It sets where physical memory begins and ends
for the node, allocates a bitmap representing the pages and sets all pages as
reserved initially.
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1020 register bootmem low pages() reads the e820 map and calls free
bootmem() (See Section E.3.1) for all usable pages in the running system.
This marks the pages as reserved during initialization as free.

1028-1029 Reserve the pages that are being used to store the bitmap representing
the pages.

1035 Reserves page 0 because it is often a special page used by the BIOS.

1043 Reserves an extra page that is required by the trampoline code. The tram-
poline code deals with how userspace enters kernel space.

1045-1050 If sleep support is added, reserve memory is required for it. This is
only of interest to laptops interested in suspending and is beyond the scope
of this book.

1051 #ifdef CONFIG_X86_LOCAL_APIC
1052 /*
1053 * Find and reserve possible boot-time SMP configuration:
1054 */
1055 find_smp_config();
1056 #endif
1057 #ifdef CONFIG_BLK_DEV_INITRD
1058 if (LOADER_TYPE && INITRD_START) {
1059 if (INITRD_START + INITRD_SIZE <=

(max_low_pfn << PAGE_SHIFT)) {
1060 reserve_bootmem(INITRD_START, INITRD_SIZE);
1061 initrd_start =
1062 INITRD_START? INITRD_START + PAGE_OFFSET : 0;
1063 initrd_end = initrd_start+INITRD_SIZE;
1064 }
1065 else {
1066 printk(KERN_ERR

"initrd extends beyond end of memory "
1067 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
1068 INITRD_START + INITRD_SIZE,
1069 max_low_pfn << PAGE_SHIFT);
1070 initrd_start = 0;
1071 }
1072 }
1073 #endif
1074
1075 return max_low_pfn;
1076 }

1055 This function reserves memory that stores config information about the SMP
setup.
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1057-1073 If initrd is enabled, the memory containing its image will be reserved.
initrd provides a tiny filesystem image, which is used to boot the system.

1075 Returns the upper limit of addressable memory in ZONE NORMAL.

B.1.2 Function: zone sizes init() (arch/i386/mm/init.c)
This is the top-level function that is used to initialize each of the zones. The size

of the zones in PFNs was discovered during setup memory() (See Section B.1.1).
This function populates an array of zone sizes for passing to free area init().

323 static void __init zone_sizes_init(void)
324 {
325 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
326 unsigned int max_dma, high, low;
327
328 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS)>>PAGE_SHIFT;
329 low = max_low_pfn;
330 high = highend_pfn;
331
332 if (low < max_dma)
333 zones_size[ZONE_DMA] = low;
334 else {
335 zones_size[ZONE_DMA] = max_dma;
336 zones_size[ZONE_NORMAL] = low - max_dma;
337 #ifdef CONFIG_HIGHMEM
338 zones_size[ZONE_HIGHMEM] = high - low;
339 #endif
340 }
341 free_area_init(zones_size);
342 }

325 Initializes the sizes to 0.

328 Calculates the PFN for the maximum possible DMA address. This doubles
as the largest number of pages that may exist in ZONE DMA.

329 max low pfn is the highest PFN available to ZONE NORMAL.

330 highend pfn is the highest PFN available to ZONE HIGHMEM.

332-333 If the highest PFN in ZONE NORMAL is below MAX DMA ADDRESS, just set
the size of ZONE DMA to it. The other zones remain at 0.

335 Sets the number of pages in ZONE DMA.

336 The size of ZONE NORMAL is max low pfn minus the number of pages in
ZONE DMA.

338 The size of ZONE HIGHMEM is the highest possible PFN minus the highest
possible PFN in ZONE NORMAL (max low pfn).
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B.1.3 Function: free area init() (mm/page alloc.c)
This is the architecture-independent function for setting up a UMA architecture.

It simply calls the core function passing the static contig page data as the node.
NUMA architectures will use free area init node() instead.

838 void __init free_area_init(unsigned long *zones_size)
839 {
840 free_area_init_core(0, &contig_page_data, &mem_map,

zones_size, 0, 0, 0);
841 }

838 The parameters passed to free area init core() are the following:

• 0 is the Node Identifier (NID) for the node, which is 0.

• contig page data is the static global pg data t.

• mem map is the global mem map used for tracking struct pages. The
function free area init core() will allocate memory for this array.

• zones sizes is the array of zone sizes filled by zone sizes init().

• 0 This zero is the starting physical address.

• 0 The second zero is an array of memory hole sizes that does not apply
to UMA architectures.

• 0 The last 0 is a pointer to a local mem map for this node that is used by
NUMA architectures.

B.1.4 Function: free area init node() (mm/numa.c)
This function has two versions. The first is almost identical to free area init()

except that it uses a different starting physical address. This function is also for
architectures that have only one node (so they use contig page data), but their
physical address is not at 0.

This version of the function, called after the pagetable initialization, is for ini-
tialization of each pgdat in the system. The callers have the option of allocating
their own local portion of the mem map and passing it in as a parameter if they
want to optimize its location for the architecture. If they choose not to, it will be
allocated later by free area init core().

61 void __init free_area_init_node(int nid,
pg_data_t *pgdat, struct page *pmap,

62 unsigned long *zones_size, unsigned long zone_start_paddr,
63 unsigned long *zholes_size)
64 {
65 int i, size = 0;
66 struct page *discard;
67
68 if (mem_map == (mem_map_t *)NULL)
69 mem_map = (mem_map_t *)PAGE_OFFSET;
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70
71 free_area_init_core(nid, pgdat, &discard, zones_size,

zone_start_paddr,
72 zholes_size, pmap);
73 pgdat->node_id = nid;
74
75 /*
76 * Get space for the valid bitmap.
77 */
78 for (i = 0; i < MAX_NR_ZONES; i++)
79 size += zones_size[i];
80 size = LONG_ALIGN((size + 7) >> 3);
81 pgdat->valid_addr_bitmap =

(unsigned long *)alloc_bootmem_node(pgdat, size);
82 memset(pgdat->valid_addr_bitmap, 0, size);
83 }

61 The parameters to the function are the following:

• nid is the NID of the pgdat passed in.

• pgdat is the node to be initialized.

• pmap is a pointer to the portion of the mem map for this node to use,
which is frequently passed as NULL and allocated later.

• zones size is an array of zone sizes in this node.

• zone start paddr is the starting physical address for the node.

• zholes size is an array of hole sizes in each zone.

68-69 If the global mem map has not been set, set it to the beginning of the kernel
portion of the linear address space. Remember that, with NUMA, mem map is
a virtual array with portions filled in by local maps used by each node.

71 Calls free area init core(). Note that discard is passed in as the third
parameter because global mem map does not need to be set for NUMA.

73 Records the pgdat’s NID.

78-79 Calculates the total size of the NID.

80 Recalculates size as the number of bits required to have one bit for every byte
of the size.

81 Allocates a bitmap to represent where valid areas exist in the node. In reality,
this is only used by the Sparc architecture, so it is unfortunate to waste the
memory for every other architecture.

82 Initially, all areas are invalid. Valid regions are marked later in the mem init()
functions for the Sparc. Other architectures just ignore the bitmap.
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B.1.5 Function: free area init core() (mm/page alloc.c)
This function is responsible for initializing all zones and allocating their local

lmem map within a node. In UMA architectures, this function is called in a way
that will initialize the global mem map array. In NUMA architectures, the array is
treated as a virtual array that is sparsely populated.

684 void __init free_area_init_core(int nid,
pg_data_t *pgdat, struct page **gmap,

685 unsigned long *zones_size, unsigned long zone_start_paddr,
686 unsigned long *zholes_size, struct page *lmem_map)
687 {
688 unsigned long i, j;
689 unsigned long map_size;
690 unsigned long totalpages, offset, realtotalpages;
691 const unsigned long zone_required_alignment =

1UL << (MAX_ORDER-1);
692
693 if (zone_start_paddr & ~PAGE_MASK)
694 BUG();
695
696 totalpages = 0;
697 for (i = 0; i < MAX_NR_ZONES; i++) {
698 unsigned long size = zones_size[i];
699 totalpages += size;
700 }
701 realtotalpages = totalpages;
702 if (zholes_size)
703 for (i = 0; i < MAX_NR_ZONES; i++)
704 realtotalpages -= zholes_size[i];
705
706 printk("On node %d totalpages: %lu\n", nid, realtotalpages);

This block is mainly responsible for calculating the size of each zone.

691 The zone must be aligned against the maximum-sized block that can be allo-
cated by the buddy allocator for bitwise operations to work.

693-694 It is a bug if the physical address is not page aligned.

696 Initializes the totalpages count for this node to 0.

697-700 Calculates the total size of the node by iterating through zone sizes.

701-704 Calculates the real amount of memory by subtracting the size of the holes
in zholes size.

706 Prints an informational message for the user on how much memory is available
in this node.
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708 /*
709 * Some architectures (with lots of mem and discontinous memory
710 * maps) have to search for a good mem_map area:
711 * For discontigmem, the conceptual mem map array starts from
712 * PAGE_OFFSET, we need to align the actual array onto a mem map
713 * boundary, so that MAP_NR works.
714 */
715 map_size = (totalpages + 1)*sizeof(struct page);
716 if (lmem_map == (struct page *)0) {
717 lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size);
718 lmem_map = (struct page *)(PAGE_OFFSET +
719 MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));
720 }
721 *gmap = pgdat->node_mem_map = lmem_map;
722 pgdat->node_size = totalpages;
723 pgdat->node_start_paddr = zone_start_paddr;
724 pgdat->node_start_mapnr = (lmem_map - mem_map);
725 pgdat->nr_zones = 0;
726
727 offset = lmem_map - mem_map;

This block allocates the local lmem map if necessary and sets the gmap. In UMA
architectures, gmap is actually mem map, so this is where the memory for it is allo-
cated.

715 Calculates the amount of memory required for the array. It is the total number
of pages multiplied by the size of a struct page.

716 If the map has not already been allocated, this allocates it.

717 Allocates the memory from the boot memory allocator.

718 MAP ALIGN() will align the array on a struct page-sized boundary for cal-
culations that locate offsets within the mem map based on the physical address
with the MAP NR() macro.

721 Sets the gmap and pgdat→node mem map variables to the allocated lmem map.
In UMA architectures, this just sets mem map.

722 Records the size of the node.

723 Records the starting physical address.

724 Records what the offset is within mem map that this node occupies.

725 Initializes the zone count to 0. This will be set later in the function.

727 offset is now the offset within mem map that the local portion lmem map begins
at.
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728 for (j = 0; j < MAX_NR_ZONES; j++) {
729 zone_t *zone = pgdat->node_zones + j;
730 unsigned long mask;
731 unsigned long size, realsize;
732
733 zone_table[nid * MAX_NR_ZONES + j] = zone;
734 realsize = size = zones_size[j];
735 if (zholes_size)
736 realsize -= zholes_size[j];
737
738 printk("zone(%lu): %lu pages.\n", j, size);
739 zone->size = size;
740 zone->name = zone_names[j];
741 zone->lock = SPIN_LOCK_UNLOCKED;
742 zone->zone_pgdat = pgdat;
743 zone->free_pages = 0;
744 zone->need_balance = 0;
745 if (!size)
746 continue;

This block starts a loop that initializes every zone t within the node. The
initialization starts with the setting of the simpler fields that values already exist
for.

728 Loops through all zones in the node.

733 Records a pointer to this zone in the zone table. See Section 2.6.

734-736 Calculates the real size of the zone based on the full size in zones size
minus the size of the holes in zholes size.

738 Prints an informational message saying how many pages are in this zone.

739 Records the size of the zone.

740 zone names is the string name of the zone for printing purposes.

741-744 Initializes some other fields for the zone such as its parent pgdat.

745-746 If the zone has no memory, this continues to the next zone because
nothing further is required.

752 zone->wait_table_size = wait_table_size(size);
753 zone->wait_table_shift =
754 BITS_PER_LONG - wait_table_bits(zone->wait_table_size);
755 zone->wait_table = (wait_queue_head_t *)
756 alloc_bootmem_node(pgdat, zone->wait_table_size
757 * sizeof(wait_queue_head_t));
758
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759 for(i = 0; i < zone->wait_table_size; ++i)
760 init_waitqueue_head(zone->wait_table + i);

This block initializes the waitqueue for this zone. Processes waiting on pages
in the zone use this hashed table to select a queue to wait on. This means that all
processes waiting in a zone will not have to be woken when a page is unlocked, just
a smaller subset.

752 wait table size() calculates the size of the table to use based on the number
of pages in the zone and the desired ratio between the number of queues and
the number of pages. The table will never be larger than 4KiB.

753-754 Calculates the shift for the hashing algorithm.

755 Allocates a table of wait queue head t that can hold zone→wait table size
entries.

759-760 Initializes all of the wait queues.

762 pgdat->nr_zones = j+1;
763
764 mask = (realsize / zone_balance_ratio[j]);
765 if (mask < zone_balance_min[j])
766 mask = zone_balance_min[j];
767 else if (mask > zone_balance_max[j])
768 mask = zone_balance_max[j];
769 zone->pages_min = mask;
770 zone->pages_low = mask*2;
771 zone->pages_high = mask*3;
772
773 zone->zone_mem_map = mem_map + offset;
774 zone->zone_start_mapnr = offset;
775 zone->zone_start_paddr = zone_start_paddr;
776
777 if ((zone_start_paddr >> PAGE_SHIFT) &

(zone_required_alignment-1))
778 printk("BUG: wrong zone alignment, it will crash\n");
779

This block calculates the watermarks for the zone and records the location of
the zone. The watermarks are calculated as ratios of the zone size.

762 First, as a new zone becomes active, this updates the number of zones in this
node.

764 Calculates the mask (which will be used as the pages min watermark) as the
size of the zone divided by the balance ratio for this zone. The balance ratio
is 128 for all zones as declared at the top of mm/page alloc.c.
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765-766 The zone balance min ratios are 20 for all zones, which means that
pages min will never be below 20.

767-768 Similarly, the zone balance max ratios are all 255, so pages min will
never be over 255.

769 pages min is set to mask.

770 pages low is twice the number of pages as pages min.

771 pages high is three times the number of pages as pages min.

773 Records where the first struct page for this zone is located within mem map.

774 Records the index within mem map that this zone begins at.

775 Records the starting physical address.

777-778 Ensures that the zone is correctly aligned for use with the buddy allo-
cator. Otherwise, the bitwise operations used for the buddy allocator will
break.

780 /*
781 * Initially all pages are reserved - free ones are freed
782 * up by free_all_bootmem() once the early boot process is
783 * done. Non-atomic initialization, single-pass.
784 */
785 for (i = 0; i < size; i++) {
786 struct page *page = mem_map + offset + i;
787 set_page_zone(page, nid * MAX_NR_ZONES + j);
788 set_page_count(page, 0);
789 SetPageReserved(page);
790 INIT_LIST_HEAD(&page->list);
791 if (j != ZONE_HIGHMEM)
792 set_page_address(page, __va(zone_start_paddr));
793 zone_start_paddr += PAGE_SIZE;
794 }
795

785-794 Initially, all pages in the zone are marked as reserved because there is no
way to know which ones are in use by the boot memory allocator. When the
boot memory allocator is retiring in free all bootmem(), the unused pages
will have their PG reserved bit cleared.

786 Gets the page for this offset.

787 The zone the page belongs to is encoded with the page flags. See Section 2.6.

788 Sets the count to 0 because no one is using it.
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789 Sets the reserved flag. Later, the boot memory allocator will clear this bit if
the page is no longer in use.

790 Initializes the list head for the page.

791-792 Sets the page→virtual field if it is available and the page is in low
memory.

793 Increments zone start paddr by a page size because this variable will be
used to record the beginning of the next zone.

796 offset += size;
797 for (i = 0; ; i++) {
798 unsigned long bitmap_size;
799
800 INIT_LIST_HEAD(&zone->free_area[i].free_list);
801 if (i == MAX_ORDER-1) {
802 zone->free_area[i].map = NULL;
803 break;
804 }
805
829 bitmap_size = (size-1) >> (i+4);
830 bitmap_size = LONG_ALIGN(bitmap_size+1);
831 zone->free_area[i].map =
832 (unsigned long *) alloc_bootmem_node(pgdat,

bitmap_size);
833 }
834 }
835 build_zonelists(pgdat);
836 }

This block initializes the free lists for the zone and allocates the bitmap used by
the buddy allocator to record the state of page buddies.

797 This will loop from 0 to MAX ORDER-1.

800 Initializes the linked list for the free list of the current order i.

801-804 If this is the last order, this sets the free area map to NULL because this
is what marks the end of the free lists.

829 Calculates the bitmap size to be the number of bytes required to hold a
bitmap where each bit represents a pair of buddies that are 2i number of
pages.

830 Aligns the size to a long with LONG ALIGN() because all bitwise operations
are on longs.

831-832 Allocates the memory for the map.
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834 Loops back to move to the next zone.

835 Builds the zone fallback lists for this node with build zonelists().

B.1.6 Function: build zonelists() (mm/page alloc.c)
This function builds the list of fallback zones for each zone in the requested node.

This is for when an allocation cannot be satisfied and another zone is consulted.
When this consultation is finished, allocations from ZONE HIGHMEM will fall back to
ZONE NORMAL. Allocations from ZONE NORMAL will fall back to ZONE DMA, which in
turn has nothing to fall back on.

589 static inline void build_zonelists(pg_data_t *pgdat)
590 {
591 int i, j, k;
592
593 for (i = 0; i <= GFP_ZONEMASK; i++) {
594 zonelist_t *zonelist;
595 zone_t *zone;
596
597 zonelist = pgdat->node_zonelists + i;
598 memset(zonelist, 0, sizeof(*zonelist));
599
600 j = 0;
601 k = ZONE_NORMAL;
602 if (i & __GFP_HIGHMEM)
603 k = ZONE_HIGHMEM;
604 if (i & __GFP_DMA)
605 k = ZONE_DMA;
606
607 switch (k) {
608 default:
609 BUG();
610 /*
611 * fallthrough:
612 */
613 case ZONE_HIGHMEM:
614 zone = pgdat->node_zones + ZONE_HIGHMEM;
615 if (zone->size) {
616 #ifndef CONFIG_HIGHMEM
617 BUG();
618 #endif
619 zonelist->zones[j++] = zone;
620 }
621 case ZONE_NORMAL:
622 zone = pgdat->node_zones + ZONE_NORMAL;
623 if (zone->size)
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624 zonelist->zones[j++] = zone;
625 case ZONE_DMA:
626 zone = pgdat->node_zones + ZONE_DMA;
627 if (zone->size)
628 zonelist->zones[j++] = zone;
629 }
630 zonelist->zones[j++] = NULL;
631 }
632 }

593 Looks through the maximum possible number of zones.

597 Gets the zonelist for this zone and zeros it.

600 Starts j at 0, which corresponds to ZONE DMA.

601-605 Sets k to be the type of zone currently being examined.

614 Gets the ZONE HIGHMEM.

615-620 If the zone has memory, ZONE HIGHMEM is the preferred zone to allo-
cate from for high memory allocations. If ZONE HIGHMEM has no memory,
ZONE NORMAL will become the preferred zone when the next case is fallen
through to because j is not incremented for an empty zone.

621-624 Sets the next preferred zone to allocate from to be ZONE NORMAL. Again,
do not use it if the zone has no memory.

626-628 Sets the final fallback zone to be ZONE DMA. The check is still made for
ZONE DMA having memory. Like NUMA architecture, not all nodes will have a
ZONE DMA.
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B.2 Page Operations
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B.2.1 Locking Pages

B.2.1.1 Function: lock page() (mm/filemap.c)
This function tries to lock a page. If the page cannot be locked, it will cause the

process to sleep until the page is available.

921 void lock_page(struct page *page)
922 {
923 if (TryLockPage(page))
924 __lock_page(page);
925 }

923 TryLockPage() is just a wrapper around test and set bit() for the
PG locked bit in page→flags. If the bit was previously clear, the function
returns immediately because the page is now locked.

924 Otherwise, lock page() is called (See Section B.2.1.2) to put the process
to sleep.

B.2.1.2 Function: lock page() (mm/filemap.c)
This is called after a TryLockPage() failed. It will locate the waitqueue for this

page and sleep on it until the lock can be acquired.

897 static void __lock_page(struct page *page)
898 {
899 wait_queue_head_t *waitqueue = page_waitqueue(page);
900 struct task_struct *tsk = current;
901 DECLARE_WAITQUEUE(wait, tsk);
902
903 add_wait_queue_exclusive(waitqueue, &wait);
904 for (;;) {
905 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
906 if (PageLocked(page)) {
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907 sync_page(page);
908 schedule();
909 }
910 if (!TryLockPage(page))
911 break;
912 }
913 __set_task_state(tsk, TASK_RUNNING);
914 remove_wait_queue(waitqueue, &wait);
915 }

899 page waitqueue() is the implementation of the hash algorithm that deter-
mines which wait queue this page belongs to in the table zone→wait table.

900-901 Initializes the waitqueue for this task.

903 Adds this process to the waitqueue returned by page waitqueue().

904-912 Loops here until the lock is acquired.

905 Sets the process states as being in uninterruptible sleep. When schedule()
is called, the process will be put to sleep and will not wake again until the
queue is explicitly woken up.

906 If the page is still locked, this calls the sync page() function to schedule the
page to be synchronized with its backing storage. It calls schedule() to sleep
until the queue is woken up, such as when the I/O on the page completes.

910-911 Try and lock the page again. If we succeed, exit the loop, otherwise sleep
on the queue again.

913-914 The lock is now acquired, so this sets the process state to TASK RUNNING
and removes it from the wait queue. The function now returns with the lock
acquired.

B.2.1.3 Function: sync page() (mm/filemap.c)
This calls the filesystem-specific sync page() to synchronize the page with its

backing storage.

140 static inline int sync_page(struct page *page)
141 {
142 struct address_space *mapping = page->mapping;
143
144 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
145 return mapping->a_ops->sync_page(page);
146 return 0;
147 }

142 Gets the address space for the page if it exists.

144-145 If a backing exists, and it has an associated address space operations,
which provides a sync page() function, this calls it.
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B.2.2 Unlocking Pages

B.2.2.1 Function: unlock page() (mm/filemap.c)
This function unlocks a page and wakes up any processes that may be waiting

on it.

874 void unlock_page(struct page *page)
875 {
876 wait_queue_head_t *waitqueue = page_waitqueue(page);
877 ClearPageLaunder(page);
878 smp_mb__before_clear_bit();
879 if (!test_and_clear_bit(PG_locked, &(page)->flags))
880 BUG();
881 smp_mb__after_clear_bit();
882
883 /*
884 * Although the default semantics of wake_up() are
885 * to wake all, here the specific function is used
886 * to make it even more explicit that a number of
887 * pages are being waited on here.
888 */
889 if (waitqueue_active(waitqueue))
890 wake_up_all(waitqueue);
891 }

876 page waitqueue() is the implementation of the hash algorithm, which deter-
mines which wait queue this page belongs to in the table zone→wait table.

877 Clears the launder bit because I/O has now completed on the page.

878 This is a memory block operation that must be called before performing bit
operations that may be seen by multiple processors.

879-880 Clears the PG locked bit. It is a BUG() if the bit was already cleared.

881 Completes the SMP memory block operation.

889-890 If there are processes waiting on the page queue for this page, this wakes
them.

B.2.3 Waiting on Pages

B.2.3.1 Function: wait on page() (include/linux/pagemap.h)

94 static inline void wait_on_page(struct page * page)
95 {
96 if (PageLocked(page))
97 ___wait_on_page(page);
98 }
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96-97 If the page is currently locked, this calls wait on page() to sleep until
it is unlocked.

B.2.3.2 Function: wait on page() (mm/filemap.c)
This function is called after PageLocked() has been used to determine that the

page is locked. The calling process will probably sleep until the page is unlocked.

849 void ___wait_on_page(struct page *page)
850 {
851 wait_queue_head_t *waitqueue = page_waitqueue(page);
852 struct task_struct *tsk = current;
853 DECLARE_WAITQUEUE(wait, tsk);
854
855 add_wait_queue(waitqueue, &wait);
856 do {
857 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
858 if (!PageLocked(page))
859 break;
860 sync_page(page);
861 schedule();
862 } while (PageLocked(page));
863 __set_task_state(tsk, TASK_RUNNING);
864 remove_wait_queue(waitqueue, &wait);
865 }

851 page waitqueue() is the implementation of the hash algorithm that deter-
mines which wait queue this page belongs to in the table zone→wait table.

852-853 Initializes the waitqueue for the current task.

855 Adds this task to the waitqueue returned by page waitqueue().

857 Sets the process state to be in uninterruptible sleep. When schedule() is
called, the process will sleep.

858-859 Checks to make sure the page was not unlocked since the last check.

860 Calls sync page()(See Section B.2.1.3) to call the filesystem-specific function
to synchronize the page with its backing storage.

861 Calls schedule() to go to sleep. The process will be woken when the page is
unlocked.

862 Checks if the page is still locked. Remember that multiple pages could be
using this wait queue, and there could be processes sleeping that want to lock
this page.

863-864 The page has been unlocked. It sets the process to be in the
TASK RUNNING state and removes the process from the waitqueue.
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C.1 Page Table Initialization
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C.1.1 Function: paging init() (arch/i386/mm/init.c)
This is the top-level function called from setup arch(). When this function

returns, the page tables have been fully set up. Be aware that this is all x86
specific.

351 void __init paging_init(void)
352 {
353 pagetable_init();
354
355 load_cr3(swapper_pg_dir);
356
357 #if CONFIG_X86_PAE
362 if (cpu_has_pae)
363 set_in_cr4(X86_CR4_PAE);
364 #endif
365
366 __flush_tlb_all();
367
368 #ifdef CONFIG_HIGHMEM
369 kmap_init();
370 #endif
371 zone_sizes_init();
372 }

353 pagetable init() is responsible for setting up a static page table using
swapper pg dir as the PGD.

355 Loads the initialized swapper pg dir into the CR3 register so that the CPU
will be able to use it.

362-363 If PAE is enabled, this sets the appropriate bit in the CR4 register.

366 Flushes all TLBs, including the global kernel ones.

369 kmap init() initializes the region of pagetables reserved for use with kmap().

371 zone sizes init() (See Section B.1.2) records the size of each of the zones
before calling free area init() (See Section B.1.3) to initialize each zone.
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C.1.2 Function: pagetable init() (arch/i386/mm/init.c)
This function is responsible for statically initializing a pagetable starting with

a statically defined PGD called swapper pg dir. At the very least, a PTE will be
available that points to every page frame in ZONE NORMAL.

205 static void __init pagetable_init (void)
206 {
207 unsigned long vaddr, end;
208 pgd_t *pgd, *pgd_base;
209 int i, j, k;
210 pmd_t *pmd;
211 pte_t *pte, *pte_base;
212
213 /*
214 * This can be zero as well - no problem, in that case we exit
215 * the loops anyway due to the PTRS_PER_* conditions.
216 */
217 end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);
218
219 pgd_base = swapper_pg_dir;
220 #if CONFIG_X86_PAE
221 for (i = 0; i < PTRS_PER_PGD; i++)
222 set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));
223 #endif
224 i = __pgd_offset(PAGE_OFFSET);
225 pgd = pgd_base + i;

This first block initializes the PGD. It does this by pointing each entry to the
global zero page. Entries needed to reference available memory in ZONE NORMAL will
be allocated later.

217 The variable end marks the end of physical memory in ZONE NORMAL.

219 pgd base is set to the beginning of the statically declared PGD.

220-223 If PAE is enabled, it is insufficient to leave each entry simply as 0 (which,
in effect, points each entry to the global zero page) because each pgd t is a
struct. Instead, set pgd must be called for each pgd t to point the entry to
the global zero page.

224 i is initialized as the offset within the PGD that corresponds to PAGE OFFSET.
In other words, this function will only be initializing the kernel portion of the
linear address space. The userspace portion is left alone.

225 pgd is initialized to the pgd t corresponding to the beginning of the kernel
portion of the linear address space.
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227 for (; i < PTRS_PER_PGD; pgd++, i++) {
228 vaddr = i*PGDIR_SIZE;
229 if (end && (vaddr >= end))
230 break;
231 #if CONFIG_X86_PAE
232 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
233 set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
234 #else
235 pmd = (pmd_t *)pgd;
236 #endif
237 if (pmd != pmd_offset(pgd, 0))
238 BUG();

This loop begins setting up valid PMD entries to point to. In the PAE case, pages
are allocated with alloc bootmem low pages(), and the PGD is set appropriately.
Without PAE, there is no middle directory, so it is just folded back onto the PGD
to preserve the illusion of a three-level pagetable.

227 i is already initialized to the beginning of the kernel portion of the linear
address space, so this keeps looping until the last pgd t at PTRS PER PGD is
reached.

228 Calculates the virtual address for this PGD.

229-230 If the end of ZONE NORMAL is reached, this exits the loop because further
pagetable entries are not needed.

231-234 If PAE is enabled, this allocates a page for the PMD and inserts the page
into the pagetable with set pgd().

235 If PAE is not available, just set pmd to the current pgd t. This is the “folding
back” trick for emulating three-level pagetables.

237-238 This is a sanity check to make sure the PMD is valid.

239 for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {
240 vaddr = i*PGDIR_SIZE + j*PMD_SIZE;
241 if (end && (vaddr >= end))
242 break;
243 if (cpu_has_pse) {
244 unsigned long __pe;
245
246 set_in_cr4(X86_CR4_PSE);
247 boot_cpu_data.wp_works_ok = 1;
248 __pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);
249 /* Make it "global" too if supported */
250 if (cpu_has_pge) {
251 set_in_cr4(X86_CR4_PGE);
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252 __pe += _PAGE_GLOBAL;
253 }
254 set_pmd(pmd, __pmd(__pe));
255 continue;
256 }
257
258 pte_base = pte =

(pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
259

This block initializes each entry in the PMD. This loop will only execute if PAE
is enabled. Remember that, without PAE, PTRS PER PMD is 1.

240 Calculates the virtual address for this PMD.

241-242 If the end of ZONE NORMAL is reached, this finishes.

243-248 If the CPU supports PSE, use large TLB entries. This means that, for
kernel pages, a TLB entry will map 4MiB instead of the normal 4KiB, and
the third level of PTEs is unnecessary.

258 pe is set as the flags for a kernel pagetable ( KERNPG TABLE), as the flag
to indicate that this is an entry mapping 4MiB ( PAGE PSE) and then to the
physical address for this virtual address with pa(). This means that 4MiB
of physical memory is not being mapped by the pagetables.

250-253 If the CPU supports PGE, then set it for this page table entry. This
marks the entry as being global and visible to all processes.

254-255 Because the third level is not required because of PSE, set the PMD now
with set pmd() and continue to the next PMD.

258 If not, PSE is not supported, and PTEs are required, so allocate a page for
them.

260 for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
261 vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
262 if (end && (vaddr >= end))
263 break;
264 *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
265 }
266 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
267 if (pte_base != pte_offset(pmd, 0))
268 BUG();
269
270 }
271 }

This block initializes the PTEs.
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260-265 For each pte t, calculate the virtual address currently being examined
and create a PTE that points to the appropriate physical page frame.

266 The PTEs have been initialized, so set the PMD to point to the page
containing them.

267-268 Makes sure that the entry was established correctly.

273 /*
274 * Fixed mappings, only the page table structure has to be
275 * created - mappings will be set by set_fixmap():
276 */
277 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
278 fixrange_init(vaddr, 0, pgd_base);
279
280 #if CONFIG_HIGHMEM
281 /*
282 * Permanent kmaps:
283 */
284 vaddr = PKMAP_BASE;
285 fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
286
287 pgd = swapper_pg_dir + __pgd_offset(vaddr);
288 pmd = pmd_offset(pgd, vaddr);
289 pte = pte_offset(pmd, vaddr);
290 pkmap_page_table = pte;
291 #endif
292
293 #if CONFIG_X86_PAE
294 /*
295 * Add low memory identity-mappings - SMP needs it when
296 * starting up on an AP from real-mode. In the non-PAE
297 * case we already have these mappings through head.S.
298 * All user-space mappings are explicitly cleared after
299 * SMP startup.
300 */
301 pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];
302 #endif
303 }

At this point, pagetable entries have been set up that reference all parts of
ZONE NORMAL. The remaining regions needed are those for fixed mappings and those
needed for mapping high memory pages with kmap().

277 The fixed address space is considered to start at FIXADDR TOP and to finish
earlier in the address space. fix to virt() takes an index as a parameter
and returns the index’th pageframe backward (starting from FIXADDR TOP)
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within the fixed virtual address space. end of fixed addresses is the last
index used by the fixed virtual address space. In other words, this line returns
the virtual address of the PMD that corresponds to the beginning of the fixed
virtual address space.

278 By passing 0 as the end to fixrange init(), the function will start at vaddr
and build valid PGDs and PMDs until the end of the virtual address space.
PTEs are not needed for these addresses.

280-291 Sets up pagetables for use with kmap().

287-290 Gets the PTE corresponding to the beginning of the region for use with
kmap().

301 This sets up a temporary identity mapping between the virtual address 0 and
the physical address 0.

C.1.3 Function: fixrange init() (arch/i386/mm/init.c)
This function creates valid PGDs and PMDs for fixed virtual address mappings.

167 static void __init fixrange_init (unsigned long start,
unsigned long end,
pgd_t *pgd_base)

168 {
169 pgd_t *pgd;
170 pmd_t *pmd;
171 pte_t *pte;
172 int i, j;
173 unsigned long vaddr;
174
175 vaddr = start;
176 i = __pgd_offset(vaddr);
177 j = __pmd_offset(vaddr);
178 pgd = pgd_base + i;
179
180 for ( ; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {
181 #if CONFIG_X86_PAE
182 if (pgd_none(*pgd)) {
183 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
184 set_pgd(pgd, __pgd(__pa(pmd) + 0x1));
185 if (pmd != pmd_offset(pgd, 0))
186 printk("PAE BUG #02!\n");
187 }
188 pmd = pmd_offset(pgd, vaddr);
189 #else
190 pmd = (pmd_t *)pgd;
191 #endif
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192 for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {
193 if (pmd_none(*pmd)) {
194 pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
195 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));
196 if (pte != pte_offset(pmd, 0))
197 BUG();
198 }
199 vaddr += PMD_SIZE;
200 }
201 j = 0;
202 }
203 }

175 Sets the starting virtual address (vadd) to the requested starting address
provided as the parameter.

176 Gets the index within the PGD corresponding to vaddr.

177 Gets the index within the PMD corresponding to vaddr.

178 Gets the starting pgd t.

180 Keeps cycling until end is reached. When pagetable init() passes in 0, this
loop will continue until the end of the PGD.

182-187 In the case of PAE, this allocates a page for the PMD if one has not
already been allocated.

190 Without PAE, there is no PMD, so this treats the pgd t as the pmd t.

192-200 For each entry in the PMD, this allocates a page for the pte t entries and
sets it within the pagetables. Note that vaddr is incremented in PMD-sized
strides.

C.1.4 Function: kmap init() (arch/i386/mm/init.c)
This function only exists if CONFIG HIGHMEM is set during compile time. It

is responsible for caching where the beginning of the kmap region is, the PTE
referencing it and the protection for the page tables. This means the PGD will not
have to be checked every time kmap() is used.

74 #if CONFIG_HIGHMEM
75 pte_t *kmap_pte;
76 pgprot_t kmap_prot;
77
78 #define kmap_get_fixmap_pte(vaddr) \
79 pte_offset(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))
80
81 void __init kmap_init(void)
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82 {
83 unsigned long kmap_vstart;
84
85 /* cache the first kmap pte */
86 kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
87 kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
e8
89 kmap_prot = PAGE_KERNEL;
90 }
91 #endif /* CONFIG_HIGHMEM */

78-79 Because fixrange init() has already set up valid PGDs and PMDs, there
is no need to double-check them, so kmap get fixmap pte() is responsible for
quickly traversing the pagetable.

86 Caches the virtual address for the kmap region in kmap vstart.

87 Caches the PTE for the start of the kmap region in kmap pte.

89 Caches the protection for the pagetable entries with kmap prot.
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C.2 Page Table Walking

Contents
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C.2.1 Function: follow page() 248

C.2.1 Function: follow page() (mm/memory.c)
This function returns the struct page used by the PTE at address in mm’s

pagetables.

405 static struct page * follow_page(struct mm_struct *mm,
unsigned long address,
int write)

406 {
407 pgd_t *pgd;
408 pmd_t *pmd;
409 pte_t *ptep, pte;
410
411 pgd = pgd_offset(mm, address);
412 if (pgd_none(*pgd) || pgd_bad(*pgd))
413 goto out;
414
415 pmd = pmd_offset(pgd, address);
416 if (pmd_none(*pmd) || pmd_bad(*pmd))
417 goto out;
418
419 ptep = pte_offset(pmd, address);
420 if (!ptep)
421 goto out;
422
423 pte = *ptep;
424 if (pte_present(pte)) {
425 if (!write ||
426 (pte_write(pte) && pte_dirty(pte)))
427 return pte_page(pte);
428 }
429
430 out:
431 return 0;
432 }

405 The parameters are the mm with the pagetables that are about to be walked,
the address that has the struct page of interest and write, which indicates
if the page is about to be written to.

411 Gets the PGD for the address and makes sure it is present and valid.

415-417 Gets the PMD for the address and makes sure it is present and valid.
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419 Gets the PTE for the address and makes sure it exists.

424 If the PTE is currently present, then something can be returned.

425-426 If the caller has indicated a write is about to take place, this checks to
make sure that the PTE has write permissions set and, if so, makes the PTE
dirty.

427 If the PTE is present and the permissions are fine, this returns the
struct page mapped by the PTE.

431 Returns 0, indicating that the address has no associated struct page.
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This section covers the functions used to allocate, initialize, copy and destroy
memory descriptors.

D.1.1 Initializing a Descriptor

The initial mm struct in the system is called init mm and is statically initialized at
compile time using the macro INIT MM().

238 #define INIT_MM(name) \
239 { \
240 mm_rb: RB_ROOT, \
241 pgd: swapper_pg_dir, \
242 mm_users: ATOMIC_INIT(2), \
243 mm_count: ATOMIC_INIT(1), \
244 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem),\
245 page_table_lock: SPIN_LOCK_UNLOCKED, \
246 mmlist: LIST_HEAD_INIT(name.mmlist), \
247 }

After it is established, new mm structs are copies of their parent mm struct
and are copied using copy mm() with the process-specific fields initialized with
init mm().

D.1.2 Copying a Descriptor

D.1.2.1 Function: copy mm() (kernel/fork.c)
This function makes a copy of the mm struct for the given task. This is only

called from do fork() after a new process has been created and needs its own
mm struct.

315 static int copy_mm(unsigned long clone_flags,
struct task_struct * tsk)

316 {
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317 struct mm_struct * mm, *oldmm;
318 int retval;
319
320 tsk->min_flt = tsk->maj_flt = 0;
321 tsk->cmin_flt = tsk->cmaj_flt = 0;
322 tsk->nswap = tsk->cnswap = 0;
323
324 tsk->mm = NULL;
325 tsk->active_mm = NULL;
326
327 /*
328 * Are we cloning a kernel thread?
330 * We need to steal an active VM for that..
331 */
332 oldmm = current->mm;
333 if (!oldmm)
334 return 0;
335
336 if (clone_flags & CLONE_VM) {
337 atomic_inc(&oldmm->mm_users);
338 mm = oldmm;
339 goto good_mm;
340 }

This block resets fields that are not inherited by a child mm struct and finds an
mm to copy from.

315 The parameters are the flags passed for clone and the task that is creating a
copy of the mm struct.

320-325 Initializes the task struct fields related to memory management.

332 Borrows the mm of the current running process to copy from.

333 A kernel thread has no mm, so it can return immediately.

336-341 If the CLONE VM flag is set, the child process is to share the mm with the
parent process. This is required by users like pthreads. The mm users field is
incremented so that the mm is not destroyed prematurely. The good mm label
sets tsk→mm and tsk→active mm and returns success.

342 retval = -ENOMEM;
343 mm = allocate_mm();
344 if (!mm)
345 goto fail_nomem;
346
347 /* Copy the current MM stuff.. */
348 memcpy(mm, oldmm, sizeof(*mm));
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349 if (!mm_init(mm))
350 goto fail_nomem;
351
352 if (init_new_context(tsk,mm))
353 goto free_pt;
354
355 down_write(&oldmm->mmap_sem);
356 retval = dup_mmap(mm);
357 up_write(&oldmm->mmap_sem);
358

343 Allocates a new mm.

348-350 Copies the parent mm and initializes the process-specific mm fields with
init mm().

352-353 Initializes the MMU context for architectures that do not automatically
manage their MMU.

355-357 Calls dup mmap(), which is responsible for copying all the VMA’s regions
in use by the parent process.

359 if (retval)
360 goto free_pt;
361
362 /*
363 * child gets a private LDT (if there was an LDT in the parent)
364 */
365 copy_segments(tsk, mm);
366
367 good_mm:
368 tsk->mm = mm;
369 tsk->active_mm = mm;
370 return 0;
371
372 free_pt:
373 mmput(mm);
374 fail_nomem:
375 return retval;
376 }

359 dup mmap() returns 0 on success. If it failed, the label free pt will call
mmput(), which decrements the use count of the mm.

365 Copies the LDT for the new process based on the parent process.

368-370 Sets the new mm, active mm, and return success.
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D.1.2.2 Function: mm init() (kernel/fork.c)
This function initializes process-specific mm fields.

230 static struct mm_struct * mm_init(struct mm_struct * mm)
231 {
232 atomic_set(&mm->mm_users, 1);
233 atomic_set(&mm->mm_count, 1);
234 init_rwsem(&mm->mmap_sem);
235 mm->page_table_lock = SPIN_LOCK_UNLOCKED;
236 mm->pgd = pgd_alloc(mm);
237 mm->def_flags = 0;
238 if (mm->pgd)
239 return mm;
240 free_mm(mm);
241 return NULL;
242 }

232 Sets the number of users to 1.

233 Sets the reference count of the mm to 1.

234 Initializes the semaphore protecting the VMA list.

235 Initializes the spinlock protecting write access to it.

236 Allocates a new PGD for the struct.

237 By default, pages used by the process are not locked in memory.

238 If a PGD exists, this returns the initialized struct.

240 If initialization failed, this deletes the mm struct and returns.

D.1.3 Allocating a Descriptor

Two functions are provided that allocate an mm struct. To be slightly confus-
ing, they are essentially the same. allocate mm() will allocate a mm struct from
the slab allocator. mm alloc() will allocate the struct and then call the function
mm init() to initialize it.

D.1.3.1 Function: allocate mm() (kernel/fork.c)

227 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))

227 Allocates an mm struct from the slab allocator.
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D.1.3.2 Function: mm alloc() (kernel/fork.c)

248 struct mm_struct * mm_alloc(void)
249 {
250 struct mm_struct * mm;
251
252 mm = allocate_mm();
253 if (mm) {
254 memset(mm, 0, sizeof(*mm));
255 return mm_init(mm);
256 }
257 return NULL;
258 }

252 Allocates an mm struct from the slab allocator.

254 Zeroes out all contents of the struct.

255 Performs basic initialization.

D.1.4 Destroying a Descriptor

A new user to an mm increments the usage count with a simple call:

atomic_inc(&mm->mm_users};

It is decremented with a call to mmput(). If the mm users count reaches zero, all
the mapped regions are deleted with exit mmap(), and the pagetables are destroyed
because there are no longer any users of the userspace portions. The mm count count
is decremented with mmdrop() because all the users of the pagetables and VMAs
are counted as one mm struct user. When mm count reaches zero, the mm struct
will be destroyed.

D.1.4.1 Function: mmput() (kernel/fork.c)

276 void mmput(struct mm_struct *mm)
277 {
278 if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {
279 extern struct mm_struct *swap_mm;
280 if (swap_mm == mm)
281 swap_mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);
282 list_del(&mm->mmlist);
283 mmlist_nr--;
284 spin_unlock(&mmlist_lock);
285 exit_mmap(mm);
286 mmdrop(mm);
287 }
288 }
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mmput

exit_mmap mmdrop

__mmdrop mm_release exit_mm exit_files reparent_to_init

__exit_mm

Figure D.1. Call Graph: mmput()

278 Atomically decrements the mm users field while holding the mmlist lock lock.
It returns with the lock held if the count reaches zero.

279-286 If the usage count reaches zero, the mm and associated structures need
to be removed.

279-281 The swap mm is the last mm that was swapped out by the vmscan code.
If the current process was the last mm swapped, this moves to the next entry
in the list.

282 Removes this mm from the list.

283-284 Reduces the count of mms in the list and releases the mmlist lock.

285 Removes all associated mappings.

286 Deletes the mm.

D.1.4.2 Function: mmdrop() (include/linux/sched.h)

765 static inline void mmdrop(struct mm_struct * mm)
766 {
767 if (atomic_dec_and_test(&mm->mm_count))
768 __mmdrop(mm);
769 }

767 Atomically decrements the reference count. The reference count could be
higher if the mm was used by lazy tlb switching tasks.

768 If the reference count reaches zero, this calls mmdrop().
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D.1.4.3 Function: mmdrop() (kernel/fork.c)

265 inline void __mmdrop(struct mm_struct *mm)
266 {
267 BUG_ON(mm == &init_mm);
268 pgd_free(mm->pgd);
269 destroy_context(mm);
270 free_mm(mm);
271 }

267 Makes sure the init mm is not destroyed.

268 Deletes the PGD entry.

269 Deletes the LDT (Local Descriptor Table).

270 Calls kmem cache free() for the mm, freeing it with the slab allocator.
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This large section deals with the creation, deletion and manipulation of memory
regions.

D.2.1 Creating a Memory Region

The main call graph for creating a memory region is shown in Figure 4.3.

D.2.1.1 Function: do mmap() (include/linux/mm.h)
This is a very simple wrapper function around do mmap pgoff(), which performs

most of the work.

557 static inline unsigned long do_mmap(struct file *file,
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unsigned long addr,
558 unsigned long len, unsigned long prot,
559 unsigned long flag, unsigned long offset)
560 {
561 unsigned long ret = -EINVAL;
562 if ((offset + PAGE_ALIGN(len)) < offset)
563 goto out;
564 if (!(offset & ~PAGE_MASK))
565 ret = do_mmap_pgoff(file, addr, len, prot, flag,

offset >> PAGE_SHIFT);
566 out:
567 return ret;
568 }

561 By default, this returns -EINVAL.

562-563 Makes sure that the size of the region will not overflow the total size of
the address space.

564-565 Page aligns the offset and calls do mmap pgoff() to map the region.

D.2.1.2 Function: do mmap pgoff() (mm/mmap.c)
This function is very large, so it is broken up into a number of sections. Broadly

speaking the sections are the following:

• Sanity check the parameters.

• Find a free linear address space large enough for the memory mapping. If
a filesystem or device-specific get unmapped area() function is provided, it
will be used. Otherwise, arch get unmapped area() is called.

• Calculate the VM flags and check them against the file access permissions.

• If an old area exists where the mapping is to take place, fix it so it is suitable
for the new mapping.

• Allocate a vm area struct from the slab allocator and fill in its entries.

• Link in the new VMA.

• Call the filesystem or device-specific mmap() function.

• Update statistics and exit.

393 unsigned long do_mmap_pgoff(struct file * file,
unsigned long addr,
unsigned long len, unsigned long prot,

394 unsigned long flags, unsigned long pgoff)
395 {
396 struct mm_struct * mm = current->mm;
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397 struct vm_area_struct * vma, * prev;
398 unsigned int vm_flags;
399 int correct_wcount = 0;
400 int error;
401 rb_node_t ** rb_link, * rb_parent;
402
403 if (file && (!file->f_op || !file->f_op->mmap))
404 return -ENODEV;
405
406 if (!len)
407 return addr;
408
409 len = PAGE_ALIGN(len);
410

if (len > TASK_SIZE || len == 0)
return -EINVAL;

413
414 /* offset overflow? */
415 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
416 return -EINVAL;
417
418 /* Too many mappings? */
419 if (mm->map_count > max_map_count)
420 return -ENOMEM;
421

393 The parameters that correspond directly to the parameters of the mmap
system call are the following:

• file The struct file to mmap if this is a file-backed mapping

• addr The requested address to map

• len The length in bytes to mmap

• prot The permissions on the area

• flags The flags for the mapping

• pgoff The offset within the file to begin the mmap at

403-404 If a file or device is mapped, this makes sure a filesystem or device-
specific mmap function is provided. For most filesystems, this will call
generic file mmap()(See Section D.6.2.1).

406-407 Makes sure a zero length mmap() is not requested.

409 Ensures that the mapping is confined to the userspace portion of the address
space. On the x86, kernel space begins at PAGE OFFSET(3GiB).

415-416 Ensures the mapping will not overflow the end of the largest possible file
size.
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419-420 Only max map count number of mappings are allowed. By default, this
value is DEFAULT MAX MAP COUNT or 65,536 mappings.

422 /* Obtain the address to map to. we verify (or select) it and
423 * ensure that it represents a valid section of the address space.
424 */
425 addr = get_unmapped_area(file, addr, len, pgoff, flags);
426 if (addr & ~PAGE_MASK)
427 return addr;
428

425 After basic sanity checks, this function will call the device- or file-specific
get unmapped area() function. If a device-specific one is unavailable,
arch get unmapped area() is called. This function is discussed in Section
D.3.2.2.

429 /* Do simple checking here so the lower-level routines won’t
430 * have to. we assume access permissions have been handled by
431 * the open of the memory object, so we don’t do any here.
432 */
433 vm_flags = calc_vm_flags(prot,flags) | mm->def_flags

| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
434
435 /* mlock MCL_FUTURE? */
436 if (vm_flags & VM_LOCKED) {
437 unsigned long locked = mm->locked_vm << PAGE_SHIFT;
438 locked += len;
439 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)
440 return -EAGAIN;
441 }
442

433 calc vm flags() translates the prot and flags from userspace and translates
them to their VM equivalents.

436-440 Checks if it has been requested that all future mappings be locked in
memory. If yes, it makes sure the process isn’t locking more memory than it
is allowed to. If it is, it returns -EAGAIN.

443 if (file) {
444 switch (flags & MAP_TYPE) {
445 case MAP_SHARED:
446 if ((prot & PROT_WRITE) &&

!(file->f_mode & FMODE_WRITE))
447 return -EACCES;
448
449 /* Make sure we don’t allow writing to
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an append-only file.. */
450 if (IS_APPEND(file->f_dentry->d_inode) &&

(file->f_mode & FMODE_WRITE))
451 return -EACCES;
452
453 /* make sure there are no mandatory

locks on the file. */
454 if (locks_verify_locked(file->f_dentry->d_inode))
455 return -EAGAIN;
456
457 vm_flags |= VM_SHARED | VM_MAYSHARE;
458 if (!(file->f_mode & FMODE_WRITE))
459 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
460
461 /* fall through */
462 case MAP_PRIVATE:
463 if (!(file->f_mode & FMODE_READ))
464 return -EACCES;
465 break;
466
467 default:
468 return -EINVAL;
469 }

443-469 If a file is memory mapped, this checks the file’s access permissions.

446-447 If write access is requested, this makes sure the file is opened for write.

450-451 Similarly, if the file is opened for append, this makes sure it cannot be
written to. The prot field is not checked because the prot field applies only
to the mapping whereas the opened file needs to be checked.

453 If the file is mandatory locked, this returns -EAGAIN so the caller will try a
second type.

457-459 Fixes up the flags to be consistent with the file flags.

463-464 Makes sure the file can be read before mmapping it.

470 } else {
471 vm_flags |= VM_SHARED | VM_MAYSHARE;
472 switch (flags & MAP_TYPE) {
473 default:
474 return -EINVAL;
475 case MAP_PRIVATE:
476 vm_flags &= ~(VM_SHARED | VM_MAYSHARE);
477 /* fall through */
478 case MAP_SHARED:
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479 break;
480 }
481 }

471-481 If the file is mapped for anonymous use, this fixes up the flags if the
requested mapping is MAP PRIVATE to make sure the flags are consistent.

483 /* Clear old maps */
484 munmap_back:
485 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
486 if (vma && vma->vm_start < addr + len) {
487 if (do_munmap(mm, addr, len))
488 return -ENOMEM;
489 goto munmap_back;
490 }

485 find vma prepare()(See Section D.2.2.2) steps through the RB tree for the
VMA corresponding to a given address.

486-488 If a VMA was found and it is part of the new mmaping, this removes the
old mapping because the new one will cover both.

491
492 /* Check against address space limit. */
493 if ((mm->total_vm << PAGE_SHIFT) + len
494 > current->rlim[RLIMIT_AS].rlim_cur)
495 return -ENOMEM;
496
497 /* Private writable mapping? Check memory availability.. */
498 if ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&
499 !(flags & MAP_NORESERVE) &&
500 !vm_enough_memory(len >> PAGE_SHIFT))
501 return -ENOMEM;
502
503 /* Can we just expand an old anonymous mapping? */
504 if (!file && !(vm_flags & VM_SHARED) && rb_parent)
505 if (vma_merge(mm, prev, rb_parent,

addr, addr + len, vm_flags))
506 goto out;
507

493-495 Ensures the new mapping will not exceed the total VM that a process is
allowed to have. It is unclear why this check is not made earlier.

498-501 If the caller does not specifically request that free space is not checked
with MAP NORESERVE and it is a private mapping, this ensures enough memory
is available to satisfy the mapping under current conditions.
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504-506 If two adjacent memory mappings are anonymous and can be treated as
one, this expands the old mapping rather than creating a new one.

508 /* Determine the object being mapped and call the appropriate
509 * specific mapper. the address has already been validated,
510 * but not unmapped, but the maps are removed from the list.
511 */
512 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
513 if (!vma)
514 return -ENOMEM;
515
516 vma->vm_mm = mm;
517 vma->vm_start = addr;
518 vma->vm_end = addr + len;
519 vma->vm_flags = vm_flags;
520 vma->vm_page_prot = protection_map[vm_flags & 0x0f];
521 vma->vm_ops = NULL;
522 vma->vm_pgoff = pgoff;
523 vma->vm_file = NULL;
524 vma->vm_private_data = NULL;
525 vma->vm_raend = 0;

512 Allocates a vm area struct from the slab allocator.

516-525 Fills in the basic vm area struct fields.

527 if (file) {
528 error = -EINVAL;
529 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
530 goto free_vma;
531 if (vm_flags & VM_DENYWRITE) {
532 error = deny_write_access(file);
533 if (error)
534 goto free_vma;
535 correct_wcount = 1;
536 }
537 vma->vm_file = file;
538 get_file(file);
539 error = file->f_op->mmap(file, vma);
540 if (error)
541 goto unmap_and_free_vma;

527-541 Fills in the file-related fields if this file has been mapped.

529-530 These are both invalid flags for a file mapping, so it frees the
vm area struct and returns.
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531-536 This flag is cleared by the system call mmap(), but is still cleared for
kernel modules that call this function directly. Historically, -ETXTBUSY was
returned to the calling process if the underlying file was written to.

537 Fills in the vm file field.

538 Increments the file usage count.

539 Calls the filesystem or device-specific mmap() function. In many filesystem
cases, this will call generic file mmap()(See Section D.6.2.1).

540-541 If an error is called, this goes to unmap and free vma to clean up and
return the error.

542 } else if (flags & MAP_SHARED) {
543 error = shmem_zero_setup(vma);
544 if (error)
545 goto free_vma;
546 }
547

543 If this is an anonymous shared mapping, the region is created and set up
by shmem zero setup()(See Section L.7.1). Anonymous shared pages are
backed by a virtual tmpfs filesystem so that they can be synchronized properly
with swap. The writeback function is shmem writepage()(See Section L.6.1).

548 /* Can addr have changed??
549 *
550 * Answer: Yes, several device drivers can do it in their
551 * f_op->mmap method. -DaveM
552 */
553 if (addr != vma->vm_start) {
554 /*
555 * It is a bit too late to pretend changing the virtual
556 * area of the mapping, we just corrupted userspace
557 * in the do_munmap, so FIXME (not in 2.4 to avoid
558 * breaking the driver API).
559 */
560 struct vm_area_struct * stale_vma;
561 /* Since addr changed, we rely on the mmap op to prevent
562 * collisions with existing vmas and just use
563 * find_vma_prepare to update the tree pointers.
564 */
565 addr = vma->vm_start;
566 stale_vma = find_vma_prepare(mm, addr, &prev,
567 &rb_link, &rb_parent);
568 /*
569 * Make sure the lowlevel driver did its job right.
570 */
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571 if (unlikely(stale_vma && stale_vma->vm_start <
vma->vm_end)) {

572 printk(KERN_ERR "buggy mmap operation: [<%p>]\n",
573 file ? file->f_op->mmap : NULL);
574 BUG();
575 }
576 }
577
578 vma_link(mm, vma, prev, rb_link, rb_parent);
579 if (correct_wcount)
580 atomic_inc(&file->f_dentry->d_inode->i_writecount);
581

553-576 If the address has changed, it means the device-specific mmap operation
moved the VMA address to somewhere else. The function
find vma prepare() (See Section D.2.2.2) is used to find where the VMA
was moved to.

578 Links in the new vm area struct.

579-580 Updates the file write count.

582 out:
583 mm->total_vm += len >> PAGE_SHIFT;
584 if (vm_flags & VM_LOCKED) {
585 mm->locked_vm += len >> PAGE_SHIFT;
586 make_pages_present(addr, addr + len);
587 }
588 return addr;
589
590 unmap_and_free_vma:
591 if (correct_wcount)
592 atomic_inc(&file->f_dentry->d_inode->i_writecount);
593 vma->vm_file = NULL;
594 fput(file);
595
596 /* Undo any partial mapping done by a device driver. */
597 zap_page_range(mm,

vma->vm_start,
vma->vm_end - vma->vm_start);

598 free_vma:
599 kmem_cache_free(vm_area_cachep, vma);
600 return error;
601 }

583-588 Updates statistics for the process mm struct and returns the new address.

590-597 This is reached if the file has been partially mapped before failing.
The write statistics are updated, and then all user pages are removed with
zap page range().
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598-600 This goto is used if the mapping failed immediately after the
vm area struct is created. It is freed back to the slab allocator before the
error is returned.

D.2.2 Inserting a Memory Region

The call graph for insert vm struct() is shown in Figure 4.5.

D.2.2.1 Function: insert vm struct() (mm/mmap.c)
This is the top-level function for inserting a new vma into an address space.

There is a second function like it called simply insert vm struct() that is not
described in detail here because the only difference is the one line of code increasing
the map count.

1174 void __insert_vm_struct(struct mm_struct * mm,
struct vm_area_struct * vma)

1175 {
1176 struct vm_area_struct * __vma, * prev;
1177 rb_node_t ** rb_link, * rb_parent;
1178
1179 __vma = find_vma_prepare(mm, vma->vm_start, &prev,

&rb_link, &rb_parent);
1180 if (__vma && __vma->vm_start < vma->vm_end)
1181 BUG();
1182 __vma_link(mm, vma, prev, rb_link, rb_parent);
1183 mm->map_count++;
1184 validate_mm(mm);
1185 }

1174 The arguments are the mm struct that represents the linear address space
and the vm area struct that is to be inserted.

1179 find vma prepare()(See Section D.2.2.2) locates where the new VMA can
be inserted. It will be inserted between prev and vma, and the required
nodes for the red-black tree are also returned.

1180-1181 This is a check to make sure the returned VMA is invalid. It is virtually
impossible for this condition to occur without manually inserting bogus VMAs
into the address space.

1182 This function does the actual work of linking the VMA struct into the linear
linked list and the red-black tree.

1183 Increases the map count to show a new mapping has been added. This line
is not present in insert vm struct().

1184 validate mm() is a debugging macro for red-black trees. If DEBUG MM RB is
set, the linear list of VMAs and the tree will be traversed to make sure it is
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valid. The tree traversal is a recursive function, so it is very important that
it is used only if really necessary because a large number of mappings could
cause a stack overflow. If it is not set, validate mm() does nothing at all.

D.2.2.2 Function: find vma prepare() (mm/mmap.c)
This is responsible for finding the correct places to insert a VMA at the supplied

address. It returns a number of pieces of information through the actual return and
the function arguments. The forward VMA to link to is returned with return.
pprev is the previous node, which is required because the list is a singly linked list.
rb link and rb parent are the parent and leaf node that the new VMA will be
inserted between.

246 static struct vm_area_struct * find_vma_prepare(
struct mm_struct * mm,
unsigned long addr,

247 struct vm_area_struct ** pprev,
248 rb_node_t *** rb_link,

rb_node_t ** rb_parent)
249 {
250 struct vm_area_struct * vma;
251 rb_node_t ** __rb_link, * __rb_parent, * rb_prev;
252
253 __rb_link = &mm->mm_rb.rb_node;
254 rb_prev = __rb_parent = NULL;
255 vma = NULL;
256
257 while (*__rb_link) {
258 struct vm_area_struct *vma_tmp;
259
260 __rb_parent = *__rb_link;
261 vma_tmp = rb_entry(__rb_parent,

struct vm_area_struct, vm_rb);
262
263 if (vma_tmp->vm_end > addr) {
264 vma = vma_tmp;
265 if (vma_tmp->vm_start <= addr)
266 return vma;
267 __rb_link = &__rb_parent->rb_left;
268 } else {
269 rb_prev = __rb_parent;
270 __rb_link = &__rb_parent->rb_right;
271 }
272 }
273
274 *pprev = NULL;
275 if (rb_prev)
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276 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
277 *rb_link = __rb_link;
278 *rb_parent = __rb_parent;
279 return vma;
280 }

246 The function arguments are described previously.

253-255 Initializes the search.

263-272 This is a similar tree walk to what was described for find vma(). The
only real difference is the nodes last traversed are remembered with the
rb link and rb parent variables.

275-276 Gets the back linking VMA through the red-black tree.

279 Returns the forward linking VMA.

D.2.2.3 Function: vma link() (mm/mmap.c)
This is the top-level function for linking a VMA into the proper lists. It is

responsible for acquiring the necessary locks to make a safe insertion.

337 static inline void vma_link(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

338 rb_node_t ** rb_link, rb_node_t * rb_parent)
339 {
340 lock_vma_mappings(vma);
341 spin_lock(&mm->page_table_lock);
342 __vma_link(mm, vma, prev, rb_link, rb_parent);
343 spin_unlock(&mm->page_table_lock);
344 unlock_vma_mappings(vma);
345
346 mm->map_count++;
347 validate_mm(mm);
348 }

337 mm is the address space that the VMA is to be inserted into. prev is
the backward-linked VMA for the linear-linked-list of VMAs. rb link and
rb parent are the nodes required to make the rb insertion.

340 This function acquires the spinlock that protects the address space repre-
senting the file that is memory mapped.

341 Acquires the pagetable lock, which protects the whole mm struct.

342 Inserts the VMA.

343 Frees the lock protecting the mm struct.
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345 Unlocks the address space for the file.

346 Increases the number of mappings in this mm.

347 If DEBUG MM RB is set, the RB trees and linked lists will be checked to make
sure they are still valid.

D.2.2.4 Function: vma link() (mm/mmap.c)
This simply calls three helper functions that are responsible for linking the VMA

into the three linked lists that link VMAs together.

329 static void __vma_link(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

330 rb_node_t ** rb_link, rb_node_t * rb_parent)
331 {
332 __vma_link_list(mm, vma, prev, rb_parent);
333 __vma_link_rb(mm, vma, rb_link, rb_parent);
334 __vma_link_file(vma);
335 }

332 Links the VMA into the linear-linked lists of VMAs in this mm through the
vm next field.

333 Links the VMA into the red-black tree of VMAs in this mm that has its root
stored in the vm rb field.

334 Links the VMA into the shared mapping VMA links. Memory mapped files
are linked together over potentially many mms by this function using the
vm next share and vm pprev share fields.

D.2.2.5 Function: vma link list() (mm/mmap.c)

282 static inline void __vma_link_list(struct mm_struct * mm,
struct vm_area_struct * vma,
struct vm_area_struct * prev,

283 rb_node_t * rb_parent)
284 {
285 if (prev) {
286 vma->vm_next = prev->vm_next;
287 prev->vm_next = vma;
288 } else {
289 mm->mmap = vma;
290 if (rb_parent)
291 vma->vm_next = rb_entry(rb_parent,

struct vm_area_struct,
vm_rb);
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292 else
293 vma->vm_next = NULL;
294 }
295 }

285 If prev is not null, the VMA is simply inserted into the list.

289 If not, this is the first mapping, and the first element of the list has to be
stored in the mm struct.

290 The VMA is stored as the parent node.

D.2.2.6 Function: vma link rb() (mm/mmap.c)
The principal workings of this function are stored within <linux/rbtree.h>

and will not be discussed in detail in this book.

297 static inline void __vma_link_rb(struct mm_struct * mm,
struct vm_area_struct * vma,

298 rb_node_t ** rb_link,
rb_node_t * rb_parent)

299 {
300 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
301 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
302 }

D.2.2.7 Function: vma link file() (mm/mmap.c)
This function links the VMA into a linked list of shared file mappings.

304 static inline void __vma_link_file(struct vm_area_struct * vma)
305 {
306 struct file * file;
307
308 file = vma->vm_file;
309 if (file) {
310 struct inode * inode = file->f_dentry->d_inode;
311 struct address_space *mapping = inode->i_mapping;
312 struct vm_area_struct **head;
313
314 if (vma->vm_flags & VM_DENYWRITE)
315 atomic_dec(&inode->i_writecount);
316
317 head = &mapping->i_mmap;
318 if (vma->vm_flags & VM_SHARED)
319 head = &mapping->i_mmap_shared;
320
321 /* insert vma into inode’s share list */
322 if((vma->vm_next_share = *head) != NULL)
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323 (*head)->vm_pprev_share = &vma->vm_next_share;
324 *head = vma;
325 vma->vm_pprev_share = head;
326 }
327 }

309 Checks to see if this VMA has a shared file mapping. If it does not, this
function has nothing more to do.

310-312 Extracts the relevant information about the mapping from the VMA.

314-315 If this mapping is not allowed to write even if the permissions are ok
for writing, decrement the i writecount field. A negative value to this field
indicates that the file is memory mapped and may not be written to. Efforts
to open the file for writing will now fail.

317-319 Checks to make sure this is a shared mapping.

322-325 Inserts the VMA into the shared mapping linked list.

D.2.3 Merging Contiguous Regions

D.2.3.1 Function: vma merge() (mm/mmap.c)
This function checks to see if a region pointed to be prev may be expanded

forward to cover the area from addr to end instead of allocating a new VMA. If
it cannot, the VMA ahead is checked to see whether it can be expanded backward
instead.

350 static int vma_merge(struct mm_struct * mm,
struct vm_area_struct * prev,

351 rb_node_t * rb_parent,
unsigned long addr, unsigned long end,
unsigned long vm_flags)

352 {
353 spinlock_t * lock = &mm->page_table_lock;
354 if (!prev) {
355 prev = rb_entry(rb_parent, struct vm_area_struct, vm_rb);
356 goto merge_next;
357 }

350 The parameters are as follows:

• mm The mm the VMAs belong to

• prev The VMA before the address we are interested in

• rb parent The parent RB node as returned by find vma prepare()

• addr The starting address of the region to be merged

• end The end of the region to be merged
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• vm flags The permission flags of the region to be merged

353 This is the lock to the mm.

354-357 If prev is not passed it, it is taken to mean that the VMA being tested
for merging is in front of the region from addr to end. The entry for that
VMA is extracted from the rb parent.

358 if (prev->vm_end == addr && can_vma_merge(prev, vm_flags)) {
359 struct vm_area_struct * next;
360
361 spin_lock(lock);
362 prev->vm_end = end;
363 next = prev->vm_next;
364 if (next && prev->vm_end == next->vm_start &&

can_vma_merge(next, vm_flags)) {
365 prev->vm_end = next->vm_end;
366 __vma_unlink(mm, next, prev);
367 spin_unlock(lock);
368
369 mm->map_count--;
370 kmem_cache_free(vm_area_cachep, next);
371 return 1;
372 }
373 spin_unlock(lock);
374 return 1;
375 }
376
377 prev = prev->vm_next;
378 if (prev) {
379 merge_next:
380 if (!can_vma_merge(prev, vm_flags))
381 return 0;
382 if (end == prev->vm_start) {
383 spin_lock(lock);
384 prev->vm_start = addr;
385 spin_unlock(lock);
386 return 1;
387 }
388 }
389
390 return 0;
391 }

358-375 Checks to see if the region pointed to by prev may be expanded to cover
the current region.
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358 The function can vma merge() checks the permissions of prev with those in
vm flags and that the VMA has no file mappings (i.e., it is anonymous). If
it is true, the area at prev may be expanded.

361 Locks the mm.

362 Expands the end of the VMA region (vm end) to the end of the new mapping
(end).

363 next is now the VMA in front of the newly expanded VMA.

364 Checks if the expanded region can be merged with the VMA in front of it.

365 If it can, this continues to expand the region to cover the next VMA.

366 Because a VMA has been merged, one region is now defunct and may be
unlinked.

367 No further adjustments are made to the mm struct, so the lock is released.

369 There is one less mapped region to reduce the map count.

370 Deletes the struct describing the merged VMA.

371 Returns success.

377 If this line is reached, it means the region pointed to by prev could not be
expanded forward, so a check is made to see if the region ahead can be merged
backward instead.

382-388 The same idea as the previous block except instead of adjusted vm end
to cover end, vm start is expanded to cover addr.

D.2.3.2 Function: can vma merge() (include/linux/mm.h)
This trivial function checks to see if the permissions of the supplied VMA match

the permissions in vm flags.

582 static inline int can_vma_merge(struct vm_area_struct * vma,
unsigned long vm_flags)

583 {
584 if (!vma->vm_file && vma->vm_flags == vm_flags)
585 return 1;
586 else
587 return 0;
588 }

584 Self-explanatory. It returns true if there is no file/device mapping (i.e., it is
anonymous) and if the VMA flags for both regions match.
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D.2.4 Remapping and Moving a Memory Region

D.2.4.1 Function: sys mremap() (mm/mremap.c)
The call graph for this function is shown in Figure 4.6. This is the system

service call to remap a memory region.

347 asmlinkage unsigned long sys_mremap(unsigned long addr,
348 unsigned long old_len, unsigned long new_len,
349 unsigned long flags, unsigned long new_addr)
350 {
351 unsigned long ret;
352
353 down_write(&current->mm->mmap_sem);
354 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
355 up_write(&current->mm->mmap_sem);
356 return ret;
357 }

347-349 The parameters are the same as those described in the mremap() man
page.

353 Acquires the mm semaphore.

354 do mremap()(See Section D.2.4.2) is the top-level function for remapping a
region.

355 Releases the mm semaphore.

356 Returns the status of the remapping.

D.2.4.2 Function: do mremap() (mm/mremap.c)
This function does most of the actual work required to remap, resize and move

a memory region. It is quite long, but can be broken up into distinct parts, which
will be dealt with separately here. The tasks are, broadly speaking, the following:

• Check usage flags and page align lengths.

• Handle the condition where MAP FIXED has set and the region has been moved
to a new location.

• If a region is shrinking, allow it to happen unconditionally.

• If the region is growing or moving, perform a number of checks in advance to
make sure the move is allowed and safe.

• Handle the case where the region has been expanded and cannot be moved.

• Finally, handle the case where the region has to be resized and moved.
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219 unsigned long do_mremap(unsigned long addr,
220 unsigned long old_len, unsigned long new_len,
221 unsigned long flags, unsigned long new_addr)
222 {
223 struct vm_area_struct *vma;
224 unsigned long ret = -EINVAL;
225
226 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
227 goto out;
228
229 if (addr & ~PAGE_MASK)
230 goto out;
231
232 old_len = PAGE_ALIGN(old_len);
233 new_len = PAGE_ALIGN(new_len);
234

219 The parameters of the function are the following:

• addr is the old starting address.

• old len is the old region length.

• new len is the new region length.

• flags is the option flags passed. If MREMAP MAYMOVE is specified, it means
that the region is allowed to move if there is not enough linear address
space at the current space. If MREMAP FIXED is specified, it means that
the whole region is to move to the specified new addr with the new length.
The area from new addr to new addr+new len will be unmapped with
do munmap().

• new addr is the address of the new region if it is moved.

224 At this point, the default return is -EINVAL for invalid arguments.

226-227 Makes sure flags other than the two allowed flags are not used.

229-230 The address passed in must be page aligned.

232-233 Page-aligns the passed region lengths.

236 if (flags & MREMAP_FIXED) {
237 if (new_addr & ~PAGE_MASK)
238 goto out;
239 if (!(flags & MREMAP_MAYMOVE))
240 goto out;
241
242 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
243 goto out;
244
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245 /* Check if the location we’re moving into overlaps the
246 * old location at all, and fail if it does.
247 */
248 if ((new_addr <= addr) && (new_addr+new_len) > addr)
249 goto out;
250
251 if ((addr <= new_addr) && (addr+old_len) > new_addr)
252 goto out;
253
254 do_munmap(current->mm, new_addr, new_len);
255 }

This block handles the condition where the region location is fixed and must be
fully moved. It ensures the area being moved to is safe and definitely unmapped.

236 MREMAP FIXED is the flag that indicates the location is fixed.

237-238 The specified new addr must be be page-aligned.

239-240 If MREMAP FIXED is specified, the MAYMOVE flag must be used as well.

242-243 Makes sure the resized region does not exceed TASK SIZE.

248-249 Just as the comments indicate, the two regions being used for the move
may not overlap.

254 Unmaps the region that is about to be used. It is presumed the caller ensures
that the region is not in use for anything important.

261 ret = addr;
262 if (old_len >= new_len) {
263 do_munmap(current->mm, addr+new_len, old_len - new_len);
264 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
265 goto out;
266 }

261 At this point, the address of the resized region is the return value.

262 If the old length is larger than the new length, the region is shrinking.

263 Unmaps the unused region.

264-265 If the region is not to be moved, either because MREMAP FIXED is not used
or the new address matches the old address, goto out, which will return the
address.

271 ret = -EFAULT;
272 vma = find_vma(current->mm, addr);
273 if (!vma || vma->vm_start > addr)
274 goto out;
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275 /* We can’t remap across vm area boundaries */
276 if (old_len > vma->vm_end - addr)
277 goto out;
278 if (vma->vm_flags & VM_DONTEXPAND) {
279 if (new_len > old_len)
280 goto out;
281 }
282 if (vma->vm_flags & VM_LOCKED) {
283 unsigned long locked = current->mm->locked_vm << PAGE_SHIFT;
284 locked += new_len - old_len;
285 ret = -EAGAIN;
286 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)
287 goto out;
288 }
289 ret = -ENOMEM;
290 if ((current->mm->total_vm << PAGE_SHIFT) + (new_len - old_len)
291 > current->rlim[RLIMIT_AS].rlim_cur)
292 goto out;
293 /* Private writable mapping? Check memory availability.. */
294 if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&
295 !(flags & MAP_NORESERVE) &&
296 !vm_enough_memory((new_len - old_len) >> PAGE_SHIFT))
297 goto out;

This block does a number of checks to make sure it is safe to grow or move the
region.

271 At this point, the default action is to return -EFAULT, which causes a segmen-
tation fault because the ranges of memory being used are invalid.

272 Finds the VMA responsible for the requested address.

273 If the returned VMA is not responsible for this address, an invalid address
was used to return a fault.

276-277 If the old len passed in exceeds the length of the VMA, it means the
user is trying to remap multiple regions, which is not allowed.

278-281 If the VMA has been explicitly marked as nonresizable, this raises a fault.

282-283 If the pages for this VMA must be locked in memory, this recalculates
the number of locked pages that will be kept in memory. If the number of
pages exceeds the ulimit set for this resource, this returns EAGAIN, which
indicated to the caller that the region is locked and cannot be resized.

289 The default return at this point is to indicate there is not enough memory.

290-292 Ensures that the users will not exceed their allowed allocation of memory.
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294-297 Ensures that there is enough memory to satisfy the request after the
resizing with vm enough memory()(See Section M.1.1).

302 if (old_len == vma->vm_end - addr &&
303 !((flags & MREMAP_FIXED) && (addr != new_addr)) &&
304 (old_len != new_len || !(flags & MREMAP_MAYMOVE))) {
305 unsigned long max_addr = TASK_SIZE;
306 if (vma->vm_next)
307 max_addr = vma->vm_next->vm_start;
308 /* can we just expand the current mapping? */
309 if (max_addr - addr >= new_len) {
310 int pages = (new_len - old_len) >> PAGE_SHIFT;
311 spin_lock(&vma->vm_mm->page_table_lock);
312 vma->vm_end = addr + new_len;
313 spin_unlock(&vma->vm_mm->page_table_lock);
314 current->mm->total_vm += pages;
315 if (vma->vm_flags & VM_LOCKED) {
316 current->mm->locked_vm += pages;
317 make_pages_present(addr + old_len,
318 addr + new_len);
319 }
320 ret = addr;
321 goto out;
322 }
323 }

This block handles the case where the region is being expanded and cannot be
moved.

302 If it is the full region that is being remapped and ...

303 The region is definitely not being moved and ...

304 The region is being expanded and cannot be moved, then ...

305 Sets the maximum address that can be used to TASK SIZE, which is 3GiB on
an x86.

306-307 If there is another region, this sets the max address to be the start of the
next region.

309-322 Only allows the expansion if the newly sized region does not overlap with
the next VMA.

310 Calculates the number of extra pages that will be required.

311 Locks the mm spinlock.

312 Expands the VMA.
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313 Frees the mm spinlock.

314 Updates the statistics for the mm.

315-319 If the pages for this region are locked in memory, this makes them present
now.

320-321 Returns the address of the resized region.

329 ret = -ENOMEM;
330 if (flags & MREMAP_MAYMOVE) {
331 if (!(flags & MREMAP_FIXED)) {
332 unsigned long map_flags = 0;
333 if (vma->vm_flags & VM_SHARED)
334 map_flags |= MAP_SHARED;
335
336 new_addr = get_unmapped_area(vma->vm_file, 0,

new_len, vma->vm_pgoff, map_flags);
337 ret = new_addr;
338 if (new_addr & ~PAGE_MASK)
339 goto out;
340 }
341 ret = move_vma(vma, addr, old_len, new_len, new_addr);
342 }
343 out:
344 return ret;
345 }

To expand the region, a new one has to be allocated, and the old one moved to
it.

329 The default action is to return saying no memory is available.

330 Checks to make sure the region is allowed to move.

331 If MREMAP FIXED is not specified, it means the new location was not supplied,
so one must be found.

333-334 Preserves the MAP SHARED option.

336 Finds an unmapped region of memory large enough for the expansion.

337 The return value is the address of the new region.

338-339 For the returned address to be not page aligned, get unmapped area()
would need to be broken. This could possibly be the case with a buggy device
driver implementing get unmapped area() incorrectly.

341 Calls move vma() to move the region.

343-344 Returns the address if successful and the error code otherwise.
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D.2.4.3 Function: move vma() (mm/mremap.c)
The call graph for this function is shown in Figure 4.7. This function is re-

sponsible for moving all the pagetable entries from one VMA to another region. If
necessary, a new VMA will be allocated for the region being moved to. Just like the
previous function, it is very long, but may be broken up into the following distinct
parts.

• Function preamble finds the VMA preceding the area about to be moved to
and the VMA in front of the region to be mapped.

• Handles the case where the new location is between two existing VMAs. It
determines if the preceding region can be expanded forward or the next region
expanded backward to cover the new mapped region.

• Handles the case where the new location is going to be the last VMA on the
list. It determines if the preceding region can be expanded forward.

• If a region could not be expanded, it allocates a new VMA from the slab
allocator.

• Calls move page tables(), fills in the new VMA details if a new one was
allocated, and updates statistics before returning.

125 static inline unsigned long move_vma(struct vm_area_struct * vma,
126 unsigned long addr, unsigned long old_len, unsigned long
127 new_len, unsigned long new_addr)
128 {
129 struct mm_struct * mm = vma->vm_mm;
130 struct vm_area_struct * new_vma, * next, * prev;
131 int allocated_vma;
132
133 new_vma = NULL;
134 next = find_vma_prev(mm, new_addr, &prev);

125-127 The parameters are the following:

• vma The VMA that the address being moved belongs to

• addr The starting address of the moving region

• old len The old length of the region to move

• new len The new length of the region moved

• new addr The new address to relocate to

134 Finds the VMA preceding the address being moved indicated by prev and
returns the region after the new mapping as next.

135 if (next) {
136 if (prev && prev->vm_end == new_addr &&
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137 can_vma_merge(prev, vma->vm_flags) &&
!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {

138 spin_lock(&mm->page_table_lock);
139 prev->vm_end = new_addr + new_len;
140 spin_unlock(&mm->page_table_lock);
141 new_vma = prev;
142 if (next != prev->vm_next)
143 BUG();
144 if (prev->vm_end == next->vm_start &&

can_vma_merge(next, prev->vm_flags)) {
145 spin_lock(&mm->page_table_lock);
146 prev->vm_end = next->vm_end;
147 __vma_unlink(mm, next, prev);
148 spin_unlock(&mm->page_table_lock);
149
150 mm->map_count--;
151 kmem_cache_free(vm_area_cachep, next);
152 }
153 } else if (next->vm_start == new_addr + new_len &&
154 can_vma_merge(next, vma->vm_flags) &&

!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {
155 spin_lock(&mm->page_table_lock);
156 next->vm_start = new_addr;
157 spin_unlock(&mm->page_table_lock);
158 new_vma = next;
159 }
160 } else {

In this block, the new location is between two existing VMAs. Checks are made
to see if the preceding region can be expanded to cover the new mapping and then
if it can be expanded to cover the next VMA as well. If it cannot be expanded, the
next region is checked to see if it can be expanded backward.

136-137 If the preceding region touches the address to be mapped to and may be
merged, it enters this block, which will attempt to expand regions.

138 Locks the mm.

139 Expands the preceding region to cover the new location.

140 Unlocks the mm.

141 The new VMA is now the preceding VMA, which was just expanded.

142-143 Makes sure the VMA linked list is intact. It would require a device driver
with severe brain damage to cause this situation to occur.

144 Checks if the region can be expanded forward to encompass the next region.
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145 If it can, this locks the mm.

146 Expands the VMA further to cover the next VMA.

147 There is now an extra VMA, so this unlinks it.

148 Unlocks the mm.

150 There is one less mapping now, so this updates the map count.

151 Frees the memory used by the memory mapping.

153 If the prev region could not be expanded forward, this checks if the region
pointed to be next may be expanded backward to cover the new mapping
instead.

155 If it can, this locks the mm.

156 Expands the mapping backward.

157 Unlocks the mm.

158 The VMA representing the new mapping is now next.

161 prev = find_vma(mm, new_addr-1);
162 if (prev && prev->vm_end == new_addr &&
163 can_vma_merge(prev, vma->vm_flags) && !vma->vm_file &&

!(vma->vm_flags & VM_SHARED)) {
164 spin_lock(&mm->page_table_lock);
165 prev->vm_end = new_addr + new_len;
166 spin_unlock(&mm->page_table_lock);
167 new_vma = prev;
168 }
169 }

This block is for the case where the newly mapped region is the last VMA (next
is NULL), so a check is made to see if the preceding region can be expanded.

161 Gets the previously mapped region.

162-163 Checks if the regions may be mapped.

164 Locks the mm.

165 Expands the preceding region to cover the new mapping.

166 Locks the mm.

167 The VMA representing the new mapping is now prev.
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170
171 allocated_vma = 0;
172 if (!new_vma) {
173 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
174 if (!new_vma)
175 goto out;
176 allocated_vma = 1;
177 }
178

171 Sets a flag indicating if a new VMA was not allocated.

172 If a VMA has not been expanded to cover the new mapping then...

173 Allocates a new VMA from the slab allocator.

174-175 If it could not be allocated, goto out to return failure.

176 Sets the flag indicating that a new VMA was allocated.

179 if (!move_page_tables(current->mm, new_addr, addr, old_len)) {
180 unsigned long vm_locked = vma->vm_flags & VM_LOCKED;
181
182 if (allocated_vma) {
183 *new_vma = *vma;
184 new_vma->vm_start = new_addr;
185 new_vma->vm_end = new_addr+new_len;
186 new_vma->vm_pgoff +=

(addr-vma->vm_start) >> PAGE_SHIFT;
187 new_vma->vm_raend = 0;
188 if (new_vma->vm_file)
189 get_file(new_vma->vm_file);
190 if (new_vma->vm_ops && new_vma->vm_ops->open)
191 new_vma->vm_ops->open(new_vma);
192 insert_vm_struct(current->mm, new_vma);
193 }

194 do_munmap(current->mm, addr, old_len);

197 current->mm->total_vm += new_len >> PAGE_SHIFT;
198 if (new_vma->vm_flags & VM_LOCKED) {
199 current->mm->locked_vm += new_len >> PAGE_SHIFT;
200 make_pages_present(new_vma->vm_start,
201 new_vma->vm_end);
202 }
203 return new_addr;
204 }
205 if (allocated_vma)
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206 kmem_cache_free(vm_area_cachep, new_vma);
207 out:
208 return -ENOMEM;
209 }

179 move page tables()(See Section D.2.4.6) is responsible for copying all the
pagetable entries. It returns 0 on success.

182-193 If a new VMA was allocated, this fills in all the relevant details, including
the file/device entries, and inserts it into the various VMA linked lists with
insert vm struct()(See Section D.2.2.1).

194 Unmaps the old region because it is no longer required.

197 Updates the total vm size for this process. The size of the old region is not
important because it is handled within do munmap().

198-202 If the VMA has the VM LOCKED flag, all the pages within the region are
made present with mark pages present().

203 Returns the address of the new region.

205-206 This is the error path. If a VMA was allocated, it deletes it.

208 Returns an out of memory error.

D.2.4.4 Function: make pages present() (mm/memory.c)
This function makes all pages between addr and end present. It assumes that

the two addresses are within the one VMA.

1460 int make_pages_present(unsigned long addr, unsigned long end)
1461 {
1462 int ret, len, write;
1463 struct vm_area_struct * vma;
1464
1465 vma = find_vma(current->mm, addr);
1466 write = (vma->vm_flags & VM_WRITE) != 0;
1467 if (addr >= end)
1468 BUG();
1469 if (end > vma->vm_end)
1470 BUG();
1471 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
1472 ret = get_user_pages(current, current->mm, addr,
1473 len, write, 0, NULL, NULL);
1474 return ret == len ? 0 : -1;
1475 }

1465 Finds the VMA with find vma()(See Section D.3.1.1) that contains the
starting address.
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1466 Records if write-access is allowed in write.

1467-1468 If the starting address is after the end address, then BUG() runs.

1469-1470 If the range spans more than one VMA, it is a bug.

1471 Calculates the length of the region to fault in.

1472 Calls get user pages() to fault in all the pages in the requested region. It
returns the number of pages that were faulted in.

1474 Returns true if all the requested pages were successfully faulted in.

D.2.4.5 Function: get user pages() (mm/memory.c)
This function is used to fault in user pages and may be used to fault in pages

belonging to another process, which is required by ptrace(), for example.

454 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start,

455 int len, int write, int force, struct page
**pages, struct vm_area_struct **vmas)

456 {
457 int i;
458 unsigned int flags;
459
460 /*
461 * Require read or write permissions.
462 * If ’force’ is set, we only require the "MAY" flags.
463 */
464 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
465 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
466 i = 0;
467

454 The parameters are the following:

• tsk is the process that pages are being faulted for.

• mm is the mm struct managing the address space being faulted.

• start is where to start faulting.

• len is the length of the region, in pages, to fault.

• write indicates if the pages are being faulted for writing.

• force indicates that the pages should be faulted even if the region only
has the VM MAYREAD or VM MAYWRITE flags.

• pages is an array of struct pages, which may be NULL. If supplied, the
array will be filled with struct pages that were faulted in.
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• vmas is similar to the pages array. If supplied, it will be filled with
VMAs that were affected by the faults.

464 Sets the required flags to VM WRITE and VM MAYWRITE flags if the parameter
write is set to 1. Otherwise, it uses the read equivalents.

465 If force is specified, this only requires the MAY flags.

468 do {
469 struct vm_area_struct * vma;
470
471 vma = find_extend_vma(mm, start);
472
473 if ( !vma ||

(pages && vma->vm_flags & VM_IO) ||
!(flags & vma->vm_flags) )

474 return i ? : -EFAULT;
475
476 spin_lock(&mm->page_table_lock);
477 do {
478 struct page *map;
479 while (!(map = follow_page(mm, start, write))) {
480 spin_unlock(&mm->page_table_lock);
481 switch (handle_mm_fault(mm, vma, start, write)) {
482 case 1:
483 tsk->min_flt++;
484 break;
485 case 2:
486 tsk->maj_flt++;
487 break;
488 case 0:
489 if (i) return i;
490 return -EFAULT;
491 default:
492 if (i) return i;
493 return -ENOMEM;
494 }
495 spin_lock(&mm->page_table_lock);
496 }
497 if (pages) {
498 pages[i] = get_page_map(map);
499 /* FIXME: call the correct function,
500 * depending on the type of the found page
501 */
502 if (!pages[i])
503 goto bad_page;
504 page_cache_get(pages[i]);
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505 }
506 if (vmas)
507 vmas[i] = vma;
508 i++;
509 start += PAGE_SIZE;
510 len--;
511 } while(len && start < vma->vm_end);
512 spin_unlock(&mm->page_table_lock);
513 } while(len);
514 out:
515 return i;

468-513 This outer loop will move through every VMA affected by the faults.

471 Finds the VMA affected by the current value of start. This variable is
incremented in PAGE SIZEd strides.

473 If a VMA does not exist for the address, or the caller has requested
struct pages for a region that is I/O mapped (and therefore not backed
by physical memory) or that the VMA does not have the required flags for,
this returns -EFAULT.

476 Locks the pagetable spinlock.

479-496 follow page()(See Section C.2.1) walks the page tables and returns the
struct page that represents the frame mapped at start. This loop will only
be entered if the PTE is not present and will keep looping until the PTE is
known to be present with the pagetable spinlock held.

480 Unlocks the page table spinlock because handle mm fault() is likely to sleep.

481 If the page is not present, this faults it in with handle mm fault()
(See Section D.5.3.1).

482-487 Updates the task struct statistics and indicates if a major or minor
fault occured.

488-490 If the faulting address is invalid, this returns -EFAULT.

491-493 If the system is out of memory, this returns -ENOMEM.

495 Relocks the page tables. The loop will check to make sure the page is actually
present.

597-505 If the caller requested it, this populates the pages array with
struct pages affected by this function. Each struct will have a reference
to it taken with page cache get().

506-507 Similarly, this records VMAs affected.
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508 Increments i, which is a counter for the number of pages present in the
requested region.

509 Increments start in a page-sized stride.

510 Decrements the number of pages that must be faulted in.

511 Keeps moving through the VMAs until the requested pages have been faulted
in.

512 Releases the pagetable spinlock.

515 Returns the number of pages known to be present in the region.

516
517 /*
518 * We found an invalid page in the VMA. Release all we have
519 * so far and fail.
520 */
521 bad_page:
522 spin_unlock(&mm->page_table_lock);
523 while (i--)
524 page_cache_release(pages[i]);
525 i = -EFAULT;
526 goto out;
527 }

521 This will only be reached if a struct page is found that represents a nonex-
istant page frame.

523-524 If one is found, it releases references to all pages stored in the pages
array.

525-526 Returns -EFAULT.

D.2.4.6 Function: move page tables() (mm/mremap.c)
The call graph for this function is shown in Figure 4.8. This function is respon-

sible for copying all the pagetable entries from the region pointed to old addr to
new addr. It works by literally copying pagetable entries one at a time. When it is
finished, it deletes all the entries from the old area. This is not the most efficient
way to perform the operation, but it is very easy to error recover.

90 static int move_page_tables(struct mm_struct * mm,
91 unsigned long new_addr, unsigned long old_addr,

unsigned long len)
92 {
93 unsigned long offset = len;
94
95 flush_cache_range(mm, old_addr, old_addr + len);
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96
102 while (offset) {
103 offset -= PAGE_SIZE;
104 if (move_one_page(mm, old_addr + offset, new_addr +

offset))
105 goto oops_we_failed;
106 }
107 flush_tlb_range(mm, old_addr, old_addr + len);
108 return 0;
109
117 oops_we_failed:
118 flush_cache_range(mm, new_addr, new_addr + len);
119 while ((offset += PAGE_SIZE) < len)
120 move_one_page(mm, new_addr + offset, old_addr + offset);
121 zap_page_range(mm, new_addr, len);
122 return -1;
123 }

90 The parameters are the mm for the process, the new location, the old location
and the length of the region to move entries for.

95 flush cache range() will flush all CPU caches for this range. It must be
called first because some architectures, notably Sparc’s, require that a virtual
to physical mapping exist before flushing the TLB.

102-106 Loops through each page in the region and moves the PTE with
move one pte()(See Section D.2.4.7). This translates to a lot of pagetable
walking and could be performed much better, but it is a rare operation.

107 Flushes the TLB for the old region.

108 Returns success.

118-120 This block moves all the PTEs back. A flush tlb range() is not nec-
essary because the region could not have been used yet, so no TLB entries
should exist.

121 Zaps any pages that were allocated for the move.

122 Returns failure.

D.2.4.7 Function: move one page() (mm/mremap.c)
This function is responsible for acquiring the spinlock before finding the correct

PTE with get one pte() and copying it with copy one pte().

77 static int move_one_page(struct mm_struct *mm,
unsigned long old_addr, unsigned long new_addr)

78 {
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79 int error = 0;
80 pte_t * src;
81
82 spin_lock(&mm->page_table_lock);
83 src = get_one_pte(mm, old_addr);
84 if (src)
85 error = copy_one_pte(mm, src, alloc_one_pte(mm, new_addr));
86 spin_unlock(&mm->page_table_lock);
87 return error;
88 }

82 Acquires the mm lock.

83 Calls get one pte()(See Section D.2.4.8), which walks the pagetables to get
the correct PTE.

84-85 If the PTE exists, this allocates a PTE for the destination and copies the
PTEs with copy one pte()(See Section D.2.4.10).

86 Releases the lock.

87 Returns whatever copy one pte() returned. It will only return an error if
alloc one pte()(See Section D.2.4.9) failed on line 85.

D.2.4.8 Function: get one pte() (mm/mremap.c)
This is a very simple pagetable walk.

18 static inline pte_t *get_one_pte(struct mm_struct *mm,
unsigned long addr)

19 {
20 pgd_t * pgd;
21 pmd_t * pmd;
22 pte_t * pte = NULL;
23
24 pgd = pgd_offset(mm, addr);
25 if (pgd_none(*pgd))
26 goto end;
27 if (pgd_bad(*pgd)) {
28 pgd_ERROR(*pgd);
29 pgd_clear(pgd);
30 goto end;
31 }
32
33 pmd = pmd_offset(pgd, addr);
34 if (pmd_none(*pmd))
35 goto end;
36 if (pmd_bad(*pmd)) {
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37 pmd_ERROR(*pmd);
38 pmd_clear(pmd);
39 goto end;
40 }
41
42 pte = pte_offset(pmd, addr);
43 if (pte_none(*pte))
44 pte = NULL;
45 end:
46 return pte;
47 }

24 Gets the PGD for this address.

25-26 If no PGD exists, this returns NULL because no PTE will exist either.

27-31 If the PGD is bad, this marks that an error occurred in the region, clears
its contents and returns NULL.

33-40 Acquires the correct PMD in the same fashion as for the PGD.

42 Acquires the PTE so it may be returned if it exists.

D.2.4.9 Function: alloc one pte() (mm/mremap.c)
This trivial function allocates what is necessary for one PTE in a region.

49 static inline pte_t *alloc_one_pte(struct mm_struct *mm,
unsigned long addr)

50 {
51 pmd_t * pmd;
52 pte_t * pte = NULL;
53
54 pmd = pmd_alloc(mm, pgd_offset(mm, addr), addr);
55 if (pmd)
56 pte = pte_alloc(mm, pmd, addr);
57 return pte;
58 }

54 If a PMD entry does not exist, this allocates it.

55-56 If the PMD exists, this allocates a PTE entry. The check to make sure it
succeeded is performed later in the function copy one pte().

D.2.4.10 Function: copy one pte() (mm/mremap.c)
This copies the contents of one PTE to another.

60 static inline int copy_one_pte(struct mm_struct *mm,
pte_t * src, pte_t * dst)
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61 {
62 int error = 0;
63 pte_t pte;
64
65 if (!pte_none(*src)) {
66 pte = ptep_get_and_clear(src);
67 if (!dst) {
68 /* No dest? We must put it back. */
69 dst = src;
70 error++;
71 }
72 set_pte(dst, pte);
73 }
74 return error;
75 }

65 If the source PTE does not exist, this just returns 0 to say the copy was
successful.

66 Gets the PTE and removes it from its old location.

67-71 If the dst does not exist, it means the call to alloc one pte() failed, and
the copy operation has failed and must be aborted.

72 Moves the PTE to its new location.

74 Returns an error if one occurred.

D.2.5 Deleting a Memory Region

D.2.5.1 Function: do munmap() (mm/mmap.c)
The call graph for this function is shown in Figure 4.10. This function is respon-

sible for unmapping a region. If necessary, the unmapping can span multiple VMAs,
and it can partially unmap one if necessary. Hence, the full unmapping operation
is divided into two major operations. This function is responsible for finding what
VMAs are affected, and unmap fixup() is responsible for fixing up the remaining
VMAs.

This function is divided up in a number of small sections that will be dealt with
in turn. They are, broadly speaking, the following:

• Function as a preamble, and find the VMA to start working from.

• Take all VMAs affected by the unmapping out of the mm and place them on
a linked list headed by the variable free.

• Cycle through the list headed by free, unmap all the pages in the region to
be unmapped and call unmap fixup() to fix up the mappings.

• Validate the mm and free memory associated with the unmapping.
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924 int do_munmap(struct mm_struct *mm, unsigned long addr,
size_t len)

925 {
926 struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;
927
928 if ((addr & ~PAGE_MASK) || addr > TASK_SIZE ||

len > TASK_SIZE-addr)
929 return -EINVAL;
930
931 if ((len = PAGE_ALIGN(len)) == 0)
932 return -EINVAL;
933
939 mpnt = find_vma_prev(mm, addr, &prev);
940 if (!mpnt)
941 return 0;
942 /* we have addr < mpnt->vm_end */
943
944 if (mpnt->vm_start >= addr+len)
945 return 0;
946
948 if ((mpnt->vm_start < addr && mpnt->vm_end > addr+len)
949 && mm->map_count >= max_map_count)
950 return -ENOMEM;
951
956 extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
957 if (!extra)
958 return -ENOMEM;

924 The parameters are as follows:

• mm The mm for the processes performing the unmap operation

• addr The starting address of the region to unmap

• len The length of the region

928-929 Ensures the address is page aligned and that the area to be unmapped
is not in the kernel virtual address space.

931-932 Makes sure the region size to unmap is page aligned.

939 Finds the VMA that contains the starting address and the preceding VMA
so it can be easily unlinked later.

940-941 If no mpnt was returned, it means the address must be past the last used
VMA. Therefore, the address space is unused and just returns.

944-945 If the returned VMA starts past the region you are trying to unmap, the
region in unused and just returns.
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948-950 The first part of the check sees if the VMA is just being partially un-
mapped. If it is, another VMA will be created later to deal with a region
being broken into, so the map count has to be checked to make sure it is not
too large.

956-958 In case a new mapping is required, it is allocated now because later it
will be much more difficult to back out in event of an error.

960 npp = (prev ? &prev->vm_next : &mm->mmap);
961 free = NULL;
962 spin_lock(&mm->page_table_lock);
963 for ( ; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {
964 *npp = mpnt->vm_next;
965 mpnt->vm_next = free;
966 free = mpnt;
967 rb_erase(&mpnt->vm_rb, &mm->mm_rb);
968 }
969 mm->mmap_cache = NULL; /* Kill the cache. */
970 spin_unlock(&mm->page_table_lock);

This section takes all the VMAs affected by the unmapping and places them on
a separate linked list headed by a variable called free. This makes the fixup of the
regions much easier.

960 npp becomes the next VMA in the list during the for loop that follows. To
initialize it, it is either the current VMA (mpnt), or it becomes the first VMA
in the list.

961 free is the head of a linked list of VMAs that are affected by the unmapping.

962 Locks the mm.

963 Cycles through the list until the start of the current VMA is past the end of
the region to be unmapped.

964 npp becomes the next VMA in the list.

965-966 Removes the current VMA from the linear linked list within the mm and
places it on a linked list headed by free. The current mpnt becomes the head
of the free linked list.

967 Deletes mpnt from the red-black tree.

969 Removes the cached result in case the last looked-up result is one of the regions
to be unmapped.

970 Frees the mm.
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971
972 /* Ok - we have the memory areas we should free on the
973 * ’free’ list, so release them, and unmap the page range..
974 * If one of the segments is only being partially unmapped,
975 * it will put new vm_area_struct(s) into the address space.
976 * In that case we have to be careful with VM_DENYWRITE.
977 */
978 while ((mpnt = free) != NULL) {
979 unsigned long st, end, size;
980 struct file *file = NULL;
981
982 free = free->vm_next;
983
984 st = addr < mpnt->vm_start ? mpnt->vm_start : addr;
985 end = addr+len;
986 end = end > mpnt->vm_end ? mpnt->vm_end : end;
987 size = end - st;
988
989 if (mpnt->vm_flags & VM_DENYWRITE &&
990 (st != mpnt->vm_start || end != mpnt->vm_end) &&
991 (file = mpnt->vm_file) != NULL) {
992 atomic_dec(&file->f_dentry->d_inode->i_writecount);
993 }
994 remove_shared_vm_struct(mpnt);
995 mm->map_count--;
996
997 zap_page_range(mm, st, size);
998
999 /*
1000 * Fix the mapping, and free the old area

* if it wasn’t reused.
1001 */
1002 extra = unmap_fixup(mm, mpnt, st, size, extra);
1003 if (file)
1004 atomic_inc(&file->f_dentry->d_inode->i_writecount);
1005 }

978 Keeps stepping through the list until no VMAs are left.

982 Moves free to the next element in the list, leaving mpnt as the head about
to be removed.

984 st is the start of the region to be unmapped. If the addr is before the start of
the VMA, the starting point is mpnt→vm start. Otherwise, it is the supplied
address.

985-986 Calculates the end of the region to map in a similar fashion.
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987 Calculates the size of the region to be unmapped in this pass.

989-993 If the VM DENYWRITE flag is specified, a hole will be created by this un-
mapping, and a file is mapped. Then, the i writecounts are decremented.
When this field is negative, it counts how many users there are protecting this
file from being opened for writing.

994 Removes the file mapping. If the file is still partially mapped, it will be
acquired again during unmap fixup()(See Section D.2.5.2).

995 Reduces the map count.

997 Removes all pages within this region.

1002 Calls unmap fixup()(See Section D.2.5.2) to fix up the regions after this one
is deleted.

1003-1004 Increments the writecount to the file because the region has been
unmapped. If it was just partially unmapped, this call will simply balance
out the decrement at line 987.

1006 validate_mm(mm);
1007
1008 /* Release the extra vma struct if it wasn’t used */
1009 if (extra)
1010 kmem_cache_free(vm_area_cachep, extra);
1011
1012 free_pgtables(mm, prev, addr, addr+len);
1013
1014 return 0;
1015 }

1006 validate mm() is a debugging function. If enabled, it will ensure the VMA
tree for this mm is still valid.

1009-1010 If extra VMA was not required, this deletes it.

1012 Frees all the pagetables that were used for the unmapped region.

1014 Returns success.

D.2.5.2 Function: unmap fixup() (mm/mmap.c)
This function fixes up the regions after a block has been unmapped. It is passed

a list of VMAs that are affected by the unmapping, the region and length to be
unmapped and a spare VMA that may be required to fix up the region if a whole
is created. This function handles four principle cases: the unmapping of a region,
partial unmapping from the start to somewhere in the middle, partial unmapping
from somewhere in the middle to the end and creation of a hole in the middle of
the region. Each case will be taken in turn.
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787 static struct vm_area_struct * unmap_fixup(struct mm_struct *mm,
788 struct vm_area_struct *area, unsigned long addr, size_t len,
789 struct vm_area_struct *extra)
790 {
791 struct vm_area_struct *mpnt;
792 unsigned long end = addr + len;
793
794 area->vm_mm->total_vm -= len >> PAGE_SHIFT;
795 if (area->vm_flags & VM_LOCKED)
796 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;
797

This block is the function preamble.

787 The parameters to the function are the following:

• mm is the mm the unmapped region belongs to.

• area is the head of the linked list of VMAs affected by the unmapping.

• addr is the starting address of the unmapping.

• len is the length of the region to be unmapped.

• extra is a spare VMA passed in for when a hole in the middle is created.

792 Calculates the end address of the region being unmapped.

794 Reduces the count of the number of pages used by the process.

795-796 If the pages were locked in memory, this reduces the locked page count.

798 /* Unmapping the whole area. */
799 if (addr == area->vm_start && end == area->vm_end) {
800 if (area->vm_ops && area->vm_ops->close)
801 area->vm_ops->close(area);
802 if (area->vm_file)
803 fput(area->vm_file);
804 kmem_cache_free(vm_area_cachep, area);
805 return extra;
806 }

The first, and easiest, case is where the full region is being unmapped.

799 The full region is unmapped if the addr is the start of the VMA and the
end is the end of the VMA. This is interesting because, if the unmapping is
spanning regions, it is possible that the end is beyond the end of the VMA,
but the full of this VMA is still being unmapped.

800-801 If a close operation is supplied by the VMA, this calls it.
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802-803 If a file or device is mapped, this calls fput(), which decrements the
usage count and releases it if the count falls to 0.

804 Frees the memory for the VMA back to the slab allocator.

805 Returns the extra VMA because it was unused.

809 if (end == area->vm_end) {
810 /*
811 * here area isn’t visible to the semaphore-less readers
812 * so we don’t need to update it under the spinlock.
813 */
814 area->vm_end = addr;
815 lock_vma_mappings(area);
816 spin_lock(&mm->page_table_lock);
817 }

This block handles the case where the middle of the region to the end is been
unmapped.

814 Truncates the VMA back to addr. At this point, the pages for the region
have already freed, and the pagetable entries will be freed later, so no further
work is required.

815 If a file/device is being mapped, the lock protecting shared access to it is
taken in the function lock vm mappings().

816 Locks the mm. Later in the function, the remaining VMA will be reinserted
into the mm.

817 else if (addr == area->vm_start) {
818 area->vm_pgoff += (end - area->vm_start) >> PAGE_SHIFT;
819 /* same locking considerations of the above case */
820 area->vm_start = end;
821 lock_vma_mappings(area);
822 spin_lock(&mm->page_table_lock);
823 } else {

This block handles the case where the VMA is been unmapped from the start
to some part in the middle.

818 Increases the offset within the file/device mapped by the number of pages this
unmapping represents.

820 Moves the start of the VMA to the end of the region being unmapped.

821-822 Locks the file/device and mm as previously described.
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823 } else {
825 /* Add end mapping -- leave beginning for below */
826 mpnt = extra;
827 extra = NULL;
828
829 mpnt->vm_mm = area->vm_mm;
830 mpnt->vm_start = end;
831 mpnt->vm_end = area->vm_end;
832 mpnt->vm_page_prot = area->vm_page_prot;
833 mpnt->vm_flags = area->vm_flags;
834 mpnt->vm_raend = 0;
835 mpnt->vm_ops = area->vm_ops;
836 mpnt->vm_pgoff = area->vm_pgoff +

((end - area->vm_start) >> PAGE_SHIFT);
837 mpnt->vm_file = area->vm_file;
838 mpnt->vm_private_data = area->vm_private_data;
839 if (mpnt->vm_file)
840 get_file(mpnt->vm_file);
841 if (mpnt->vm_ops && mpnt->vm_ops->open)
842 mpnt->vm_ops->open(mpnt);
843 area->vm_end = addr; /* Truncate area */
844
845 /* Because mpnt->vm_file == area->vm_file this locks
846 * things correctly.
847 */
848 lock_vma_mappings(area);
849 spin_lock(&mm->page_table_lock);
850 __insert_vm_struct(mm, mpnt);
851 }

This block handles the case where a hole is being created by a partial unmapping.
In this case, the extra VMA is required to create a new mapping from the end of
the unmapped region to the end of the old VMA.

826-827 Takes the extra VMA and makes VMA NULL so that the calling function
will know it is in use and cannot be freed.

828-838 Copies in all the VMA information.

839 If a file/device is mapped, this gets a reference to it with get file().

841-842 If an open function is provided, this calls it.

843 Truncates the VMA so that it ends at the start of the region to be unmapped.

848-849 Locks the files and mm as with the two previous cases.

850 Inserts the extra VMA into the mm.
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852
853 __insert_vm_struct(mm, area);
854 spin_unlock(&mm->page_table_lock);
855 unlock_vma_mappings(area);
856 return extra;
857 }

853 Reinserts the VMA into the mm.

854 Unlocks the pagetables.

855 Unlocks the spinlock to the shared mapping.

856 Returns the extra VMA if it was not used and NULL if it was.

D.2.6 Deleting All Memory Regions

D.2.6.1 Function: exit mmap() (mm/mmap.c)
This function simply steps through all VMAs associated with the supplied mm

and unmaps them.

1127 void exit_mmap(struct mm_struct * mm)
1128 {
1129 struct vm_area_struct * mpnt;
1130
1131 release_segments(mm);
1132 spin_lock(&mm->page_table_lock);
1133 mpnt = mm->mmap;
1134 mm->mmap = mm->mmap_cache = NULL;
1135 mm->mm_rb = RB_ROOT;
1136 mm->rss = 0;
1137 spin_unlock(&mm->page_table_lock);
1138 mm->total_vm = 0;
1139 mm->locked_vm = 0;
1140
1141 flush_cache_mm(mm);
1142 while (mpnt) {
1143 struct vm_area_struct * next = mpnt->vm_next;
1144 unsigned long start = mpnt->vm_start;
1145 unsigned long end = mpnt->vm_end;
1146 unsigned long size = end - start;
1147
1148 if (mpnt->vm_ops) {
1149 if (mpnt->vm_ops->close)
1150 mpnt->vm_ops->close(mpnt);
1151 }
1152 mm->map_count--;
1153 remove_shared_vm_struct(mpnt);
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1154 zap_page_range(mm, start, size);
1155 if (mpnt->vm_file)
1156 fput(mpnt->vm_file);
1157 kmem_cache_free(vm_area_cachep, mpnt);
1158 mpnt = next;
1159 }
1160 flush_tlb_mm(mm);
1161
1162 /* This is just debugging */
1163 if (mm->map_count)
1164 BUG();
1165
1166 clear_page_tables(mm, FIRST_USER_PGD_NR, USER_PTRS_PER_PGD);
1167 }

1131 release segments() will release memory segments associated with the pro-
cess on its Local Descriptor Table (LDT) if the architecture supports segments
and the process was using them. Some applications, notably WINE, use this
feature.

1132 Locks the mm.

1133 mpnt becomes the first VMA on the list.

1134 Clears VMA-related information from the mm so that it may be unlocked.

1137 Unlocks the mm.

1138-1139 Clears the mm statistics.

1141 Flushes the CPU for the address range.

1142-1159 Steps through every VMA that was associated with the mm.

1143 Records what the next VMA to clear will be so that this one may be deleted.

1144-1146 Records the start, end and size of the region to be deleted.

1148-1151 If there is a close operation associated with this VMA, this calls it.

1152 Reduces the map count.

1153 Removes the file/device mapping from the shared mappings list.

1154 Frees all pages associated with this region.

1155-1156 If a file/device was mapped in this region, this frees it.

1157 Frees the VMA struct.

1158 Moves to the next VMA.
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1160 Flushes the TLB for this whole mm because it is about to be unmapped.

1163-1164 If the map count is positive, it means the map count was not accounted
for properly, so this calls BUG() to mark it.

1166 Clears the pagetables associated with this region with clear page tables()
(See Section D.2.6.2).

D.2.6.2 Function: clear page tables() (mm/memory.c)
This is the top-level function used to unmap all PTEs and free pages within a

region. It is used when pagetables need to be torn down, such as when the process
exits or a region is unmapped.

146 void clear_page_tables(struct mm_struct *mm,
unsigned long first, int nr)

147 {
148 pgd_t * page_dir = mm->pgd;
149
150 spin_lock(&mm->page_table_lock);
151 page_dir += first;
152 do {
153 free_one_pgd(page_dir);
154 page_dir++;
155 } while (--nr);
156 spin_unlock(&mm->page_table_lock);
157
158 /* keep the pagetable cache within bounds */
159 check_pgt_cache();
160 }

148 Gets the PGD for the mm being unmapped.

150 Locks the pagetables.

151-155 Steps through all PGDs in the requested range. For each PGD found,
this calls free one pgd() (See Section D.2.6.3).

156 Unlocks the pagetables.

159 Checks the cache of available PGD structures. If there are too many PGDs
in the PGD quicklist, some of them will be reclaimed.

D.2.6.3 Function: free one pgd() (mm/memory.c)
This function tears down one PGD. For each PMD in this PGD, free one pmd()

will be called.

109 static inline void free_one_pgd(pgd_t * dir)
110 {
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111 int j;
112 pmd_t * pmd;
113
114 if (pgd_none(*dir))
115 return;
116 if (pgd_bad(*dir)) {
117 pgd_ERROR(*dir);
118 pgd_clear(dir);
119 return;
120 }
121 pmd = pmd_offset(dir, 0);
122 pgd_clear(dir);
123 for (j = 0; j < PTRS_PER_PMD ; j++) {
124 prefetchw(pmd+j+(PREFETCH_STRIDE/16));
125 free_one_pmd(pmd+j);
126 }
127 pmd_free(pmd);
128 }

114-115 If no PGD exists here, this returns.

116-120 If the PGD is bad, this flags the error and returns.

1121 Gets the first PMD in the PGD.

122 Clears the PGD entry.

123-126 For each PMD in this PGD, this calls free one pmd()
(See Section D.2.6.4).

127 Frees the PMD page to the PMD quicklist. Later, check pgt cache() will be
called, and, if the cache has too many PMD pages in it, they will be reclaimed.

D.2.6.4 Function: free one pmd() (mm/memory.c)

93 static inline void free_one_pmd(pmd_t * dir)
94 {
95 pte_t * pte;
96
97 if (pmd_none(*dir))
98 return;
99 if (pmd_bad(*dir)) {
100 pmd_ERROR(*dir);
101 pmd_clear(dir);
102 return;
103 }
104 pte = pte_offset(dir, 0);
105 pmd_clear(dir);

P
ro

ce
ss

A
d
d
re

ss
S
p
a
ce



308 Process Address Space Appendix D

106 pte_free(pte);
107 }

97-98 If no PMD exists here, this returns.

99-103 If the PMD is bad, this flags the error and returns.

104 Gets the first PTE in the PMD.

105 Clears the PMD from the pagetable.

106 Frees the PTE page to the PTE quicklist cache with pte free(). Later,
check pgt cache() will be called, and, if the cache has too many PTE pages
in it, they will be reclaimed.
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The functions in this section deal with searching the virtual address space for
mapped and free regions.

D.3.1 Finding a Mapped Memory Region

D.3.1.1 Function: find vma() (mm/mmap.c)

661 struct vm_area_struct * find_vma(struct mm_struct * mm,
unsigned long addr)

662 {
663 struct vm_area_struct *vma = NULL;
664
665 if (mm) {
666 /* Check the cache first. */
667 /* (Cache hit rate is typically around 35%.) */
668 vma = mm->mmap_cache;
669 if (!(vma && vma->vm_end > addr &&

vma->vm_start <= addr)) {
670 rb_node_t * rb_node;
671
672 rb_node = mm->mm_rb.rb_node;
673 vma = NULL;
674
675 while (rb_node) {
676 struct vm_area_struct * vma_tmp;
677
678 vma_tmp = rb_entry(rb_node,

struct vm_area_struct, vm_rb);
679
680 if (vma_tmp->vm_end > addr) {
681 vma = vma_tmp;
682 if (vma_tmp->vm_start <= addr)
683 break;
684 rb_node = rb_node->rb_left;
685 } else
686 rb_node = rb_node->rb_right;
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687 }
688 if (vma)
689 mm->mmap_cache = vma;
690 }
691 }
692 return vma;
693 }

661 The two parameters are the top-level mm struct that is to be searched and
the address the caller is interested in.

663 Defaults to returning NULL for address not found.

665 Makes sure the caller does not try to search a bogus mm.

668 mmap cache has the result of the last call to find vma(). This has a chance
of not having to search at all through the red-black tree.

669 If it is a valid VMA that is being examined, this checks to see if the address
being searched is contained within it. If it is, the VMA was the mmap cache
one, so it can be returned. Otherwise, the tree is searched.

670-674 Starts at the root of the tree.

675-687 This block is the tree walk.

678 The macro, as the name suggests, returns the VMA that this tree node points
to.

680 Checks if the next node is traversed by the left or right leaf.

682 If the current VMA is what is required, this exits the while loop.

689 If the VMA is valid, this sets the mmap cache for the next call to find vma().

692 Returns the VMA that contains the address or, as a side effect of the tree
walk, returns the VMA that is closest to the requested address.

D.3.1.2 Function: find vma prev() (mm/mmap.c)

696 struct vm_area_struct * find_vma_prev(struct mm_struct * mm,
unsigned long addr,

697 struct vm_area_struct **pprev)
698 {
699 if (mm) {
700 /* Go through the RB tree quickly. */
701 struct vm_area_struct * vma;
702 rb_node_t * rb_node, * rb_last_right, * rb_prev;
703
704 rb_node = mm->mm_rb.rb_node;
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705 rb_last_right = rb_prev = NULL;
706 vma = NULL;
707
708 while (rb_node) {
709 struct vm_area_struct * vma_tmp;
710
711 vma_tmp = rb_entry(rb_node,

struct vm_area_struct, vm_rb);
712
713 if (vma_tmp->vm_end > addr) {
714 vma = vma_tmp;
715 rb_prev = rb_last_right;
716 if (vma_tmp->vm_start <= addr)
717 break;
718 rb_node = rb_node->rb_left;
719 } else {
720 rb_last_right = rb_node;
721 rb_node = rb_node->rb_right;
722 }
723 }
724 if (vma) {
725 if (vma->vm_rb.rb_left) {
726 rb_prev = vma->vm_rb.rb_left;
727 while (rb_prev->rb_right)
728 rb_prev = rb_prev->rb_right;
729 }
730 *pprev = NULL;
731 if (rb_prev)
732 *pprev = rb_entry(rb_prev, struct

vm_area_struct, vm_rb);
733 if ((rb_prev ? (*pprev)->vm_next : mm->mmap) !=
vma)
734 BUG();
735 return vma;
736 }
737 }
738 *pprev = NULL;
739 return NULL;
740 }

696-723 This is essentially the same as the find vma() function already described.
The only difference is that the last right node accessed is remembered because
this will represent the VMA previous to the requested VMA.

725-729 If the returned VMA has a left node, it means that it has to be traversed.
It first takes the left leaf and then follows each right leaf until the bottom of
the tree is found.
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731-732 Extracts the VMA from the red-black tree node.

733-734 A debugging check. If this is the previous node, its next field should
point to the VMA being returned. If it is not, it is a bug.

D.3.1.3 Function: find vma intersection() (include/linux/mm.h)

673 static inline struct vm_area_struct * find_vma_intersection(
struct mm_struct * mm,
unsigned long start_addr, unsigned long end_addr)

674 {
675 struct vm_area_struct * vma = find_vma(mm,start_addr);
676
677 if (vma && end_addr <= vma->vm_start)
678 vma = NULL;
679 return vma;
680 }

675 Returns the VMA closest to the starting address.

677 If a VMA is returned and the end address is still less than the beginning of
the returned VMA, the VMA does not intersect.

679 Returns the VMA if it does intersect.

D.3.2 Finding a Free Memory Region

D.3.2.1 Function: get unmapped area() (mm/mmap.c)
The call graph for this function is shown in Figure 4.4.

644 unsigned long get_unmapped_area(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)

645 {
646 if (flags & MAP_FIXED) {
647 if (addr > TASK_SIZE - len)
648 return -ENOMEM;
649 if (addr & ~PAGE_MASK)
650 return -EINVAL;
651 return addr;
652 }
653
654 if (file && file->f_op && file->f_op->get_unmapped_area)
655 return file->f_op->get_unmapped_area(file, addr,

len, pgoff, flags);
656
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657 return arch_get_unmapped_area(file, addr, len, pgoff, flags);
658 }

644 The parameters passed are the following:

• file The file or device being mapped

• addr The requested address to map to

• len The length of the mapping

• pgoff The offset within the file being mapped

• flags Protection flags

646-652 A sanity check. If it is required that the mapping be placed at the
specified address, this makes sure it will not overflow the address space and
that it is page aligned.

654 If the struct file provides a get unmapped area() function, this uses it.

657 Uses arch get unmapped area()(See Section D.3.2.2) as an anonymous ver-
sion of the get unmapped area() function.

D.3.2.2 Function: arch get unmapped area() (mm/mmap.c)
Architectures have the option of specifying this function for themselves by defin-

ing HAVE ARCH UNMAPPED AREA. If the architectures do not supply one, this version
is used.

614 #ifndef HAVE_ARCH_UNMAPPED_AREA
615 static inline unsigned long arch_get_unmapped_area(

struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)

616 {
617 struct vm_area_struct *vma;
618
619 if (len > TASK_SIZE)
620 return -ENOMEM;
621
622 if (addr) {
623 addr = PAGE_ALIGN(addr);
624 vma = find_vma(current->mm, addr);
625 if (TASK_SIZE - len >= addr &&
626 (!vma || addr + len <= vma->vm_start))
627 return addr;
628 }
629 addr = PAGE_ALIGN(TASK_UNMAPPED_BASE);
630
631 for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {
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632 /* At this point: (!vma || addr < vma->vm_end). */
633 if (TASK_SIZE - len < addr)
634 return -ENOMEM;
635 if (!vma || addr + len <= vma->vm_start)
636 return addr;
637 addr = vma->vm_end;
638 }
639 }
640 #else
641 extern unsigned long arch_get_unmapped_area(struct file *,

unsigned long, unsigned long,
unsigned long, unsigned long);

642 #endif

614 If this is not defined, it means that the architecture does not provide its own
arch get unmapped area(), so this one is used instead.

615 The parameters are the same as those for get unmapped area()
(See Section D.3.2.1).

619-620 A sanity check to make sure the required map length is not too long.

622-628 If an address is provided, this uses it for the mapping.

623 Makes sure the address is page aligned.

624 find vma()(See Section D.3.1.1) will return the region closest to the requested
address.

625-627 Makes sure the mapping will not overlap with another region. If it does
not, it returns it because it is safe to use. Otherwise, it gets ignored.

629 TASK UNMAPPED BASE is the starting point for searching for a free region to
use.

631-638 Starting from TASK UNMAPPED BASE, this linearly searches the VMAs until
a large enough region between them is found to store the new mapping. This
is essentially a first fit search.

641 If an external function is provided, it still needs to be declared here.
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This section contains the functions related to locking and unlocking a region.
The main complexity in them is how the regions need to be fixed up after the
operation takes place.

D.4.1 Locking a Memory Region

D.4.1.1 Function: sys mlock() (mm/mlock.c)
The call graph for this function is shown in Figure 4.9. This is the system call

mlock() for locking a region of memory into physical memory. This function simply
checks to make sure that process and user limits are not exceeeded and that the
region to lock is page aligned.

195 asmlinkage long sys_mlock(unsigned long start, size_t len)
196 {
197 unsigned long locked;
198 unsigned long lock_limit;
199 int error = -ENOMEM;
200
201 down_write(&current->mm->mmap_sem);
202 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
203 start &= PAGE_MASK;
204
205 locked = len >> PAGE_SHIFT;
206 locked += current->mm->locked_vm;
207
208 lock_limit = current->rlim[RLIMIT_MEMLOCK].rlim_cur;
209 lock_limit >>= PAGE_SHIFT;
210
211 /* check against resource limits */
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212 if (locked > lock_limit)
213 goto out;
214
215 /* we may lock at most half of physical memory... */
216 /* (this check is pretty bogus, but doesn’t hurt) */
217 if (locked > num_physpages/2)
218 goto out;
219
220 error = do_mlock(start, len, 1);
221 out:
222 up_write(&current->mm->mmap_sem);
223 return error;
224 }

201 Takes the semaphore. We are likely to sleep during this, so a spinlock cannot
be used.

202 Rounds the length up to the page boundary.

203 Rounds the start address down to the page boundary.

205 Calculates how many pages will be locked.

206 Calculates how many pages will be locked in total by this process.

208-209 Calculates what the limit is to the number of locked pages.

212-213 Does not allow the process to lock more than it should.

217-218 Does not allow the process to map more than half of physical memory.

220 Calls do mlock()(See Section D.4.1.4), which starts the real work by find-
ing the VMA clostest to the area to lock before calling mlock fixup()
(See Section D.4.3.1).

222 Frees the semaphore.

223 Returns the error or success code from do mlock().

D.4.1.2 Function: sys mlockall() (mm/mlock.c)
This is the system call mlockall(), which attempts to lock all pages in the

calling process in memory. If MCL CURRENT is specified, all current pages will be
locked. If MCL FUTURE is specified, all future mappings will be locked. The flags
may be or-ed together. This function makes sure that the flags and process limits
are ok before calling do mlockall().

266 asmlinkage long sys_mlockall(int flags)
267 {
268 unsigned long lock_limit;
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269 int ret = -EINVAL;
270
271 down_write(&current->mm->mmap_sem);
272 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
273 goto out;
274
275 lock_limit = current->rlim[RLIMIT_MEMLOCK].rlim_cur;
276 lock_limit >>= PAGE_SHIFT;
277
278 ret = -ENOMEM;
279 if (current->mm->total_vm > lock_limit)
280 goto out;
281
282 /* we may lock at most half of physical memory... */
283 /* (this check is pretty bogus, but doesn’t hurt) */
284 if (current->mm->total_vm > num_physpages/2)
285 goto out;
286
287 ret = do_mlockall(flags);
288 out:
289 up_write(&current->mm->mmap_sem);
290 return ret;
291 }

269 By default, this returns -EINVAL to indicate invalid parameters.

271 Acquires the current mm struct semaphore.

272-273 Makes sure that some valid flag has been specified. If not, it uses goto
out to unlock the semaphore and returns -EINVAL.

275-276 Checks the process limits to see how many pages may be locked.

278 From here on, the default error is -ENOMEM.

279-280 If the size of the locking would exceed set limits, then it uses goto out.

284-285 Do not allow this process to lock more than half of physical memory. This
is a bogus check because four processes locking a quarter of physical memory
each will bypass this. It is acceptable though because only root proceses are
allowed to lock memory and are unlikely to make this type of mistake.

287 Calls the core function do mlockall()(See Section D.4.1.3).

289-290 Unlocks the semaphore and returns.
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D.4.1.3 Function: do mlockall() (mm/mlock.c)

238 static int do_mlockall(int flags)
239 {
240 int error;
241 unsigned int def_flags;
242 struct vm_area_struct * vma;
243
244 if (!capable(CAP_IPC_LOCK))
245 return -EPERM;
246
247 def_flags = 0;
248 if (flags & MCL_FUTURE)
249 def_flags = VM_LOCKED;
250 current->mm->def_flags = def_flags;
251
252 error = 0;
253 for (vma = current->mm->mmap; vma ; vma = vma->vm_next) {
254 unsigned int newflags;
255
256 newflags = vma->vm_flags | VM_LOCKED;
257 if (!(flags & MCL_CURRENT))
258 newflags &= ~VM_LOCKED;
259 error = mlock_fixup(vma, vma->vm_start, vma->vm_end,

newflags);
260 if (error)
261 break;
262 }
263 return error;
264 }

244-245 The calling process must be either root or have CAP IPC LOCK capabilities.

248-250 The MCL FUTURE flag says that all future pages should be locked, so, if
set, the def flags for VMAs should be VM LOCKED.

253-262 Cycles through all VMAs.

256 Sets the VM LOCKED flag in the current VMA flags.

257-258 If the MCL CURRENT flag has not been set requesting that all current pages
be locked, then this clears the VM LOCKED flag. The logic is arranged like this
so that the unlock code can use this same function, just with no flags.

259 Calls mlock fixup()(See Section D.4.3.1), which will adjust the regions to
match the locking as necessary.

260-261 If a nonzero value is returned at any point, this stops locking. It is
interesting to note that VMAs already locked will not be unlocked.



D.4. Locking and Unlocking Memory Regions 319

263 Returns the success or error value.

D.4.1.4 Function: do mlock() (mm/mlock.c)
This function is responsible for starting the work needed to either lock or unlock

a region, depending on the value of the on parameter. It is broken up into two
sections. The first makes sure the region is page aligned (despite the fact the
only two callers of this function do the same thing) before finding the VMA that
is to be adjusted. The second part then sets the appropriate flags before calling
mlock fixup() for each VMA that is affected by this locking.

148 static int do_mlock(unsigned long start, size_t len, int on)
149 {
150 unsigned long nstart, end, tmp;
151 struct vm_area_struct * vma, * next;
152 int error;
153
154 if (on && !capable(CAP_IPC_LOCK))
155 return -EPERM;
156 len = PAGE_ALIGN(len);
157 end = start + len;
158 if (end < start)
159 return -EINVAL;
160 if (end == start)
161 return 0;
162 vma = find_vma(current->mm, start);
163 if (!vma || vma->vm_start > start)
164 return -ENOMEM;

This block page aligns the request and finds the VMA.

154 Only root processes can lock pages.

156 Page aligns the length. This is redundent because the length is page aligned
in the parent functions.

157-159 Calculates the end of the locking and makes sure it is a valid region. It
returns -EINVAL if it is not.

160-161 If locking a region of size 0, this just returns.

162 Finds the VMA that will be affected by this locking.

163-164 If the VMA for this address range does not exist, it returns -ENOMEM.

166 for (nstart = start ; ; ) {
167 unsigned int newflags;
168
170
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171 newflags = vma->vm_flags | VM_LOCKED;
172 if (!on)
173 newflags &= ~VM_LOCKED;
174
175 if (vma->vm_end >= end) {
176 error = mlock_fixup(vma, nstart, end, newflags);
177 break;
178 }
179
180 tmp = vma->vm_end;
181 next = vma->vm_next;
182 error = mlock_fixup(vma, nstart, tmp, newflags);
183 if (error)
184 break;
185 nstart = tmp;
186 vma = next;
187 if (!vma || vma->vm_start != nstart) {
188 error = -ENOMEM;
189 break;
190 }
191 }
192 return error;
193 }

This block walks through the VMAs affected by this locking and calls
mlock fixup() for each of them.

166-192 Cycles through as many VMAs as necessary to lock the pages.

171 Sets the VM LOCKED flag on the VMA.

172-173 If this is an unlock, it removes the flag.

175-177 If this VMA is the last VMA to be affected by the unlocking, this calls
mlock fixup() with the end address for the locking and exits.

180-190 This is whole VMA that needs to be locked. To lock it, the end of this
VMA is passed as a parameter to mlock fixup()(See Section D.4.3.1) instead
of the end of the actual locking.

180 tmp is the end of the mapping on this VMA.

181 next is the next VMA that will be affected by the locking.

182 Calls mlock fixup()(See Section D.4.3.1) for this VMA.

183-184 If an error occurs, this backs out. Note that the VMAs already locked
are not fixed up right.

185 The next start address is the start of the next VMA.
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186 Moves to the next VMA.

187-190 If there is no VMA, this returns -ENOMEM. The next condition, though,
would require the regions to be extremly broken as a result of a broken im-
plementation of mlock fixup() or have VMAs that overlap.

192 Returns the error or success value.

D.4.2 Unlocking the Region

D.4.2.1 Function: sys munlock() (mm/mlock.c)
This page aligns the request before calling do mlock(), which begins the real

work of fixing up the regions.

226 asmlinkage long sys_munlock(unsigned long start, size_t len)
227 {
228 int ret;
229
230 down_write(&current->mm->mmap_sem);
231 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
232 start &= PAGE_MASK;
233 ret = do_mlock(start, len, 0);
234 up_write(&current->mm->mmap_sem);
235 return ret;
236 }

230 Acquires the semaphore protecting the mm struct.

231 Rounds the length of the region up to the nearest page boundary.

232 Rounds the start of the region down to the nearest page boundary.

233 Calls do mlock()(See Section D.4.1.4) with 0 as the third parameter to unlock
the region.

234 Releases the semaphore.

235 Returns the success or failure code.

D.4.2.2 Function: sys munlockall() (mm/mlock.c)
This is a trivial function. If the flags to mlockall() are 0, it gets translated as

none of the current pages must be present and no future mappings should be locked
either, which means the VM LOCKED flag will be removed on all VMAs.

293 asmlinkage long sys_munlockall(void)
294 {
295 int ret;
296
297 down_write(&current->mm->mmap_sem);
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298 ret = do_mlockall(0);
299 up_write(&current->mm->mmap_sem);
300 return ret;
301 }

297 Acquires the semaphore protecting the mm struct.

298 Calls do mlockall()(See Section D.4.1.3) with 0 as flags, which will remove
the VM LOCKED from all VMAs.

299 Releases the semaphore.

300 Returns the error or success code.

D.4.3 Fixing Up Regions After Locking/Unlocking

D.4.3.1 Function: mlock fixup() (mm/mlock.c)
This function identifies four separate types of locking that must be addressed.

The first is where the full VMA is to be locked, and it calls mlock fixup all().
The second is where only the beginning portion of the VMA is affected, which is
handled by mlock fixup start(). The third is the locking of a region at the end,
which is handled by mlock fixup end(), and the last is locking a region in the
middle of the VMA with mlock fixup middle().

117 static int mlock_fixup(struct vm_area_struct * vma,
118 unsigned long start, unsigned long end, unsigned int newflags)
119 {
120 int pages, retval;
121
122 if (newflags == vma->vm_flags)
123 return 0;
124
125 if (start == vma->vm_start) {
126 if (end == vma->vm_end)
127 retval = mlock_fixup_all(vma, newflags);
128 else
129 retval = mlock_fixup_start(vma, end, newflags);
130 } else {
131 if (end == vma->vm_end)
132 retval = mlock_fixup_end(vma, start, newflags);
133 else
134 retval = mlock_fixup_middle(vma, start,

end, newflags);
135 }
136 if (!retval) {
137 /* keep track of amount of locked VM */
138 pages = (end - start) >> PAGE_SHIFT;
139 if (newflags & VM_LOCKED) {
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140 pages = -pages;
141 make_pages_present(start, end);
142 }
143 vma->vm_mm->locked_vm -= pages;
144 }
145 return retval;
146 }

122-123 If no change is to be made, this just returns.

125 If the start of the locking is at the start of the VMA, it means that either the
full region is to the locked or only a portion at the beginning.

126-127 If the full VMA is being locked, this calls mlock fixup all()
(See Section D.4.3.2).

128-129 If part of the VMA is being locked with the start of the VMA matching
the start of the locking, this calls mlock fixup start() (See Section D.4.3.3).

130 Means that either a region at the end is to be locked or a region in the middle.

131-132 If the end of the locking matches the end of the VMA, this calls
mlock fixup end() (See Section D.4.3.4).

133-134 If a region in the middle of the VMA is to be locked, this calls
mlock fixup middle() (See Section D.4.3.5).

136-144 For this, the fixup functions return 0 on success. If the fixup
of the regions succeed and the regions are now marked as locked, this
calls make pages present(), which makes some basic checks before calling
get user pages(), which faults in all the pages in the same way that the
page fault handler does.

D.4.3.2 Function: mlock fixup all() (mm/mlock.c)

15 static inline int mlock_fixup_all(struct vm_area_struct * vma,
int newflags)

16 {
17 spin_lock(&vma->vm_mm->page_table_lock);
18 vma->vm_flags = newflags;
19 spin_unlock(&vma->vm_mm->page_table_lock);
20 return 0;
21 }

17-19 Trivial. It locks the VMA with the spinlock, sets the new flags, releases the
lock and returns success.
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D.4.3.3 Function: mlock fixup start() (mm/mlock.c)
This is slightly more complicated. A new VMA is required to represent the

affected region. The start of the old VMA is moved forward.

23 static inline int mlock_fixup_start(struct vm_area_struct * vma,
24 unsigned long end, int newflags)
25 {
26 struct vm_area_struct * n;
27
28 n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
29 if (!n)
30 return -EAGAIN;
31 *n = *vma;
32 n->vm_end = end;
33 n->vm_flags = newflags;
34 n->vm_raend = 0;
35 if (n->vm_file)
36 get_file(n->vm_file);
37 if (n->vm_ops && n->vm_ops->open)
38 n->vm_ops->open(n);
39 vma->vm_pgoff += (end - vma->vm_start) >> PAGE_SHIFT;
40 lock_vma_mappings(vma);
41 spin_lock(&vma->vm_mm->page_table_lock);
42 vma->vm_start = end;
43 __insert_vm_struct(current->mm, n);
44 spin_unlock(&vma->vm_mm->page_table_lock);
45 unlock_vma_mappings(vma);
46 return 0;
47 }

28 Allocates a VMA from the slab allocator for the affected region.

31-34 Copies in the necessary information.

35-36 If the VMA has a file or device mapping, get file() will increment the
reference count.

37-38 If an open() function is provided, this calls it.

39 Updates the offset within the file or device mapping for the old VMA to be the
end of the locked region.

40 lock vma mappings() will lock any files if this VMA is a shared region.

41-44 Locks the parent mm struct, updates its start to be the end of the af-
fected region, inserts the new VMA into the processes linked lists (See
Section D.2.2.1) and releases the lock.

45 Unlocks the file mappings with unlock vma mappings().
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46 Returns success.

D.4.3.4 Function: mlock fixup end() (mm/mlock.c)
This function is essentially the same as mlock fixup start() except the affected

region is at the end of the VMA.

49 static inline int mlock_fixup_end(struct vm_area_struct * vma,
50 unsigned long start, int newflags)
51 {
52 struct vm_area_struct * n;
53
54 n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
55 if (!n)
56 return -EAGAIN;
57 *n = *vma;
58 n->vm_start = start;
59 n->vm_pgoff += (n->vm_start - vma->vm_start) >> PAGE_SHIFT;
60 n->vm_flags = newflags;
61 n->vm_raend = 0;
62 if (n->vm_file)
63 get_file(n->vm_file);
64 if (n->vm_ops && n->vm_ops->open)
65 n->vm_ops->open(n);
66 lock_vma_mappings(vma);
67 spin_lock(&vma->vm_mm->page_table_lock);
68 vma->vm_end = start;
69 __insert_vm_struct(current->mm, n);
70 spin_unlock(&vma->vm_mm->page_table_lock);
71 unlock_vma_mappings(vma);
72 return 0;
73 }

54 Allocates a VMA from the slab allocator for the affected region.

57-61 Copies in the necessary information and updates the offset within the file
or device mapping.

62-63 If the VMA has a file or device mapping, get file() will increment the
reference count.

64-65 If an open() function is provided, this calls it.

66 lock vma mappings() will lock any files if this VMA is a shared region.

67-70 Locks the parent mm struct, updates its start to be the end of the af-
fected region, inserts the new VMA into the processes linked lists (See Section
D.2.2.1) and releases the lock.
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71 Unlocks the file mappings with unlock vma mappings().

72 Returns success.

D.4.3.5 Function: mlock fixup middle() (mm/mlock.c)
This is similar to the previous two fixup functions except that two new regions

are required to fix up the mapping.

75 static inline int mlock_fixup_middle(struct vm_area_struct * vma,
76 unsigned long start, unsigned long end, int newflags)
77 {
78 struct vm_area_struct * left, * right;
79
80 left = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
81 if (!left)
82 return -EAGAIN;
83 right = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
84 if (!right) {
85 kmem_cache_free(vm_area_cachep, left);
86 return -EAGAIN;
87 }
88 *left = *vma;
89 *right = *vma;
90 left->vm_end = start;
91 right->vm_start = end;
92 right->vm_pgoff += (right->vm_start - left->vm_start) >>

PAGE_SHIFT;
93 vma->vm_flags = newflags;
94 left->vm_raend = 0;
95 right->vm_raend = 0;
96 if (vma->vm_file)
97 atomic_add(2, &vma->vm_file->f_count);
98
99 if (vma->vm_ops && vma->vm_ops->open) {
100 vma->vm_ops->open(left);
101 vma->vm_ops->open(right);
102 }
103 vma->vm_raend = 0;
104 vma->vm_pgoff += (start - vma->vm_start) >> PAGE_SHIFT;
105 lock_vma_mappings(vma);
106 spin_lock(&vma->vm_mm->page_table_lock);
107 vma->vm_start = start;
108 vma->vm_end = end;
109 vma->vm_flags = newflags;
110 __insert_vm_struct(current->mm, left);
111 __insert_vm_struct(current->mm, right);



D.4. Locking and Unlocking Memory Regions 327

112 spin_unlock(&vma->vm_mm->page_table_lock);
113 unlock_vma_mappings(vma);
114 return 0;
115 }

80-87 Allocates the two new VMAs from the slab allocator.

88-89 Copies in the information from the old VMA into the new VMAs.

90 The end of the left region is the start of the region to be affected.

91 The start of the right region is the end of the affected region.

92 Updates the file offset.

93 The old VMA is now the affected region, so this updates its flags.

94-95 Makes the readahead window 0 to ensure pages not belonging to their
regions are not accidently read ahead.

96-97 Increments the reference count to the file/device mapping if there is one.

99-102 Calls the open() function for the two new mappings.

103-104 Cancels the readahead window and updates the offset within the file to
be the beginning of the locked region.

105 Locks the shared file/device mappings.

106-112 Locks the parent mm struct, updates the VMA and inserts the two new
regions into the process before releasing the lock again.

113 Unlocks the shared mappings.

114 Returns success.
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D.5 Page Faulting
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This section deals with the page fault handler. It begins with the architecture-
specific function for the x86 and then moves to the architecture-independent layer.
The architecture-specific functions all have the same responsibilities.

D.5.1 x86 Page Fault Handler

D.5.1.1 Function: do page fault() (arch/i386/mm/fault.c)
The call graph for this function is shown in Figure 4.11. This function is the x86

architecture-dependent function for the handling of page fault exception handlers.
Each architecture registers its own, but all of them have similar responsibilities.

140 asmlinkage void do_page_fault(struct pt_regs *regs,
unsigned long error_code)

141 {
142 struct task_struct *tsk;
143 struct mm_struct *mm;
144 struct vm_area_struct * vma;
145 unsigned long address;
146 unsigned long page;
147 unsigned long fixup;
148 int write;
149 siginfo_t info;
150
151 /* get the address */
152 __asm__("movl %%cr2,%0":"=r" (address));
153
154 /* It’s safe to allow irq’s after cr2 has been saved */
155 if (regs->eflags & X86_EFLAGS_IF)
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156 local_irq_enable();
157
158 tsk = current;
159

This is the function preamble. It gets the fault address and enables interrupts.

140 The parameters are the following:

• regs is a struct containing what all the registers have at fault time.

• error code indicates what sort of fault occurred.

152 As the comment indicates, the cr2 register holds the fault address.

155-156 If the fault is from within an interrupt, this enables it.

158 Sets the current task.

173 if (address >= TASK_SIZE && !(error_code & 5))
174 goto vmalloc_fault;
175
176 mm = tsk->mm;
177 info.si_code = SEGV_MAPERR;
178
183 if (in_interrupt() || !mm)
184 goto no_context;
185

This block checks for exceptional faults, kernel faults, fault in interrupt and fault
with no memory context.

173 If the fault address is over TASK SIZE, it is within the kernel address space.
If the error code is 5, it means the error happened while in kernel mode and
is not a protection error, so this handles a vmalloc fault.

176 Records the working mm.

183 If this is an interrupt or there is no memory context (such as with a kernel
thread), there is no way to safely handle the fault, so goto no context.

186 down_read(&mm->mmap_sem);
187
188 vma = find_vma(mm, address);
189 if (!vma)
190 goto bad_area;
191 if (vma->vm_start <= address)
192 goto good_area;
193 if (!(vma->vm_flags & VM_GROWSDOWN))
194 goto bad_area;
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195 if (error_code & 4) {
196 /*
197 * accessing the stack below %esp is always a bug.
198 * The "+ 32" is there due to some instructions (like
199 * pusha) doing post-decrement on the stack and that
200 * doesn’t show up until later..
201 */
202 if (address + 32 < regs->esp)
203 goto bad_area;
204 }
205 if (expand_stack(vma, address))
206 goto bad_area;

If the fault is in userspace, this block finds the VMA for the faulting address
and determines if it is a good area, a bad area or if the fault occurred near a region
that can be expanded, such as the stack.

186 Takes the long-lived mm semaphore.

188 Finds the VMA that is responsible or is closest to the faulting address.

189-190 If a VMA does not exist at all, goto bad area.

191-192 If the start of the region is before the address, it means this VMA is the
correct VMA for the fault, so goto good area, which will check the permis-
sions.

193-194 For the region that is closest, this checks if it can grown down
(VM GROWSDOWN). If it does, it means the stack can probably be expanded.
If not, goto bad area.

195-204 Checks to make sure it is not an access below the stack. If the error code
is 4, it means it is running in userspace.

205-206 The stack is the only region with VM GROWSDOWN set, so, if we reach here,
the stack is expanded with expand stack()(See Section D.5.2.1). If it fails,
goto bad area.

211 good_area:
212 info.si_code = SEGV_ACCERR;
213 write = 0;
214 switch (error_code & 3) {
215 default: /* 3: write, present */
216 #ifdef TEST_VERIFY_AREA
217 if (regs->cs == KERNEL_CS)
218 printk("WP fault at %08lx\n", regs->eip);
219 #endif
220 /* fall through */
221 case 2: /* write, not present */
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222 if (!(vma->vm_flags & VM_WRITE))
223 goto bad_area;
224 write++;
225 break;
226 case 1: /* read, present */
227 goto bad_area;
228 case 0: /* read, not present */
229 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
230 goto bad_area;
231 }

This block is where the first part of a fault in a good area is handled. The
permissions need to be checked in case this is a protection fault.

212 By default, this returns an error.

214 Checks the error code against bits 0 and 1 of the error code. Bit 0 at 0 means
the page was not present. At 1, it means a protection fault, like a write to a
read-only area. Bit 1 is 0 if it was a read fault and 1 if it was a write fault.

215 If it is 3, both bits are 1, so it is a write protection fault.

221 Bit 1 is a 1, so it is a write fault.

222-223 If the region cannot be written to, it is a bad write to goto bad area.
If the region can be written to, this is a page that is marked Copy On Write
(COW).

224 Flags that a write has occurred.

226-227 This is a read, and the page is present. There is no reason for the fault, so
it must be some other type of exception like a divide by zero, or goto bad area
where it is handled.

228-230 A read occurred on a missing page. This makes sure it is ok to read or
exec this page. If not, goto bad area. The check for exec is made because the
x86 cannot exec protect a page and instead uses the read protect flag. This
is why both have to be checked.

233 survive:
239 switch (handle_mm_fault(mm, vma, address, write)) {
240 case 1:
241 tsk->min_flt++;
242 break;
243 case 2:
244 tsk->maj_flt++;
245 break;
246 case 0:
247 goto do_sigbus;
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248 default:
249 goto out_of_memory;
250 }
251
252 /*
253 * Did it hit the DOS screen memory VA from vm86 mode?
254 */
255 if (regs->eflags & VM_MASK) {
256 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
257 if (bit < 32)
258 tsk->thread.screen_bitmap |= 1 << bit;
259 }
260 up_read(&mm->mmap_sem);
261 return;

At this point, an attempt is going to be made to handle the fault gracefully with
handle mm fault().

239 Calls handle mm fault() with the relevant information about the fault. This
is the architecture-independent part of the handler.

240-242 A return of 1 means it was a minor fault. Updates statistics.

243-245 A return of 2 means it was a major fault. Update statistics

246-247 A return of 0 means some I/O error happened during the fault, so it goes
to the do sigbus handler.

248-249 Any other return means memory could not be allocated for the fault, so
we are out of memory. In reality, this does not happen because another func-
tion out of memory() is invoked in mm/oom kill.c before this could happen,
which is a function that is a lot more graceful about who it kills.

260 Releases the lock to the mm.

261 Returns because the fault has been successfully handled.

267 bad_area:
268 up_read(&mm->mmap_sem);
269
270 /* User mode accesses just cause a SIGSEGV */
271 if (error_code & 4) {
272 tsk->thread.cr2 = address;
273 tsk->thread.error_code = error_code;
274 tsk->thread.trap_no = 14;
275 info.si_signo = SIGSEGV;
276 info.si_errno = 0;
277 /* info.si_code has been set above */
278 info.si_addr = (void *)address;
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279 force_sig_info(SIGSEGV, &info, tsk);
280 return;
281 }
282
283 /*
284 * Pentium F0 0F C7 C8 bug workaround.
285 */
286 if (boot_cpu_data.f00f_bug) {
287 unsigned long nr;
288
289 nr = (address - idt) >> 3;
290
291 if (nr == 6) {
292 do_invalid_op(regs, 0);
293 return;
294 }
295 }

This is the bad area handler, such as using memory with no vm area struct
managing it. If the fault is not by a user process or the f00f bug, the no context
label is fallen through to.

271 An error code of 4 implies userspace, so it is a simple case of sending a SIGSEGV
to kill the process.

272-274 Sets thread information about what happened, which can be read by a
debugger later.

275 Records that a SIGSEGV signal was sent.

276 Clears errno, as the SIGSEGV is sufficient to explain the error.

278 Records the address.

279 Sends the SIGSEGV signal. The process will exit and dump all the relevant
information.

280 Returns because the fault has been successfully handled.

286-295 A bug in the first Pentiums was called the f00f bug, which caused the
processor to constantly page fault. It was used as a local DoS attack on a
running Linux system. This bug was trapped within a few hours, and a patch
was released. Now it results in a harmless termination of the process rather
than a rebooting system.

296
297 no_context:
298 /* Are we prepared to handle this kernel fault? */
299 if ((fixup = search_exception_table(regs->eip)) != 0) {
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300 regs->eip = fixup;
301 return;
302 }

299-302 Searches the exception table with search exception table() to see
if this exception be handled, and, if so, it calls the proper exception han-
dler after returning. This is really important during copy from user() and
copy to user() when an exception handler is installed to trap reads and
writes to invalid regions in userspace without having to make expensive checks.
It means that a small fixup block of code can be called rather than falling
through to the next block, which causes an oops.

304 /*
305 * Oops. The kernel tried to access some bad page. We’ll have to
306 * terminate things with extreme prejudice.
307 */
308
309 bust_spinlocks(1);
310
311 if (address < PAGE_SIZE)
312 printk(KERN_ALERT "Unable to handle kernel NULL pointer

dereference");
313 else
314 printk(KERN_ALERT "Unable to handle kernel paging

request");
315 printk(" at virtual address %08lx\n",address);
316 printk(" printing eip:\n");
317 printk("%08lx\n", regs->eip);
318 asm("movl %%cr3,%0":"=r" (page));
319 page = ((unsigned long *) __va(page))[address >> 22];
320 printk(KERN_ALERT "*pde = %08lx\n", page);
321 if (page & 1) {
322 page &= PAGE_MASK;
323 address &= 0x003ff000;
324 page = ((unsigned long *)

__va(page))[address >> PAGE_SHIFT];
325 printk(KERN_ALERT "*pte = %08lx\n", page);
326 }
327 die("Oops", regs, error_code);
328 bust_spinlocks(0);
329 do_exit(SIGKILL);

This is the no context handler. Some bad exception occurred, which is going
to end up in the process being terminated in all likelihood. Otherwise, the kernel
faulted when it definitely should have, and an oops report is generated.

309-329 Otherwise, the kernel faulted when it really should not have, and it is a
kernel bug. This block generates an oops report.
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309 Forcibly frees spinlocks, which might prevent a message getting to the console.

311-312 If the address is < PAGE SIZE, it means that a null pointer was used.
Linux deliberately has page 0 unassigned to trap this type of fault, which is
a common programming error.

313-314 Otherwise, it is just some bad kernel error, such as a driver trying to
access userspace incorrectly.

315-320 Prints out information about the fault.

321-326 Prints out information about the page being faulted.

327 Dies and generates an oops report, which can be used later to get a stack
trace so that a developer can see more accurately where and how the fault
occurred.

329 Forcibly kills the faulting process.

335 out_of_memory:
336 if (tsk->pid == 1) {
337 yield();
338 goto survive;
339 }
340 up_read(&mm->mmap_sem);
341 printk("VM: killing process %s\n", tsk->comm);
342 if (error_code & 4)
343 do_exit(SIGKILL);
344 goto no_context;

This block is the out of memory handler. It usually ends with the faulting
process getting killed unless it is init.

336-339 If the process is init, just yield and goto survive, which will try to handle
the fault gracefully. init should never be killed.

340 Frees the mm semaphore.

341 Prints out a helpful “You are Dead” message.

342 If it is from userspace, this just kills the process.

344 If it is in kernel space, go to the no context handler, which, in this case, will
probably result in a kernel oops.

345
346 do_sigbus:
347 up_read(&mm->mmap_sem);
348
353 tsk->thread.cr2 = address;
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354 tsk->thread.error_code = error_code;
355 tsk->thread.trap_no = 14;
356 info.si_signo = SIGBUS;
357 info.si_errno = 0;
358 info.si_code = BUS_ADRERR;
359 info.si_addr = (void *)address;
360 force_sig_info(SIGBUS, &info, tsk);
361
362 /* Kernel mode? Handle exceptions or die */
363 if (!(error_code & 4))
364 goto no_context;
365 return;

347 Frees the mm lock.

353-359 Fills in information to show a SIGBUS occurred at the faulting address
so that a debugger can trap it later.

360 Sends the signal.

363-364 If in kernel mode, this tries and handles the exception during no context.

365 If it is in userspace, this just returns, and the process will die in due course.

367 vmalloc_fault:
368 {
376 int offset = __pgd_offset(address);
377 pgd_t *pgd, *pgd_k;
378 pmd_t *pmd, *pmd_k;
379 pte_t *pte_k;
380
381 asm("movl %%cr3,%0":"=r" (pgd));
382 pgd = offset + (pgd_t *)__va(pgd);
383 pgd_k = init_mm.pgd + offset;
384
385 if (!pgd_present(*pgd_k))
386 goto no_context;
387 set_pgd(pgd, *pgd_k);
388
389 pmd = pmd_offset(pgd, address);
390 pmd_k = pmd_offset(pgd_k, address);
391 if (!pmd_present(*pmd_k))
392 goto no_context;
393 set_pmd(pmd, *pmd_k);
394
395 pte_k = pte_offset(pmd_k, address);
396 if (!pte_present(*pte_k))
397 goto no_context;
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398 return;
399 }
400 }

This is the vmalloc fault handler. When pages are mapped in the vmalloc space,
only the reference pagetable is updated. As each process references this area, a fault
will be trapped, and the process pagetables will be synchronized with the reference
pagetable here.

376 Gets the offset within a PGD.

381 Copies the address of the PGD for the process from the cr3 register to pgd.

382 Calculates the pgd pointer from the process PGD.

383 Calculates for the kernel reference PGD.

385-386 If the pgd entry is invalid for the kernel page table, goto no context.

386 Sets the pagetable entry in the process pagetable with a copy from the kernel
reference pagetable.

389-393 This is the same idea for the PMD. Copies the pagetable entry from the
kernel reference pagetable to the process pagetables.

395 Checks the PTE.

396-397 If it is not present, it means the page was not valid even in the kernel
reference pagetable, so goto no context to handle what is probably a kernel
bug or a reference to a random part of unused kernel space.

398 Returns knowing the process pagetables have been updated and are in sync
with the kernel pagetables.

D.5.2 Expanding the Stack

D.5.2.1 Function: expand stack() (include/linux/mm.h)
This function is called by the architecture-dependent page fault handler. The

VMA supplied is guaranteed to be one that can grow to cover the address.

640 static inline int expand_stack(struct vm_area_struct * vma,
unsigned long address)

641 {
642 unsigned long grow;
643
644 /*
645 * vma->vm_start/vm_end cannot change under us because

* the caller is required
646 * to hold the mmap_sem in write mode. We need to get the
647 * spinlock only before relocating the vma range ourself.
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648 */
649 address &= PAGE_MASK;
650 spin_lock(&vma->vm_mm->page_table_lock);
651 grow = (vma->vm_start - address) >> PAGE_SHIFT;
652 if (vma->vm_end - address >

current->rlim[RLIMIT_STACK].rlim_cur ||
653 ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) >

current->rlim[RLIMIT_AS].rlim_cur) {
654 spin_unlock(&vma->vm_mm->page_table_lock);
655 return -ENOMEM;
656 }
657 vma->vm_start = address;
658 vma->vm_pgoff -= grow;
659 vma->vm_mm->total_vm += grow;
660 if (vma->vm_flags & VM_LOCKED)
661 vma->vm_mm->locked_vm += grow;
662 spin_unlock(&vma->vm_mm->page_table_lock);
663 return 0;
664 }

649 Rounds the address down to the nearest page boundary.

650 Locks the pagetables spinlock.

651 Calculates how many pages the stack needs to grow by.

652 Checks to make sure that the size of the stack does not exceed the process
limits.

653 Checks to make sure that the size of the address space will not exceed process
limits after the stack is grown.

654-655 If either of the limits are reached, this returns -ENOMEM, which will cause
the faulting process to segfault.

657-658 Grows the VMA down.

659 Updates the amount of address space used by the process.

660-661 If the region is locked, this updates the number of locked pages used by
the process.

662-663 Unlocks the process pagetables and returns success.

D.5.3 Architecture-Independent Page Fault Handler

This is the top-level pair of functions for the architecture-independent page fault
handler.
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D.5.3.1 Function: handle mm fault() (mm/memory.c)
The call graph for this function is shown in Figure 4.13. This function allocates

the PMD and PTE necessary for this new PTE that is about to be allocated. It takes
the necessary locks to protect the pagetables before calling handle pte fault() to
fault in the page itself.

1364 int handle_mm_fault(struct mm_struct *mm,
struct vm_area_struct * vma,

1365 unsigned long address, int write_access)
1366 {
1367 pgd_t *pgd;
1368 pmd_t *pmd;
1369
1370 current->state = TASK_RUNNING;
1371 pgd = pgd_offset(mm, address);
1372
1373 /*
1374 * We need the page table lock to synchronize with kswapd
1375 * and the SMP-safe atomic PTE updates.
1376 */
1377 spin_lock(&mm->page_table_lock);
1378 pmd = pmd_alloc(mm, pgd, address);
1379
1380 if (pmd) {
1381 pte_t * pte = pte_alloc(mm, pmd, address);
1382 if (pte)
1383 return handle_pte_fault(mm, vma, address,

write_access, pte);
1384 }
1385 spin_unlock(&mm->page_table_lock);
1386 return -1;
1387 }

1364 The parameters of the function are the following:

• mm is the mm struct for the faulting process.

• vma is the vm area struct managing the region the fault occurred in.

• address is the faulting address.

• write access is 1 if the fault is a write fault.

1370 Sets the current state of the process.

1371 Gets the pgd entry from the top-level pagetable.

1377 Locks the mm struct because the pagetables will change.

1378 pmd alloc() will allocate a pmd t if one does not already exist.
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1380 If the pmd has been successfully allocated, then...

1381 Allocates a PTE for this address if one does not already exist.

1382-1383 Handles the page fault with handle pte fault() (See Section D.5.3.2)
and returns the status code.

1385 Failure path and unlocks the mm struct.

1386 Returns -1, which will be interpreted as an out of memory condition. This
is correct because this line is only reached if a PMD or PTE could not be
allocated.

D.5.3.2 Function: handle pte fault() (mm/memory.c)
This function decides what type of fault this is and which function should han-

dle it. do no page() is called if this is the first time a page is to be allocated.
do swap page() handles the case where the page was swapped out to disk with the
exception of pages swapped out from tmpfs. do wp page() breaks COW pages. If
none of them are appropriate, the PTE entry is simply updated. If it was written
to, it is marked dirty, and it is marked accessed to show it is a young page.

1331 static inline int handle_pte_fault(struct mm_struct *mm,
1332 struct vm_area_struct * vma, unsigned long address,
1333 int write_access, pte_t * pte)
1334 {
1335 pte_t entry;
1336
1337 entry = *pte;
1338 if (!pte_present(entry)) {
1339 /*
1340 * If it truly wasn’t present, we know that kswapd
1341 * and the PTE updates will not touch it later. So
1342 * drop the lock.
1343 */
1344 if (pte_none(entry))
1345 return do_no_page(mm, vma, address,

write_access, pte);
1346 return do_swap_page(mm, vma, address, pte, entry,

write_access);
1347 }
1348
1349 if (write_access) {
1350 if (!pte_write(entry))
1351 return do_wp_page(mm, vma, address, pte, entry);
1352
1353 entry = pte_mkdirty(entry);
1354 }
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1355 entry = pte_mkyoung(entry);
1356 establish_pte(vma, address, pte, entry);
1357 spin_unlock(&mm->page_table_lock);
1358 return 1;
1359 }

1331 The parameters of the function are the same as those for handle mm fault()
except that the PTE for the fault is included.

1337 Records the PTE.

1338 Handles the case where the PTE is not present.

1344 If the PTE has never been filled, this handles the allocation of the PTE with
do no page()(See Section D.5.4.1).

1346 If the page has been swapped out to backing storage, this handles it with
do swap page()(See Section D.5.5.1).

1349-1354 Handles the case where the page is been written to.

1350-1351 If the PTE is marked write-only, it is a COW page, so handle it with
do wp page()(See Section D.5.6.1).

1353 Otherwise, this just simply marks the page as dirty.

1355 Marks the page as accessed.

1356 establish pte() copies the PTE and then updates the TLB and MMU
cache. This does not copy in a new PTE, but some architectures require the
TLB and MMU update.

1357 Unlocks the mm struct and returns that a minor fault occurred.

D.5.4 Demand Allocation

D.5.4.1 Function: do no page() (mm/memory.c)
The call graph for this function is shown in Figure 4.14. This function is called

the first time a page is referenced so that it may be allocated and filled with data if
necessary. If it is an anonymous page, which is determined by the lack of a vm ops
available to the VMA or the lack of a nopage() function, do anonymous page() is
called. Otherwise, the supplied nopage() function is called to allocate a page, and
it is inserted into the pagetables here. The function has the following tasks:

• Check if do anonymous page() should be used, and, if so, call it and return
the page it allocates. If not, call the supplied nopage() function and ensure
it allocates a page successfully.

• Break COW early if appropriate.
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• Add the page to the pagetable entries and call the appropriate architecture-
dependent hooks.

1245 static int do_no_page(struct mm_struct * mm,
struct vm_area_struct * vma,

1246 unsigned long address, int write_access, pte_t *page_table)
1247 {
1248 struct page * new_page;
1249 pte_t entry;
1250
1251 if (!vma->vm_ops || !vma->vm_ops->nopage)
1252 return do_anonymous_page(mm, vma, page_table,

write_access, address);
1253 spin_unlock(&mm->page_table_lock);
1254
1255 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);
1256
1257 if (new_page == NULL) /* no page was available -- SIGBUS */
1258 return 0;
1259 if (new_page == NOPAGE_OOM)
1260 return -1;

1245 The parameters supplied are the same as those for handle pte fault().

1251-1252 If no vm ops is supplied or no nopage() function is supplied, then this
calls do anonymous page()(See Section D.5.4.2) to allocate a page and return
it.

1253 Otherwise, this frees the pagetable lock because the nopage() function can-
not be called with spinlocks held.

1255 Calls the supplied nopage function. In the case of filesystems, this is fre-
quently filemap nopage()(See Section D.6.4.1), but will be different for each
device driver.

1257-1258 If NULL is returned, it means some error occurred in the nopage
function, such as an I/O error while reading from disk. In this case, 0 is
returned which results in a SIGBUS being sent to the faulting process.

1259-1260 If NOPAGE OOM is returned, the physical page allocator failed to allocate
a page, and -1 is returned, which will forcibly kill the process.

1265 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1266 struct page * page = alloc_page(GFP_HIGHUSER);
1267 if (!page) {
1268 page_cache_release(new_page);
1269 return -1;
1270 }



D.5. Page Faulting 343

1271 copy_user_highpage(page, new_page, address);
1272 page_cache_release(new_page);
1273 lru_cache_add(page);
1274 new_page = page;
1275 }

This block breaks COW early in this block if appropriate. COW is broken if the
fault is a write fault and the region is not shared with VM SHARED. If COW was not
broken in this case, a second fault would occur immediately upon return.

1265 Checks if COW should be broken early.

1266 If so, this allocates a new page for the process.

1267-1270 If the page could not be allocated, this reduces the reference count to
the page returned by the nopage() function and returns -1 for out of memory.

1271 Otherwise, it copies the contents.

1272 Reduces the reference count to the returned page, which may still be in use
by another process.

1273 Adds the new page to the LRU lists so that it may be reclaimed by kswapd
later.

1277 spin_lock(&mm->page_table_lock);
1288 /* Only go through if we didn’t race with anybody else... */
1289 if (pte_none(*page_table)) {
1290 ++mm->rss;
1291 flush_page_to_ram(new_page);
1292 flush_icache_page(vma, new_page);
1293 entry = mk_pte(new_page, vma->vm_page_prot);
1294 if (write_access)
1295 entry = pte_mkwrite(pte_mkdirty(entry));
1296 set_pte(page_table, entry);
1297 } else {
1298 /* One of our sibling threads was faster, back out. */
1299 page_cache_release(new_page);
1300 spin_unlock(&mm->page_table_lock);
1301 return 1;
1302 }
1303
1304 /* no need to invalidate: a not-present page shouldn’t

* be cached
*/

1305 update_mmu_cache(vma, address, entry);
1306 spin_unlock(&mm->page_table_lock);
1307 return 2; /* Major fault */
1308 }
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1277 Locks the pagetables again because the allocations have finished and the
pagetables are about to be updated.

1289 Checks if there is still no PTE in the entry we are about to use. If two
faults hit here at the same time, it is possible another processor has already
completed the page fault and that this one should be backed out.

1290-1297 If there is no PTE entered, this completes the fault.

1290 Increases the RSS count because the process is now using another page. A
check really should be made here to make sure it isn’t the global zero page
because the RSS count could be misleading.

1291 As the page is about to be mapped to the process space, it is possible for
some architectures that write to the page in kernel space will not be visible to
the process. flush page to ram() ensures the CPU cache will be coherent.

1292 flush icache page() is similar in principle except it ensures the icache and
dcaches are coherent.

1293 Creates a pte t with the appropriate permissions.

1294-1295 If this is a write, then this makes sure the PTE has write permissions.

1296 Places the new PTE in the process pagetables.

1297-1302 If the PTE is already filled, the page acquired from the nopage()
function must be released.

1299 Decrements the reference count to the page. If it drops to 0, it will be freed.

1300-1301 Releases the mm struct lock and returns 1 to signal this is a minor
page fault because no major work had to be done for this fault because it was
all done by the winner of the race.

1305 Updates the MMU cache for architectures that require it.

1306-1307 Releases the mm struct lock and returns 2 to signal this is a major
page fault.

D.5.4.2 Function: do anonymous page() (mm/memory.c)
This function allocates a new page for a process accessing a page for the first

time. If it is a read access, a systemwide page containing only zeros is mapped
into the process. If it is write, a zero-filled page is allocated and placed within the
pagetables.

1190 static int do_anonymous_page(struct mm_struct * mm,
struct vm_area_struct * vma,
pte_t *page_table, int write_access,
unsigned long addr)
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1191 {
1192 pte_t entry;
1193
1194 /* Read-only mapping of ZERO_PAGE. */
1195 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr),

vma->vm_page_prot));
1196
1197 /* ..except if it’s a write access */
1198 if (write_access) {
1199 struct page *page;
1200
1201 /* Allocate our own private page. */
1202 spin_unlock(&mm->page_table_lock);
1203
1204 page = alloc_page(GFP_HIGHUSER);
1205 if (!page)
1206 goto no_mem;
1207 clear_user_highpage(page, addr);
1208
1209 spin_lock(&mm->page_table_lock);
1210 if (!pte_none(*page_table)) {
1211 page_cache_release(page);
1212 spin_unlock(&mm->page_table_lock);
1213 return 1;
1214 }
1215 mm->rss++;
1216 flush_page_to_ram(page);
1217 entry = pte_mkwrite(

pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1218 lru_cache_add(page);
1219 mark_page_accessed(page);
1220 }
1221
1222 set_pte(page_table, entry);
1223
1224 /* No need to invalidate - it was non-present before */
1225 update_mmu_cache(vma, addr, entry);
1226 spin_unlock(&mm->page_table_lock);
1227 return 1; /* Minor fault */
1228
1229 no_mem:
1230 return -1;
1231 }

1190 The parameters are the same as those passed to handle pte fault()
(See Section D.5.3.2).
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1195 For read accesses, this simply maps the systemwide empty zero page, which
the ZERO PAGE() macro returns with the given permissions. The page is write
protected so that a write to the page will result in a page fault.

1198-1220 If this is a write fault, it allocates a new page and zero-fills it.

1202 Unlocks the mm struct so the allocation of a new page could sleep.

1204 Allocates a new page.

1205 If a page could not be allocated, this returns -1 to handle the OOM situation.

1207 Zero-fills the page.

1209 Reacquires the lock because the pagetables are to be updated.

1215 Updates the RSS for the process. Note that the RSS is not updated if it is
the global zero page being mapped as is the case with the read-only fault at
line 1195.

1216 Ensures the cache is coherent.

1217 Marks the PTE writable and dirty because it has been written to.

1218 Adds the page to the LRU list so that it may be reclaimed by the swapper
later.

1219 Marks the page accessed, which ensures the page is marked hot and on the
top of the active list.

1222 Fixes the PTE in the pagetables for this process.

1225 Updates the MMU cache if the architecture needs it.

1226 Frees the pagetable lock.

1227 Returns as a minor fault. Even though it is possible the page allocator spent
time writing out pages, data did not have to be read from disk to fill this
page.

D.5.5 Demand Paging

D.5.5.1 Function: do swap page() (mm/memory.c)
The call graph for this function is shown in Figure 4.15. This function handles

the case where a page has been swapped out. A swapped-out page may exist in
the swap cache if it is shared between a number of processes or recently swapped
in during readahead. This function is broken up into three parts:

• Search for the page in swap cache.

• If it does not exist, call swapin readahead() to read in the page.
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• Insert the page into the process pagetables.

1117 static int do_swap_page(struct mm_struct * mm,
1118 struct vm_area_struct * vma, unsigned long address,
1119 pte_t * page_table, pte_t orig_pte, int write_access)
1120 {
1121 struct page *page;
1122 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1123 pte_t pte;
1124 int ret = 1;
1125
1126 spin_unlock(&mm->page_table_lock);
1127 page = lookup_swap_cache(entry);

This block is a function preamble. It checks for the page in the swap cache.

1117-1119 The parameters are the same as those supplied to handle pte fault()
(See Section D.5.3.2).

1122 Gets the swap entry information from the PTE.

1126 Frees the mm struct spinlock.

1127 Looks up the page in the swap cache.

1128 if (!page) {
1129 swapin_readahead(entry);
1130 page = read_swap_cache_async(entry);
1131 if (!page) {
1136 int retval;
1137 spin_lock(&mm->page_table_lock);
1138 retval = pte_same(*page_table, orig_pte) ? -1 : 1;
1139 spin_unlock(&mm->page_table_lock);
1140 return retval;
1141 }
1142
1143 /* Had to read the page from swap area: Major fault */
1144 ret = 2;
1145 }

If the page did not exist in the swap cache, then this block reads it from backing
storage with swapin readhead(), which reads in the requested pages and a number
of pages after it. After it completes, read swap cache async() should be able to
return the page.

1128-1145 This block is executed if the page was not in the swap cache.

1129 swapin readahead()(See Section D.6.6.1) reads in the requested page and
a number of pages after it. The number of pages read in is determined by the
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page cluster variable in mm/swap.c, which is initialized to 2 on machines
with less than 16MiB of memory and 3 otherwise. 2page cluster pages are read
in after the requested page unless a bad or empty page entry is encountered.

1130 read swap cache async() (See Section K.3.1.1) will look up the requested
page and read it from disk if necessary.

1131-1141 If the page does not exist, there was another fault that swapped in
this page and removed it from the cache while spinlocks were dropped.

1137 Locks the mm struct.

1138 Compares the two PTEs. If they do not match, -1 is returned to signal an
I/O error. If not, 1 is returned to mark a minor page fault because a disk
access was not required for this particular page.

1139-1140 Frees the mm struct and returns the status.

1144 The disk had to be accessed to mark that this is a major page fault.

1147 mark_page_accessed(page);
1148
1149 lock_page(page);
1150
1151 /*
1152 * Back out if somebody else faulted in this pte while we
1153 * released the page table lock.
1154 */
1155 spin_lock(&mm->page_table_lock);
1156 if (!pte_same(*page_table, orig_pte)) {
1157 spin_unlock(&mm->page_table_lock);
1158 unlock_page(page);
1159 page_cache_release(page);
1160 return 1;
1161 }
1162
1163 /* The page isn’t present yet, go ahead with the fault. */
1164
1165 swap_free(entry);
1166 if (vm_swap_full())
1167 remove_exclusive_swap_page(page);
1168
1169 mm->rss++;
1170 pte = mk_pte(page, vma->vm_page_prot);
1171 if (write_access && can_share_swap_page(page))
1172 pte = pte_mkdirty(pte_mkwrite(pte));
1173 unlock_page(page);
1174
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1175 flush_page_to_ram(page);
1176 flush_icache_page(vma, page);
1177 set_pte(page_table, pte);
1178
1179 /* No need to invalidate - it was non-present before */
1180 update_mmu_cache(vma, address, pte);
1181 spin_unlock(&mm->page_table_lock);
1182 return ret;
1183 }

This block places the page in the process pagetables.

1147 mark page accessed()(See Section J.2.3.1) will mark the page as active so
that it will be moved to the top of the active LRU list.

1149 Locks the page, which has the side effect of waiting for the I/O swapping in
the page to complete.

1155-1161 If someone else faulted in the page before we could, the reference to
the page is dropped, the lock is freed and this returns that this was a minor
fault.

1165 The function swap free()(See Section K.2.2.1) reduces the reference to a
swap entry. If it drops to 0, it is actually freed.

1166-1167 Page slots in swap space are reserved for the same page after they
have been swapped out to avoid having to search for a free slot each time. If
the swap space is full, though, the reservation is broken, and the slot freed up
for another page.

1169 The page is now going to be used, so this increments the mm structs RSS
count.

1170 Makes a PTE for this page.

1171 If the page is being written to and is not shared between more than one
process, this marks it dirty so that it will be kept in sync with the backing
storage and swap cache for other processes.

1173 Unlocks the page.

1175 As the page is about to be mapped to the process space, it is possible for some
architectures that write to the page in kernel space that it will not be visible
to the process. flush page to ram() ensures the cache will be coherent.

1176 flush icache page() is similar in principle except it ensures the icache and
dcaches are coherent.

1177 Sets the PTE in the process pagetables.

1180 Updates the MMU cache if the architecture requires it.
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1181-1182 Unlocks the mm struct and returns whether it was a minor or major
page fault.

D.5.5.2 Function: can share swap page() (mm/swapfile.c)
This function determines if the swap cache entry for this page may be used

or not. It may be used if there is no other references to it. Most of the work is
performed by exclusive swap page(), but this function first makes a few basic
checks to avoid having to acquire too many locks.

259 int can_share_swap_page(struct page *page)
260 {
261 int retval = 0;
262
263 if (!PageLocked(page))
264 BUG();
265 switch (page_count(page)) {
266 case 3:
267 if (!page->buffers)
268 break;
269 /* Fallthrough */
270 case 2:
271 if (!PageSwapCache(page))
272 break;
273 retval = exclusive_swap_page(page);
274 break;
275 case 1:
276 if (PageReserved(page))
277 break;
278 retval = 1;
279 }
280 return retval;
281 }

263-264 This function is called from the fault path, and the page must be locked.

265 Switch is based on the number of references.

266-268 If the count is 3, but there are no buffers associated with it, there is
more than one process using the page. Buffers may be associated for just one
process if the page is backed by a swap file instead of a partition.

270-273 If the count is only two, but it is not a member of the swap cache, then
it has no slot that may be shared, so it returns false. Otherwise, it performs
a full check with exclusive swap page() (See Section D.5.5.3).

276-277 If the page is reserved, it is the global ZERO PAGE, so it cannot be shared.
Otherwise, this page is definitely the only one.



D.5. Page Faulting 351

D.5.5.3 Function: exclusive swap page() (mm/swapfile.c)
This function checks if the process is the only user of a locked swap page.

229 static int exclusive_swap_page(struct page *page)
230 {
231 int retval = 0;
232 struct swap_info_struct * p;
233 swp_entry_t entry;
234
235 entry.val = page->index;
236 p = swap_info_get(entry);
237 if (p) {
238 /* Is the only swap cache user the cache itself? */
239 if (p->swap_map[SWP_OFFSET(entry)] == 1) {
240 /* Recheck the page count with the pagecache

* lock held.. */
241 spin_lock(&pagecache_lock);
242 if (page_count(page) - !!page->buffers == 2)
243 retval = 1;
244 spin_unlock(&pagecache_lock);
245 }
246 swap_info_put(p);
247 }
248 return retval;
249 }

231 By default, this returns false.

235 The swp entry t for the page is stored in page→index as explained in Section
2.5.

236 Gets the swap info struct with swap info get()(See Section K.2.3.1).

237-247 If a slot exists, this checks if we are the exclusive user and returns true
if we are.

239 Checks if the slot is only being used by the cache itself. If it is, the page count
needs to be checked again with the pagecache lock held.

242-243 !!page→buffers will evaluate to 1 if there buffers are present, so this
block effectively checks if the process is the only user of the page. If it is,
retval is set to 1 so that true will be returned.

246 Drops the reference to the slot that was taken with swap info get()
(See Section K.2.3.1).
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D.5.6 Copy On Write (COW) Pages

D.5.6.1 Function: do wp page() (mm/memory.c)
The call graph for this function is shown in Figure 4.16. This function handles

the case where a user tries to write to a private page shared among processes, such
as what happens after fork(). Basically what happens is a page is allocated, the
contents are copied to the new page and the shared count is decremented in the old
page.

948 static int do_wp_page(struct mm_struct *mm,
struct vm_area_struct * vma,

949 unsigned long address, pte_t *page_table, pte_t pte)
950 {
951 struct page *old_page, *new_page;
952
953 old_page = pte_page(pte);
954 if (!VALID_PAGE(old_page))
955 goto bad_wp_page;
956

948-950 The parameters are the same as those supplied to handle pte fault().

953-955 Gets a reference to the current page in the PTE and makes sure it is
valid.

957 if (!TryLockPage(old_page)) {
958 int reuse = can_share_swap_page(old_page);
959 unlock_page(old_page);
960 if (reuse) {
961 flush_cache_page(vma, address);
962 establish_pte(vma, address, page_table,

pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));
963 spin_unlock(&mm->page_table_lock);
964 return 1; /* Minor fault */
965 }
966 }

957 First tries to lock the page. If 0 is returned, it means the page was previously
unlocked.

958 If we managed to lock it, this calls can share swap page()
(See Section D.5.5.2) to see if we are the exclusive user of the swap slot for
this page. If we are, it means that we are the last process to break COW and
that we can simply use this page rather than allocating a new one.

960-965 If we are the only users of the swap slot, it means we are the only user
of this page and are the last process to break COW. Therefore, the PTE is
simply re-established, and we return a minor fault.
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968 /*
969 * Ok, we need to copy. Oh, well..
970 */
971 page_cache_get(old_page);
972 spin_unlock(&mm->page_table_lock);
973
974 new_page = alloc_page(GFP_HIGHUSER);
975 if (!new_page)
976 goto no_mem;
977 copy_cow_page(old_page,new_page,address);
978

971 We need to copy this page, so it first gets a reference to the old page so that
it doesn’t disappear before we are finished with it.

972 Unlocks the spinlock as we are about to call alloc page()
(See Section F.2.1), which may sleep.

974-976 Allocates a page and makes sure one was returned.

977 No prizes for guessing what this function does. If the page being broken is
the global zero page, clear user highpage() will be used to zero out the
contents of the page. Otherwise, copy user highpage() copies the actual
contents.

982 spin_lock(&mm->page_table_lock);
983 if (pte_same(*page_table, pte)) {
984 if (PageReserved(old_page))
985 ++mm->rss;
986 break_cow(vma, new_page, address, page_table);
987 lru_cache_add(new_page);
988
989 /* Free the old page.. */
990 new_page = old_page;
991 }
992 spin_unlock(&mm->page_table_lock);
993 page_cache_release(new_page);
994 page_cache_release(old_page);
995 return 1; /* Minor fault */

982 The pagetable lock was released for alloc page()(See Section F.2.1), so this
reacquires it.

983 Makes sure the PTE has not changed in the meantime, which could have
happened if another fault occured while the spinlock was released.

984-985 The RSS is only updated if PageReserved() is true, which will only hap-
pen if the page being faulted is the global ZERO PAGE, which is not accounted

P
ro

ce
ss

A
d
d
re

ss
S
p
a
ce



354 Process Address Space Appendix D

for in the RSS. If this was a normal page, the process would be using the
same number of physical frames after the fault as it was before, but, against
the zero page, it will be using a new frame, so rss++ reflects the use of a new
page.

986 break cow() is responsible for calling the architecture hooks to ensure the
CPU cache and TLBs are up to date and then establishes the new page into
the PTE. It first calls flush page to ram(), which must be called when a
struct page is about to be placed in userspace. Next is flush cache page(),
which flushes the page from the CPU cache. Last is establish pte(), which
establishes the new page into the PTE.

987 Adds the page to the LRU lists.

992 Releases the spinlock.

993-994 Drops the references to the pages.

995 Returns a minor fault.

996
997 bad_wp_page:
998 spin_unlock(&mm->page_table_lock);
999 printk("do_wp_page: bogus page at address %08lx (page 0x%lx)\n",

address,(unsigned long)old_page);
1000 return -1;
1001 no_mem:
1002 page_cache_release(old_page);
1003 return -1;
1004 }

997-1000 This is a false COW break, which will only happen with a buggy kernel.
It prints out an informational message and returns.

1001-1003 The page allocation failed, so this releases the reference to the old
page and returns -1.
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D.6.1 Generic File Reading

This is more the domain of the I/O manager than the VM, but, because it performs
the operations through the page cache, we will cover it briefly. The operation of
generic file write() is essentially the same, although it is not covered by this
book. However, if you understand how the read takes place, the write function will
pose no problem to you.

D.6.1.1 Function: generic file read() (mm/filemap.c)
This is the generic file read function used by any filesystem that reads

pages through the page cache. For normal I/O, it is responsible for
building a read descriptor t for use with do generic file read() and
file read actor(). For direct I/O, this function is basically a wrapper around
generic file direct IO().

1695 ssize_t generic_file_read(struct file * filp,
char * buf, size_t count,
loff_t *ppos)
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1696 {
1697 ssize_t retval;
1698
1699 if ((ssize_t) count < 0)
1700 return -EINVAL;
1701
1702 if (filp->f_flags & O_DIRECT)
1703 goto o_direct;
1704
1705 retval = -EFAULT;
1706 if (access_ok(VERIFY_WRITE, buf, count)) {
1707 retval = 0;
1708
1709 if (count) {
1710 read_descriptor_t desc;
1711
1712 desc.written = 0;
1713 desc.count = count;
1714 desc.buf = buf;
1715 desc.error = 0;
1716 do_generic_file_read(filp, ppos, &desc,

file_read_actor);
1717
1718 retval = desc.written;
1719 if (!retval)
1720 retval = desc.error;
1721 }
1722 }
1723 out:
1724 return retval;

This block is concerned with normal file I/O.

1702-1703 If this is direct I/O, it jumps to the o direct label.

1706 If the access permissions to write to a userspace page are ok, then this
proceeds.

1709 If the count is 0, there is no I/O to perform.

1712-1715 Populates a read descriptor t structure, which will be used by
file read actor()(See Section L.3.2.3).

1716 Performs the file read.

1718 Extracts the number of bytes written from the read descriptor struct.

1719-1720 If an error occured, this extracts what the error was.
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1724 Returns either the number of bytes read or the error that occured.

1725
1726 o_direct:
1727 {
1728 loff_t pos = *ppos, size;
1729 struct address_space *mapping =

filp->f_dentry->d_inode->i_mapping;
1730 struct inode *inode = mapping->host;
1731
1732 retval = 0;
1733 if (!count)
1734 goto out; /* skip atime */
1735 down_read(&inode->i_alloc_sem);
1736 down(&inode->i_sem);
1737 size = inode->i_size;
1738 if (pos < size) {
1739 retval = generic_file_direct_IO(READ, filp, buf,

count, pos);
1740 if (retval > 0)
1741 *ppos = pos + retval;
1742 }
1743 UPDATE_ATIME(filp->f_dentry->d_inode);
1744 goto out;
1745 }
1746 }

This block is concerned with direct I/O. It is largely responsible for extracting
the parameters required for generic file direct IO().

1729 Gets the address space used by this struct file.

1733-1734 If no I/O has been requested, this jumps out to avoid updating the
inodes’ access time.

1737 Gets the size of the file.

1738-1739 If the current position is before the end of the file, the read is safe, so
this calls generic file direct IO().

1740-1741 If the read was successful, this updates the current position in the file
for the reader.

1743 Updates the access time.

1744 Goto out, which just returns retval.
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D.6.1.2 Function: do generic file read() (mm/filemap.c)
This is the core part of the generic file read operation. It is responsible for

allocating a page if it doesn’t already exist in the page cache. If it does, it must
make sure the page is up to date, and it is responsible for making sure that the
appropriate readahead window is set.

1349 void do_generic_file_read(struct file * filp,
loff_t *ppos,
read_descriptor_t * desc,
read_actor_t actor)

1350 {
1351 struct address_space *mapping =

filp->f_dentry->d_inode->i_mapping;
1352 struct inode *inode = mapping->host;
1353 unsigned long index, offset;
1354 struct page *cached_page;
1355 int reada_ok;
1356 int error;
1357 int max_readahead = get_max_readahead(inode);
1358
1359 cached_page = NULL;
1360 index = *ppos >> PAGE_CACHE_SHIFT;
1361 offset = *ppos & ~PAGE_CACHE_MASK;
1362

1357 Gets the maximum readahead window size for this block device.

1360 Calculates the page index, which holds the current file position pointer.

1361 Calculates the offset within the page that holds the current file position
pointer.

1363 /*
1364 * If the current position is outside the previous read-ahead
1365 * window, we reset the current read-ahead context and set read
1366 * ahead max to zero (will be set to just needed value later),
1367 * otherwise, we assume that the file accesses are sequential
1368 * enough to continue read-ahead.
1369 */
1370 if (index > filp->f_raend ||

index + filp->f_rawin < filp->f_raend) {
1371 reada_ok = 0;
1372 filp->f_raend = 0;
1373 filp->f_ralen = 0;
1374 filp->f_ramax = 0;
1375 filp->f_rawin = 0;
1376 } else {
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1377 reada_ok = 1;
1378 }
1379 /*
1380 * Adjust the current value of read-ahead max.
1381 * If the read operation stay in the first half page, force no
1382 * readahead. Otherwise try to increase read ahead max just

* enough to do the read request.
1383 * Then, at least MIN_READAHEAD if read ahead is ok,
1384 * and at most MAX_READAHEAD in all cases.
1385 */
1386 if (!index && offset + desc->count <= (PAGE_CACHE_SIZE >> 1)) {
1387 filp->f_ramax = 0;
1388 } else {
1389 unsigned long needed;
1390
1391 needed = ((offset + desc->count) >> PAGE_CACHE_SHIFT) + 1;
1392
1393 if (filp->f_ramax < needed)
1394 filp->f_ramax = needed;
1395
1396 if (reada_ok && filp->f_ramax < vm_min_readahead)
1397 filp->f_ramax = vm_min_readahead;
1398 if (filp->f_ramax > max_readahead)
1399 filp->f_ramax = max_readahead;
1400 }

1370-1378 As the comment suggests, the readahead window gets reset if the
current file position is outside the current readahead window. It gets reset to
0 here and adjusted by generic file readahead()(See Section D.6.1.3) as
necessary.

1386-1400 As the comment states, the readahead window gets adjusted slightly
if we are in the second half of the current page.

1402 for (;;) {
1403 struct page *page, **hash;
1404 unsigned long end_index, nr, ret;
1405
1406 end_index = inode->i_size >> PAGE_CACHE_SHIFT;
1407
1408 if (index > end_index)
1409 break;
1410 nr = PAGE_CACHE_SIZE;
1411 if (index == end_index) {
1412 nr = inode->i_size & ~PAGE_CACHE_MASK;
1413 if (nr <= offset)
1414 break;
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1415 }
1416
1417 nr = nr - offset;
1418
1419 /*
1420 * Try to find the data in the page cache..
1421 */
1422 hash = page_hash(mapping, index);
1423
1424 spin_lock(&pagecache_lock);
1425 page = __find_page_nolock(mapping, index, *hash);
1426 if (!page)
1427 goto no_cached_page;

1402 This loop goes through each of the pages necessary to satisfy the read request.

1406 Calculates where the end of the file is in pages.

1408-1409 If the current index is beyond the end, then this breaks out because
we are trying to read beyond the end of the file.

1410-1417 Calculates nr to be the number of bytes remaining to be read in the
current page. The block takes into account that this might be the last page
used by the file and where the current file position is within the page.

1422-1425 Searches for the page in the page cache.

1426-1427 If the page is not in the page cache, goto no cached page where it will
be allocated.

1428 found_page:
1429 page_cache_get(page);
1430 spin_unlock(&pagecache_lock);
1431
1432 if (!Page_Uptodate(page))
1433 goto page_not_up_to_date;
1434 generic_file_readahead(reada_ok, filp, inode, page);

In this block, the page was found in the page cache.

1429 Takes a reference to the page in the page cache so it does not get freed
prematurely.

1432-1433 If the page is not up to date, goto page not up to date to update the
page with information on the disk.

1434 Performs file readahead with generic file readahead()
(See Section D.6.1.3).
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1435 page_ok:
1436 /* If users can be writing to this page using arbitrary
1437 * virtual addresses, take care about potential aliasing
1438 * before reading the page on the kernel side.
1439 */
1440 if (mapping->i_mmap_shared != NULL)
1441 flush_dcache_page(page);
1442
1443 /*
1444 * Mark the page accessed if we read the
1445 * beginning or we just did an lseek.
1446 */
1447 if (!offset || !filp->f_reada)
1448 mark_page_accessed(page);
1449
1450 /*
1451 * Ok, we have the page, and it’s up-to-date, so
1452 * now we can copy it to user space...
1453 *
1454 * The actor routine returns how many bytes were actually
1455 * used.. NOTE! This may not be the same as how much of a
1456 * user buffer we filled up (we may be padding etc), so we
1457 * can only update "pos" here (the actor routine has to
1458 * update the user buffer pointers and the remaining count).
1459 */
1460 ret = actor(desc, page, offset, nr);
1461 offset += ret;
1462 index += offset >> PAGE_CACHE_SHIFT;
1463 offset &= ~PAGE_CACHE_MASK;
1464
1465 page_cache_release(page);
1466 if (ret == nr && desc->count)
1467 continue;
1468 break;

In this block, the page is present in the page cache and ready to be read by the
file read actor function.

1440-1441 Because other users could be writing this page, call
flush dcache page() to make sure the changes are visible.

1447-1448 Because the page has just been accessed, call mark page accessed()
(See Section J.2.3.1) to move it to the active list.

1460 Calls the actor function. In this case, the actor function is
file read actor() (See Section L.3.2.3), which is responsible for copying the
bytes from the page to userspace.
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1461 Updates the current offset within the file.

1462 Moves to the next page if necessary.

1463 Updates the offset within the page we are currently reading. Remember that
we could have just crossed into the next page in the file.

1465 Releases our reference to this page.

1466-1468 If there is still data to be read, this loops again to read the next page.
Otherwise, it breaks because the read operation is complete.

1470 /*
1471 * Ok, the page was not immediately readable, so let’s try to

* read ahead while we’re at it..
1472 */
1473 page_not_up_to_date:
1474 generic_file_readahead(reada_ok, filp, inode, page);
1475
1476 if (Page_Uptodate(page))
1477 goto page_ok;
1478
1479 /* Get exclusive access to the page ... */
1480 lock_page(page);
1481
1482 /* Did it get unhashed before we got the lock? */
1483 if (!page->mapping) {
1484 UnlockPage(page);
1485 page_cache_release(page);
1486 continue;
1487 }
1488
1489 /* Did somebody else fill it already? */
1490 if (Page_Uptodate(page)) {
1491 UnlockPage(page);
1492 goto page_ok;
1493 }

In this block, the page being read was not up to date with information on
the disk. generic file readahead() is called to update the current page and
readahead because I/O is required anyway.

1474 Calls generic file readahead()(See Section D.6.1.3) to sync the current
page and readahead if necessary.

1476-1477 If the page is now up to date, goto page ok to start copying the bytes
to userspace.
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1480 Otherwise, something happened with readahead, so this locks the page for
exclusive access.

1483-1487 If the page was somehow removed from the page cache while spinlocks
were not held, then this releases the reference to the page and starts all over
again. The second time around, the page will get allocated and inserted into
the page cache all over again.

1490-1493 If someone updated the page while we did not have a lock on the page,
then unlock it again and goto page ok to copy the bytes to userspace.

1495 readpage:
1496 /* ... and start the actual read. The read will

* unlock the page. */
1497 error = mapping->a_ops->readpage(filp, page);
1498
1499 if (!error) {
1500 if (Page_Uptodate(page))
1501 goto page_ok;
1502
1503 /* Again, try some read-ahead while waiting for

* the page to finish.. */
1504 generic_file_readahead(reada_ok, filp, inode, page);
1505 wait_on_page(page);
1506 if (Page_Uptodate(page))
1507 goto page_ok;
1508 error = -EIO;
1509 }
1510
1511 /* UHHUH! A synchronous read error occurred. Report it */
1512 desc->error = error;
1513 page_cache_release(page);
1514 break;

At this block, readahead failed to synchronously read the page with the
address space supplied readpage() function.

1497 Calls the address space filesystem-specific readpage() function. In many
cases, this will ultimatly call the function block read full page() declared
in fs/buffer.c().

1499-1501 If no error occurred and the page is now up to date, goto page ok to
begin copying the bytes to userspace.

1504 Otherwise, it schedules some readahead to occur because we are forced to
wait on I/O anyway.

1505-1507 Waits for I/O on the requested page to complete. If it finished suc-
cessfully, then goto page ok.
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1508 Otherwise, an error occured, so this sets -EIO to be returned to userspace.

1512-1514 An I/O error occured, so this records it and releases the reference to
the current page. This error will be picked up from the read descriptor t
struct by generic file read() (See Section D.6.1.1).

1516 no_cached_page:
1517 /*
1518 * Ok, it wasn’t cached, so we need to create a new
1519 * page..
1520 *
1521 * We get here with the page cache lock held.
1522 */
1523 if (!cached_page) {
1524 spin_unlock(&pagecache_lock);
1525 cached_page = page_cache_alloc(mapping);
1526 if (!cached_page) {
1527 desc->error = -ENOMEM;
1528 break;
1529 }
1530
1531 /*
1532 * Somebody may have added the page while we
1533 * dropped the page cache lock. Check for that.
1534 */
1535 spin_lock(&pagecache_lock);
1536 page = __find_page_nolock(mapping, index, *hash);
1537 if (page)
1538 goto found_page;
1539 }
1540
1541 /*
1542 * Ok, add the new page to the hash-queues...
1543 */
1544 page = cached_page;
1545 __add_to_page_cache(page, mapping, index, hash);
1546 spin_unlock(&pagecache_lock);
1547 lru_cache_add(page);
1548 cached_page = NULL;
1549
1550 goto readpage;
1551 }

In this block, the page does not exist in the page cache, so it allocates one and
adds it.

1523-1539 If a cache page has not already been allocated, then allocate one and
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make sure that someone else did not insert one into the page cache while we
were sleeping.

1524 Releases pagecache lock because page cache alloc() may sleep.

1525-1529 Allocates a page and sets -ENOMEM to be returned if the allocation
failed.

1535-1536 Acquires pagecache lock again and searches the page cache to make
sure another process has not inserted it while the lock was dropped.

1537 If another process added a suitable page to the cache already, this jumps to
found page because the one we just allocated is no longer necessary.

1544-1545 Otherwise, this adds the page we just allocated to the page cache.

1547 Adds the page to the LRU lists.

1548 Sets cached page to NULL because it is now in use.

1550 Goto readpage to schedule the page to be read from disk.

1552
1553 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1554 filp->f_reada = 1;
1555 if (cached_page)
1556 page_cache_release(cached_page);
1557 UPDATE_ATIME(inode);
1558 }

1553 Updates our position within the file.

1555-1556 If a page was allocated for addition to the page cache and then found
to be unneeded, it is released it here.

1557 Updates the access time to the file.

D.6.1.3 Function: generic file readahead() (mm/filemap.c)
This function performs generic file readahead. Readahead is one of the few areas

that is very heavily commented upon in the code. It is highly recommended that
you read the comments in mm/filemap.c marked with “Read-ahead context.”

1222 static void generic_file_readahead(int reada_ok,
1223 struct file * filp, struct inode * inode,
1224 struct page * page)
1225 {
1226 unsigned long end_index;
1227 unsigned long index = page->index;
1228 unsigned long max_ahead, ahead;
1229 unsigned long raend;
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1230 int max_readahead = get_max_readahead(inode);
1231
1232 end_index = inode->i_size >> PAGE_CACHE_SHIFT;
1233
1234 raend = filp->f_raend;
1235 max_ahead = 0;

1227 Gets the index to start from based on the supplied page.

1230 Gets the maximum-sized readahead for this block device.

1232 Gets the index, in pages, of the end of the file.

1234 Gets the end of the readahead window from the struct file.

1236
1237 /*
1238 * The current page is locked.
1239 * If the current position is inside the previous read IO request,
1240 * do not try to reread previously read ahead pages.
1241 * Otherwise decide or not to read ahead some pages synchronously.
1242 * If we are not going to read ahead, set the read ahead context
1243 * for this page only.
1244 */
1245 if (PageLocked(page)) {
1246 if (!filp->f_ralen ||

index >= raend ||
index + filp->f_rawin < raend) {

1247 raend = index;
1248 if (raend < end_index)
1249 max_ahead = filp->f_ramax;
1250 filp->f_rawin = 0;
1251 filp->f_ralen = 1;
1252 if (!max_ahead) {
1253 filp->f_raend = index + filp->f_ralen;
1254 filp->f_rawin += filp->f_ralen;
1255 }
1256 }
1257 }

This block has encountered a page that is locked, so it must decide whether to
temporarily disable readahead.

1245 If the current page is locked for I/O, then check if the current page is within
the last readahead window. If it is, there is no point trying to readahead
again. If it is not or readahead has not been performed previously, update
the readahead context.
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1246 The first check is if readahead has been performed previously. The second
is to see if the current locked page is after where the the previous readahead
finished. The third check is if the current locked page is within the current
readahead window.

1247 Updates the end of the readahead window.

1248-1249 If the end of the readahead window is not after the end of the file, this
sets max ahead to be the maximum amount of readahead that should be used
with this struct file(filp→f ramax).

1250-1255 Sets readahead to only occur with the current page, effectively dis-
abling readahead.

1258 /*
1259 * The current page is not locked.
1260 * If we were reading ahead and,
1261 * if the current max read ahead size is not zero and,
1262 * if the current position is inside the last read-ahead IO
1263 * request, it is the moment to try to read ahead asynchronously.
1264 * We will later force unplug device in order to force

* asynchronous read IO.
1265 */
1266 else if (reada_ok && filp->f_ramax && raend >= 1 &&
1267 index <= raend && index + filp->f_ralen >= raend) {
1268 /*
1269 * Add ONE page to max_ahead in order to try to have about the
1270 * same IO maxsize as synchronous read-ahead

* (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE.
1271 * Compute the position of the last page we have tried to read
1272 * in order to begin to read ahead just at the next page.
1273 */
1274 raend -= 1;
1275 if (raend < end_index)
1276 max_ahead = filp->f_ramax + 1;
1277
1278 if (max_ahead) {
1279 filp->f_rawin = filp->f_ralen;
1280 filp->f_ralen = 0;
1281 reada_ok = 2;
1282 }
1283 }

This is one of the rare cases where the in-code commentary makes the code as
clear as it possibly could be. Basically, it is saying that if the current page is not
locked for I/O, then it extends the readahead window slightly and remembers that
readahead is currently going well.
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1284 /*
1285 * Try to read ahead pages.
1286 * We hope that ll_rw_blk() plug/unplug, coalescence, requests
1287 * sort and the scheduler, will work enough for us to avoid too

* bad actuals IO requests.
1288 */
1289 ahead = 0;
1290 while (ahead < max_ahead) {
1291 ahead ++;
1292 if ((raend + ahead) >= end_index)
1293 break;
1294 if (page_cache_read(filp, raend + ahead) < 0)
1295 break;
1296 }

This block performs the actual readahead by calling page cache read() for each
of the pages in the readahead window. Note here how ahead is incremented for each
page that is readahead.

1297 /*
1298 * If we tried to read ahead some pages,
1299 * If we tried to read ahead asynchronously,
1300 * Try to force unplug of the device in order to start an
1301 * asynchronous read IO request.
1302 * Update the read-ahead context.
1303 * Store the length of the current read-ahead window.
1304 * Double the current max read ahead size.
1305 * That heuristic avoid to do some large IO for files that are
1306 * not really accessed sequentially.
1307 */
1308 if (ahead) {
1309 filp->f_ralen += ahead;
1310 filp->f_rawin += filp->f_ralen;
1311 filp->f_raend = raend + ahead + 1;
1312
1313 filp->f_ramax += filp->f_ramax;
1314
1315 if (filp->f_ramax > max_readahead)
1316 filp->f_ramax = max_readahead;
1317
1318 #ifdef PROFILE_READAHEAD
1319 profile_readahead((reada_ok == 2), filp);
1320 #endif
1321 }
1322
1323 return;
1324 }
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If readahead was successful, then this updates the readahead fields in the
struct file to mark the progress. This is basically growing the readahead context,
but can be reset by do generic file readahead() if it is found that the readahead
is ineffective.

1309 Updates the f ralen with the number of pages that were readahead in this
pass.

1310 Updates the size of the readahead window.

1311 Marks the end of the readahead.

1313 Doubles the current maximum-sized readahead.

1315-1316 Do not let the maximum-sized readahead get larger than the maximum
readahead defined for this block device.

D.6.2 Generic File mmap()

D.6.2.1 Function: generic file mmap() (mm/filemap.c)
This is the generic mmap() function used by many struct files as their

struct file operations. It is mainly responsible for ensuring the appropriate
address space functions exist and for setting what VMA operations to use.

2249 int generic_file_mmap(struct file * file,
struct vm_area_struct * vma)

2250 {
2251 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;
2252 struct inode *inode = mapping->host;
2253
2254 if ((vma->vm_flags & VM_SHARED) &&

(vma->vm_flags & VM_MAYWRITE)) {
2255 if (!mapping->a_ops->writepage)
2256 return -EINVAL;
2257 }
2258 if (!mapping->a_ops->readpage)
2259 return -ENOEXEC;
2260 UPDATE_ATIME(inode);
2261 vma->vm_ops = &generic_file_vm_ops;
2262 return 0;
2263 }

2251 Gets the address space that is managing the file being mapped.

2252 Gets the struct inode for this address space.

2254-2257 If the VMA is to be shared and writable, this makes sure an
a ops→writepage() function exists. It returns -EINVAL if it does not.
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2258-2259 Makes sure an a ops→readpage() function exists.

2260 Updates the access time for the inode.

2261 Uses generic file vm ops for the file operations. The generic VM oper-
ations structure, defined in mm/filemap.c, only supplies filemap nopage()
(See Section D.6.4.1) as its nopage() function. No other callback is defined.

D.6.3 Generic File Truncation

This section covers the path where a file is being truncated. The actual system call
truncate() is implemented by sys truncate() in fs/open.c. By the time the
top-level function in the VM is called (vmtruncate()), the dentry information for
the file has been updated, and the inode’s semaphore has been acquired.

D.6.3.1 Function: vmtruncate() (mm/memory.c)
This is the top-level VM function responsible for truncating a file. When it

completes, all pagetable entries mapping pages that have been truncated have been
unmapped and reclaimed if possible.

1042 int vmtruncate(struct inode * inode, loff_t offset)
1043 {
1044 unsigned long pgoff;
1045 struct address_space *mapping = inode->i_mapping;
1046 unsigned long limit;
1047
1048 if (inode->i_size < offset)
1049 goto do_expand;
1050 inode->i_size = offset;
1051 spin_lock(&mapping->i_shared_lock);
1052 if (!mapping->i_mmap && !mapping->i_mmap_shared)
1053 goto out_unlock;
1054
1055 pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1056 if (mapping->i_mmap != NULL)
1057 vmtruncate_list(mapping->i_mmap, pgoff);
1058 if (mapping->i_mmap_shared != NULL)
1059 vmtruncate_list(mapping->i_mmap_shared, pgoff);
1060
1061 out_unlock:
1062 spin_unlock(&mapping->i_shared_lock);
1063 truncate_inode_pages(mapping, offset);
1064 goto out_truncate;
1065
1066 do_expand:
1067 limit = current->rlim[RLIMIT_FSIZE].rlim_cur;
1068 if (limit != RLIM_INFINITY && offset > limit)
1069 goto out_sig;
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1070 if (offset > inode->i_sb->s_maxbytes)
1071 goto out;
1072 inode->i_size = offset;
1073
1074 out_truncate:
1075 if (inode->i_op && inode->i_op->truncate) {
1076 lock_kernel();
1077 inode->i_op->truncate(inode);
1078 unlock_kernel();
1079 }
1080 return 0;
1081 out_sig:
1082 send_sig(SIGXFSZ, current, 0);
1083 out:
1084 return -EFBIG;
1085 }

1042 The parameters passed are the inode being truncated and the new offset
marking the new end of the file. The old length of the file is stored in
inode→i size.

1045 Gets the address space responsible for the inode.

1048-1049 If the new file size is larger than the old size, then goto do expand,
where the limits for the process will be checked before the file is grown.

1050 Here, the file is being shrunk, so it updates inode→i size to match.

1051 Locks the spinlock, protecting the two lists of VMAs using this inode.

1052-1053 If no VMAs are mapping the inode, goto out unlock, where
the pages used by the file will be reclaimed by truncate inode pages()
(See Section D.6.3.6).

1055 Calculates pgoff as the offset within the file in pages where the truncation
will begin.

1056-1057 Truncates pages from all private mappings with vmtruncate list()
(See Section D.6.3.2).

1058-1059 Truncates pages from all shared mappings.

1062 Unlocks the spinlock protecting the VMA lists.

1063 Calls truncate inode pages() (See Section D.6.3.6) to reclaim the pages if
they exist in the page cache for the file.

1064 Goto out truncate to call the filesystem-specific truncate() function so
the blocks used on disk will be freed.
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1066-1071 If the file is being expanded, this makes sure that the process limits
for maximum file size are not being exceeded and that the hosting filesystem
is able to support the new filesize.

1072 If the limits are fine, this updates the inodes size and falls through to call
the filesystem-specific truncate function, which will fill the expanded filesize
with zeros.

1075-1079 If the filesystem provides a truncate() function, then this locks the
kernel, calls it and unlocks the kernel again. Filesystems do not acquire the
proper locks to prevent races between file truncation and file expansion due
to writing or faulting so the big kernel lock is needed.

1080 Returns success.

1082-1084 If the file size grows too big, this sends the SIGXFSZ signal to the
calling process and returns -EFBIG.

D.6.3.2 Function: vmtruncate list() (mm/memory.c)
This function cycles through all VMAs in an address spaces list and calls

zap page range() for the range of addresses that map a file that is being truncated.

1006 static void vmtruncate_list(struct vm_area_struct *mpnt,
unsigned long pgoff)

1007 {
1008 do {
1009 struct mm_struct *mm = mpnt->vm_mm;
1010 unsigned long start = mpnt->vm_start;
1011 unsigned long end = mpnt->vm_end;
1012 unsigned long len = end - start;
1013 unsigned long diff;
1014
1015 /* mapping wholly truncated? */
1016 if (mpnt->vm_pgoff >= pgoff) {
1017 zap_page_range(mm, start, len);
1018 continue;
1019 }
1020
1021 /* mapping wholly unaffected? */
1022 len = len >> PAGE_SHIFT;
1023 diff = pgoff - mpnt->vm_pgoff;
1024 if (diff >= len)
1025 continue;
1026
1027 /* Ok, partially affected.. */
1028 start += diff << PAGE_SHIFT;
1029 len = (len - diff) << PAGE_SHIFT;
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1030 zap_page_range(mm, start, len);
1031 } while ((mpnt = mpnt->vm_next_share) != NULL);
1032 }

1008-1031 Loops through all VMAs in the list.

1009 Gets the mm struct that hosts this VMA.

1010-1012 Calculates the start, end and length of the VMA.

1016-1019 If the whole VMA is being truncated, this calls the function
zap page range() (See Section D.6.3.3) with the start and length of the full
VMA.

1022 Calculates the length of the VMA in pages.

1023-1025 Checks if the VMA maps any of the region being truncated. If the
VMA in unaffected, it continues to the next VMA.

1028-1029 If the VMA is being partially truncated this calculates where the start
and length of the region to truncate is in pages.

1030 Calls zap page range() (See Section D.6.3.3) to unmap the affected region.

D.6.3.3 Function: zap page range() (mm/memory.c)
This function is the top-level pagetable-walk function, which unmaps userpages

in the specified range from an mm struct.

360 void zap_page_range(struct mm_struct *mm,
unsigned long address, unsigned long size)

361 {
362 mmu_gather_t *tlb;
363 pgd_t * dir;
364 unsigned long start = address, end = address + size;
365 int freed = 0;
366
367 dir = pgd_offset(mm, address);
368
369 /*
370 * This is a long-lived spinlock. That’s fine.
371 * There’s no contention, because the page table
372 * lock only protects against kswapd anyway, and
373 * even if kswapd happened to be looking at this
374 * process we _want_ it to get stuck.
375 */
376 if (address >= end)
377 BUG();
378 spin_lock(&mm->page_table_lock);
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379 flush_cache_range(mm, address, end);
380 tlb = tlb_gather_mmu(mm);
381
382 do {
383 freed += zap_pmd_range(tlb, dir, address, end - address);
384 address = (address + PGDIR_SIZE) & PGDIR_MASK;
385 dir++;
386 } while (address && (address < end));
387
388 /* this will flush any remaining tlb entries */
389 tlb_finish_mmu(tlb, start, end);
390
391 /*
392 * Update rss for the mm_struct (not necessarily current->mm)
393 * Notice that rss is an unsigned long.
394 */
395 if (mm->rss > freed)
396 mm->rss -= freed;
397 else
398 mm->rss = 0;
399 spin_unlock(&mm->page_table_lock);
400 }

364 Calculates the start and end address for zapping.

367 Calculates the PGD (dir) that contains the starting address.

376-377 Makes sure the start address is not after the end address.

378 Acquires the spinlock protecting the page tables. This is a very longheld lock
and would normally be considered a bad idea, but the comment prior to the
block explains why it is ok in this case.

379 Flushes the CPU cache for this range.

380 tlb gather mmu() records the MM that is being altered. Later,
tlb remove page() will be called to unmap the PTE that stores the PTEs in
a struct free pte ctx until the zapping is finished. This is to avoid having
to constantly flush the TLB as PTEs are freed.

382-386 For each PMD affected by the zapping, this calls zap pmd range() un-
til the end address has been reached. Note that tlb is passed as well for
tlb remove page() to use later.

389 tlb finish mmu() frees all the PTEs that were unmapped by
tlb remove page() and then flushes the TLBs. Doing the flushing this way
avoids a storm of TLB flushing that would be otherwise required for each PTE
unmapped.
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395-398 Updates RSS count.

399 Releases the pagetable lock.

D.6.3.4 Function: zap pmd range() (mm/memory.c)
This function is unremarkable. It steps through the PMDs that are affected by

the requested range and calls zap pte range() for each one.

331 static inline int zap_pmd_range(mmu_gather_t *tlb, pgd_t * dir,
unsigned long address,

unsigned long size)
332 {
333 pmd_t * pmd;
334 unsigned long end;
335 int freed;
336
337 if (pgd_none(*dir))
338 return 0;
339 if (pgd_bad(*dir)) {
340 pgd_ERROR(*dir);
341 pgd_clear(dir);
342 return 0;
343 }
344 pmd = pmd_offset(dir, address);
345 end = address + size;
346 if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))
347 end = ((address + PGDIR_SIZE) & PGDIR_MASK);
348 freed = 0;
349 do {
350 freed += zap_pte_range(tlb, pmd, address, end - address);
351 address = (address + PMD_SIZE) & PMD_MASK;
352 pmd++;
353 } while (address < end);
354 return freed;
355 }

337-338 If no PGD exists, this returns.

339-343 If the PGD is bad, it flags the error and returns.

344 Gets the starting pmd.

345-347 Calculates the end address of the zapping. If it is beyond the end of this
PGD, then set end to the end of the PGD.

349-353 Steps through all PMDs in this PGD. For each PMD, it calls
zap pte range() (See Section D.6.3.5) to unmap the PTEs.

354 Returns how many pages were freed.
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D.6.3.5 Function: zap pte range() (mm/memory.c)
This function calls tlb remove page() for each PTE in the requested pmd within

the requested address range.

294 static inline int zap_pte_range(mmu_gather_t *tlb, pmd_t * pmd,
unsigned long address,

unsigned long size)
295 {
296 unsigned long offset;
297 pte_t * ptep;
298 int freed = 0;
299
300 if (pmd_none(*pmd))
301 return 0;
302 if (pmd_bad(*pmd)) {
303 pmd_ERROR(*pmd);
304 pmd_clear(pmd);
305 return 0;
306 }
307 ptep = pte_offset(pmd, address);
308 offset = address & ~PMD_MASK;
309 if (offset + size > PMD_SIZE)
310 size = PMD_SIZE - offset;
311 size &= PAGE_MASK;
312 for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {
313 pte_t pte = *ptep;
314 if (pte_none(pte))
315 continue;
316 if (pte_present(pte)) {
317 struct page *page = pte_page(pte);
318 if (VALID_PAGE(page) && !PageReserved(page))
319 freed ++;
320 /* This will eventually call __free_pte on the pte. */
321 tlb_remove_page(tlb, ptep, address + offset);
322 } else {
323 free_swap_and_cache(pte_to_swp_entry(pte));
324 pte_clear(ptep);
325 }
326 }
327
328 return freed;
329 }

300-301 If the PMD does not exist, this returns.

302-306 If the PMD is bad, it flags the error and returns.

307 Gets the starting PTE offset.
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308 Aligns the offset to a PMD boundary.

309 If the size of the region to unmap is past the PMD boundary, this fixes the
size so that only this PMD will be affected.

311 Aligns size to a page boundary.

312-326 Steps through all PTEs in the region.

314-315 If no PTE exists, this continues to the next one.

316-322 If the PTE is present, this calls tlb remove page() to unmap the page.
If the page is reclaimable, it increments the freed count.

322-325 If the PTE is in use, but the page is paged out or in the swap
cache, this frees the swap slot and page with free swap and cache()
(See Section K.3.2.3). It is possible that a page is reclaimed if it was in the
swap cache that is unaccounted for here, but it is not of paramount impor-
tance.

328 Returns the number of pages that were freed.

D.6.3.6 Function: truncate inode pages() (mm/filemap.c)
This is the top-level function responsible for truncating all pages from the page

cache that occured after lstart in a mapping.

327 void truncate_inode_pages(struct address_space * mapping,
loff_t lstart)

328 {
329 unsigned long start = (lstart + PAGE_CACHE_SIZE - 1) >>

PAGE_CACHE_SHIFT;
330 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
331 int unlocked;
332
333 spin_lock(&pagecache_lock);
334 do {
335 unlocked = truncate_list_pages(&mapping->clean_pages,

start, &partial);
336 unlocked |= truncate_list_pages(&mapping->dirty_pages,

start, &partial);
337 unlocked |= truncate_list_pages(&mapping->locked_pages,

start, &partial);
338 } while (unlocked);
339 /* Traversed all three lists without dropping the lock */
340 spin_unlock(&pagecache_lock);
341 }

329 Calculates where to start the truncation as an index in pages.
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330 Calculates partial as an offset within the last page if it is being partially
truncated.

333 Locks the page cache.

334 This will loop until none of the calls to truncate list pages() returns that
a page was found that should have been reclaimed.

335 Uses truncate list pages() (See Section D.6.3.7) to truncate all pages in
the clean pages list.

336 Similarly, truncates pages in the dirty pages list.

337 Similarly, truncates pages in the locked pages list.

340 Unlocks the page cache.

D.6.3.7 Function: truncate list pages() (mm/filemap.c)
This function searches the requested list (head), which is part of an

address space. If pages are found after start, they will be truncated.

259 static int truncate_list_pages(struct list_head *head,
unsigned long start,
unsigned *partial)

260 {
261 struct list_head *curr;
262 struct page * page;
263 int unlocked = 0;
264
265 restart:
266 curr = head->prev;
267 while (curr != head) {
268 unsigned long offset;
269
270 page = list_entry(curr, struct page, list);
271 offset = page->index;
272
273 /* Is one of the pages to truncate? */
274 if ((offset >= start) ||

(*partial && (offset + 1) == start)) {
275 int failed;
276
277 page_cache_get(page);
278 failed = TryLockPage(page);
279
280 list_del(head);
281 if (!failed)
282 /* Restart after this page */
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283 list_add_tail(head, curr);
284 else
285 /* Restart on this page */
286 list_add(head, curr);
287
288 spin_unlock(&pagecache_lock);
289 unlocked = 1;
290
291 if (!failed) {
292 if (*partial && (offset + 1) == start) {
293 truncate_partial_page(page, *partial);
294 *partial = 0;
295 } else
296 truncate_complete_page(page);
297
298 UnlockPage(page);
299 } else
300 wait_on_page(page);
301
302 page_cache_release(page);
303
304 if (current->need_resched) {
305 __set_current_state(TASK_RUNNING);
306 schedule();
307 }
308
309 spin_lock(&pagecache_lock);
310 goto restart;
311 }
312 curr = curr->prev;
313 }
314 return unlocked;
315 }

266-267 Records the start of the list and loops until the full list has been scanned.

270-271 Gets the page for this entry and what offset within the file it represents.

274 If the current page is after start or is a page that is to be partially truncated,
this truncates this page or moves to the next one.

277-278 Takes a reference to the page and tries to lock it.

280 Removes the page from the list.

281-283 If we locked the page, this adds it back to the list where it will be skipped
over on the next iteration of the loop.
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284-286 If not, it adds it back where it will be found again immediately. Later in
the function, wait on page() is called until the page is unlocked.

288 Releases the pagecache lock.

299 Sets locked to 1 to indicate a page was found that had to be truncated. This
will force truncate inode pages() to call this function again to make sure
there are no pages left behind. This looks like an oversight and was intended
to have the functions recalled only if a locked page was found. However the
way it is implemented means that it will be called whether the page was locked
or not.

291-299 If we locked the page, this truncates it.

292-294 If the page is to be partially truncated, this calls
truncate partial page() (See Section D.6.3.10) with the offset within the
page where the truncation begins (partial).

296 If not, it calls truncate complete page() (See Section D.6.3.8) to truncate
the whole page.

298 Unlocks the page.

300 If the page locking failed, this calls wait on page() to wait until the page
can be locked.

302 Releases the reference to the page. If there are no more mappings for the
page, it will be reclaimed.

304-307 Checks if the process should call schedule() before continuing. This is
to prevent a truncating process from hogging the CPU.

309 Reacquires the spinlock and restarts the scanning for pages to reclaim.

312 The current page should not be reclaimed, so this moves to the next page.

314 Returns 1 if a page was found in the list that had to be truncated.

D.6.3.8 Function: truncate complete page() (mm/filemap.c)
This function truncates a full page, frees associates resoures and reclaims the

page.

239 static void truncate_complete_page(struct page *page)
240 {
241 /* Leave it on the LRU if it gets converted into

* anonymous buffers */
242 if (!page->buffers || do_flushpage(page, 0))
243 lru_cache_del(page);
244
245 /*
246 * We remove the page from the page cache _after_ we have
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247 * destroyed all buffer-cache references to it. Otherwise
248 * some other process might think this inode page is not in
249 * the page cache and creates a buffer-cache alias to it
250 * causing all sorts of fun problems ...
251 */
252 ClearPageDirty(page);
253 ClearPageUptodate(page);
254 remove_inode_page(page);
255 page_cache_release(page);
256 }

242 If the page has buffers, this calls do flushpage() (See Section D.6.3.9) to
flush all buffers associated with the page. The comments in the following
lines describe the problem concisely.

243 Deletes the page from the LRU.

252-253 Clears the dirty and uptodate flags for the page.

254 Calls remove inode page() (See Section J.1.2.1) to delete the page from the
page cache.

255 Drops the reference to the page. The page will be later reclaimed when
truncate list pages() drops its own private reference to it.

D.6.3.9 Function: do flushpage() (mm/filemap.c)
This function is responsible for flushing all buffers associated with a page.

223 static int do_flushpage(struct page *page, unsigned long offset)
224 {
225 int (*flushpage) (struct page *, unsigned long);
226 flushpage = page->mapping->a_ops->flushpage;
227 if (flushpage)
228 return (*flushpage)(page, offset);
229 return block_flushpage(page, offset);
230 }

226-228 If the page→mapping provides a flushpage() function, this calls it.

229 If not, this calls block flushpage(), which is the generic function for flushing
buffers associated with a page.

D.6.3.10 Function: truncate partial page() (mm/filemap.c)
This function partially truncates a page by zeroing out the higher bytes no longer

in use and flushing any associated buffers.

232 static inline void truncate_partial_page(struct page *page,
unsigned partial)
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233 {
234 memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
235 if (page->buffers)
236 do_flushpage(page, partial);
237 }

234 memclear highpage flush() fills an address range with zeros. In this case,
it will zero from partial to the end of the page.

235-236 If the page has any associated buffers, this flushes any buffers containing
data in the truncated region.

D.6.4 Reading Pages for the Page Cache

D.6.4.1 Function: filemap nopage() (mm/filemap.c)
This is the generic nopage() function used by many VMAs. This loops around

itself with a large number of goto’s, which can be difficult to trace, but there is
nothing novel here. It is principally responsible for fetching the faulting page from
either the pagecache or reading it from disk. If appropriate, it will also perform file
readahead.

1994 struct page * filemap_nopage(struct vm_area_struct * area,
unsigned long address,
int unused)

1995 {
1996 int error;
1997 struct file *file = area->vm_file;
1998 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;
1999 struct inode *inode = mapping->host;
2000 struct page *page, **hash;
2001 unsigned long size, pgoff, endoff;
2002
2003 pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) +

area->vm_pgoff;
2004 endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) +

area->vm_pgoff;
2005

This block acquires the struct file, addres space and inode, which are im-
portant for this page fault. It then acquires the starting offset within the file needed
for this fault and the offset that corresponds to the end of this VMA. The offset
is the end of the VMA instead of the end of the page in case file readahead is
performed.

1997-1999 Acquires the struct file, address space and inode required for
this fault.
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2003 Calculates pgoff, which is the offset within the file corresponding to the
beginning of the fault.

2004 Calculates the offset within the file corresponding to the end of the VMA.

2006 retry_all:
2007 /*
2008 * An external ptracer can access pages that normally aren’t
2009 * accessible..
2010 */
2011 size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2012 if ((pgoff >= size) && (area->vm_mm == current->mm))
2013 return NULL;
2014
2015 /* The "size" of the file, as far as mmap is concerned, isn’t

bigger than the mapping */
2016 if (size > endoff)
2017 size = endoff;
2018
2019 /*
2020 * Do we have something in the page cache already?
2021 */
2022 hash = page_hash(mapping, pgoff);
2023 retry_find:
2024 page = __find_get_page(mapping, pgoff, hash);
2025 if (!page)
2026 goto no_cached_page;
2027
2028 /*
2029 * Ok, found a page in the page cache, now we need to check
2030 * that it’s up-to-date.
2031 */
2032 if (!Page_Uptodate(page))
2033 goto page_not_uptodate;

2011 Calculates the size of the file in pages.

2012 If the faulting pgoff is beyond the end of the file and this is not a tracing
process, this returns NULL.

2016-2017 If the VMA maps beyond the end of the file, this sets the size of the
file to be the end of the mapping.

2022-2024 Searches for the page in the page cache.

2025-2026 If it does not exist, goto no cached page where page cache read()
will be called to read the page from backing storage.
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2032-2033 If the page is not up to date, goto page not uptodate where the page
will either be declared invalid or the data in the page will be updated.

2035 success:
2036 /*
2037 * Try read-ahead for sequential areas.
2038 */
2039 if (VM_SequentialReadHint(area))
2040 nopage_sequential_readahead(area, pgoff, size);
2041
2042 /*
2043 * Found the page and have a reference on it, need to check
2044 * sharing and possibly copy it over to another page..
2045 */
2046 mark_page_accessed(page);
2047 flush_page_to_ram(page);
2048 return page;
2049

2039-2040 If this mapping specified the VM SEQ READ hint, the pages of the current
fault will be prefaulted with nopage sequential readahead().

2046 Marks the faulted-in page as accessed, so it will be moved to the
active list.

2047 As the page is about to be installed into a process page table, this calls
flush page to ram() so that recent stores by the kernel to the page will
definitly be visible to userspace.

2048 Returns the faulted-in page.

2050 no_cached_page:
2051 /*
2052 * If the requested offset is within our file, try to read
2053 * a whole cluster of pages at once.
2054 *
2055 * Otherwise, we’re off the end of a privately mapped file,
2056 * so we need to map a zero page.
2057 */
2058 if ((pgoff < size) && !VM_RandomReadHint(area))
2059 error = read_cluster_nonblocking(file, pgoff, size);
2060 else
2061 error = page_cache_read(file, pgoff);
2062
2063 /*
2064 * The page we want has now been added to the page cache.
2065 * In the unlikely event that someone removed it in the
2066 * meantime, we’ll just come back here and read it again.
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2067 */
2068 if (error >= 0)
2069 goto retry_find;
2070
2071 /*
2072 * An error return from page_cache_read can result if the
2073 * system is low on memory, or a problem occurs while trying
2074 * to schedule I/O.
2075 */
2076 if (error == -ENOMEM)
2077 return NOPAGE_OOM;
2078 return NULL;

2058-2059 If the end of the file has not been reached and the random-read hint
has not been specified, this calls read cluster nonblocking() to prefault in
just a few pages near ths faulting page.

2061 If not, the file is being accessed randomly, so it just calls page cache read()
(See Section D.6.4.2) to read in just the faulting page.

2068-2069 If no error occurred, goto retry find at line 1958, which will check
to make sure the page is in the page cache before returning.

2076-2077 If the error was due to being out of memory, this returns so that the
fault handler can act accordingly.

2078 If not, this returns NULL to indicate that a nonexistant page was faulted,
resulting in a SIGBUS signal being sent to the faulting process.

2080 page_not_uptodate:
2081 lock_page(page);
2082
2083 /* Did it get unhashed while we waited for it? */
2084 if (!page->mapping) {
2085 UnlockPage(page);
2086 page_cache_release(page);
2087 goto retry_all;
2088 }
2089
2090 /* Did somebody else get it up-to-date? */
2091 if (Page_Uptodate(page)) {
2092 UnlockPage(page);
2093 goto success;
2094 }
2095
2096 if (!mapping->a_ops->readpage(file, page)) {
2097 wait_on_page(page);
2098 if (Page_Uptodate(page))
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2099 goto success;
2100 }

In this block, the page was found, but it was not up to date so the reasons for the
page not being up to date are checked. If it looks ok, the appropriate readpage()
function is called to resync the page.

2081 Locks the page for I/O.

2084-2088 If the page was removed from the mapping (possible because of a file
truncation) and is now anonymous, then goto retry all, which will try and
fault in the page again.

2090-2094 Checks again for the Uptodate flag in case the page was updated just
before we locked the page for I/O.

2096 Calls the address space→readpage() function to schedule the data to be
read from disk.

2097 Waits for the I/O to complete and if it is now up to date, goto success
to return the page. If the readpage() function failed, it falls through to the
error recovery path.

2101
2102 /*
2103 * Umm, take care of errors if the page isn’t up-to-date.
2104 * Try to re-read it _once_. We do this synchronously,
2105 * because there really aren’t any performance issues here
2106 * and we need to check for errors.
2107 */
2108 lock_page(page);
2109
2110 /* Somebody truncated the page on us? */
2111 if (!page->mapping) {
2112 UnlockPage(page);
2113 page_cache_release(page);
2114 goto retry_all;
2115 }
2116
2117 /* Somebody else successfully read it in? */
2118 if (Page_Uptodate(page)) {
2119 UnlockPage(page);
2120 goto success;
2121 }
2122 ClearPageError(page);
2123 if (!mapping->a_ops->readpage(file, page)) {
2124 wait_on_page(page);
2125 if (Page_Uptodate(page))
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2126 goto success;
2127 }
2128
2129 /*
2130 * Things didn’t work out. Return zero to tell the
2131 * mm layer so, possibly freeing the page cache page first.
2132 */
2133 page_cache_release(page);
2134 return NULL;
2135 }

In this path, the page is not up to date due to some I/O error. A second attempt
is made to read the page data, and, if it fails, it returns.

2110-2127 This is almost identical to the previous block. The only difference is
that ClearPageError() is called to clear the error caused by the previous
I/O.

2133 If it still failed, this releases the reference to the page because it is useless.

2134 Returns NULL because the fault failed.

D.6.4.2 Function: page cache read() (mm/filemap.c)
This function adds the page corresponding to the offset within the file to the

pagecache if it does not exist there already.

702 static int page_cache_read(struct file * file,
unsigned long offset)

703 {
704 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;
705 struct page **hash = page_hash(mapping, offset);
706 struct page *page;
707
708 spin_lock(&pagecache_lock);
709 page = __find_page_nolock(mapping, offset, *hash);
710 spin_unlock(&pagecache_lock);
711 if (page)
712 return 0;
713
714 page = page_cache_alloc(mapping);
715 if (!page)
716 return -ENOMEM;
717
718 if (!add_to_page_cache_unique(page, mapping, offset, hash)) {
719 int error = mapping->a_ops->readpage(file, page);
720 page_cache_release(page);
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721 return error;
722 }
723 /*
724 * We arrive here in the unlikely event that someone
725 * raced with us and added our page to the cache first.
726 */
727 page_cache_release(page);
728 return 0;
729 }

704 Acquires the address space mapping managing the file.

705 The page cache is a hash table, and page hash() returns the first page in the
bucket for this mapping and offset.

708-709 Searches the page cache with find page nolock()
(See Section J.1.4.3). This basically will traverse the list starting at hash
to see if the requested page can be found.

711-712 If the page is already in the page cache, this returns.

714 Allocates a new page for insertion into the page cache. page cache alloc()
will allocate a page from the buddy allocator using GFP mask information
contained in mapping.

718 Inserts the page into the page cache with add to page cache unique()
(See Section J.1.1.2). This function is used because a second check needs
to be made to make sure the page was not inserted into the page cache while
the pagecache lock spinlock was not acquired.

719 If the allocated page was inserted into the page cache, it needs to be popu-
lated with data, so the readpage() function for the mapping is called. This
schedules the I/O to take place, and the page will be unlocked when the I/O
completes.

720 The path in add to page cache unique() (See Section J.1.1.2) takes an extra
reference to the page being added to the page cache, which is dropped here.
The page will not be freed.

727 If another process added the page to the page cache, it is released here by
page cache release() because there will be no users of the page.

D.6.5 File Readahead for nopage()

D.6.5.1 Function: nopage sequential readahead() (mm/filemap.c)
This function is only called by filemap nopage() when the VM SEQ READ flag

has been specified in the VMA. When half of the current readahead window has
been faulted in, the next readahead window is scheduled for I/O, and pages from
the previous window are freed.
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1936 static void nopage_sequential_readahead(
struct vm_area_struct * vma,

1937 unsigned long pgoff, unsigned long filesize)
1938 {
1939 unsigned long ra_window;
1940
1941 ra_window = get_max_readahead(vma->vm_file->f_dentry->d_inode);
1942 ra_window = CLUSTER_OFFSET(ra_window + CLUSTER_PAGES - 1);
1943
1944 /* vm_raend is zero if we haven’t read ahead

* in this area yet. */
1945 if (vma->vm_raend == 0)
1946 vma->vm_raend = vma->vm_pgoff + ra_window;
1947

1941 get max readahead() returns the maximum-sized readahead window for the
block that device the specified inode resides on.

1942 CLUSTER PAGES is the number of pages that are paged-in or paged-out in
bulk. The macro CLUSTER OFFSET() will align the readahead window to a
cluster boundary.

1945-1946 If readahead has not occurred yet, this sets the end of the readahead
window (vm reend).

1948 /*
1949 * If we’ve just faulted the page half-way through our window,
1950 * then schedule reads for the next window, and release the
1951 * pages in the previous window.
1952 */
1953 if ((pgoff + (ra_window >> 1)) == vma->vm_raend) {
1954 unsigned long start = vma->vm_pgoff + vma->vm_raend;
1955 unsigned long end = start + ra_window;
1956
1957 if (end > ((vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff))
1958 end = (vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff;
1959 if (start > end)
1960 return;
1961
1962 while ((start < end) && (start < filesize)) {
1963 if (read_cluster_nonblocking(vma->vm_file,
1964 start, filesize) < 0)
1965 break;
1966 start += CLUSTER_PAGES;
1967 }
1968 run_task_queue(&tq_disk);
1969

P
ro

ce
ss

A
d
d
re

ss
S
p
a
ce



390 Process Address Space Appendix D

1970 /* if we’re far enough past the beginning of this area,
1971 recycle pages that are in the previous window. */
1972 if (vma->vm_raend >

(vma->vm_pgoff + ra_window + ra_window)) {
1973 unsigned long window = ra_window << PAGE_SHIFT;
1974
1975 end = vma->vm_start + (vma->vm_raend << PAGE_SHIFT);
1976 end -= window + window;
1977 filemap_sync(vma, end - window, window, MS_INVALIDATE);
1978 }
1979
1980 vma->vm_raend += ra_window;
1981 }
1982
1983 return;
1984 }

1953 If the fault has occurred halfway through the readahead window, this sched-
ules the next readahead window to be read in from disk and frees the pages for
the first half of the current window because they are presumably not required
any more.

1954-1955 Calculates the start and end of the next readahead window because
we are about to schedule it for I/O.

1957 If the end of the readahead window is after the end of the VMA, this sets
end to the end of the VMA.

1959-1960 If we are at the end of the mapping, this just returns because there is
no more readahead to perform.

1962-1967 Schedules the next readahead window to be paged in by calling
read cluster nonblocking()(See Section D.6.5.2).

1968 Calls run task queue() to start the I/O.

1972-1978 Recycles the pages in the previous readahead window with
filemap sync() as they are no longer required.

1980 Updates where the end of the readahead window is.

D.6.5.2 Function: read cluster nonblocking() (mm/filemap.c)
This function schedules the next readahead window to be paged in.

737 static int read_cluster_nonblocking(struct file * file,
unsigned long offset,

738 unsigned long filesize)
739 {
740 unsigned long pages = CLUSTER_PAGES;
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741
742 offset = CLUSTER_OFFSET(offset);
743 while ((pages-- > 0) && (offset < filesize)) {
744 int error = page_cache_read(file, offset);
745 if (error < 0)
746 return error;
747 offset ++;
748 }
749
750 return 0;
751 }

740 CLUSTER PAGES will be four pages in low memory systems and eight pages in
larger ones. This means that, on an x86 with ample memory, 32KiB will be
read in one cluster.

742 CLUSTER OFFSET() will align the offset to a cluster-sized alignment.

743-748 Reads the full cluster into the page cache by calling page cache read()
(See Section D.6.4.2) for each page in the cluster.

745-746 If an error occurs during readahead, this returns the error.

750 Returns success.

D.6.6 Swap-Related Read-Ahead

D.6.6.1 Function: swapin readahead() (mm/memory.c)
This function will fault in a number of pages after the current entry. It will

stop when either CLUSTER PAGES have been swapped in or an unused swap entry is
found.

1093 void swapin_readahead(swp_entry_t entry)
1094 {
1095 int i, num;
1096 struct page *new_page;
1097 unsigned long offset;
1098
1099 /*
1100 * Get the number of handles we should do readahead io to.
1101 */
1102 num = valid_swaphandles(entry, &offset);
1103 for (i = 0; i < num; offset++, i++) {
1104 /* Ok, do the async read-ahead now */
1105 new_page =

read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry),
offset));

1106 if (!new_page)
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1107 break;
1108 page_cache_release(new_page);
1109 }
1110 return;
1111 }

1102 valid swaphandles() is what determines how many pages should be
swapped in. It will stop at the first empty entry or when CLUSTER PAGES
is reached.

1103-1109 Swaps in the pages.

1105 Attempts to swap the page into the swap cache with
read swap cache async() (See Section K.3.1.1).

1106-1107 If the page could not be paged in, this breaks and returns.

1108 Drops the reference to the page that read swap cache async() takes.

1110 Returns.

D.6.6.2 Function: valid swaphandles() (mm/swapfile.c)
This function determines how many pages should be readahead from swap start-

ing from offset. It will readahead to the next unused swap slot, but, at most, it
will return CLUSTER PAGES.

1238 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1239 {
1240 int ret = 0, i = 1 << page_cluster;
1241 unsigned long toff;
1242 struct swap_info_struct *swapdev = SWP_TYPE(entry) + swap_info;
1243
1244 if (!page_cluster) /* no readahead */
1245 return 0;
1246 toff = (SWP_OFFSET(entry) >> page_cluster) << page_cluster;
1247 if (!toff) /* first page is swap header */
1248 toff++, i--;
1249 *offset = toff;
1250
1251 swap_device_lock(swapdev);
1252 do {
1253 /* Don’t read-ahead past the end of the swap area */
1254 if (toff >= swapdev->max)
1255 break;
1256 /* Don’t read in free or bad pages */
1257 if (!swapdev->swap_map[toff])
1258 break;
1259 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
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1260 break;
1261 toff++;
1262 ret++;
1263 } while (--i);
1264 swap_device_unlock(swapdev);
1265 return ret;
1266 }

1240 i is set to CLUSTER PAGES, which is the equivalent of the bitshift shown here.

1242 Gets the swap info struct that contains this entry.

1244-1245 If readahead has been disabled, this returns.

1246 Calculates toff to be entry rounded down to the nearest CLUSTER PAGES-
sized boundary.

1247-1248 If toff is 0, it moves it to 1 because the first page contains information
about the swap area.

1251 Locks the swap device as we are about to scan it.

1252-1263 Loops at most i, which is initialized to CLUSTER PAGES, times.

1254-1255 If the end of the swap area is reached, that is as far as can be readahead.

1257-1258 If an unused entry is reached, this just returns because it is as far as
we want to readahead.

1259-1260 Likewise, this returns if a bad entry is discovered.

1261 Moves to the next slot.

1262 Increments the number of pages to be readahead.

1264 Unlocks the swap device.

1265 Returns the number of pages that should be readahead.
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E.1 Initializing the Boot Memory Allocator

Contents
E.1 Initializing the Boot Memory Allocator 396

E.1.1 Function: init bootmem() 396
E.1.2 Function: init bootmem node() 396
E.1.3 Function: init bootmem core() 397

The functions in this section are responsible for bootstrapping the boot mem-
ory allocator. It starts with the architecture-specific function setup memory()
(See Section B.1.1), but all architectures cover the same basic tasks in the
architecture-specific function before calling the architecture-independent function
init bootmem().

E.1.1 Function: init bootmem() (mm/bootmem.c)
This is called by UMA architectures to initialize their boot memory allocator

structures.

304 unsigned long __init init_bootmem (unsigned long start,
unsigned long pages)

305 {
306 max_low_pfn = pages;
307 min_low_pfn = start;
308 return(init_bootmem_core(&contig_page_data, start, 0, pages));
309 }

304 Confusingly, the pages parameter is actually the end PFN of the memory
addressable by this node, not the number of pages as the name implies.

306 Sets the max PFN addressable by this node in case the architecture-dependent
code did not.

307 Sets the min PFN addressable by this node in case the architecture-dependent
code did not.

308 Calls init bootmem core()(See Section E.1.3), which does the real work of
initializing the bootmem data.

E.1.2 Function: init bootmem node() (mm/bootmem.c)
This is called by NUMA architectures to initialize boot memory allocator data

for a given node.

284 unsigned long __init init_bootmem_node (pg_data_t *pgdat,
unsigned long freepfn,
unsigned long startpfn,
unsigned long endpfn)

285 {
286 return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
287 }
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286 Just calls init bootmem core()(See Section E.1.3) directly.

E.1.3 Function: init bootmem core() (mm/bootmem.c)
This initializes the appropriate struct bootmem data t and inserts the node

into the linked list of nodes pgdat list.

46 static unsigned long __init init_bootmem_core (
pg_data_t *pgdat,

47 unsigned long mapstart,
unsigned long start,
unsigned long end)

48 {
49 bootmem_data_t *bdata = pgdat->bdata;
50 unsigned long mapsize = ((end - start)+7)/8;
51
52 pgdat->node_next = pgdat_list;
53 pgdat_list = pgdat;
54
55 mapsize = (mapsize + (sizeof(long) - 1UL)) &

~(sizeof(long) - 1UL);
56 bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
57 bdata->node_boot_start = (start << PAGE_SHIFT);
58 bdata->node_low_pfn = end;
59
60 /*
61 * Initially all pages are reserved - setup_arch() has to
62 * register free RAM areas explicitly.
63 */
64 memset(bdata->node_bootmem_map, 0xff, mapsize);
65
66 return mapsize;
67 }

46 The parameters are the following:

• pgdat is the node descriptor being initialized.

• mapstart is the beginning of the memory that will be usable.

• start is the beginning PFN of the node.

• end is the end PFN of the node.

50 Each page requires one bit to represent it, so the size of the map required is
the number of pages in this node rounded up to the nearest multiple of 8 and
then divided by 8 to give the number of bytes required.

52-53 Because the node will be shortly considered initialized, this inserts it into
the global pgdat list.
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55 Rounds the mapsize up to the closest word boundary.

56 Converts the mapstart to a virtual address and stores it in
bdata→node bootmem map.

57 Converts the starting PFN to a physical address and stores it on
node boot start.

58 Stores the end PFN of ZONE NORMAL in node low pfn.

64 Fills the full map with 1s that mark all pages as allocated. It is up to the
architecture-dependent code to mark the usable pages.
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E.2.1 Reserving Large Regions of Memory

E.2.1.1 Function: reserve bootmem() (mm/bootmem.c)

311 void __init reserve_bootmem (unsigned long addr, unsigned long size)
312 {
313 reserve_bootmem_core(contig_page_data.bdata, addr, size);
314 }

313 Just calls reserve bootmem core()(See Section E.2.1.3). Because this is for a
NUMA architecture, the node to allocate from is the static contig page data
node.

E.2.1.2 Function: reserve bootmem node() (mm/bootmem.c)

289 void __init reserve_bootmem_node (pg_data_t *pgdat,
unsigned long physaddr,
unsigned long size)

290 {
291 reserve_bootmem_core(pgdat->bdata, physaddr, size);
292 }

291 Just calls reserve bootmem core()(See Section E.2.1.3) and passes it the
bootmem data of the requested node.

E.2.1.3 Function: reserve bootmem core() (mm/bootmem.c)

74 static void __init reserve_bootmem_core(bootmem_data_t *bdata,
unsigned long addr,
unsigned long size)

75 {
76 unsigned long i;
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77 /*
78 * round up, partially reserved pages are considered
79 * fully reserved.
80 */
81 unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
82 unsigned long eidx = (addr + size - bdata->node_boot_start +
83 PAGE_SIZE-1)/PAGE_SIZE;
84 unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
85
86 if (!size) BUG();
87
88 if (sidx < 0)
89 BUG();
90 if (eidx < 0)
91 BUG();
92 if (sidx >= eidx)
93 BUG();
94 if ((addr >> PAGE_SHIFT) >= bdata->node_low_pfn)
95 BUG();
96 if (end > bdata->node_low_pfn)
97 BUG();
98 for (i = sidx; i < eidx; i++)
99 if (test_and_set_bit(i, bdata->node_bootmem_map))
100 printk("hm, page %08lx reserved twice.\n",

i*PAGE_SIZE);
101 }

81 The sidx is the starting index to serve pages from. The value is obtained by
subtracting the starting address from the requested address and dividing by
the size of a page.

82 A similar calculation is made for the ending index eidx except that the alloca-
tion is rounded up to the nearest page. This means that requests to partially
reserve a page will result in the full page being reserved.

84 end is the last PFN that is affected by this reservation.

86 Checks that a nonzero value has been given.

88-89 Checks that the starting index is not before the start of the node.

90-91 Checks that the end index is not before the start of the node.

92-93 Checks that the starting index is not after the end index.

94-95 Checks that the starting address is not beyond the memory that this boot-
mem node represents.
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96-97 Checks that the ending address is not beyond the memory that this boot-
mem node represents.

88-100 Starting with sidx and finishing with eidx, this tests and sets the bit in
the bootmem map that represents the page marking it as allocated. If the bit
was already set to 1, it prints out a message saying it was reserved twice.

E.2.2 Allocating Memory at Boot Time

E.2.2.1 Function: alloc bootmem() (mm/bootmem.c)
The call graph for these macros is shown in Figure 5.1.

38 #define alloc_bootmem(x) \
39 __alloc_bootmem((x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))
40 #define alloc_bootmem_low(x) \
41 __alloc_bootmem((x), SMP_CACHE_BYTES, 0)
42 #define alloc_bootmem_pages(x) \
43 __alloc_bootmem((x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))
44 #define alloc_bootmem_low_pages(x) \
45 __alloc_bootmem((x), PAGE_SIZE, 0)

39 alloc bootmem() will align to the L1 hardware cache and start searching for
a page after the maximum address usable for DMA.

40 alloc bootmem low() will align to the L1 hardware cache and start searching
from page 0.

42 alloc bootmem pages() will align the allocation to a page size so that full
pages will be allocated starting from the maximum address usable for DMA.

44 alloc bootmem pages() will align the allocation to a page size so that full
pages will be allocated starting from physical address 0.

E.2.2.2 Function: alloc bootmem() (mm/bootmem.c)

326 void * __init __alloc_bootmem (unsigned long size,
unsigned long align, unsigned long goal)

327 {
328 pg_data_t *pgdat;
329 void *ptr;
330
331 for_each_pgdat(pgdat)
332 if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
333 align, goal)))
334 return(ptr);
335
336 /*
337 * Whoops, we cannot satisfy the allocation request.
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338 */
339 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
340 panic("Out of memory");
341 return NULL;
342 }

326 The parameters are the following:

• size is the size of the requested allocation.

• align is the desired alignment and must be a power of 2. Currently, it
is either SMP CACHE BYTES or PAGE SIZE.

• goal is the starting address to begin searching from.

331-334 Cycles through all available nodes and tries allocating from each in turn.
In the UMA case, this will just allocate from the contig page data node.

339-340 If the allocation fails, the system is not going to be able to boot, so the
kernel panics.

E.2.2.3 Function: alloc bootmem node() (mm/bootmem.c)

53 #define alloc_bootmem_node(pgdat, x) \
54 __alloc_bootmem_node((pgdat), (x), SMP_CACHE_BYTES,

__pa(MAX_DMA_ADDRESS))
55 #define alloc_bootmem_pages_node(pgdat, x) \
56 __alloc_bootmem_node((pgdat), (x), PAGE_SIZE,

__pa(MAX_DMA_ADDRESS))
57 #define alloc_bootmem_low_pages_node(pgdat, x) \
58 __alloc_bootmem_node((pgdat), (x), PAGE_SIZE, 0)

53-54 alloc bootmem node() will allocate from the requested node, align to the
L1 hardware cache and start searching for a page beginning with ZONE NORMAL
(i.e., at the end of ZONE DMA, which is at MAX DMA ADDRESS).

55-56 alloc bootmem pages() will allocate from the requested node and align
the allocation to a page size so that full pages will be allocated starting from
the ZONE NORMAL.

57-58 alloc bootmem pages() will allocate from the requested node and align
the allocation to a page size so that full pages will be allocated starting from
physical address 0 so that ZONE DMA will be used.

E.2.2.4 Function: alloc bootmem node() (mm/bootmem.c)

344 void * __init __alloc_bootmem_node (pg_data_t *pgdat,
unsigned long size,
unsigned long align,
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unsigned long goal)
345 {
346 void *ptr;
347
348 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
349 if (ptr)
350 return (ptr);
351
352 /*
353 * Whoops, we cannot satisfy the allocation request.
354 */
355 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
356 panic("Out of memory");
357 return NULL;
358 }

344 The parameters are the same as for alloc bootmem node()
(See Section E.2.2.4) except that the node to allocate from is specified.

348 Calls the core function alloc bootmem core() (See Section E.2.2.5) to per-
form the allocation.

349-350 Returns a pointer if it was successful.

355-356 Otherwise, this prints out a message and panics the kernel because the
system will not boot if memory cannot be allocated even now.

E.2.2.5 Function: alloc bootmem core() (mm/bootmem.c)
This is the core function for allocating memory from a specified node with the

boot memory allocator. It is quite large and broken up into the following tasks:

• The function preamble makes sure the parameters are sane.

• It calculates the starting address to scan from based on the goal parameter.

• It checks to see if this allocation may be merged with the page used for the
previous allocation to save memory.

• It marks the pages allocated as 1 in the bitmap and zeros-out the contents of
the pages.

144 static void * __init __alloc_bootmem_core (bootmem_data_t *bdata,
145 unsigned long size, unsigned long align, unsigned long goal)
146 {
147 unsigned long i, start = 0;
148 void *ret;
149 unsigned long offset, remaining_size;
150 unsigned long areasize, preferred, incr;
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151 unsigned long eidx = bdata->node_low_pfn -
152 (bdata->node_boot_start >> PAGE_SHIFT);
153
154 if (!size) BUG();
155
156 if (align & (align-1))
157 BUG();
158
159 offset = 0;
160 if (align &&
161 (bdata->node_boot_start & (align - 1UL)) != 0)
162 offset = (align - (bdata->node_boot_start &

(align - 1UL)));
163 offset >>= PAGE_SHIFT;

This is the function preamble, which makes sure the parameters are sane.

144 The parameters are the following:

• bdata is the bootmem for the struct being allocated from.

• size is the size of the requested allocation.

• align is the desired alignment for the allocation. It must be a power of
2.

• goal is the preferred address to allocate above if possible.

151 Calculates the ending bit index eidx, which returns the highest page index
that may be used for the allocation.

154 Calls BUG() if a request size of 0 is specified.

156-157 If the alignment is not a power of 2, this calls BUG().

159 The default offset for alignments is 0.

160 If an alignment has been specified and...

161 The requested alignment is the same alignment as the start of the node, this
calculates the offset to use.

162 The offset to use is the requested alignment masked against the lower bits of
the starting address. In reality, this offset will likely be identical to align
for the prevalent values of align.

169 if (goal && (goal >= bdata->node_boot_start) &&
170 ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
171 preferred = goal - bdata->node_boot_start;
172 } else
173 preferred = 0;
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174
175 preferred = ((preferred + align - 1) & ~(align - 1))

>> PAGE_SHIFT;
176 preferred += offset;
177 areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
178 incr = align >> PAGE_SHIFT ? : 1;

This block calculates the starting PFN to start scanning from based on the goal
parameter.

169 If a goal has been specified and the goal is after the starting address for this
node and the PFN of the goal is less than the last PFN adressable by this
node, then ....

170 The preferred offset to start from is the goal minus the beginning of the
memory addressable by this node.

173 If not, the preferred offset is 0.

175-176 Adjusts the preferred address to take the offset into account so that the
address will be correctly aligned.

177 The number of pages that will be affected by this allocation is stored in
areasize.

178 incr is the number of pages that have to be skipped to satisfy alignment
requirements if they are more than one page.

179
180 restart_scan:
181 for (i = preferred; i < eidx; i += incr) {
182 unsigned long j;
183 if (test_bit(i, bdata->node_bootmem_map))
184 continue;
185 for (j = i + 1; j < i + areasize; ++j) {
186 if (j >= eidx)
187 goto fail_block;
188 if (test_bit (j, bdata->node_bootmem_map))
189 goto fail_block;
190 }
191 start = i;
192 goto found;
193 fail_block:;
194 }
195 if (preferred) {
196 preferred = offset;
197 goto restart_scan;
198 }
199 return NULL;
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This block scans through memory looking for a large enough block to satisfy
this request.

180 If the allocation could not be satisifed starting from goal, this label is jumped
to so that the map will be rescanned.

181-194 Starting from preferred, this scans linearly searching for a free block
large enough to satisfy the request. It walks the address space in incr steps
to satisfy alignments greater than one page. If the alignment is less than a
page, incr will just be 1.

183-184 Tests the bit. If it is already 1, it is not free, so it moves to the next
page.

185-190 Scans the next areasize number of pages and sees if they are also free.
It fails if the end of the addressable space is reached (eidx) or one of the pages
is already in use.

191-192 A free block is found, so this records the start and jumps to the found
block.

195-198 The allocation failed, so it starts again from the beginning.

199 If that also failed, it returns NULL, which will result in a kernel panic.

200 found:
201 if (start >= eidx)
202 BUG();
203
209 if (align <= PAGE_SIZE
210 && bdata->last_offset && bdata->last_pos+1 == start) {
211 offset = (bdata->last_offset+align-1) & ~(align-1);
212 if (offset > PAGE_SIZE)
213 BUG();
214 remaining_size = PAGE_SIZE-offset;
215 if (size < remaining_size) {
216 areasize = 0;
217 // last_pos unchanged
218 bdata->last_offset = offset+size;
219 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
220 bdata->node_boot_start);
221 } else {
222 remaining_size = size - remaining_size;
223 areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
224 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE +
225 offset +

bdata->node_boot_start);
226 bdata->last_pos = start+areasize-1;
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227 bdata->last_offset = remaining_size;
228 }
229 bdata->last_offset &= ~PAGE_MASK;
230 } else {
231 bdata->last_pos = start + areasize - 1;
232 bdata->last_offset = size & ~PAGE_MASK;
233 ret = phys_to_virt(start * PAGE_SIZE +

bdata->node_boot_start);
234 }

This block tests to see if this allocation may be merged with the previous allo-
cation.

201-202 Checks that the start of the allocation is not after the addressable mem-
ory. This check was just made, so it is redundant.

209-230 Tries and merges with the previous allocation if the alignment is less
than a PAGE SIZE, the previous page has space in it (last offset != 0) and
the previously used page is adjactent to the page found for this allocation.

231-234 If not, this records the pages and offset used for this allocation to be used
for merging with the next allocation.

211 Updates the offset to use to be aligned correctly for the requested align.

212-213 If the offset now goes over the edge of a page, BUG() is called. This
condition would require a very poor choice of alignment to be used. Because
the only alignment commonly used is a factor of PAGE SIZE, it is impossible
for normal usage.

214 remaining size is the remaining free space in the previously used page.

215-221 If there is enough space left in the old page, this uses the old page and
updates the bootmem data struct to reflect it.

221-228 If not, this calculates how many pages in addition to this one will be
required and updates the bootmem data.

216 The number of pages used by this allocation is now 0.

218 Updates the last offset to be the end of this allocation.

219 Calculates the virtual address to return for the successful allocation.

222 remaining size is how space will be used in the last page used to satisfy the
allocation.

223 Calculates how many more pages are needed to satisfy the allocation.

224 Records the address that the allocation starts from.
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226 The last page used is the start page plus the number of additional pages
required to satisfy this allocation areasize.

227 The end of the allocation has already been calculated.

229 If the offset is at the end of the page, this makes it 0.

231 No merging took place, so this records the last page used to satisfy this
allocation.

232 Records how much of the last page was used.

233 Records the starting virtual address of the allocation.

238 for (i = start; i < start+areasize; i++)
239 if (test_and_set_bit(i, bdata->node_bootmem_map))
240 BUG();
241 memset(ret, 0, size);
242 return ret;
243 }

This block marks the pages allocated as 1 in the bitmap and zeros-out the
contents of the pages.

238-240 Cycles through all pages used for this allocation and sets the bit to 1 in
the bitmap. If any of them are already 1, a double allocation took place, so
it calls BUG().

241 Zero-fills the pages.

242 Returns the address of the allocation.
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E.3.1 Function: free bootmem() (mm/bootmem.c)

free_bootmem

free_bootmem_core

Figure E.1. Call Graph: free bootmem()

294 void __init free_bootmem_node (pg_data_t *pgdat,
unsigned long physaddr, unsigned long size)

295 {
296 return(free_bootmem_core(pgdat->bdata, physaddr, size));
297 }

316 void __init free_bootmem (unsigned long addr, unsigned long size)
317 {
318 return(free_bootmem_core(contig_page_data.bdata, addr, size));
319 }

296 Calls the core function with the corresponding bootmem data for the requested
node.

318 Calls the core function with the bootmem data for contig page data.

E.3.2 Function: free bootmem core() (mm/bootmem.c)

103 static void __init free_bootmem_core(bootmem_data_t *bdata,
unsigned long addr,
unsigned long size)

104 {
105 unsigned long i;
106 unsigned long start;
111 unsigned long sidx;
112 unsigned long eidx = (addr + size -

bdata->node_boot_start)/PAGE_SIZE;
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113 unsigned long end = (addr + size)/PAGE_SIZE;
114
115 if (!size) BUG();
116 if (end > bdata->node_low_pfn)
117 BUG();
118
119 /*
120 * Round up the beginning of the address.
121 */
122 start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
123 sidx = start - (bdata->node_boot_start/PAGE_SIZE);
124
125 for (i = sidx; i < eidx; i++) {
126 if (!test_and_clear_bit(i, bdata->node_bootmem_map))
127 BUG();
128 }
129 }

112 Calculates the end index affected as eidx.

113 The end address is the end of the affected area rounded down to the nearest
page if it is not already page aligned.

115 If a size of 0 is freed, this calls BUG.

116-117 If the end PFN is after the memory addressable by this node, this calls
BUG.

122 Rounds the starting address up to the nearest page if it is not already page
aligned.

123 Calculates the starting index to free.

125-127 For all full pages that are freed by this action, this clears the bit in the
boot bitmap. If it is already 0, it is a double free or is memory that was never
used, so it calls BUG.
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After the system is started, the boot memory allocator is no longer needed, so
these functions are responsible for removing unnecessary boot memory allocator
structures and passing the remaining pages to the normal physical page allocator.

E.4.1 Function: mem init() (arch/i386/mm/init.c)
The call graph for this function is shown in Figure 5.2. The impor-

tant part of this function for the boot memory allocator is that it calls
free pages init()(See Section E.4.2). The function is broken up into the follow-
ing tasks:

• The function preamble sets the PFN within the global mem map for the location
of high memory and zeros-out the systemwide zero page.

• Calls free pages init()(See Section E.4.2).

• Prints out an informational message on the availability of memory in the
system.

• Checks to see if the CPU supports PAE if the config option is enabled and
tests the WP bit on the CPU. This is important because, without the WP
bit, the function verify write() has to be called for every write to userspace
from the kernel. This only applies to old processors like the 386.

• Fills in entries for the userspace portion of the PGD for swapper pg dir,
which are the kernel page tables. The zero page is mapped for all entries.

507 void __init mem_init(void)
508 {
509 int codesize, reservedpages, datasize, initsize;
510
511 if (!mem_map)
512 BUG();
513
514 set_max_mapnr_init();
515
516 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
517
518 /* clear the zero-page */
519 memset(empty_zero_page, 0, PAGE_SIZE);
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514 This function records that the PFN high memory starts in mem map
(highmem start page), the maximum number of pages in the system
(max mapnr and num physpages) and finally the maximum number of pages
that may be mapped by the kernel (num mappedpages).

516 high memory is the virtual address where high memory begins.

519 Zeros-out the systemwide zero page.

520
521 reservedpages = free_pages_init();
522

521 Calls free pages init()(See Section E.4.2), which tells the boot memory
allocator to retire itself as well as initializing all pages in high memory for use
with the buddy allocator.

523 codesize = (unsigned long) &_etext - (unsigned long) &_text;
524 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
525 initsize = (unsigned long) &__init_end - (unsigned long)

&__init_begin;
526
527 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code,

%dk reserved, %dk data, %dk init, %ldk highmem)\n",
528 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
529 max_mapnr << (PAGE_SHIFT-10),
530 codesize >> 10,
531 reservedpages << (PAGE_SHIFT-10),
532 datasize >> 10,
533 initsize >> 10,
534 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
535 );

This block prints out an informational message.

523 Calculates the size of the code segment, data segment and memory used
by initialization code and data (all functions marked init will be in this
section).

527-535 Prints out a nice message on the availability of memory and the amount
of memory consumed by the kernel.

536
537 #if CONFIG_X86_PAE
538 if (!cpu_has_pae)
539 panic("cannot execute a PAE-enabled kernel on a PAE-less
CPU!");
540 #endif
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541 if (boot_cpu_data.wp_works_ok < 0)
542 test_wp_bit();
543

538-539 If PAE is enabled, but the processor does not support it, this panics.

541-542 Tests for the availability of the WP bit.

550 #ifndef CONFIG_SMP
551 zap_low_mappings();
552 #endif
553
554 }

551 Cycles through each PGD used by the userspace portion of swapper pg dir
and maps the zero page to it.

E.4.2 Function: free pages init() (arch/i386/mm/init.c)
This function has three important functions: to call free all bootmem()

(See Section E.4.4), to retire the boot memory allocator and to free all high memory
pages to the buddy allocator.

481 static int __init free_pages_init(void)
482 {
483 extern int ppro_with_ram_bug(void);
484 int bad_ppro, reservedpages, pfn;
485
486 bad_ppro = ppro_with_ram_bug();
487
488 /* this will put all low memory onto the freelists */
489 totalram_pages += free_all_bootmem();
490
491 reservedpages = 0;
492 for (pfn = 0; pfn < max_low_pfn; pfn++) {
493 /*
494 * Only count reserved RAM pages
495 */
496 if (page_is_ram(pfn) && PageReserved(mem_map+pfn))
497 reservedpages++;
498 }
499 #ifdef CONFIG_HIGHMEM
500 for (pfn = highend_pfn-1; pfn >= highstart_pfn; pfn--)
501 one_highpage_init((struct page *) (mem_map + pfn), pfn,
bad_ppro);
502 totalram_pages += totalhigh_pages;
503 #endif
504 return reservedpages;
505 }
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486 There is a bug in the Pentium Pros that prevents certain pages in high memory
from being used. The function ppro with ram bug() checks for its existence.

489 Calls free all bootmem() to retire the boot memory allocator.

491-498 Cycles through all of memory and counts the number of reserved pages
that were left over by the boot memory allocator.

500-501 For each page in high memory, this calls one highpage init()
(See Section E.4.3). This function clears the PG reserved bit, sets the
PG high bit, sets the count to 1, calls free pages() to give the page to
the buddy allocator and increments the totalhigh pages count. Pages that
kill buggy Pentium Pros are skipped.

E.4.3 Function: one highpage init() (arch/i386/mm/init.c)
This function initializes the information for one page in high memory and checks

to make sure that the page will not trigger a bug with some Pentium Pros. It only
exists if CONFIG HIGHMEM is specified at compile time.

449 #ifdef CONFIG_HIGHMEM
450 void __init one_highpage_init(struct page *page, int pfn,

int bad_ppro)
451 {
452 if (!page_is_ram(pfn)) {
453 SetPageReserved(page);
454 return;
455 }
456
457 if (bad_ppro && page_kills_ppro(pfn)) {
458 SetPageReserved(page);
459 return;
460 }
461
462 ClearPageReserved(page);
463 set_bit(PG_highmem, &page->flags);
464 atomic_set(&page->count, 1);
465 __free_page(page);
466 totalhigh_pages++;
467 }
468 #endif /* CONFIG_HIGHMEM */

452-455 If a page does not exist at the PFN, this marks the struct page as
reserved, so it will not be used.

457-460 If the running CPU is susceptible to the Pentium Pro bug and this page
is a page that would cause a crash (page kills ppro() performs the check),
this marks the page as reserved so that it will never be allocated.
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462 From here on, the page is a high memory page that should be used, so this
first clears the reserved bit so that it will be given to the buddy allocator later.

463 Sets the PG highmem bit to show it is a high memory page.

464 Initialize the usage count of the page to 1, which will be set to 0 by the buddy
allocator.

465 Frees the page with free page()(See Section F.4.2) so that the buddy al-
locator will add the high memory page to its free lists.

466 Increments the total number of available high memory pages
(totalhigh pages).

E.4.4 Function: free all bootmem() (mm/bootmem.c)

299 unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
300 {
301 return(free_all_bootmem_core(pgdat));
302 }

321 unsigned long __init free_all_bootmem (void)
322 {
323 return(free_all_bootmem_core(&contig_page_data));
324 }

299-302 For NUMA, this simply calls the core function with the specified pgdat.

321-324 For UMA, this calls the core function with only the node
contig page data.

E.4.5 Function: free all bootmem core() (mm/bootmem.c)
This is the core function that retires the boot memory allocator. It is divided

into two major tasks:

• For all unallocated pages known to the allocator for this node, it does the
following:

– Clear the PG reserved flag in its struct page.

– Set the count to 1.

– Call free pages() so that the buddy allocator can build its free lists.

• Frees all pages used for the bitmap and frees them to the buddy allocator.

245 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
246 {
247 struct page *page = pgdat->node_mem_map;
248 bootmem_data_t *bdata = pgdat->bdata;
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249 unsigned long i, count, total = 0;
250 unsigned long idx;
251
252 if (!bdata->node_bootmem_map) BUG();
253
254 count = 0;
255 idx = bdata->node_low_pfn -

(bdata->node_boot_start >> PAGE_SHIFT);
256 for (i = 0; i < idx; i++, page++) {
257 if (!test_bit(i, bdata->node_bootmem_map)) {
258 count++;
259 ClearPageReserved(page);
260 set_page_count(page, 1);
261 __free_page(page);
262 }
263 }
264 total += count;

252 If no map is available, it means that this node has already been freed and
that something woeful is wrong with the architecture-dependent code, so it
calls BUG().

254 Keeps running count of the number of pages given to the buddy allocator.

255 idx is the last index that is addressable by this node.

256-263 Cycles through all pages addressable by this node.

257 If the page is marked free, then...

258 Increases the running count of pages given to the buddy allocator.

259 Clears the PG reserved flag.

260 Sets the count to 1 so that the buddy allocator will think this is the last user
of the page and place it in its free lists.

261 Calls the buddy allocator free function so that the page will be added to its
free lists.

264 total will give the total number of pages given over by this function.

270 page = virt_to_page(bdata->node_bootmem_map);
271 count = 0;
272 for (i = 0;

i < ((bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT)
)/8 + PAGE_SIZE-1)/PAGE_SIZE;

i++,page++) {
273 count++;
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274 ClearPageReserved(page);
275 set_page_count(page, 1);
276 __free_page(page);
277 }
278 total += count;
279 bdata->node_bootmem_map = NULL;
280
281 return total;
282 }

This block frees the allocator bitmap and returns.

270 Gets the struct page that is at the beginning of the bootmem map.

271 The count of pages freed by the bitmap.

272-277 For all pages used by the bitmap, this frees them to the buddy allocator
in the same way the previous block of code did.

279 Sets the bootmem map to NULL to prevent it from being freed a second time
by accident.

281 Returns the total number of pages freed by this function, or, in other words,
returns the number of pages that were added to the buddy allocator’s free
lists.
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F.1 Allocating Pages

Contents
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F.1.2 Function: alloc pages() 420
F.1.3 Function: alloc pages() 421
F.1.4 Function: rmqueue() 425
F.1.5 Function: expand() 427
F.1.6 Function: balance classzone() 428

F.1.1 Function: alloc pages() (include/linux/mm.h)
The call graph for this function is shown in Figure 6.2. It is declared as follows:

439 static inline struct page * alloc_pages(unsigned int gfp_mask,
unsigned int order)

440 {
444 if (order >= MAX_ORDER)
445 return NULL;
446 return _alloc_pages(gfp_mask, order);
447 }

439 The gfp mask (Get Free Pages) flags tell the allocator how it may behave.
For example, if GFP WAIT is not set, the allocator will not block and instead
will return NULL if memory is tight. The order is the power of two number
of pages to allocate.

444-445 A simple debugging check optimized away at compile time.

446 This function is described next.

F.1.2 Function: alloc pages() (mm/page alloc.c)
The function alloc pages() comes in two varieties. The first is designed to

only work with UMA architectures such as the x86 and is in mm/page alloc.c.
It only refers to the static node contig page data. The second is in mm/numa.c
and is a simple extension. It uses a node-local allocation policy, which means that
memory will be allocated from the bank closest to the processor. For the purposes
of this book, only the mm/page alloc.c version will be examined, but developers
on NUMA architectures should read alloc pages() and alloc pages pgdat()
as well in mm/numa.c

244 #ifndef CONFIG_DISCONTIGMEM
245 struct page *_alloc_pages(unsigned int gfp_mask,

unsigned int order)
246 {
247 return __alloc_pages(gfp_mask, order,
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248 contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK));
249 }
250 #endif

244 The ifndef is for UMA architectures like the x86. NUMA architectures used
the alloc pages() function in mm/numa.c, which employs a node local policy
for allocations.

245 The gfp mask flags tell the allocator how it may behave. The order is the
power of two number of pages to allocate.

247 node zonelists is an array of preferred fallback zones to allocate from. It
is initialized in build zonelists()(See Section B.1.6). The lower 16 bits of
gfp mask indicate what zone is preferable to allocate from. Applying the
bitmask gfp mask & GFP ZONEMASK will give the index in node zonelists
that we prefer to allocate from.

F.1.3 Function: alloc pages() (mm/page alloc.c)
At this stage, we’ve reached what is described as the “heart of the zoned buddy

allocator,” the alloc pages() function. It is responsible for cycling through the
fallback zones and selecting one suitable for the allocation. If memory is tight, it
will take some steps to address the problem. It will wake kswapd, and, if necessary,
it will do the work of kswapd manually.

327 struct page * __alloc_pages(unsigned int gfp_mask,
unsigned int order,
zonelist_t *zonelist)

328 {
329 unsigned long min;
330 zone_t **zone, * classzone;
331 struct page * page;
332 int freed;
333
334 zone = zonelist->zones;
335 classzone = *zone;
336 if (classzone == NULL)
337 return NULL;
338 min = 1UL << order;
339 for (;;) {
340 zone_t *z = *(zone++);
341 if (!z)
342 break;
343
344 min += z->pages_low;
345 if (z->free_pages > min) {
346 page = rmqueue(z, order);
347 if (page)
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348 return page;
349 }
350 }

334 Sets the zone to be the preferred zone to allocate from.

335 The preferred zone is recorded as the classzone. If one of the pages’ low
watermarks is reached later, the classzone is marked as needing balance.

336-337 An unnecessary sanity check. build zonelists() would need to be
seriously broken for this to happen.

338-350 This style of block appears a number of times in this function. It reads
as “cycle through all zones in this fallback list and see if the allocation can
be satisfied without violating watermarks.” The pages low for each fallback
zone is added together. This is deliberate to reduce the probability that a
fallback zone will be used.

340 z is the zone currently been examined. The zone variable is moved to the
next fallback zone.

341-342 If this is the last zone in the fallback list, break.

344 Increments the number of pages to be allocated by the watermark for easy
comparisons. This happens for each zone in the fallback zones. Although this
appears at first to be a bug, this behavior is actually intended to reduce the
probability that a fallback zone is used.

345-349 Allocates the page block if it can be assigned without reaching the
pages min watermark. rmqueue()(See Section F.1.4) is responsible for re-
moving the block of pages from the zone.

347-348 If the pages could be allocated, this returns a pointer to them.

352 classzone->need_balance = 1;
353 mb();
354 if (waitqueue_active(&kswapd_wait))
355 wake_up_interruptible(&kswapd_wait);
356
357 zone = zonelist->zones;
358 min = 1UL << order;
359 for (;;) {
360 unsigned long local_min;
361 zone_t *z = *(zone++);
362 if (!z)
363 break;
364
365 local_min = z->pages_min;
366 if (!(gfp_mask & __GFP_WAIT))
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367 local_min >>= 2;
368 min += local_min;
369 if (z->free_pages > min) {
370 page = rmqueue(z, order);
371 if (page)
372 return page;
373 }
374 }
375

352 Marks the preferred zone as needing balance. This flag will be read later by
kswapd.

353 This is a memory barrier. It ensures that all CPUs will see any changes made
to variables before this line of code. This is important because kswapd could
be running on a different processor than the memory allocator.

354-355 Wakes up kswapd if it is asleep.

357-358 Begins again with the first preferred zone and min value.

360-374 Cycles through all the zones. This time, it allocates the pages if they
can be allocated without hitting the pages min watermark.

365 local min indicates how low a number of free pages that this zone can have.

366-367 If the process cannot wait or reschedule ( GFP WAIT is clear), this allows
the zone to be put in further memory pressure than the watermark normally
allows.

376 /* here we’re in the low on memory slow path */
377
378 rebalance:
379 if (current->flags & (PF_MEMALLOC | PF_MEMDIE)) {
380 zone = zonelist->zones;
381 for (;;) {
382 zone_t *z = *(zone++);
383 if (!z)
384 break;
385
386 page = rmqueue(z, order);
387 if (page)
388 return page;
389 }
390 return NULL;
391 }

378 This label is returned to after an attempt is made to synchronously free pages.
From this line on, the low on memory path has been reached. It is likely the
process will sleep.
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379-391 These two flags are only set by the OOM killer. Because the process is
trying to kill itself cleanly, this allocates the pages if at all possible because it
is known they will be freed very soon.

393 /* Atomic allocations - we can’t balance anything */
394 if (!(gfp_mask & __GFP_WAIT))
395 return NULL;
396
397 page = balance_classzone(classzone, gfp_mask, order, &freed);
398 if (page)
399 return page;
400
401 zone = zonelist->zones;
402 min = 1UL << order;
403 for (;;) {
404 zone_t *z = *(zone++);
405 if (!z)
406 break;
407
408 min += z->pages_min;
409 if (z->free_pages > min) {
410 page = rmqueue(z, order);
411 if (page)
412 return page;
413 }
414 }
415
416 /* Don’t let big-order allocations loop */
417 if (order > 3)
418 return NULL;
419
420 /* Yield for kswapd, and try again */
421 yield();
422 goto rebalance;
423 }

394-395 If the calling process cannot sleep, this returns NULL because the only
way to allocate the pages from here involves sleeping.

397 balance classzone()(See Section F.1.6) performs the work of kswapd in
a synchronous fashion. The principal difference is that, instead of free-
ing the memory into a global pool, it is kept for the process using the
current→local pages linked list.

398-399 If a page block of the right order has been freed, this returns it. Just
because this is NULL does not mean an allocation will fail because it could
be a higher order of pages that was released.
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403-414 This is identical to the previous block. It allocates the page blocks if it
can be done without hitting the pages min watermark.

417-418 Satisifing a large allocation like 24 number of pages is difficult. If it has
not been satisfied by now, it is better to simply return NULL.

421 Yields the processor to give kswapd a chance to work.

422 Attempts to balance the zones again and to allocate.

F.1.4 Function: rmqueue() (mm/page alloc.c)
This function is called from alloc pages(). It is responsible for finding a

block of memory large enough to be used for the allocation. If a block of memory of
the requested size is not available, it will look for a larger order that may be split into
two buddies. The actual splitting is performed by the expand() (See Section F.1.5)
function.

198 static FASTCALL(struct page *rmqueue(zone_t *zone,
unsigned int order));

199 static struct page * rmqueue(zone_t *zone, unsigned int order)
200 {
201 free_area_t * area = zone->free_area + order;
202 unsigned int curr_order = order;
203 struct list_head *head, *curr;
204 unsigned long flags;
205 struct page *page;
206
207 spin_lock_irqsave(&zone->lock, flags);
208 do {
209 head = &area->free_list;
210 curr = head->next;
211
212 if (curr != head) {
213 unsigned int index;
214
215 page = list_entry(curr, struct page, list);
216 if (BAD_RANGE(zone,page))
217 BUG();
218 list_del(curr);
219 index = page - zone->zone_mem_map;
220 if (curr_order != MAX_ORDER-1)
221 MARK_USED(index, curr_order, area);
222 zone->free_pages -= 1UL << order;
223
224 page = expand(zone, page, index, order,

curr_order, area);
225 spin_unlock_irqrestore(&zone->lock, flags);
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226
227 set_page_count(page, 1);
228 if (BAD_RANGE(zone,page))
229 BUG();
230 if (PageLRU(page))
231 BUG();
232 if (PageActive(page))
233 BUG();
234 return page;
235 }
236 curr_order++;
237 area++;
238 } while (curr_order < MAX_ORDER);
239 spin_unlock_irqrestore(&zone->lock, flags);
240
241 return NULL;
242 }

199 The parameters are the zone to allocate from and what order of pages are
required.

201 Because the free area is an array of linked lists, the order may be used as
an an index within the array.

207 Acquires the zone lock.

208-238 This while block is responsible for finding what order of pages we will
need to allocate from. If a free block is not at the order we are interested in,
this checks the higher blocks until a suitable one is found.

209 head is the list of free page blocks for this order.

210 curr is the first block of pages.

212-235 If a free page block is at this order, this allocates it.

215 The page is set to be a pointer to the first page in the free block.

216-217 A sanity check that checks to make sure this page belongs to this zone
and is within the zone mem map. It is unclear how this could possibly happen
without severe bugs in the allocator itself that would place blocks in the wrong
zones.

218 Because the block is going to be allocated, this removes it from the free list.

219 index treats the zone mem map as an array of pages so that index will be the
offset within the array.
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220-221 Toggles the bit that represents this pair of buddies. MARK USED() is a
macro that calculates which bit to toggle.

222 Updates the statistics for this zone. 1UL<<order is the number of pages
being allocated.

224 expand()(See Section F.1.5) is the function responsible for splitting page
blocks of higher orders.

225 No other updates to the zone need to take place, so this releases the lock.

227 Shows that the page is in use.

228-233 Performs a sanity check.

234 Page block has been successfully allocated, so this returns it.

236-237 If a page block was not free of the correct order, this moves to a higher
order of page blocks and sees what can be found there.

239 No other updates to the zone need to take place, so this releases the lock.

241 No page blocks of the requested or higher order are availables, so this returns
failure.

F.1.5 Function: expand() (mm/page alloc.c)
This function splits page blocks of higher orders until a page block of the needed

order is available.

177 static inline struct page * expand (zone_t *zone,
struct page *page,
unsigned long index,
int low,
int high,
free_area_t * area)

179 {
180 unsigned long size = 1 << high;
181
182 while (high > low) {
183 if (BAD_RANGE(zone,page))
184 BUG();
185 area--;
186 high--;
187 size >>= 1;
188 list_add(&(page)->list, &(area)->free_list);
189 MARK_USED(index, high, area);
190 index += size;
191 page += size;
192 }
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193 if (BAD_RANGE(zone,page))
194 BUG();
195 return page;
196 }

177 The parameters are the following:

zone is where the allocation is coming from.

page is the first page of the block being split.

index is the index of page within mem map.

low is the order of pages needed for the allocation.

high is the order of pages that is being split for the allocation.

area is the free area t representing the high order block of pages.

180 size is the number of pages in the block that is to be split.

182-192 Keeps splitting until a block of the needed page order is found.

183-184 A sanity check that checks to make sure this page belongs to this zone
and is within the zone mem map.

185 area is now the next free area t representing the lower order of page blocks.

186 high is the next order of page blocks to be split.

187 The size of the block being split is now half as big.

188 Of the pair of buddies, the one lower in the mem map is added to the free list
for the lower order.

189 Toggles the bit representing the pair of buddies.

190 index is now the index of the second buddy of the newly created pair.

191 page now points to the second buddy of the newly created pair.

193-194 A sanity check.

195 The blocks have been successfully split, so this returns the page.

F.1.6 Function: balance classzone() (mm/page alloc.c)
This function is part of the direct-reclaim path. Allocators that can sleep will

call this function to start performing the work of kswapd in a synchronous fashion.
Because the process is performing the work itself, the pages it frees of the desired
order are reserved in a linked list in current→local pages, and the number of page
blocks in the list is stored in current→nr local pages. Note that page blocks are
not the same as number of pages. A page block could be of any order.
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253 static struct page * balance_classzone(zone_t * classzone,
unsigned int gfp_mask,
unsigned int order,
int * freed)

254 {
255 struct page * page = NULL;
256 int __freed = 0;
257
258 if (!(gfp_mask & __GFP_WAIT))
259 goto out;
260 if (in_interrupt())
261 BUG();
262
263 current->allocation_order = order;
264 current->flags |= PF_MEMALLOC | PF_FREE_PAGES;
265
266 __freed = try_to_free_pages_zone(classzone, gfp_mask);
267
268 current->flags &= ~(PF_MEMALLOC | PF_FREE_PAGES);
269

258-259 If the caller is not allowed to sleep, goto out to exit the function. For this
to occur, the function would have to be called directly, or alloc pages()
would need to be deliberately broken.

260-261 This function may not be used by interrupts. Again, deliberate damage
would have to be introduced for this condition to occur.

263 Records the desired size of the allocation in current→allocation order.
This is actually unused although it could have been used to only add pages of
the desired order to the local pages list. As it is, the order of pages in the
list is stored in page→index.

264 Sets the flags that will the free functions to add the pages to the local list.

266 Frees pages directly from the desired zone with try to free pages zone()
(See Section J.5.3). This is where the direct-reclaim path intersects with
kswapd.

268 Clears the flags again so that the free functions do not continue to add pages
to the local pages list.

270 if (current->nr_local_pages) {
271 struct list_head * entry, * local_pages;
272 struct page * tmp;
273 int nr_pages;
274
275 local_pages = &current->local_pages;
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276
277 if (likely(__freed)) {
278 /* pick from the last inserted so we’re lifo */
279 entry = local_pages->next;
280 do {
281 tmp = list_entry(entry, struct page, list);
282 if (tmp->index == order &&

memclass(page_zone(tmp), classzone)) {
283 list_del(entry);
284 current->nr_local_pages--;
285 set_page_count(tmp, 1);
286 page = tmp;
287
288 if (page->buffers)
289 BUG();
290 if (page->mapping)
291 BUG();
292 if (!VALID_PAGE(page))
293 BUG();
294 if (PageLocked(page))
295 BUG();
296 if (PageLRU(page))
297 BUG();
298 if (PageActive(page))
299 BUG();
300 if (PageDirty(page))
301 BUG();
302
303 break;
304 }
305 } while ((entry = entry->next) != local_pages);
306 }

Presuming that pages exist in the local pages list, this function will cycle
through the list looking for a page block belonging to the desired zone and order.

270 Only enter this block if pages are stored in the local list.

275 Starts at the beginning of the list.

277 If pages were freed with try to free pages zone(), then...

279 The last one inserted is chosen first because it is likely to be cache hot, and
it is desirable to use pages that have been recently referenced.

280-305 Cycles through the pages in the list until we find one of the desired order
and zone.
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281 Gets the page from this list entry.

282 The order of the page block is stored in page→index, so this checks if the
order matches the desired order and that it belongs to the right zone. It is
unlikely that pages from another zone are on this list, but it could occur if
swap out() is called to free pages directly from process page tables.

283 This is a page of the right order and zone, so it removes it from the list.

284 Decrements the number of page blocks in the list.

285 Sets the page count to 1 because it is about to be freed.

286 Sets page because it will be returned. tmp is needed for the next block for
freeing the remaining pages in the local list.

288-301 Performs the same checks that are performed in free pages ok() to
ensure it is safe to free this page.

305 Moves to the next page in the list if the current one was not of the desired
order and zone.

308 nr_pages = current->nr_local_pages;
309 /* free in reverse order so that the global

* order will be lifo */
310 while ((entry = local_pages->prev) != local_pages) {
311 list_del(entry);
312 tmp = list_entry(entry, struct page, list);
313 __free_pages_ok(tmp, tmp->index);
314 if (!nr_pages--)
315 BUG();
316 }
317 current->nr_local_pages = 0;
318 }
319 out:
320 *freed = __freed;
321 return page;
322 }

This block frees the remaining pages in the list.

308 Gets the number of page blocks that are to be freed.

310 Loops until the local pages list is empty.

311 Removes this page block from the list.

312 Gets the struct page for the entry.

313 Frees the page with free pages ok() (See Section F.3.2).

P
h
ys

ic
a
l
P
a
g
e

A
llo

ca
ti
o
n



432 Physical Page Allocation Appendix F

314-315 If the count of page blocks reaches zero and pages are still in the list,
it means that the accounting is seriously broken somewhere or that someone
added pages to the local pages list manually, so it calls BUG().

317 Sets the number of page blocks to 0 because they have all been freed.

320 Updates the freed parameter to tell the caller how many pages were freed in
total.

321 Returns the page block of the requested order and zone. If the freeing failed,
this will be returning NULL.
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F.2 Allocation Helper Functions

Contents
F.2 Allocation Helper Functions 433

F.2.1 Function: alloc page() 433
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F.2.4 Function: get dma pages() 434
F.2.5 Function: get zeroed page() 434

This section will cover miscellaneous helper functions and macros that the Buddy
Allocator uses to allocate pages. Very few of them do “real” work and are available
just for the convenience of the programmer.

F.2.1 Function: alloc page() (include/linux/mm.h)
This trivial macro just calls alloc pages() with an order of 0 to return one

page. It is declared as follows:

449 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)

F.2.2 Function: get free page() (include/linux/mm.h)
This trivial function calls get free pages() with an order of 0 to return one

page. It is declared as follows:

454 #define __get_free_page(gfp_mask) \
455 __get_free_pages((gfp_mask),0)

F.2.3 Function: get free pages() (mm/page alloc.c)
This function is for callers who do not want to worry about pages and only want

to get back an address they can use. It is declared as follows:

428 unsigned long __get_free_pages(unsigned int gfp_mask,
unsigned int order)

428 {
430 struct page * page;
431
432 page = alloc_pages(gfp_mask, order);
433 if (!page)
434 return 0;
435 return (unsigned long) page_address(page);
436 }

431 alloc pages() does the work of allocating the page block. See Section F.1.1.

433-434 Makes sure -the page is valid.

435 page address() returns the physical address of the page.
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F.2.4 Function: get dma pages() (include/linux/mm.h)
This is of principal interest to device drivers. It will return memory from

ZONE DMA suitable for use with DMA devices. It is declared as follows:

457 #define __get_dma_pages(gfp_mask, order) \
458 __get_free_pages((gfp_mask) | GFP_DMA,(order))

458 The gfp mask is or-ed with GFP DMA to tell the allocator to allocate from
ZONE DMA.

F.2.5 Function: get zeroed page() (mm/page alloc.c)
This function will allocate one page and then zeros out the contents of it. It is

declared as follows:

438 unsigned long get_zeroed_page(unsigned int gfp_mask)
439 {
440 struct page * page;
441
442 page = alloc_pages(gfp_mask, 0);
443 if (page) {
444 void *address = page_address(page);
445 clear_page(address);
446 return (unsigned long) address;
447 }
448 return 0;
449 }

438 gfp mask are the flags that affect allocator behavior.

442 alloc pages() does the work of allocating the page block. See Section F.1.1.

444 page address() returns the physical address of the page.

445 clear page() will fill the contents of a page with zero.

446 Returns the address of the zeroed page.
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F.3 Free Pages
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F.3.1 Function: free pages() 435
F.3.2 Function: free pages ok() 435

F.3.1 Function: free pages() (mm/page alloc.c)
The call graph for this function is shown in Figure 6.4. Just to be confus-

ing, the opposite to alloc pages() is not free pages(); it is free pages().
free pages() is a helper function that takes an address as a parameter. It will be
discussed in a later section.

451 void __free_pages(struct page *page, unsigned int order)
452 {
453 if (!PageReserved(page) && put_page_testzero(page))
454 __free_pages_ok(page, order);
455 }

451 The parameters are the page that we want to free and what order block it is.

453 A sanity check. PageReserved() indicates that the page is reserved by the
boot memory allocator. put page testzero() is just a macro wrapper around
atomic dec and test() that decrements the usage count and makes sure it
is zero.

454 Calls the function that does all the hard work.

F.3.2 Function: free pages ok() (mm/page alloc.c)
This function will do the actual freeing of the page and coalesce the buddies if

possible.

81 static void FASTCALL(__free_pages_ok (struct page *page,
unsigned int order));

82 static void __free_pages_ok (struct page *page, unsigned int order)
83 {
84 unsigned long index, page_idx, mask, flags;
85 free_area_t *area;
86 struct page *base;
87 zone_t *zone;
88
93 if (PageLRU(page)) {
94 if (unlikely(in_interrupt()))
95 BUG();
96 lru_cache_del(page);
97 }
98
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99 if (page->buffers)
100 BUG();
101 if (page->mapping)
102 BUG();
103 if (!VALID_PAGE(page))
104 BUG();
105 if (PageLocked(page))
106 BUG();
107 if (PageActive(page))
108 BUG();
109 page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty));

82 The parameters are the beginning of the page block to free and what order
number of pages are to be freed.

93-97 A dirty page on the LRU will still have the LRU bit set when pinned for
I/O. On I/O completion, it is freed, so it must now be removed from the LRU
list.

99-108 Sanity checks.

109 The flags showing a page has been referenced and is dirty have to be cleared
because the page is now free and not in use.

110
111 if (current->flags & PF_FREE_PAGES)
112 goto local_freelist;
113 back_local_freelist:
114
115 zone = page_zone(page);
116
117 mask = (~0UL) << order;
118 base = zone->zone_mem_map;
119 page_idx = page - base;
120 if (page_idx & ~mask)
121 BUG();
122 index = page_idx >> (1 + order);
123
124 area = zone->free_area + order;
125

111-112 If this flag is set, the pages freed are to be kept for the process doing
the freeing. This is set by balance classzone()(See Section F.1.6) during
page allocation if the caller is freeing the pages itself rather than waiting for
kswapd to do the work.

115 The zone that the page belongs to is encoded within the page flags. The
page zone() macro returns the zone.
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117 The calculation of mask is discussed in the companion document. It is basi-
cally related to the address calculation of the buddy.

118 base is the beginning of this zone mem map. For the buddy calculation to
work, it was to be relative to an address 0 so that the addresses will be a
power of two.

119 page idx treats the zone mem map as an array of pages. This is the index
page within the map.

120-121 If the index is not the proper power of two, things are severely broken,
and calculation of the buddy will not work.

122 This index is the bit index within free area→map.

124 area is the area storing the free lists and map for the order block that the
pages are been freed from.

126 spin_lock_irqsave(&zone->lock, flags);
127
128 zone->free_pages -= mask;
129
130 while (mask + (1 << (MAX_ORDER-1))) {
131 struct page *buddy1, *buddy2;
132
133 if (area >= zone->free_area + MAX_ORDER)
134 BUG();
135 if (!__test_and_change_bit(index, area->map))
136 /*
137 * the buddy page is still allocated.
138 */
139 break;
140 /*
141 * Move the buddy up one level.
142 * This code is taking advantage of the identity:
143 * -mask = 1+~mask
144 */
145 buddy1 = base + (page_idx ^ -mask);
146 buddy2 = base + page_idx;
147 if (BAD_RANGE(zone,buddy1))
148 BUG();
149 if (BAD_RANGE(zone,buddy2))
150 BUG();
151
152 list_del(&buddy1->list);
153 mask <<= 1;
154 area++;
155 index >>= 1;
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156 page_idx &= mask;
157 }

126 The zone is about to be altered, so this takes out the lock. The lock is an
interrupt-safe lock because it is possible for interrupt handlers to allocate a
page in this path.

128 Another side effect of the calculation of mask is that -mask is the number of
pages that are to be freed.

130-157 The allocator will keep trying to coalesce blocks together until it either
cannot merge or reaches the highest order that can be merged. mask will be
adjusted for each order block that is merged. When the highest order that
can be merged is reached, this while loop will evaluate to 0 and exit.

133-134 If by some miracle, mask is corrupt, this check will make sure the
free area array will not not be read beyond the end.

135 Toggles the bit representing this pair of buddies. If the bit was previously
zero, both buddies were in use. Because this buddy is being freed, one is still
in use and cannot be merged.

145-146 The calculation of the two addresses is discussed in Chapter 6.

147-150 A sanity check to make sure the pages are within the correct
zone mem map and actually belong to this zone.

152 The buddy has been freed, so it removes it from any list it was part of.

153-156 Prepares to examine the higher order buddy for merging.

153 Moves the mask one bit to the left for order 2k+1.

154 area is a pointer within an array, so area++ moves to the next index.

155 The index in the bitmap of the higher order.

156 The page index within the zone mem map for the buddy to merge.

158 list_add(&(base + page_idx)->list, &area->free_list);
159
160 spin_unlock_irqrestore(&zone->lock, flags);
161 return;
162
163 local_freelist:
164 if (current->nr_local_pages)
165 goto back_local_freelist;
166 if (in_interrupt())
167 goto back_local_freelist;
168
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169 list_add(&page->list, &current->local_pages);
170 page->index = order;
171 current->nr_local_pages++;
172 }

158 As much merging as possible is completed and a new page block is free, so
this adds it to the free list for this order.

160-161 Changes to the zone are complete, so this frees the lock and returns.

163 This is the code path taken when the pages are not freed to the main pool,
but instead are reserved for the process doing the freeing.

164-165 If the process already has reserved pages, it is not allowed to reserve
any more, so it returns back. This is unusual because balance classzone()
assumes that more than one page block may be returned on this list. It is
likely to be an oversight but may still work if the first page block freed is the
same order and zone as required by balance classzone().

166-167 An interrupt does not have process context, so it has to free in the normal
fashion. It is unclear how an interrupt could end up here at all. This check is
likely to be bogus and impossible to be true.

169 Adds the page block to the list for the processes local pages.

170 Records what order allocation it was for freeing later.

171 Increases the use count for nr local pages.
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F.4 Free Helper Functions

Contents
F.4 Free Helper Functions 440

F.4.1 Function: free pages() 440
F.4.2 Function: free page() 440
F.4.3 Function: free page() 440

These functions are very similar to the page allocation helper functions in that
they do no “real” work themselves and depend on the free pages() function to
perform the actual free.

F.4.1 Function: free pages() (mm/page alloc.c)
This function takes an address instead of a page as a parameter to free. It is

declared as follows:

457 void free_pages(unsigned long addr, unsigned int order)
458 {
459 if (addr != 0)
460 __free_pages(virt_to_page(addr), order);
461 }

460 The function is discussed in Section F.3.1. The macro virt to page() returns
the struct page for the addr.

F.4.2 Function: free page() (include/linux/mm.h)
This trivial macro just calls the function free pages() (See Section F.3.1)

with an order 0 for one page. It is declared as follows:

472 #define __free_page(page) __free_pages((page), 0)

F.4.3 Function: free page() (include/linux/mm.h)
This trivial macro just calls the function free pages(). The essential difference

between this macro and free page() is that this function takes a virtual address
as a parameter and free page() takes a struct page. It is declared as follows:

472 #define free_page(addr) free_pages((addr),0)
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G.1 Allocating a Noncontiguous Area
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G.1.1 Function: vmalloc() (include/linux/vmalloc.h)
The call graph for this function is shown in Figure 7.2. The following macros

differ only by the GFP flags (See Section 6.4) used. The size parameter is page
aligned by vmalloc()(See Section G.1.2).

37 static inline void * vmalloc (unsigned long size)
38 {
39 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
40 }
45
46 static inline void * vmalloc_dma (unsigned long size)
47 {
48 return __vmalloc(size, GFP_KERNEL|GFP_DMA, PAGE_KERNEL);
49 }
54
55 static inline void * vmalloc_32(unsigned long size)
56 {
57 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
58 }

37 The flags indicate to use either ZONE NORMAL or ZONE HIGHMEM as necessary.

46 The flag indicates to only allocate from ZONE DMA.

55 Only physical pages from ZONE NORMAL will be allocated.

G.1.2 Function: vmalloc() (mm/vmalloc.c)
This function has three tasks. It page aligns the size request, asks get vm area()

to find an area for the request and uses vmalloc area pages() to allocate the PTEs
for the pages.

261 void * __vmalloc (unsigned long size, int gfp_mask, pgprot_t prot)
262 {
263 void * addr;
264 struct vm_struct *area;
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265
266 size = PAGE_ALIGN(size);
267 if (!size || (size >> PAGE_SHIFT) > num_physpages)
268 return NULL;
269 area = get_vm_area(size, VM_ALLOC);
270 if (!area)
271 return NULL;
272 addr = area->addr;
273 if (__vmalloc_area_pages(VMALLOC_VMADDR(addr), size, gfp_mask,
274 prot, NULL)) {
275 vfree(addr);
276 return NULL;
277 }
278 return addr;
279 }

261 The parameters are the size to allocate, the GFP flags to use for allocation
and what protection to give the PTE.

266 Aligns the size to a page size.

267 A sanity check. It makes sure the size is not 0 and that the size requested is
not larger than the number of physical pages that has been requested.

269 Finds an area of virtual address space to store the allocation with
get vm area() (See Section G.1.3).

272 The addr field has been filled by get vm area().

273 Allocates the PTE entries needed for the allocation with
vmalloc area pages() (See Section G.1.5). If it fails, a nonzero value

-ENOMEM is returned.

275-276 If the allocation fails, this frees any PTEs, pages and descriptions of the
area.

278 Returns the address of the allocated area.

G.1.3 Function: get vm area() (mm/vmalloc.c)
To allocate an area for the vm struct, the slab allocator is asked to provide the

necessary memory using kmalloc(). It then searches the vm struct list linearly
looking for a region large enough to satisfy a request, including a page pad at the
end of the area.

195 struct vm_struct * get_vm_area(unsigned long size,
unsigned long flags)

196 {
197 unsigned long addr, next;
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198 struct vm_struct **p, *tmp, *area;
199
200 area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL);
201 if (!area)
202 return NULL;
203
204 size += PAGE_SIZE;
205 if(!size) {
206 kfree (area);
207 return NULL;
208 }
209
210 addr = VMALLOC_START;
211 write_lock(&vmlist_lock);
212 for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {
213 if ((size + addr) < addr)
214 goto out;
215 if (size + addr <= (unsigned long) tmp->addr)
216 break;
217 next = tmp->size + (unsigned long) tmp->addr;
218 if (next > addr)
219 addr = next;
220 if (addr > VMALLOC_END-size)
221 goto out;
222 }
223 area->flags = flags;
224 area->addr = (void *)addr;
225 area->size = size;
226 area->next = *p;
227 *p = area;
228 write_unlock(&vmlist_lock);
229 return area;
230
231 out:
232 write_unlock(&vmlist_lock);
233 kfree(area);
234 return NULL;
235 }

195 The parameters are the size of the requested region, which should be a multiple
of the page size and the area flags, either VM ALLOC or VM IOREMAP.

200-202 Allocates space for the vm struct description struct.

204 Pads the request so a page gap is between areas. This is to guard against
overwrites.
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205-206 Ensures that the size is not 0 after the padding due to an overflow. If
something does go wrong, this frees the area just allocated and returns NULL.

210 Starts the search at the beginning of the vmalloc address space.

211 Locks the list.

212-222 Walks through the list searching for an area large enough for the request.

213-214 Checks to make sure the end of the addressable range has not been
reached.

215-216 If the requested area would fit between the current address and the next
area, the search is complete.

217 Makes sure the address would not go over the end of the vmalloc address
space.

223-225 Copies in the area information.

226-227 Links the new area into the list.

228-229 Unlocks the list and returns.

231 This label is reached if the request could not be satisfied.

232 Unlocks the list.

233-234 Frees the memory used for the area descriptor and returns.

G.1.4 Function: vmalloc area pages() (mm/vmalloc.c)
This is just a wrapper around vmalloc area pages(). This function exists

for compatibility with older kernels. The name change was made to reflect that the
new function vmalloc area pages() is able to take an array of pages to use for
insertion into the pagetables.

189 int vmalloc_area_pages(unsigned long address, unsigned long size,
190 int gfp_mask, pgprot_t prot)
191 {
192 return __vmalloc_area_pages(address, size, gfp_mask,

prot, NULL);
193 }

192 Calls vmalloc area pages() with the same parameters. The pages array
is passed as NULL because the pages will be allocated as necessary.
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G.1.5 Function: vmalloc area pages() (mm/vmalloc.c)
This is the beginning of a standard pagetable walk function. This top-level

function will step through all PGDs within an address range. For each PGD, it will
call pmd alloc() to allocate a PMD directory and call alloc area pmd() for the
directory.

155 static inline int __vmalloc_area_pages (unsigned long address,
156 unsigned long size,
157 int gfp_mask,
158 pgprot_t prot,
159 struct page ***pages)
160 {
161 pgd_t * dir;
162 unsigned long end = address + size;
163 int ret;
164
165 dir = pgd_offset_k(address);
166 spin_lock(&init_mm.page_table_lock);
167 do {
168 pmd_t *pmd;
169
170 pmd = pmd_alloc(&init_mm, dir, address);
171 ret = -ENOMEM;
172 if (!pmd)
173 break;
174
175 ret = -ENOMEM;
176 if (alloc_area_pmd(pmd, address, end - address,

gfp_mask, prot, pages))
177 break;
178
179 address = (address + PGDIR_SIZE) & PGDIR_MASK;
180 dir++;
181
182 ret = 0;
183 } while (address && (address < end));
184 spin_unlock(&init_mm.page_table_lock);
185 flush_cache_all();
186 return ret;
187 }

155 The parameters are the following:

address is the starting address to allocate PMDs for.
size is the size of the region.
gfp mask is the GFP flags for alloc pages() (See Section F.1.1).
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prot is the protection to give the PTE entry.

pages is an array of pages to use for insertion instead of having
alloc area pte() allocate them one at a time. Only the vmap() in-
terface passes in an array.

162 The end address is the starting address plus the size.

165 Gets the PGD entry for the starting address.

166 Locks the kernel reference pagetable.

167-183 For every PGD within this address range, this allocates a PMD directory
and calls alloc area pmd() (See Section G.1.6).

170 Allocates a PMD directory.

176 Calls alloc area pmd() (See Section G.1.6), which will allocate a PTE for
each PTE slot in the PMD.

179 address becomes the base address of the next PGD entry.

180 Moves dir to the next PGD entry.

184 Releases the lock to the kernel pagetable.

185 flush cache all() will flush all CPU caches. This is necessary because the
kernel pagetables have changed.

186 Returns success.

G.1.6 Function: alloc area pmd() (mm/vmalloc.c)
This is the second stage of the standard pagetable walk to allocate PTE entries

for an address range. For every PMD within a given address range on a PGD,
pte alloc() will create a PTE directory and then alloc area pte() will be called
to allocate the physical pages.

132 static inline int alloc_area_pmd(pmd_t * pmd, unsigned long
133 address, unsigned long size, int gfp_mask,
134 pgprot_t prot, struct page ***pages)
135 {
136 unsigned long end;
137
138 address &= ~PGDIR_MASK;
139 end = address + size;
140 if (end > PGDIR_SIZE)
141 end = PGDIR_SIZE;
142 do {
143 pte_t * pte = pte_alloc(&init_mm, pmd, address);
144 if (!pte)
145 return -ENOMEM;
146 if (alloc_area_pte(pte, address, end - address,
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147 gfp_mask, prot, pages))
148 return -ENOMEM;
149 address = (address + PMD_SIZE) & PMD_MASK;
150 pmd++;
151 } while (address < end);
152 return 0;
152 }

132 The parameters are the following:

pmd is the PMD that needs the allocations.

address is the starting address to start from.

size is the size of the region within the PMD to allocate for.

gfp mask is the GFP flags for alloc pages() (See Section F.1.1).

prot is the protection to give the PTE entry.

pages is an optional array of pages to use instead of allocating each page
individually.

138 Aligns the starting address to the PGD.

139-141 Calculates the end to be the end of the allocation or the end of the PGD,
whichever occurs first.

142-151 For every PMD within the given address range, this allocates a PTE
directory and calls alloc area pte()(See Section G.1.7).

143 Allocates the PTE directory.

146-147 Calls alloc area pte(), which will allocate the physical pages if an array
of pages is not already supplied with pages.

149 address becomes the base address of the next PMD entry.

150 Moves pmd to the next PMD entry.

152 Returns success.

G.1.7 Function: alloc area pte() (mm/vmalloc.c)
This is the last stage of the pagetable walk. For every PTE in the given PTE

directory and address range, a page will be allocated and associated with the PTE.

95 static inline int alloc_area_pte (pte_t * pte, unsigned long address,
96 unsigned long size, int gfp_mask,
97 pgprot_t prot, struct page ***pages)
98 {
99 unsigned long end;
100
101 address &= ~PMD_MASK;
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102 end = address + size;
103 if (end > PMD_SIZE)
104 end = PMD_SIZE;
105 do {
106 struct page * page;
107
108 if (!pages) {
109 spin_unlock(&init_mm.page_table_lock);
110 page = alloc_page(gfp_mask);
111 spin_lock(&init_mm.page_table_lock);
112 } else {
113 page = (**pages);
114 (*pages)++;
115
116 /* Add a reference to the page so we can free later */
117 if (page)
118 atomic_inc(&page->count);
119
120 }
121 if (!pte_none(*pte))
122 printk(KERN_ERR "alloc_area_pte: page already exists\n");
123 if (!page)
124 return -ENOMEM;
125 set_pte(pte, mk_pte(page, prot));
126 address += PAGE_SIZE;
127 pte++;
128 } while (address < end);
129 return 0;
130 }

101 Aligns the address to a PMD directory.

103-104 The end address is the end of the request or the end of the directory,
whichever occurs first.

105-128 Loops through every PTE in this page. If a pages array is supplied,
it uses pages from it to populate the table. Otherwise, it allocates each one
individually.

108-111 If an array of pages is not supplied, this unlocks the kernel reference
pagetable, allocates a page with alloc page() and reacquires the spinlock.

112-120 If not, it takes one page from the array and increments its usage count
as it is about to be inserted into the reference pagetable.

121-122 If the PTE is already in use, it means that the areas in the vmalloc region
are overlapping somehow.
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123-124 Returns failure if physical pages are not available.

125 Sets the page with the desired protection bits (prot) into the PTE.

126 address becomes the address of the next PTE.

127 Moves to the next PTE.

129 Returns success.

G.1.8 Function: vmap() (mm/vmalloc.c)
This function allows a caller-supplied array of pages to be inserted into the

vmalloc address space. This is unused in 2.4.22, and I suspect it is an accidental
backport from 2.6.x where it is used by the sound subsystem core.

281 void * vmap(struct page **pages, int count,
282 unsigned long flags, pgprot_t prot)
283 {
284 void * addr;
285 struct vm_struct *area;
286 unsigned long size = count << PAGE_SHIFT;
287
288 if (!size || size > (max_mapnr << PAGE_SHIFT))
289 return NULL;
290 area = get_vm_area(size, flags);
291 if (!area) {
292 return NULL;
293 }
294 addr = area->addr;
295 if (__vmalloc_area_pages(VMALLOC_VMADDR(addr), size, 0,
296 prot, &pages)) {
297 vfree(addr);
298 return NULL;
299 }
300 return addr;
301 }

281 The parameters are the following:

pages is the caller-supplied array of pages to insert.

count is the number of pages in the array.

flags is the flags to use for the vm struct.

prot is the protection bits to set the PTE with.

286 Calculates the size in bytes of the region to create based on the size of the
array.
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288-289 Makes sure the size of the region does not exceed limits.

290-293 Uses get vm area() to find a region large enough for the mapping. If
one is not found, it returns NULL.

294 Gets the virtual address of the area.

295 Inserts the array into the pagetable with vmalloc area pages()
(See Section G.1.4).

297 If the insertion fails, this frees the region and returns NULL.

298 Returns the virtual address of the newly mapped region.
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G.2 Freeing a Noncontiguous Area

Contents
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G.2.3 Function: free area pmd() 454
G.2.4 Function: free area pte() 455

G.2.1 Function: vfree() (mm/vmalloc.c)
The call graph for this function is shown in Figure 7.4. This is the top-level

function responsible for freeing a noncontiguous area of memory. It performs basic
sanity checks before finding the vm struct for the requested addr. Once found, it
calls vmfree area pages().

237 void vfree(void * addr)
238 {
239 struct vm_struct **p, *tmp;
240
241 if (!addr)
242 return;
243 if ((PAGE_SIZE-1) & (unsigned long) addr) {
244 printk(KERN_ERR

"Trying to vfree() bad address (%p)\n", addr);
245 return;
246 }
247 write_lock(&vmlist_lock);
248 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
249 if (tmp->addr == addr) {
250 *p = tmp->next;
251 vmfree_area_pages(VMALLOC_VMADDR(tmp->addr),

tmp->size);
252 write_unlock(&vmlist_lock);
253 kfree(tmp);
254 return;
255 }
256 }
257 write_unlock(&vmlist_lock);
258 printk(KERN_ERR

"Trying to vfree() nonexistent vm area (%p)\n", addr);
259 }

237 The parameter is the address returned by get vm area() (See Section G.1.3)
to either vmalloc() or ioremap().

241-243 Ignores NULL addresses.
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243-246 Checks to see if the address is page aligned and is a reasonable quick
guess to see if the area is valid.

247 Acquires a write lock to the vmlist.

248 Cycles through the vmlist looking for the correct vm struct for addr.

249 If this is the correct address, then ...

250 Removes this area from the vmlist linked list.

251 Frees all pages associated with the address range.

252 Releases the vmlist lock.

253 Frees the memory used for the vm struct and returns.

257-258 The vm struct was not found. This releases the lock and prints a message
about the failed free.

G.2.2 Function: vmfree area pages() (mm/vmalloc.c)
This is the first stage of the pagetable walk to free all pages and PTEs associated

with an address range. It is responsible for stepping through the relevant PGDs
and for flushing the TLB.

80 void vmfree_area_pages(unsigned long address, unsigned long size)
81 {
82 pgd_t * dir;
83 unsigned long end = address + size;
84
85 dir = pgd_offset_k(address);
86 flush_cache_all();
87 do {
88 free_area_pmd(dir, address, end - address);
89 address = (address + PGDIR_SIZE) & PGDIR_MASK;
90 dir++;
91 } while (address && (address < end));
92 flush_tlb_all();
93 }

80 The parameters are the starting address and the size of the region.

82 The address space end is the starting address plus its size.

85 Gets the first PGD for the address range.

86 Flushes the cache CPU so that cache hits will not occur on pages that are to
be deleted. This is a null operation on many architectures, including the x86.

87 Calls free area pmd()(See Section G.2.3) to perform the second stage of the
pagetable walk.
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89 address becomes the starting address of the next PGD.

90 Moves to the next PGD.

92 Flushes the TLB because the pagetables have now changed.

G.2.3 Function: free area pmd() (mm/vmalloc.c)
This is the second stage of the pagetable walk. For every PMD in this directory,

it calls free area pte() to free up the pages and PTEs.

56 static inline void free_area_pmd(pgd_t * dir,
unsigned long address,
unsigned long size)

57 {
58 pmd_t * pmd;
59 unsigned long end;
60
61 if (pgd_none(*dir))
62 return;
63 if (pgd_bad(*dir)) {
64 pgd_ERROR(*dir);
65 pgd_clear(dir);
66 return;
67 }
68 pmd = pmd_offset(dir, address);
69 address &= ~PGDIR_MASK;
70 end = address + size;
71 if (end > PGDIR_SIZE)
72 end = PGDIR_SIZE;
73 do {
74 free_area_pte(pmd, address, end - address);
75 address = (address + PMD_SIZE) & PMD_MASK;
76 pmd++;
77 } while (address < end);
78 }

56 The parameters are the PGD being stepped through, the starting address and
the length of the region.

61-62 If there is no PGD, this returns. This can occur after vfree()
(See Section G.2.1) is called during a failed allocation.

63-67 A PGD can be bad if the entry is not present, it is marked read-only or it
is marked accessed or dirty.

68 Gets the first PMD for the address range.

69 Makes the address PGD aligned.
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70-72 end is either the end of the space to free or the end of this PGD, whichever
is first.

73-77 For every PMD, this calls free area pte() (See Section G.2.4) to free the
PTE entries.

75 address is the base address of the next PMD.

76 Moves to the next PMD.

G.2.4 Function: free area pte() (mm/vmalloc.c)
This is the final stage of the pagetable walk. For every PTE in the given PMD

within the address range, it will free the PTE and the associated page.

22 static inline void free_area_pte(pmd_t * pmd, unsigned long address,
unsigned long size)

23 {
24 pte_t * pte;
25 unsigned long end;
26
27 if (pmd_none(*pmd))
28 return;
29 if (pmd_bad(*pmd)) {
30 pmd_ERROR(*pmd);
31 pmd_clear(pmd);
32 return;
33 }
34 pte = pte_offset(pmd, address);
35 address &= ~PMD_MASK;
36 end = address + size;
37 if (end > PMD_SIZE)
38 end = PMD_SIZE;
39 do {
40 pte_t page;
41 page = ptep_get_and_clear(pte);
42 address += PAGE_SIZE;
43 pte++;
44 if (pte_none(page))
45 continue;
46 if (pte_present(page)) {
47 struct page *ptpage = pte_page(page);
48 if (VALID_PAGE(ptpage) &&

(!PageReserved(ptpage)))
49 __free_page(ptpage);
50 continue;
51 }
52 printk(KERN_CRIT
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"Whee.. Swapped out page in kernel page table\n");
53 } while (address < end);
54 }

22 The parameters are the PMD that PTEs are being freed from, the starting
address and the size of the region to free.

27-28 The PMD could be absent if this region is from a failed vmalloc().

29-33 A PMD can be bad if it is not in main memory, it is read only or it is
marked dirty or accessed.

34 pte is the first PTE in the address range.

35 Aligns the address to the PMD.

36-38 The end is either the end of the requested region or the end of the PMD,
whichever occurs first.

38-53 Steps through all PTEs, performs checks and frees the PTE with its asso-
ciated page.

41 ptep get and clear() will remove a PTE from a pagetable and return it to
the caller.

42 address will be the base address of the next PTE.

43 Moves to the next PTE.

44 If there was no PTE, this simply continues.

46-51 If the page is present, this performs basic checks and then frees it.

47 pte page() uses the global mem map to find the struct page for the PTE.

48-49 Makes sure the page is a valid page and that it is not reserved before calling
free page() to free the physical page.

50 Continues to the next PTE.

52 If this line is reached, a PTE within the kernel address space was somehow
swapped out. Kernel memory is not swappable, so this is a critical error.
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H.1 Cache Manipulation

Contents
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H.1.1 Cache Creation

H.1.1.1 Function: kmem cache create() (mm/slab.c)
The call graph for this function is shown in Figure 8.3. This function is respon-

sible for the creation of a new cache and will be dealt with in chunks due to its size.
The chunks roughly are the following:

• Perform basic sanity checks for bad usage.

• Perform debugging checks if CONFIG SLAB DEBUG is set.

• Allocate a kmem cache t from the cache cache slab cache.

• Align the object size to the word size.

• Calculate how many objects will fit on a slab.

• Align the slab size to the hardware cache.

• Calculate color offsets.

• Initialize remaining fields in cache descriptor.

• Add the new cache to the cache chain.

621 kmem_cache_t *
622 kmem_cache_create (const char *name, size_t size,
623 size_t offset, unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),
624 void (*dtor)(void*, kmem_cache_t *, unsigned long))
625 {
626 const char *func_nm = KERN_ERR "kmem_create: ";
627 size_t left_over, align, slab_size;
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628 kmem_cache_t *cachep = NULL;
629
633 if ((!name) ||
634 ((strlen(name) >= CACHE_NAMELEN - 1)) ||
635 in_interrupt() ||
636 (size < BYTES_PER_WORD) ||
637 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
638 (dtor && !ctor) ||
639 (offset < 0 || offset > size))
640 BUG();
641

This block performs basic sanity checks for bad usage.

622 The parameters of the function are the following:

• name The human readable name of the cache

• size The size of an object

• offset Used to specify a specific alignment for objects in the cache, but
usually left as 0

• flags Static cache flags

• ctor A constructor function to call for each object during slab creation

• dtor The corresponding destructor function. The destructor function is
expected to leave an object in an initialized state.

633-640 These are all serious usage bugs that prevent the cache from even at-
tempting to create.

634 This is used if the human-readable name is greater than the maximum size
for a cache name (CACHE NAMELEN).

635 An interrupt handler cannot create a cache because access to interrupt-safe
spinlocks and semaphores are needed.

636 The object size must be at least a word in size. The slab allocator is not
suitable for objects with size measured in individual bytes.

637 The largest possible slab that can be created is 2MAX OBJ ORDER number of
pages, which provides 32 pages.

638 A destructor cannot be used if a constructor is available.

639 The offset cannot be before the slab or beyond the boundary of the first page.

640 Calls BUG() to exit.
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642 #if DEBUG
643 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
645 printk("%sNo con, but init state check

requested - %s\n", func_nm, name);
646 flags &= ~SLAB_DEBUG_INITIAL;
647 }
648
649 if ((flags & SLAB_POISON) && ctor) {
651 printk("%sPoisoning requested, but con given - %s\n",

func_nm, name);
652 flags &= ~SLAB_POISON;
653 }
654 #if FORCED_DEBUG
655 if ((size < (PAGE_SIZE>>3)) &&

!(flags & SLAB_MUST_HWCACHE_ALIGN))
660 flags |= SLAB_RED_ZONE;
661 if (!ctor)
662 flags |= SLAB_POISON;
663 #endif
664 #endif
670 BUG_ON(flags & ~CREATE_MASK);

This block performs debugging checks if CONFIG SLAB DEBUG is set.

643-646 The flag SLAB DEBUG INITIAL requests that the constructor check the
objects to make sure they are in an initialized state. For this, a constructor
must exist. If it does not, the flag is cleared.

649-653 A slab can be poisoned with a known pattern to make sure an object was
not used before it was allocated, but a constructor would ruin this pattern by
falsely reporting a bug. If a constructor exists, this removes the SLAB POISON
flag if set.

655-660 Only small objects will be red-zoned for debugging. Red-zoning large
objects would cause severe fragmentation.

661-662 If there is no constructor, this sets the poison bit.

670 The CREATE MASK is set with all the allowable flags kmem cache create()
(See Section H.1.1.1) that it can be called with. This prevents callers from
using debugging flags when they are not available and BUG()s it instead.

673 cachep =
(kmem_cache_t *) kmem_cache_alloc(&cache_cache,

SLAB_KERNEL);
674 if (!cachep)
675 goto opps;
676 memset(cachep, 0, sizeof(kmem_cache_t));
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Allocates a kmem cache t from the cache cache slab cache.

673 Allocates a cache descriptor object from the cache cache with
kmem cache alloc() (See Section H.3.2.1).

674-675 If out of memory, goto opps, which handles the OOM situation.

676 Zero-fills the object to prevent surprises with uninitialized data.

682 if (size & (BYTES_PER_WORD-1)) {
683 size += (BYTES_PER_WORD-1);
684 size &= ~(BYTES_PER_WORD-1);
685 printk("%sForcing size word alignment

- %s\n", func_nm, name);
686 }
687
688 #if DEBUG
689 if (flags & SLAB_RED_ZONE) {
694 flags &= ~SLAB_HWCACHE_ALIGN;
695 size += 2*BYTES_PER_WORD;
696 }
697 #endif
698 align = BYTES_PER_WORD;
699 if (flags & SLAB_HWCACHE_ALIGN)
700 align = L1_CACHE_BYTES;
701
703 if (size >= (PAGE_SIZE>>3))
708 flags |= CFLGS_OFF_SLAB;
709
710 if (flags & SLAB_HWCACHE_ALIGN) {
714 while (size < align/2)
715 align /= 2;
716 size = (size+align-1)&(~(align-1));
717 }

Aligns the object size to some word-sized boundary.

682 If the size is not aligned to the size of a word, then...

683-684 Increases the object by the size of a word and then masks out the lower
bits. This will effectively round the object size up to the next word boundary.

685 Prints out an informational message for debugging purposes.

688-697 If debugging is enabled, the alignments have to change slightly.

694 Do not bother trying to align things to the hardware cache if the slab will be
red-zoned. The red-zoning of the object is going to offset it by moving the
object one word away from the cache boundary.



H.1. Cache Manipulation 463

695 The size of the object increases by two BYTES PER WORD to store the red-zone
mark at either end of the object.

698 Initializes the alignment to be to a word boundary. This will change if the
caller has requested a CPU cache alignment.

699-700 If requested, this aligns the objects to the L1 CPU cache.

703 If the objects are large, this stores the slab descriptors off-slab. This will allow
better packing of objects into the slab.

710 If hardware cache alignment is requested, the size of the objects must be
adjusted to align themselves to the hardware cache.

714-715 Tries and packs objects into one cache line if they fit while still keeping
the alignment. This is important to arches (e.g., Alpha or Pentium 4) with
large L1 cache bytes. align will be adjusted to be the smallest that will give
hardware cache alignment. For machines with large L1 cache lines, two or
more small objects may fit into each line. For example, two objects from the
size-32 cache will fit on one cache line from a Pentium 4.

716 Rounds the cache size up to the hardware cache alignment.

724 do {
725 unsigned int break_flag = 0;
726 cal_wastage:
727 kmem_cache_estimate(cachep->gfporder,

size, flags,
728 &left_over,

&cachep->num);
729 if (break_flag)
730 break;
731 if (cachep->gfporder >= MAX_GFP_ORDER)
732 break;
733 if (!cachep->num)
734 goto next;
735 if (flags & CFLGS_OFF_SLAB &&

cachep->num > offslab_limit) {
737 cachep->gfporder--;
738 break_flag++;
739 goto cal_wastage;
740 }
741
746 if (cachep->gfporder >= slab_break_gfp_order)
747 break;
748
749 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
750 break;
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751 next:
752 cachep->gfporder++;
753 } while (1);
754
755 if (!cachep->num) {
756 printk("kmem_cache_create: couldn’t

create cache %s.\n", name);
757 kmem_cache_free(&cache_cache, cachep);
758 cachep = NULL;
759 goto opps;
760 }

Calculates how many objects will fit on a slab and adjusts the slab size as
necessary.

727-728 kmem cache estimate() (See Section H.1.2.1) calculates the number of
objects that can fit on a slab at the current gfp order and what the amount
of leftover bytes will be.

729-730 The break flag is set if the number of objects fitting on the slab exceeds
the number that can be kept when offslab slab descriptors are used.

731-732 The order number of pages used must not exceed MAX GFP ORDER (5).

733-734 If even one object did not fill, goto next, which will increase the gfporder
used for the cache.

735 If the slab descriptor is kept off-cache, but the number of objects exceeds the
number that can be tracked with bufctl’s off-slab, then ...

737 Reduces the order number of pages used.

738 Sets the break flag so that the loop will exit.

739 Calculates the new wastage figures.

746-747 The slab break gfp order is the order to not exceed unless 0 objects
fit on the slab. This check ensures the order is not exceeded.

749-759 A rough check for internal fragmentation. If the wastage as a fraction of
the total size of the cache is less than one-eighth, it is acceptable.

752 If the fragmentation is too high, this increases the gfp order and recalculates
the number of objects that can be stored and the wastage.

755 If, after adjustments, objects still do not fit in the cache, it cannot be created.

757-758 Frees the cache descriptor and sets the pointer to NULL.

758 Goto opps, which simply returns the NULL pointer.
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761 slab_size = L1_CACHE_ALIGN(
cachep->num*sizeof(kmem_bufctl_t) +
sizeof(slab_t));

762
767 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
768 flags &= ~CFLGS_OFF_SLAB;
769 left_over -= slab_size;
770 }

This block aligns the slab size to the hardware cache.

761 slab size is the total size of the slab descriptor, not the size of the slab itself.
It is the size slab t struct and the number of objects * size of the
bufctl.

767-769 If enough space is left over for the slab descriptor and it was specified
to place the descriptor off-slab, this removes the flag and updates the amount
of left over bytes. This will impact the cache coloring, but, with the large
objects associated with off-slab descriptors, this is not a problem.

773 offset += (align-1);
774 offset &= ~(align-1);
775 if (!offset)
776 offset = L1_CACHE_BYTES;
777 cachep->colour_off = offset;
778 cachep->colour = left_over/offset;

Calculates color offsets.

773-774 offset is the offset within the page that the caller requested. This will
make sure the offset requested is at the correct alignment for cache usage.

775-776 If somehow the offset is 0, this sets it to be aligned for the CPU cache.

777 The offset to use to keep objects on different cache lines. Each slab created
will be given a different color offset.

778 The number of different offsets that can be used.

781 if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
782 flags |= CFLGS_OPTIMIZE;
783
784 cachep->flags = flags;
785 cachep->gfpflags = 0;
786 if (flags & SLAB_CACHE_DMA)
787 cachep->gfpflags |= GFP_DMA;
788 spin_lock_init(&cachep->spinlock);
789 cachep->objsize = size;
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790 INIT_LIST_HEAD(&cachep->slabs_full);
791 INIT_LIST_HEAD(&cachep->slabs_partial);
792 INIT_LIST_HEAD(&cachep->slabs_free);
793
794 if (flags & CFLGS_OFF_SLAB)
795 cachep->slabp_cache =

kmem_find_general_cachep(slab_size,0);
796 cachep->ctor = ctor;
797 cachep->dtor = dtor;
799 strcpy(cachep->name, name);
800
801 #ifdef CONFIG_SMP
802 if (g_cpucache_up)
803 enable_cpucache(cachep);
804 #endif

This block initializes remaining fields in the cache descriptor.

781-782 For caches with slabs of only one page, the CFLGS OPTIMIZE flag is set.
In reality, it makes no difference because the flag is unused.

784 Sets the cache static flags.

785 Zeroes out the gfpflags. This is a defunct operation, as memset() is used to
clear these flags after the cache descriptor is allocated.

786-787 If the slab is for DMA use, this sets the GFP DMA flag so that the buddy
allocator will use ZONE DMA.

788 Initializes the spinlock for accessing the cache.

789 Copies in the object size, which now takes hardware cache alignment if nec-
essary.

790-792 Initializes the slab lists.

794-795 If the descriptor is kept off-slab, this allocates a slab manager and places
it for use in slabp cache (See Section H.2.1.2).

796-797 Sets the pointers to the constructor and destructor functions.

799 Copies in the human-readable name.

802-803 If per-CPU caches are enabled, this creates a set for this cache (See
Section 8.5).

806 down(&cache_chain_sem);
807 {
808 struct list_head *p;
809
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810 list_for_each(p, &cache_chain) {
811 kmem_cache_t *pc = list_entry(p,

kmem_cache_t, next);
812
814 if (!strcmp(pc->name, name))
815 BUG();
816 }
817 }
818
822 list_add(&cachep->next, &cache_chain);
823 up(&cache_chain_sem);
824 opps:
825 return cachep;
826 }

This block adds the new cache to the cache chain.

806 Acquires the semaphore used to synchronize access to the cache chain.

810-816 Checks every cache on the cache chain and makes sure no other cache
has the same name. If one does, it means two caches of the same type are
being created, which is a serious bug.

811 Gets the cache from the list.

814-815 Compares the names, and if they match, it uses BUG(). It is worth
noting that the new cache is not deleted, but this error is the result of sloppy
programming during development and is not a normal scenario.

822 Links the cache into the chain.

823 Releases the cache chain semaphore.

825 Returns the new cache pointer.

H.1.2 Calculating the Number of Objects on a Slab

H.1.2.1 Function: kmem cache estimate() (mm/slab.c)
During cache creation, it is determined how many objects can be stored in a

slab and how much waste there will be. The following function calculates how
many objects may be stored, taking into account if the slab and bufctls must be
stored on-slab.

388 static void kmem_cache_estimate (unsigned long gfporder,
size_t size,

389 int flags, size_t *left_over, unsigned int *num)
390 {
391 int i;
392 size_t wastage = PAGE_SIZE<<gfporder;
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393 size_t extra = 0;
394 size_t base = 0;
395
396 if (!(flags & CFLGS_OFF_SLAB)) {
397 base = sizeof(slab_t);
398 extra = sizeof(kmem_bufctl_t);
399 }
400 i = 0;
401 while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)
402 i++;
403 if (i > 0)
404 i--;
405
406 if (i > SLAB_LIMIT)
407 i = SLAB_LIMIT;
408
409 *num = i;
410 wastage -= i*size;
411 wastage -= L1_CACHE_ALIGN(base+i*extra);
412 *left_over = wastage;
413 }

388 The parameters of the function are as follows:

• gfporder The 2gfporder number of pages to allocate for each slab

• size The size of each object

• flags The cache flags

• left over The number of bytes left over in the slab, which is returned to
caller

• num The number of objects that will fit in a slab, which is returned to
caller

392 wastage is decremented through the function. It starts with the maximum
possible amount of wastage.

393 extra is the number of bytes needed to store kmem bufctl t.

394 base is where usable memory in the slab starts.

396 If the slab descriptor is kept on cache, the base begins at the end of the
slab t struct and the number of bytes needed to store the bufctl is the size
of kmem bufctl t.

400 i becomes the number of objects that the slab can hold.

401-402 Counts up the number of objects that the cache can store. i*size is the
size of the object itself. L1 CACHE ALIGN(base+i*extra) is slightly trickier.
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This is calculating the amount of memory needed to store the kmem bufctl t
needed for every object in the slab. Because it is at the beginning of the slab,
it is L1 cache-aligned so that the first object in the slab will be aligned to the
hardware cache. i*extra will calculate the amount of space needed to hold a
kmem bufctl t for this object. Because wastage starts out as the size of the
slab, its use is overloaded here.

403-404 Because the previous loop counts until the slab overflows, the number of
objects that can be stored is i-1.

406-407 SLAB LIMIT is the absolute largest number of objects a slab can
store. It is defined as 0xffffFFFE because this is the largest number that
kmem bufctl t(), which is an unsigned integer, can hold.

409 num is now the number of objects a slab can hold.

410 Takes away the space taken up by all the objects from wastage.

411 Takes away the space taken up by the kmem bufctl t.

412 Wastage has now been calculated as the leftover space in the slab.

H.1.3 Cache Shrinking

The call graph for kmem cache shrink() is shown in Figure 8.5. Two va-
rieties of shrink functions are provided. kmem cache shrink() removes all
slabs from slabs free and returns the number of pages freed as a result.
kmem cache shrink() frees all slabs from slabs free and then verifies that

slabs partial and slabs full are empty. This is important during cache de-
struction when it doesn’t matter how many pages are freed, just that the cache is
empty.

H.1.3.1 Function: kmem cache shrink() (mm/slab.c)
This function performs basic debugging checks and then acquires the cache

descriptor lock before freeing slabs. At one time, it also used to call
drain cpu caches() to free up objects on the per-CPU cache. It is curious that
this was removed because it is possible slabs could not be freed due to an object
being allocated on a per-CPU cache, but not in use.

966 int kmem_cache_shrink(kmem_cache_t *cachep)
967 {
968 int ret;
969
970 if (!cachep || in_interrupt() ||

!is_chained_kmem_cache(cachep))
971 BUG();
972
973 spin_lock_irq(&cachep->spinlock);
974 ret = __kmem_cache_shrink_locked(cachep);
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975 spin_unlock_irq(&cachep->spinlock);
976
977 return ret << cachep->gfporder;
978 }

966 The parameter is the cache being shrunk.

970 Checks the following:

• The cache pointer is not NULL.
• An interrupt is not the caller.
• The cache is on the cache chain and is not a bad pointer.

973 Acquires the cache descriptor lock and disables interrupts.

974 Shrinks the cache.

975 Releases the cache lock and enables interrupts.

976 Returns the number of pages freed, but does not take into account the objects
freed by draining the CPU.

H.1.3.2 Function: kmem cache shrink() (mm/slab.c)
This function is identical to kmem cache shrink() except it returns if the cache

is empty. This is important during cache destruction when it is not important how
much memory was freed, just that it is safe to delete the cache and not leak memory.

945 static int __kmem_cache_shrink(kmem_cache_t *cachep)
946 {
947 int ret;
948
949 drain_cpu_caches(cachep);
950
951 spin_lock_irq(&cachep->spinlock);
952 __kmem_cache_shrink_locked(cachep);
953 ret = !list_empty(&cachep->slabs_full) ||
954 !list_empty(&cachep->slabs_partial);
955 spin_unlock_irq(&cachep->spinlock);
956 return ret;
957 }

949 Removes all objects from the per-CPU objects cache.

951 Acquires the cache descriptor lock and disables interrupts.

952 Frees all slabs in the slabs free list.

953-954 Checks that the slabs partial and slabs full lists are empty.

955 Releases the cache descriptor lock and re-enables interrupts.

956 Returns if the cache has all its slabs free.
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H.1.3.3 Function: kmem cache shrink locked() (mm/slab.c)
This does the dirty work of freeing slabs. It will keep destroying them until the

growing flag gets set, indicating the cache is in use or until no more slabs are in
slabs free.

917 static int __kmem_cache_shrink_locked(kmem_cache_t *cachep)
918 {
919 slab_t *slabp;
920 int ret = 0;
921
923 while (!cachep->growing) {
924 struct list_head *p;
925
926 p = cachep->slabs_free.prev;
927 if (p == &cachep->slabs_free)
928 break;
929
930 slabp = list_entry(cachep->slabs_free.prev,

slab_t, list);
931 #if DEBUG
932 if (slabp->inuse)
933 BUG();
934 #endif
935 list_del(&slabp->list);
936
937 spin_unlock_irq(&cachep->spinlock);
938 kmem_slab_destroy(cachep, slabp);
939 ret++;
940 spin_lock_irq(&cachep->spinlock);
941 }
942 return ret;
943 }

923 While the cache is not growing, this frees slabs.

926-930 Gets the last slab on the slabs free list.

932-933 If debugging is available, this makes sure it is not in use. If it is not in
use, it should not be on the slabs free list in the first place.

935 Removes the slab from the list.

937 Re-enables interrupts. This function is called with interrupts disabled, and
this is to free the interrupt as quickly as possible.

938 Deletes the slab with kmem slab destroy() (See Section H.2.3.1).

939 Records the number of slabs freed.

940 Acquires the cache descriptor lock and disables interrupts.
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H.1.4 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache it has created.
As during module loading, it is ensured two caches do not have the same name. Core
kernel code often does not destroy its caches because their existence persists for the
life of the system. The steps taken to destroy a cache are the following:

1. Delete the cache from the cache chain.

2. Shrink the cache to delete all slabs (See Section 8.1.8).

3. Free any per-CPU caches (kfree()).

4. Delete the cache descriptor from the cache cache (See Section 8.3.3).

H.1.4.1 Function: kmem cache destroy() (mm/slab.c)
The call graph for this function is shown in Figure 8.7.

997 int kmem_cache_destroy (kmem_cache_t * cachep)
998 {
999 if (!cachep || in_interrupt() || cachep->growing)
1000 BUG();
1001
1002 /* Find the cache in the chain of caches. */
1003 down(&cache_chain_sem);
1004 /* the chain is never empty, cache_cache is never destroyed */
1005 if (clock_searchp == cachep)
1006 clock_searchp = list_entry(cachep->next.next,
1007 kmem_cache_t, next);
1008 list_del(&cachep->next);
1009 up(&cache_chain_sem);
1010
1011 if (__kmem_cache_shrink(cachep)) {
1012 printk(KERN_ERR

"kmem_cache_destroy: Can’t free all objects %p\n",
1013 cachep);
1014 down(&cache_chain_sem);
1015 list_add(&cachep->next,&cache_chain);
1016 up(&cache_chain_sem);
1017 return 1;
1018 }
1019 #ifdef CONFIG_SMP
1020 {
1021 int i;
1022 for (i = 0; i < NR_CPUS; i++)
1023 kfree(cachep->cpudata[i]);
1024 }
1025 #endif
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1026 kmem_cache_free(&cache_cache, cachep);
1027
1028 return 0;
1029 }

999-1000 A sanity check. It makes sure the cachep is not null, that an interrupt
is not trying to do this and that the cache has not been marked as growing,
indicating it is in use.

1003 Acquires the semaphore for accessing the cache chain.

1005-1007 Acquires the list entry from the cache chain.

1008 Deletes this cache from the cache chain.

1009 Releases the cache chain semaphore.

1011 Shrinks the cache to free all slabs with kmem cache shrink()
(See Section H.1.3.2).

1012-1017 The shrink function returns true if slabs are still in the cache. If they
are, the cache cannot be destroyed, so it is added back into the cache chain,
and the error is reported.

1022-1023 If SMP is enabled, the per-CPU data structures are deleted with
kfree() (See Section H.4.3.1).

1026 Deletes the cache descriptor from the cache cache with kmem cache free()
(See Section H.3.3.1).

H.1.5 Cache Reaping

H.1.5.1 Function: kmem cache reap() (mm/slab.c)
The call graph for this function is shown in Figure 8.4. Because of the size of

this function, it will be broken up into three separate sections. The first is a simple
function preamble. The second is the selection of a cache to reap, and the third is
the freeing of the slabs. The basic tasks were described in Section 8.1.7.

1738 int kmem_cache_reap (int gfp_mask)
1739 {
1740 slab_t *slabp;
1741 kmem_cache_t *searchp;
1742 kmem_cache_t *best_cachep;
1743 unsigned int best_pages;
1744 unsigned int best_len;
1745 unsigned int scan;
1746 int ret = 0;
1747
1748 if (gfp_mask & __GFP_WAIT)
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1749 down(&cache_chain_sem);
1750 else
1751 if (down_trylock(&cache_chain_sem))
1752 return 0;
1753
1754 scan = REAP_SCANLEN;
1755 best_len = 0;
1756 best_pages = 0;
1757 best_cachep = NULL;
1758 searchp = clock_searchp;

1738 The only parameter is the GFP flag. The only check made is against the
GFP WAIT flag. As the only caller, kswapd, can sleep. This parameter is

virtually worthless.

1748-1749 Can the caller sleep? If yes, then this acquires the semaphore.

1751-1752 If not, this tries and acquires the semaphore. If it is not available, this
returns.

1754 REAP SCANLEN (10) is the number of caches to examine.

1758 Sets searchp to be the last cache that was examined at the last reap.

1759 do {
1760 unsigned int pages;
1761 struct list_head* p;
1762 unsigned int full_free;
1763
1765 if (searchp->flags & SLAB_NO_REAP)
1766 goto next;
1767 spin_lock_irq(&searchp->spinlock);
1768 if (searchp->growing)
1769 goto next_unlock;
1770 if (searchp->dflags & DFLGS_GROWN) {
1771 searchp->dflags &= ~DFLGS_GROWN;
1772 goto next_unlock;
1773 }
1774 #ifdef CONFIG_SMP
1775 {
1776 cpucache_t *cc = cc_data(searchp);
1777 if (cc && cc->avail) {
1778 __free_block(searchp, cc_entry(cc),

cc->avail);
1779 cc->avail = 0;
1780 }
1781 }
1782 #endif
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1783
1784 full_free = 0;
1785 p = searchp->slabs_free.next;
1786 while (p != &searchp->slabs_free) {
1787 slabp = list_entry(p, slab_t, list);
1788 #if DEBUG
1789 if (slabp->inuse)
1790 BUG();
1791 #endif
1792 full_free++;
1793 p = p->next;
1794 }
1795
1801 pages = full_free * (1<<searchp->gfporder);
1802 if (searchp->ctor)
1803 pages = (pages*4+1)/5;
1804 if (searchp->gfporder)
1805 pages = (pages*4+1)/5;
1806 if (pages > best_pages) {
1807 best_cachep = searchp;
1808 best_len = full_free;
1809 best_pages = pages;
1810 if (pages >= REAP_PERFECT) {
1811 clock_searchp =

list_entry(searchp->next.next,
1812 kmem_cache_t,next);
1813 goto perfect;
1814 }
1815 }
1816 next_unlock:
1817 spin_unlock_irq(&searchp->spinlock);
1818 next:
1819 searchp =

list_entry(searchp->next.next,kmem_cache_t,next);
1820 } while (--scan && searchp != clock_searchp);

This block examines REAP SCANLEN number of caches to select one to free.

1767 Acquires an interrupt-safe lock to the cache descriptor.

1768-1769 If the cache is growing, this skips it.

1770-1773 If the cache has grown recently, this skips it and clears the flag.

1775-1781 Frees any per-CPU objects to the global pool.

1786-1794 Counts the number of slabs in the slabs free list.
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1801 Calculates the number of pages that all the slabs hold.

1802-1803 If the objects have constructors, this reduces the page count by one-
fifth to make it less likely to be selected for reaping.

1804-1805 If the slabs consist of more than one page, this reduces the page count
by one-fifth. This is because high-order pages are hard to acquire.

1806 If this is the best candidate found for reaping so far, this checks if it is perfect
for reaping.

1807-1809 Records the new maximums.

1808 best len is recorded so that it is easy to know how many slabs are half of
the slabs in the free list.

1810 If this cache is perfect for reaping, then. . .

1811 Updates clock searchp.

1812 Goto perfect where half the slabs will be freed.

1816 This label is reached if it was found that the cache was growing after acquiring
the lock.

1817 Releases the cache descriptor lock.

1818 Moves to the next entry in the cache chain.

1820 Scans while REAP SCANLEN has not been reached and while we have not cycled
around the whole cache chain.

1822 clock_searchp = searchp;
1823
1824 if (!best_cachep)
1826 goto out;
1827
1828 spin_lock_irq(&best_cachep->spinlock);
1829 perfect:
1830 /* free only 50% of the free slabs */
1831 best_len = (best_len + 1)/2;
1832 for (scan = 0; scan < best_len; scan++) {
1833 struct list_head *p;
1834
1835 if (best_cachep->growing)
1836 break;
1837 p = best_cachep->slabs_free.prev;
1838 if (p == &best_cachep->slabs_free)
1839 break;
1840 slabp = list_entry(p,slab_t,list);
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1841 #if DEBUG
1842 if (slabp->inuse)
1843 BUG();
1844 #endif
1845 list_del(&slabp->list);
1846 STATS_INC_REAPED(best_cachep);
1847
1848 /* Safe to drop the lock. The slab is no longer
1849 * lined to the cache.
1850 */
1851 spin_unlock_irq(&best_cachep->spinlock);
1852 kmem_slab_destroy(best_cachep, slabp);
1853 spin_lock_irq(&best_cachep->spinlock);
1854 }
1855 spin_unlock_irq(&best_cachep->spinlock);
1856 ret = scan * (1 << best_cachep->gfporder);
1857 out:
1858 up(&cache_chain_sem);
1859 return ret;
1860 }

This block will free half of the slabs from the selected cache.

1822 Updates clock searchp for the next cache reap.

1824-1826 If a cache was not found, goto out to free the cache chain and exit.

1828 Acquires the cache chain spinlock and disables interrupts. The cachep de-
scriptor has to be held by an interrupt-safe lock because some caches may be
used from interrupt context. The slab allocator has no way to differentiate
between interrupt-safe and -unsafe caches.

1831 Adjusts best len to be the number of slabs to free.

1832-1854 Frees best len number of slabs.

1835-1847 If the cache is growing, this exits.

1837 Gets a slab from the list.

1838-1839 If no slabs are left in the list, this exits.

1840 Gets the slab pointer.

1842-1843 If debugging is enabled, this makes sure no active objects are in the
slab.

1845 Removes the slab from the slabs free list.

1846 Updates statistics if enabled.

S
la

b
A

llo
ca

to
r



478 Slab Allocator Appendix H

1851 Frees the cache descriptor and enables interrupts.

1852 Destroys the slab (See Section 8.2.8).

1851 Reacquires the cache descriptor spinlock and disables interrupts.

1855 Frees the cache descriptor and enables interrupts.

1856 ret is the number of pages that were freed.

1858-1859 Frees the cache semaphore and returns the number of pages freed.
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H.2.1 Storing the Slab Descriptor

H.2.1.1 Function: kmem cache slabmgmt() (mm/slab.c)
This function will either allocate space to keep the slab descriptor off cache or

reserve enough space at the beginning of the slab for the descriptor and the bufctls.

1032 static inline slab_t * kmem_cache_slabmgmt (
kmem_cache_t *cachep,

1033 void *objp,
int colour_off,
int local_flags)

1034 {
1035 slab_t *slabp;
1036
1037 if (OFF_SLAB(cachep)) {
1039 slabp = kmem_cache_alloc(cachep->slabp_cache,

local_flags);
1040 if (!slabp)
1041 return NULL;
1042 } else {
1047 slabp = objp+colour_off;
1048 colour_off += L1_CACHE_ALIGN(cachep->num *
1049 sizeof(kmem_bufctl_t) +

sizeof(slab_t));
1050 }
1051 slabp->inuse = 0;
1052 slabp->colouroff = colour_off;
1053 slabp->s_mem = objp+colour_off;
1054
1055 return slabp;
1056 }

1032 The parameters of the function are the following:

• cachep The cache the slab is to be allocated to.
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• objp When the function is called, this points to the beginning of the
slab.

• colour off The color offset for this slab.

• local flags These are the flags for the cache.

1037-1042 If the slab descriptor is kept off cache, then...

1039 Allocates memory from the sizes cache. During cache creation, slabp cache
is set to the appropriate size cache to allocate from.

1040 If the allocation failed, this returns.

1042-1050 Reserves space at the beginning of the slab.

1047 The address of the slab will be the beginning of the slab (objp) plus the
color offset.

1048 colour off is calculated to be the offset where the first object will be placed.
The address is L1 cache-aligned. cachep->num * sizeof(kmem bufctl t) is
the amount of space needed to hold the bufctls for each object in the slab,
and sizeof(slab t) is the size of the slab descriptor. This effectively has
reserved the space at the beginning of the slab.

1051 The number of objects in use on the slab is 0.

1052 The colouroff is updated for placement of the new object.

1053 The address of the first object is calculated as the address of the beginning
of the slab plus the offset.

H.2.1.2 Function: kmem find general cachep() (mm/slab.c)
If the slab descriptor is to be kept off-slab, this function, called during cache

creation, will find the appropriate size cache to use and will be stored within the
cache descriptor in the field slabp cache.

1620 kmem_cache_t * kmem_find_general_cachep (size_t size,
int gfpflags)

1621 {
1622 cache_sizes_t *csizep = cache_sizes;
1623
1628 for ( ; csizep->cs_size; csizep++) {
1629 if (size > csizep->cs_size)
1630 continue;
1631 break;
1632 }
1633 return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep :

csizep->cs_cachep;
1634 }
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1620 size is the size of the slab descriptor. gfpflags is always 0 because DMA
memory is not needed for a slab descriptor.

1628-1632 Starting with the smallest size, this keeps increasing the size until a
cache is found with buffers large enough to store the slab descriptor.

1633 Returns either a normal or DMA-sized cache, depending on the gfpflags
passed in. In reality, only the cs cachep is ever passed back.

H.2.2 Slab Creation

H.2.2.1 Function: kmem cache grow() (mm/slab.c)
The call graph for this function is shown in Figure 8.11. The basic tasks for this

function are the following:

• Perform basic sanity checks to guard against bad usage.

• Calculate color offset for objects in this slab.

• Allocate memory for the slab and acquire a slab descriptor.

• Link the pages used for the slab to the slab and cache descriptors.

• Initialize objects in the slab.

• Add the slab to the cache.

1105 static int kmem_cache_grow (kmem_cache_t * cachep, int flags)
1106 {
1107 slab_t *slabp;
1108 struct page *page;
1109 void *objp;
1110 size_t offset;
1111 unsigned int i, local_flags;
1112 unsigned long ctor_flags;
1113 unsigned long save_flags;

These are basic declarations. The parameters of the function are the following:

• cachep The cache to allocate a new slab to

• flags The flags for a slab creation

1118 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
1119 BUG();
1120 if (flags & SLAB_NO_GROW)
1121 return 0;
1122
1129 if (in_interrupt() &&

(flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)

S
la

b
A

llo
ca

to
r



482 Slab Allocator Appendix H

1130 BUG();
1131
1132 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1133 local_flags = (flags & SLAB_LEVEL_MASK);
1134 if (local_flags == SLAB_ATOMIC)
1139 ctor_flags |= SLAB_CTOR_ATOMIC;

This performs basic sanity checks to guard against bad usage. The checks
are made here rather than kmem cache alloc() to protect the speed-critical path.
There is no point in checking the flags every time an object needs to be allocated.

1118-1119 Makes sure only allowable flags are used for allocation.

1120-1121 Do not grow the cache if this is set. In reality, it is never set.

1129-1130 If this is called within interrupt context, make sure the ATOMIC flag is
set, so we do not sleep when kmem getpages()(See Section H.7.1.1) is called.

1132 This flag tells the constructor it is to init the object.

1133 The local flags are just those relevant to the page allocator.

1134-1139 If the SLAB ATOMIC flag is set, the constructor needs to know about it
in case it wants to make new allocations.

1142 spin_lock_irqsave(&cachep->spinlock, save_flags);
1143
1145 offset = cachep->colour_next;
1146 cachep->colour_next++;
1147 if (cachep->colour_next >= cachep->colour)
1148 cachep->colour_next = 0;
1149 offset *= cachep->colour_off;
1150 cachep->dflags |= DFLGS_GROWN;
1151
1152 cachep->growing++;
1153 spin_unlock_irqrestore(&cachep->spinlock, save_flags);

Calculates color offset for objects in this slab.

1142 Acquires an interrupt-safe lock for accessing the cache descriptor.

1145 Gets the offset for objects in this slab.

1146 Moves to the next color offset.

1147-1148 If colour has been reached, no more offsets are available, so this resets
colour next to 0.

1149 colour off is the size of each offset, so offset * colour off will give how
many bytes to offset the objects to.
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1150 Marks the cache that it is growing so that kmem cache reap()
(See Section H.1.5.1) will ignore this cache.

1152 Increases the count for callers growing this cache.

1153 Frees the spinlock and re-enables interrupts.

1165 if (!(objp = kmem_getpages(cachep, flags)))
1166 goto failed;
1167
1169 if (!(slabp = kmem_cache_slabmgmt(cachep,

objp, offset,
local_flags)))

1160 goto opps1;

Allocates memory for the slab and acquires a slab descriptor.

1165-1166 Allocates pages from the page allocator for the slab with
kmem getpages() (See Section H.7.1.1).

1169 Acquires a slab descriptor with kmem cache slabmgmt()
(See Section H.2.1.1).

1173 i = 1 << cachep->gfporder;
1174 page = virt_to_page(objp);
1175 do {
1176 SET_PAGE_CACHE(page, cachep);
1177 SET_PAGE_SLAB(page, slabp);
1178 PageSetSlab(page);
1179 page++;
1180 } while (--i);

Links the pages for the slab used to the slab and cache descriptors.

1173 i is the number of pages used for the slab. Each page has to be linked to
the slab and cache descriptors.

1174 objp is a pointer to the beginning of the slab. The macro virt to page()
will give the struct page for that address.

1175-1180 Links each pages list field to the slab and cache descriptors.

1176 SET PAGE CACHE() links the page to the cache descriptor using the
page→list.next field.

1177 SET PAGE SLAB() links the page to the slab descriptor using the
page→list.prev field.

1178 Sets the PG slab page flag. The full set of PG flags is listed in Table 2.1.
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1179 Moves to the next page for this slab to be linked.

1182 kmem_cache_init_objs(cachep, slabp, ctor_flags);

1182 Initializes all objects (See Section H.3.1.1).

1184 spin_lock_irqsave(&cachep->spinlock, save_flags);
1185 cachep->growing--;
1186
1188 list_add_tail(&slabp->list, &cachep->slabs_free);
1189 STATS_INC_GROWN(cachep);
1190 cachep->failures = 0;
1191
1192 spin_unlock_irqrestore(&cachep->spinlock, save_flags);
1193 return 1;

Adds the slab to the cache.

1184 Acquires the cache descriptor spinlock in an interrupt-safe fashion.

1185 Decreases the growing count.

1188 Adds the slab to the end of the slabs free list.

1189 If STATS is set, this increases the cachep→grown field STATS INC GROWN().

1190 Sets failures to 0. This field is never used elsewhere.

1192 Unlocks the spinlock in an interrupt-safe fashion.

1193 Returns success.

1194 opps1:
1195 kmem_freepages(cachep, objp);
1196 failed:
1197 spin_lock_irqsave(&cachep->spinlock, save_flags);
1198 cachep->growing--;
1199 spin_unlock_irqrestore(&cachep->spinlock, save_flags);
1300 return 0;
1301 }

This block is for error handling.

1194-1195 opps1 is reached if the pages for the slab were allocated. They must
be freed.

1197 Acquires the spinlock for accessing the cache descriptor.

1198 Reduces the growing count.

1199 Releases the spinlock.

1300 Returns failure.
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H.2.3 Slab Destroying

H.2.3.1 Function: kmem slab destroy() (mm/slab.c)
The call graph for this function is shown in Figure 8.13. For readability, the

debugging sections have been omitted from this function, but they are almost iden-
tical to the debugging section during object allocation. See Section H.3.1.1 for how
the markers and poison pattern are checked.

555 static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
556 {
557 if (cachep->dtor
561 ) {
562 int i;
563 for (i = 0; i < cachep->num; i++) {
564 void* objp = slabp->s_mem+cachep->objsize*i;

565-574 DEBUG: Check red zone markers

575 if (cachep->dtor)
576 (cachep->dtor)(objp, cachep, 0);

577-584 DEBUG: Check poison pattern

585 }
586 }
587
588 kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
589 if (OFF_SLAB(cachep))
590 kmem_cache_free(cachep->slabp_cache, slabp);
591 }

557-586 If a destructor is available, this calls it for each object in the slab.

563-585 Cycles through each object in the slab.

564 Calculates the address of the object to destroy.

575-576 Calls the destructor.

588 Frees the pages being used for the slab.

589 If the slab descriptor is off-slab, then this frees the memory being used for it.
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H.3 Objects
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This section will cover how objects are managed. At this point, most of the real
hard work has been completed by either the cache or slab managers.

H.3.1 Initializing Objects in a Slab

H.3.1.1 Function: kmem cache init objs() (mm/slab.c)
The vast part of this function is involved with debugging, so I start with the

function without the debugging and explain that in detail before handling the de-
bugging part. The two sections that are debugging are marked in the code excerpt
that follows as Part 1 and Part 2.

1058 static inline void kmem_cache_init_objs (kmem_cache_t * cachep,
1059 slab_t * slabp, unsigned long ctor_flags)
1060 {
1061 int i;
1062
1063 for (i = 0; i < cachep->num; i++) {
1064 void* objp = slabp->s_mem+cachep->objsize*i;

1065-1072 /* Debugging Part 1 */

1079 if (cachep->ctor)
1080 cachep->ctor(objp, cachep, ctor_flags);

1081-1094 /* Debugging Part 2 */

1095 slab_bufctl(slabp)[i] = i+1;
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1096 }
1097 slab_bufctl(slabp)[i-1] = BUFCTL_END;
1098 slabp->free = 0;
1099 }

1058 The parameters of the function are the following:

• cachep The cache the objects are initialized for

• slabp The slab the objects are in

• ctor flags Flags the constructor needs whether this is an atomic alloca-
tion or not

1063 Initializes cache→num number of objects.

1064 The base address for objects in the slab is s mem. The address of the object
to allocate is then i * (size of a single object).

1079-1080 If a constructor is available, this calls it.

1095 The macro slab bufctl() casts slabp to a slab t slab descriptor and
adds one to it. This brings the pointer to the end of the slab descriptor and
then casts it back to a kmem bufctl t, effectively giving the beginning of the
bufctl array.

1098 The index of the first free object is 0 in the bufctl array.

That covers the core of initializing objects. Next, I cover the first debugging
part.

1065 #if DEBUG
1066 if (cachep->flags & SLAB_RED_ZONE) {
1067 *((unsigned long*)(objp)) = RED_MAGIC1;
1068 *((unsigned long*)(objp + cachep->objsize -
1069 BYTES_PER_WORD)) = RED_MAGIC1;
1070 objp += BYTES_PER_WORD;
1071 }
1072 #endif

1066 If the cache is to be red-zoned, this places a marker at either end of the
object.

1067 Places the marker at the beginning of the object.

1068 Places the marker at the end of the object. Remember that the size of
the object takes into account the size of the red markers when red-zoning is
enabled.

1070 Increases the objp pointer by the size of the marker for the benefit of the
constructor, which is called after this debugging block.
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1081 #if DEBUG
1082 if (cachep->flags & SLAB_RED_ZONE)
1083 objp -= BYTES_PER_WORD;
1084 if (cachep->flags & SLAB_POISON)
1086 kmem_poison_obj(cachep, objp);
1087 if (cachep->flags & SLAB_RED_ZONE) {
1088 if (*((unsigned long*)(objp)) != RED_MAGIC1)
1089 BUG();
1090 if (*((unsigned long*)(objp + cachep->objsize -
1091 BYTES_PER_WORD)) != RED_MAGIC1)
1092 BUG();
1093 }
1094 #endif

This is the debugging block that takes place after the constructor, if it exists,
has been called.

1082-1083 The objp pointer was increased by the size of the red marker in the
previous debugging block, so it moves it back again.

1084-1086 If there was no constructor, this poisons the object with a known
pattern that can be examined later to trap uninitialized writes.

1088 Checks to make sure the red marker at the beginning of the object was
preserved to trap writes before the object.

1090-1091 Checks to make sure writes did not take place past the end of the
object.

H.3.2 Object Allocation

H.3.2.1 Function: kmem cache alloc() (mm/slab.c)
The call graph for this function is shown in Figure 8.14. This trivial function

simply calls kmem cache alloc().

1529 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
1531 {
1532 return __kmem_cache_alloc(cachep, flags);
1533 }

H.3.2.2 Function: kmem cache alloc (UP Case)() (mm/slab.c)
This will take the parts of the function specific to the UP case. The SMP case

will be dealt with in the next section.

1338 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep,
int flags)

1339 {
1340 unsigned long save_flags;
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1341 void* objp;
1342
1343 kmem_cache_alloc_head(cachep, flags);
1344 try_again:
1345 local_irq_save(save_flags);

1367 objp = kmem_cache_alloc_one(cachep);

1369 local_irq_restore(save_flags);
1370 return objp;
1371 alloc_new_slab:

1376 local_irq_restore(save_flags);
1377 if (kmem_cache_grow(cachep, flags))
1381 goto try_again;
1382 return NULL;
1383 }

1338 The parameters are the cache to allocate from and allocation-specific flags.

1343 This function makes sure the appropriate combination of DMA flags are in
use.

1345 Disables interrupts and saves the flags. This function is used by interrupts,
so this is the only way to provide synchronization in the UP case.

1367 kmem cache alloc one() (See Section H.3.2.5) allocates an object from one
of the lists and returns it. If no objects are free, this macro (note it is not a
function) will goto alloc new slab at the end of this function.

1369-1370 Restores interrupts and returns.

1376 At this label, no objects were free in slabs partial and slabs free is
empty, so a new slab is needed.

1377 Allocates a new slab (See Section 8.2.2).

1381 A new slab is available, so it tries again.

1382 No slabs could be allocated, so this returns failure.

H.3.2.3 Function: kmem cache alloc (SMP Case)() (mm/slab.c)
This is what the function looks like in the SMP case.

1338 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep,
int flags)

1339 {
1340 unsigned long save_flags;
1341 void* objp;
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1342
1343 kmem_cache_alloc_head(cachep, flags);
1344 try_again:
1345 local_irq_save(save_flags);
1347 {
1348 cpucache_t *cc = cc_data(cachep);
1349
1350 if (cc) {
1351 if (cc->avail) {
1352 STATS_INC_ALLOCHIT(cachep);
1353 objp = cc_entry(cc)[--cc->avail];
1354 } else {
1355 STATS_INC_ALLOCMISS(cachep);
1356 objp =

kmem_cache_alloc_batch(cachep,cc,flags);
1357 if (!objp)
1358 goto alloc_new_slab_nolock;
1359 }
1360 } else {
1361 spin_lock(&cachep->spinlock);
1362 objp = kmem_cache_alloc_one(cachep);
1363 spin_unlock(&cachep->spinlock);
1364 }
1365 }
1366 local_irq_restore(save_flags);
1370 return objp;
1371 alloc_new_slab:
1373 spin_unlock(&cachep->spinlock);
1374 alloc_new_slab_nolock:
1375 local_irq_restore(save_flags);
1377 if (kmem_cache_grow(cachep, flags))
1381 goto try_again;
1382 return NULL;
1383 }

1338-1347 The same as the UP case.

1349 Obtains the per-CPU data for this CPU.

1350-1360 If a per-CPU cache is available, then ....

1351 If an object is available, then ....

1352 Updates statistics for this cache if enabled.

1353 Gets an object and updates the avail figure.

1354 If not, an object is not available, so ....



H.3. Objects 491

1355 Updates statistics for this cache if enabled.

1356 Allocates batchcount number of objects, places all but one of them in the
per-CPU cache and returns the last one to objp.

1357-1358 The allocation failed, so goto alloc new slab nolock to grow the
cache and to allocate a new slab.

1360-1364 If a per-CPU cache is not available, this takes out the cache spinlock
and allocates one object in the same way the UP case does. This is the case
during the initialization for the cache cache, for example.

1363 Objects was successfully assigned, so it releases the cache spinlock.

1366-1370 Re-enables interrupts and returns the allocated object.

1371-1373 If kmem cache alloc one() failed to allocate an object, it will goto
here with the spinlock still held, so it must be released.

1375-1383 This is the same as the UP case.

H.3.2.4 Function: kmem cache alloc head() (mm/slab.c)
This simple function ensures the right combination of slab and GFP flags are

used for allocation from a slab. If a cache is for DMA use, this function will make
sure the caller does not accidently request normal memory and vice-versa.

1231 static inline void kmem_cache_alloc_head(kmem_cache_t *cachep,
int flags)

1232 {
1233 if (flags & SLAB_DMA) {
1234 if (!(cachep->gfpflags & GFP_DMA))
1235 BUG();
1236 } else {
1237 if (cachep->gfpflags & GFP_DMA)
1238 BUG();
1239 }
1240 }

1231 The parameters are the cache that we are allocating from, and the flags are
requested for the allocation.

1233 If the caller has requested memory for DMA use and ...

1234 The cache is not using DMA memory, then this uses BUG().

1237 If not, if the caller has not requested DMA memory and this cache is for
DMA use, it uses BUG().
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H.3.2.5 Function: kmem cache alloc one() (mm/slab.c)
This is a preprocessor macro. It may seem strange to not make this

an inline function, but it is a preprocessor macro for a goto optimization in
kmem cache alloc() (See Section H.3.2.2).

1283 #define kmem_cache_alloc_one(cachep) \
1284 ({ \
1285 struct list_head * slabs_partial, * entry; \
1286 slab_t *slabp; \
1287 \
1288 slabs_partial = &(cachep)->slabs_partial; \
1289 entry = slabs_partial->next; \
1290 if (unlikely(entry == slabs_partial)) { \
1291 struct list_head * slabs_free; \
1292 slabs_free = &(cachep)->slabs_free; \
1293 entry = slabs_free->next; \
1294 if (unlikely(entry == slabs_free)) \
1295 goto alloc_new_slab; \
1296 list_del(entry); \
1297 list_add(entry, slabs_partial); \
1298 } \
1299 \
1300 slabp = list_entry(entry, slab_t, list); \
1301 kmem_cache_alloc_one_tail(cachep, slabp); \
1302 })

1288-1289 Gets the first slab from the slabs partial list.

1290-1298 If a slab is not available from this list, this executes this block.

1291-1293 Gets the first slab from the slabs free list.

1294-1295 If no slabs are on slabs free, then goto alloc new slab(). This goto
label is in kmem cache alloc(), and it will grow the cache by one slab.

1296-1297 If not, this removes the slab from the free list and places it on the
slabs partial list because an object is about to be removed from it.

1300 Obtains the slab from the list.

1301 Allocates one object from the slab.

H.3.2.6 Function: kmem cache alloc one tail() (mm/slab.c)
This function is responsible for the allocation of one object from a slab. Much

of it is debugging code.

1242 static inline void * kmem_cache_alloc_one_tail (
kmem_cache_t *cachep,
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1243 slab_t *slabp)
1244 {
1245 void *objp;
1246
1247 STATS_INC_ALLOCED(cachep);
1248 STATS_INC_ACTIVE(cachep);
1249 STATS_SET_HIGH(cachep);
1250
1252 slabp->inuse++;
1253 objp = slabp->s_mem + slabp->free*cachep->objsize;
1254 slabp->free=slab_bufctl(slabp)[slabp->free];
1255
1256 if (unlikely(slabp->free == BUFCTL_END)) {
1257 list_del(&slabp->list);
1258 list_add(&slabp->list, &cachep->slabs_full);
1259 }
1260 #if DEBUG
1261 if (cachep->flags & SLAB_POISON)
1262 if (kmem_check_poison_obj(cachep, objp))
1263 BUG();
1264 if (cachep->flags & SLAB_RED_ZONE) {
1266 if (xchg((unsigned long *)objp, RED_MAGIC2) !=
1267 RED_MAGIC1)
1268 BUG();
1269 if (xchg((unsigned long *)(objp+cachep->objsize -
1270 BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)
1271 BUG();
1272 objp += BYTES_PER_WORD;
1273 }
1274 #endif
1275 return objp;
1276 }

1242 The parameters are the cache and slab being allocated from.

1247-1249 If stats are enabled, this will set three statistics. ALLOCED is the total
number of objects that have been allocated. ACTIVE is the number of active
objects in the cache. HIGH is the maximum number of objects that were active
at a single time.

1252 inuse is the number of objects active on this slab.

1253 Gets a pointer to a free object. s mem is a pointer to the first object on the
slab. free is an index of a free object in the slab. index * object size
gives an offset within the slab.

1254 Updates the free pointer to be an index of the next free object.
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1256-1259 If the slab is full, this removes it from the slabs partial list and
places it on slabs full.

1260-1274 Debugging code.

1275 Without debugging, the object is returned to the caller.

1261-1263 If the object was poisoned with a known pattern, this checks it to
guard against uninitialized access.

1266-1267 If red-zoning was enabled, this checks the marker at the beginning
of the object and confirms it is safe. It changes the red marker to check for
writes before the object later.

1269-1271 Checks the marker at the end of the object and changes it to check
for writes after the object later.

1272 Updates the object pointer to point to after the red marker.

1275 Returns the object.

H.3.2.7 Function: kmem cache alloc batch() (mm/slab.c)
This function allocates a batch of objects to a CPU cache of objects. It is only

used in the SMP case. In many ways, it is very similar to kmem cache alloc one()
(See Section H.3.2.5).

1305 void* kmem_cache_alloc_batch(kmem_cache_t* cachep,
cpucache_t* cc, int flags)

1306 {
1307 int batchcount = cachep->batchcount;
1308
1309 spin_lock(&cachep->spinlock);
1310 while (batchcount--) {
1311 struct list_head * slabs_partial, * entry;
1312 slab_t *slabp;
1313 /* Get slab alloc is to come from. */
1314 slabs_partial = &(cachep)->slabs_partial;
1315 entry = slabs_partial->next;
1316 if (unlikely(entry == slabs_partial)) {
1317 struct list_head * slabs_free;
1318 slabs_free = &(cachep)->slabs_free;
1319 entry = slabs_free->next;
1320 if (unlikely(entry == slabs_free))
1321 break;
1322 list_del(entry);
1323 list_add(entry, slabs_partial);
1324 }
1325
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1326 slabp = list_entry(entry, slab_t, list);
1327 cc_entry(cc)[cc->avail++] =
1328 kmem_cache_alloc_one_tail(cachep, slabp);
1329 }
1330 spin_unlock(&cachep->spinlock);
1331
1332 if (cc->avail)
1333 return cc_entry(cc)[--cc->avail];
1334 return NULL;
1335 }

1305 The parameters are the cache to allocate from, the per-CPU cache to fill
and the allocation flags.

1307 batchcount is the number of objects to allocate.

1309 Obtains the spinlock for access to the cache descriptor.

1310-1329 Loops batchcount times.

1311-1324 This example is the same as kmem cache alloc one()
(See Section H.3.2.5). It selects a slab from either slabs partial or
slabs free to allocate from. If none are available, it breaks out of the loop.

1326-1327 Calls kmem cache alloc one tail() (See Section H.3.2.6) and places
it in the per-CPU cache.

1330 Releases the cache descriptor lock.

1332-1333 Takes one of the objects allocated in this batch and returns it.

1334 If no object was allocated, this returns. kmem cache alloc()
(See Section H.3.2.2) will grow the cache by one slab and try again.

H.3.3 Object Freeing

H.3.3.1 Function: kmem cache free() (mm/slab.c)
The call graph for this function is shown in Figure 8.15.

1576 void kmem_cache_free (kmem_cache_t *cachep, void *objp)
1577 {
1578 unsigned long flags;
1579 #if DEBUG
1580 CHECK_PAGE(virt_to_page(objp));
1581 if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
1582 BUG();
1583 #endif
1584
1585 local_irq_save(flags);
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1586 __kmem_cache_free(cachep, objp);
1587 local_irq_restore(flags);
1588 }

1576 The parameter is the cache that the object is being freed from and the object
itself.

1579-1583 If debugging is enabled, the page will first be checked with
CHECK PAGE() to make sure it is a slab page. Second, the page list will be
examined to make sure it belongs to this cache (See Figure 8.8).

1585 Interrupts are disabled to protect the path.

1586 kmem cache free() (See Section H.3.3.2) will free the object to the per-
CPU cache for the SMP case and to the global pool in the normal case.

1587 Re-enables interrupts.

H.3.3.2 Function: kmem cache free (UP Case)() (mm/slab.c)
This covers what the function looks like in the UP case. Clearly, it simply

releases the object to the slab.

1493 static inline void __kmem_cache_free (kmem_cache_t *cachep,
void* objp)

1494 {
1517 kmem_cache_free_one(cachep, objp);
1519 }

H.3.3.3 Function: kmem cache free (SMP Case)() (mm/slab.c)
This case is slightly more interesting. In this case, the object is released to the

per-CPU cache if it is available.

1493 static inline void __kmem_cache_free (kmem_cache_t *cachep,
void* objp)

1494 {
1496 cpucache_t *cc = cc_data(cachep);
1497
1498 CHECK_PAGE(virt_to_page(objp));
1499 if (cc) {
1500 int batchcount;
1501 if (cc->avail < cc->limit) {
1502 STATS_INC_FREEHIT(cachep);
1503 cc_entry(cc)[cc->avail++] = objp;
1504 return;
1505 }
1506 STATS_INC_FREEMISS(cachep);
1507 batchcount = cachep->batchcount;
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1508 cc->avail -= batchcount;
1509 free_block(cachep,
1510 &cc_entry(cc)[cc->avail],batchcount);
1511 cc_entry(cc)[cc->avail++] = objp;
1512 return;
1513 } else {
1514 free_block(cachep, &objp, 1);
1515 }
1519 }

1496 Gets the data for this per-CPU cache (See Section 8.5.1).

1498 Makes sure the page is a slab page.

1499-1513 If a per-CPU cache is available, this tries to use it. This is not always
available. During cache destruction, for instance, the per-CPU caches are
already gone.

1501-1505 If the number available in the per-CPU cache is below limit, this adds
the object to the free list and returns.

1506 Updates statistics if enabled.

1507 The pool has overflowed, so batchcount number of objects is going to be
freed to the global pool.

1508 Updates the number of available (avail) objects.

1509-1510 Frees a block of objects to the global cache.

1511 Frees the requested object and places it in the per-CPU pool.

1513 If the per-CPU cache is not available, this frees this object to the global
pool.

H.3.3.4 Function: kmem cache free one() (mm/slab.c)

1414 static inline void kmem_cache_free_one(kmem_cache_t *cachep,
void *objp)

1415 {
1416 slab_t* slabp;
1417
1418 CHECK_PAGE(virt_to_page(objp));
1425 slabp = GET_PAGE_SLAB(virt_to_page(objp));
1426
1427 #if DEBUG
1428 if (cachep->flags & SLAB_DEBUG_INITIAL)
1433 cachep->ctor(objp, cachep,

SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
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1434
1435 if (cachep->flags & SLAB_RED_ZONE) {
1436 objp -= BYTES_PER_WORD;
1437 if (xchg((unsigned long *)objp, RED_MAGIC1) !=

RED_MAGIC2)
1438 BUG();
1440 if (xchg((unsigned long *)(objp+cachep->objsize -
1441 BYTES_PER_WORD), RED_MAGIC1) !=

RED_MAGIC2)
1443 BUG();
1444 }
1445 if (cachep->flags & SLAB_POISON)
1446 kmem_poison_obj(cachep, objp);
1447 if (kmem_extra_free_checks(cachep, slabp, objp))
1448 return;
1449 #endif
1450 {
1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
1452
1453 slab_bufctl(slabp)[objnr] = slabp->free;
1454 slabp->free = objnr;
1455 }
1456 STATS_DEC_ACTIVE(cachep);
1457
1459 {
1460 int inuse = slabp->inuse;
1461 if (unlikely(!--slabp->inuse)) {
1462 /* Was partial or full, now empty. */
1463 list_del(&slabp->list);
1464 list_add(&slabp->list, &cachep->slabs_free);
1465 } else if (unlikely(inuse == cachep->num)) {
1466 /* Was full. */
1467 list_del(&slabp->list);
1468 list_add(&slabp->list, &cachep->slabs_part
1469 }
1470 }
1471 }

1418 Makes sure the page is a slab page.

1425 Gets the slab descriptor for the page.

1427-1449 Debugging material. It is discussed at end of the section.

1451 Calculates the index for the object being freed.

1454 Because this object is now free, it updates the bufctl to reflect that.
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1456 If statistics are enabled, this disables the number of active objects in the
slab.

1461-1464 If inuse reaches 0, the slab is free and is moved to the slabs free
list.

1465-1468 If the number in use equals the number of objects in a slab, it is full,
so this moves it to the slabs full list.

1471 End of the function.

1428-1433 If SLAB DEBUG INITIAL is set, the constructor is called to verify the
object is in an initialized state.

1435-1444 Verifies the red marks at either end of the object are still there. This
will check for writes beyond the boundaries of the object and for double frees.

1445-1446 Poisons the freed object with a known pattern.

1447-1448 This function will confirm the object is a part of this slab and cache.
It will then check the free list (bufctl) to make sure this is not a double free.

H.3.3.5 Function: free block() (mm/slab.c)
This function is only used in the SMP case when the per-CPU cache gets too

full. It is used to free a batch of objects in bulk.

1481 static void free_block (kmem_cache_t* cachep, void** objpp,
int len)

1482 {
1483 spin_lock(&cachep->spinlock);
1484 __free_block(cachep, objpp, len);
1485 spin_unlock(&cachep->spinlock);
1486 }

1481 The parameters are the following:

cachep The cache that objects are being freed from

objpp The pointer to the first object to free

len The number of objects to free

1483 Acquires a lock to the cache descriptor.

1484 free block()(See Section H.3.3.6) performs the actual task of freeing up
each of the pages.

1485 Releases the lock.
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H.3.3.6 Function: free block() (mm/slab.c)
This function is responsible for freeing each of the objects in the per-CPU array

objpp.

1474 static inline void __free_block (kmem_cache_t* cachep,
1475 void** objpp, int len)
1476 {
1477 for ( ; len > 0; len--, objpp++)
1478 kmem_cache_free_one(cachep, *objpp);
1479 }

1474 The parameters are the cachep the objects belong to, the list of objects
(objpp) and the number of objects to free (len).

1477 Loops len number of times.

1478 Frees an object from the array.
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H.4 Sizes Cache
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H.4.1 Initializing the Sizes Cache

H.4.1.1 Function: kmem cache sizes init() (mm/slab.c)
This function is responsible for creating pairs of caches for small memory buffers

suitable for either normal or DMA memory.

436 void __init kmem_cache_sizes_init(void)
437 {
438 cache_sizes_t *sizes = cache_sizes;
439 char name[20];
440
444 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
445 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
446 do {
452 snprintf(name, sizeof(name), "size-%Zd",

sizes->cs_size);
453 if (!(sizes->cs_cachep =
454 kmem_cache_create(name, sizes->cs_size,
455 0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {
456 BUG();
457 }
458
460 if (!(OFF_SLAB(sizes->cs_cachep))) {
461 offslab_limit = sizes->cs_size-sizeof(slab_t);
462 offslab_limit /= 2;
463 }
464 snprintf(name, sizeof(name), "size-%Zd(DMA)",

sizes->cs_size);
465 sizes->cs_dmacachep = kmem_cache_create(name,

sizes->cs_size, 0,
466 SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN,

NULL, NULL);
467 if (!sizes->cs_dmacachep)
468 BUG();
469 sizes++;
470 } while (sizes->cs_size);
471 }
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438 Gets a pointer to the cache sizes array.

439 The human-readable name of the cache. It should be sized CACHE NAMELEN,
which is defined to be 20 bytes long.

444-445 slab break gfp order determines how many pages a slab may use unless
0 objects fit into the slab. It is statically initialized to BREAK GFP ORDER LO
(1). This check sees if more than 32MiB of memory is available, and, if it is,
it allows BREAK GFP ORDER HI number of pages to be used because internal
fragmentation is more acceptable when more memory is available.

446-470 Creates two caches for each size of memory allocation needed.

452 Stores the human-readable cache name in name.

453-454 Creates the cache, aligned to the L1 cache.

460-463 Calculates the off-slab bufctl limit, which determines the number of
objects that can be stored in a cache when the slab descriptor is kept off-
cache.

464 The human-readable name for the cache for DMA use.

465-466 Creates the cache, aligned to the L1 cache and suitable for the DMA
user.

467 If the cache failed to allocate, it is a bug. If memory is unavailable this early,
the machine will not boot.

469 Moves to the next element in the cache sizes array.

470 The array is terminated with a 0 as the last element.

H.4.2 kmalloc()

H.4.2.1 Function: kmalloc() (mm/slab.c)
The call graph for this function is shown in Figure 8.16.

1555 void * kmalloc (size_t size, int flags)
1556 {
1557 cache_sizes_t *csizep = cache_sizes;
1558
1559 for (; csizep->cs_size; csizep++) {
1560 if (size > csizep->cs_size)
1561 continue;
1562 return __kmem_cache_alloc(flags & GFP_DMA ?
1563 csizep->cs_dmacachep :

csizep->cs_cachep, flags);
1564 }
1565 return NULL;
1566 }
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1557 cache sizes is the array of caches for each size (See Section 8.4).

1559-1564 Starting with the smallest cache, this examines the size of each cache
until one large enough to satisfy the request is found.

1562 If the allocation is for use with DMA, this allocates an object from
cs dmacachep. If not, it uses the cs cachep.

1565 If a sizes cache of sufficient size was not available or an object could not be
allocated, this returns failure.

H.4.3 kfree()

H.4.3.1 Function: kfree() (mm/slab.c)
The call graph for this function is shown in Figure 8.17. It is worth noting that

the work this function does is almost identical to the function kmem cache free()
with debugging enabled (See Section H.3.3.1).

1597 void kfree (const void *objp)
1598 {
1599 kmem_cache_t *c;
1600 unsigned long flags;
1601
1602 if (!objp)
1603 return;
1604 local_irq_save(flags);
1605 CHECK_PAGE(virt_to_page(objp));
1606 c = GET_PAGE_CACHE(virt_to_page(objp));
1607 __kmem_cache_free(c, (void*)objp);
1608 local_irq_restore(flags);
1609 }

1602 Returns if the pointer is NULL. This is possible if a caller used kmalloc()
and had a catch-all failure routine that called kfree() immediately.

1604 Disables interrupts.

1605 Makes sure the page that this object is in is a slab page.

1606 Gets the cache that this pointer belongs to (See Section 8.2).

1607 Frees the memory object.

1608 Re-enables interrupts.
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H.5 Per-CPU Object Cache

Contents
H.5 Per-CPU Object Cache 504
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H.5.2.2 Function: do ccupdate local() 509

H.5.3 Draining a Per-CPU Cache 509
H.5.3.1 Function: drain cpu caches() 509

The structure of the per-CPU object cache and how objects are added or re-
moved from it is covered in detail in Sections 8.5.1 and 8.5.2.

H.5.1 Enabling Per-CPU Caches

H.5.1.1 Function: enable all cpucaches() (mm/slab.c)

enable_all_cpucaches

enable_cpucache

kmem_tune_cpucache

smp_call_function_all_cpus

do_ccupdate_local

Figure H.1. Call Graph: enable all cpucaches()

This function locks the cache chain and enables the cpucache for every cache.
This is important after the cache cache and sizes cache have been enabled.
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1714 static void enable_all_cpucaches (void)
1715 {
1716 struct list_head* p;
1717
1718 down(&cache_chain_sem);
1719
1720 p = &cache_cache.next;
1721 do {
1722 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
1723
1724 enable_cpucache(cachep);
1725 p = cachep->next.next;
1726 } while (p != &cache_cache.next);
1727
1728 up(&cache_chain_sem);
1729 }

1718 Obtains the semaphore to the cache chain.

1719 Gets the first cache on the chain.

1721-1726 Cycles through the whole chain.

1722 Gets a cache from the chain. This code will skip the first cache on the chain,
but cache cache does not need a cpucache because it is so rarely used.

1724 Enables the cpucache.

1725 Moves to the next cache on the chain.

1726 Releases the cache chain semaphore.

H.5.1.2 Function: enable cpucache() (mm/slab.c)
This function calculates what the size of a cpucache should be based on the size

of the objects the cache contains before calling kmem tune cpucache(), which does
the actual allocation.

1693 static void enable_cpucache (kmem_cache_t *cachep)
1694 {
1695 int err;
1696 int limit;
1697
1699 if (cachep->objsize > PAGE_SIZE)
1700 return;
1701 if (cachep->objsize > 1024)
1702 limit = 60;
1703 else if (cachep->objsize > 256)
1704 limit = 124;
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1705 else
1706 limit = 252;
1707
1708 err = kmem_tune_cpucache(cachep, limit, limit/2);
1709 if (err)
1710 printk(KERN_ERR

"enable_cpucache failed for %s, error %d.\n",
1711 cachep->name, -err);
1712 }

1699-1700 If an object is larger than a page, return to avoid creating a per-CPU
cache for this object type because per-CPU caches are too expensive.

1701-1702 If an object is larger than 1KiB, this keeps the cpucache lower than
3MiB in size. The limit is set to 124 objects to take the size of the cpucache
descriptors into account.

1703-1704 For smaller objects, this just makes sure the cache does not go above
3MiB in size.

1708 Allocates the memory for the cpucache.

1710-1711 Prints out an error message if the allocation failed.

H.5.1.3 Function: kmem tune cpucache() (mm/slab.c)
This function is responsible for allocating memory for the cpucaches.

For each CPU on the system, kmalloc gives a block of memory large
enough for one cpucache and fills a ccupdate struct t struct. The function
smp call function all cpus() then calls do ccupdate local(), which swaps the
new information with the old information in the cache descriptor.

1639 static int kmem_tune_cpucache (kmem_cache_t* cachep,
int limit, int batchcount)

1640 {
1641 ccupdate_struct_t new;
1642 int i;
1643
1644 /*
1645 * These are admin-provided, so we are more graceful.
1646 */
1647 if (limit < 0)
1648 return -EINVAL;
1649 if (batchcount < 0)
1650 return -EINVAL;
1651 if (batchcount > limit)
1652 return -EINVAL;
1653 if (limit != 0 && !batchcount)
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1654 return -EINVAL;
1655
1656 memset(&new.new,0,sizeof(new.new));
1657 if (limit) {
1658 for (i = 0; i< smp_num_cpus; i++) {
1659 cpucache_t* ccnew;
1660
1661 ccnew = kmalloc(sizeof(void*)*limit+
1662 sizeof(cpucache_t),

GFP_KERNEL);
1663 if (!ccnew)
1664 goto oom;
1665 ccnew->limit = limit;
1666 ccnew->avail = 0;
1667 new.new[cpu_logical_map(i)] = ccnew;
1668 }
1669 }
1670 new.cachep = cachep;
1671 spin_lock_irq(&cachep->spinlock);
1672 cachep->batchcount = batchcount;
1673 spin_unlock_irq(&cachep->spinlock);
1674
1675 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
1676
1677 for (i = 0; i < smp_num_cpus; i++) {
1678 cpucache_t* ccold = new.new[cpu_logical_map(i)];
1679 if (!ccold)
1680 continue;
1681 local_irq_disable();
1682 free_block(cachep, cc_entry(ccold), ccold->avail);
1683 local_irq_enable();
1684 kfree(ccold);
1685 }
1686 return 0;
1687 oom:
1688 for (i--; i >= 0; i--)
1689 kfree(new.new[cpu_logical_map(i)]);
1690 return -ENOMEM;
1691 }

1639 The parameters of the function are the following:

• cachep The cache this cpucache is being allocated for

• limit The total number of objects that can exist in the cpucache

• batchcount The number of objects to allocate in one batch when the
cpucache is empty
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1647 The number of objects in the cache cannot be negative.

1649 A negative number of objects cannot be allocated.

1651 A batch of objects greater than the limit cannot be allocated.

1653 A batchcount must be provided if the limit is positive.

1656 Zero-fills the update struct.

1657 If a limit is provided, this allocates memory for the cpucache.

1658-1668 For every CPU, this allocates a cpucache.

1661 The amount of memory needed is limit number of pointers and the size of
the cpucache descriptor.

1663 If out of memory, this cleans up and exits.

1665-1666 Fills in the fields for the cpucache descriptor.

1667 Fills in the information for ccupdate update t struct.

1670 Tells the ccupdate update t struct what cache is being updated.

1671-1673 Acquires an interrupt-safe lock to the cache descriptor and sets its
batchcount.

1675 Gets each CPU to update its cpucache information for itself. This swaps
the old cpucaches in the cache descriptor with the new ones in new using
do ccupdate local() (See Section H.5.2.2).

1677-1685 After smp call function all cpus() (See Section H.5.2.1), the old
cpucaches are in new. This block of code cycles through them all, frees any
objects in them and deletes the old cpucache.

1686 Returns success.

1688 In the event there is no memory, this deletes all cpucaches that have been
allocated up until this point and returns failure.

H.5.2 Updating Per-CPU Information

H.5.2.1 Function: smp call function all cpus() (mm/slab.c)
This calls the function func() for all CPUs. In the context of the slab allocator,

the function is do ccupdate local(), and the argument is ccupdate struct t.

859 static void smp_call_function_all_cpus(void (*func) (void *arg),
void *arg)

860 {
861 local_irq_disable();
862 func(arg);
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863 local_irq_enable();
864
865 if (smp_call_function(func, arg, 1, 1))
866 BUG();
867 }

861-863 Disables interrupts locally and calls the function for this CPU.

865 For all other CPUs, this calls the function. smp call function() is an
architecture-specific function and will not be discussed further here.

H.5.2.2 Function: do ccupdate local() (mm/slab.c)
This function swaps the cpucache information in the cache descriptor with the

information in info for this CPU.

874 static void do_ccupdate_local(void *info)
875 {
876 ccupdate_struct_t *new = (ccupdate_struct_t *)info;
877 cpucache_t *old = cc_data(new->cachep);
878
879 cc_data(new->cachep) = new->new[smp_processor_id()];
880 new->new[smp_processor_id()] = old;
881 }

876 info is a pointer to the ccupdate struct t, which is then passed to
smp call function all cpus()(See Section H.5.2.1).

877 Part of the ccupdate struct t is a pointer to the cache that this cpucache
belongs to. cc data() returns the cpucache t for this processor.

879 Places the new cpucache in the cache descriptor. cc data() returns the
pointer to the cpucache for this CPU.

880 Replaces the pointer in new with the old cpucache so that it can be deleted later
by the caller of smp call function call cpus(), kmem tune cpucache(), for
example.

H.5.3 Draining a Per-CPU Cache

This function is called to drain all objects in a per-CPU cache. It is called when a
cache needs to be shrunk for the freeing up of slabs. A slab would not be freeable
if an object was in the per-CPU cache, even though it is not in use.

H.5.3.1 Function: drain cpu caches() (mm/slab.c)

885 static void drain_cpu_caches(kmem_cache_t *cachep)
886 {
887 ccupdate_struct_t new;
888 int i;
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889
890 memset(&new.new,0,sizeof(new.new));
891
892 new.cachep = cachep;
893
894 down(&cache_chain_sem);
895 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
896
897 for (i = 0; i < smp_num_cpus; i++) {
898 cpucache_t* ccold = new.new[cpu_logical_map(i)];
899 if (!ccold || (ccold->avail == 0))
900 continue;
901 local_irq_disable();
902 free_block(cachep, cc_entry(ccold), ccold->avail);
903 local_irq_enable();
904 ccold->avail = 0;
905 }
906 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
907 up(&cache_chain_sem);
908 }

890 Blanks the update structure because it is going to be clearing all data.

892 Sets new.cachep to cachep so that smp call function all cpus() knows
what cache it is affecting.

894 Acquires the cache descriptor semaphore.

895 do ccupdate local()(See Section H.5.2.2) swaps the cpucache t informa-
tion in the cache descriptor with the ones in new so they can be altered here.

897-905 For each CPU in the system,...

898 Gets the cpucache descriptor for this CPU.

899 If the structure does not exist for some reason or no objects are available in
it, this moves to the next CPU.

901 Disables interrupts on this processor. It is possible an allocation from an
interrupt handler elsewhere would try to access the per-CPU cache.

902 Frees the block of objects with free block() (See Section H.3.3.5).

903 Re-enables interrupts.

904 Shows that no objects are available.

906 The information for each CPU has been updated, so this calls
do ccupdate local() (See Section H.5.2.2) for each CPU to put the infor-
mation back into the cache descriptor.

907 Releases the semaphore for the cache chain.
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H.6.1.1 Function: kmem cache init() (mm/slab.c)
This function will do the following:

• Initialize the cache chain linked list.

• Initialize a mutex for accessing the cache chain.

• Calculate the cache cache color.

416 void __init kmem_cache_init(void)
417 {
418 size_t left_over;
419
420 init_MUTEX(&cache_chain_sem);
421 INIT_LIST_HEAD(&cache_chain);
422
423 kmem_cache_estimate(0, cache_cache.objsize, 0,
424 &left_over, &cache_cache.num);
425 if (!cache_cache.num)
426 BUG();
427
428 cache_cache.colour = left_over/cache_cache.colour_off;
429 cache_cache.colour_next = 0;
430 }

420 Initializes the semaphore for access to the cache chain.

421 Initializes the cache chain linked list.

423 kmem cache estimate()(See Section H.1.2.1) calculates the number of ob-
jects and amount of bytes wasted.

425 If even one kmem cache t cannot be stored in a page, something is seriously
wrong.

428 colour is the number of different cache lines that can be used while still
keeping the L1 cache alignment.

429 colour next indicates which line to use next. It starts at 0.

S
la

b
A

llo
ca

to
r



512 Slab Allocator Appendix H

H.7 Interfacing with the Buddy Allocator
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H.7.1.1 Function: kmem getpages() (mm/slab.c)
This allocates pages for the slab allocator.

486 static inline void * kmem_getpages (kmem_cache_t *cachep,
unsigned long flags)

487 {
488 void *addr;
495 flags |= cachep->gfpflags;
496 addr = (void*) __get_free_pages(flags, cachep->gfporder);
503 return addr;
504 }

495 Whatever flags were requested for the allocation, this appends the cache flags
to it. The only flag it may append is ZONE DMA if the cache requires DMA
memory.

496 Allocates from the buddy allocator with get free pages() (See
Section F.2.3).

503 Returns the pages or NULL if it failed.

H.7.1.2 Function: kmem freepages() (mm/slab.c)
This frees pages for the slab allocator. Before it calls the buddy allocator API,

it will remove the PG slab bit from the page flags.

507 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)
508 {
509 unsigned long i = (1<<cachep->gfporder);
510 struct page *page = virt_to_page(addr);
511
517 while (i--) {
518 PageClearSlab(page);
519 page++;
520 }
521 free_pages((unsigned long)addr, cachep->gfporder);
522 }

509 Retrieves the order used for the original allocation.

510 Gets the struct page for the address.

517-520 Clears the PG slab bit on each page.

521 Frees the pages to the buddy allocator with free pages() (See Section F.4.1).
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I.1 Mapping High Memory Pages
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I.1.1 Function: kmap() (include/asm-i386/highmem.c)
This API is used by callers willing to block.

62 #define kmap(page) __kmap(page, 0)

62 The core function kmap() is called with the second parameter indicating that
the caller is willing to block.

I.1.2 Function: kmap nonblock() (include/asm-i386/highmem.c)

63 #define kmap_nonblock(page) __kmap(page, 1)

63 The core function kmap() is called with the second parameter indicating that
the caller is not willing to block.

I.1.3 Function: kmap() (include/asm-i386/highmem.h)
The call graph for this function is shown in Figure 9.1.

65 static inline void *kmap(struct page *page, int nonblocking)
66 {
67 if (in_interrupt())
68 out_of_line_bug();
69 if (page < highmem_start_page)
70 return page_address(page);
71 return kmap_high(page);
72 }

67-68 This function may not be used from interrupt because it may sleep. In-
stead of BUG(), out of line bug() calls do exit() and returns an error code.
BUG() is not used because BUG() kills the process with extreme prejudice,
which would result in the fabled “Aiee, killing interrupt handler!” kernel
panic.

69-70 If the page is already in low memory, this returns a direct mapping.

71 Calls kmap high()(See Section I.1.4) for the beginning of the architecture-
independent work.
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I.1.4 Function: kmap high() (mm/highmem.c)

132 void *kmap_high(struct page *page, int nonblocking)
133 {
134 unsigned long vaddr;
135
142 spin_lock(&kmap_lock);
143 vaddr = (unsigned long) page->virtual;
144 if (!vaddr) {
145 vaddr = map_new_virtual(page, nonblocking);
146 if (!vaddr)
147 goto out;
148 }
149 pkmap_count[PKMAP_NR(vaddr)]++;
150 if (pkmap_count[PKMAP_NR(vaddr)] < 2)
151 BUG();
152 out:
153 spin_unlock(&kmap_lock);
154 return (void*) vaddr;
155 }

142 The kmap lock protects the virtual field of a page and the pkmap count
array.

143 Gets the virtual address of the page.

144-148 If it is not already mapped, this calls map new virtual(), which will
map the page and returns the virtual address. If it fails, goto out to free the
spinlock and return NULL.

149 Increases the reference count for this page mapping.

150-151 If the count is currently less than 2, it is a serious bug. In reality, severe
breakage would have to be introduced to cause this to happen.

153 Frees the kmap lock.

I.1.5 Function: map new virtual() (mm/highmem.c)
This function is divided into three principal parts: scanning for a free slot,

waiting on a queue if none is available and mapping the page.

80 static inline unsigned long map_new_virtual(struct page *page)
81 {
82 unsigned long vaddr;
83 int count;
84
85 start:
86 count = LAST_PKMAP;
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87 /* Find an empty entry */
88 for (;;) {
89 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
90 if (!last_pkmap_nr) {
91 flush_all_zero_pkmaps();
92 count = LAST_PKMAP;
93 }
94 if (!pkmap_count[last_pkmap_nr])
95 break; /* Found a usable entry */
96 if (--count)
97 continue;
98
99 if (nonblocking)
100 return 0;

86 Starts scanning at the last possible slot.

88-122 This look keeps scanning and waiting until a slot becomes free. This allows
the possibility of an infinite loop for some processes if they were unlucky.

89 last pkmap nr is the last pkmap that was scanned. To prevent searching over
the same pages, this value is recorded so that the list is searched circularly.
When it reaches LAST PKMAP, it wraps around to 0.

90-93 When last pkmap nr wraps around, this calls flush all zero pkmaps()
(See Section I.1.6), which will set all entries from 1 to 0 in the pkmap count
array before flushing the TLB. The count is set back to LAST PKMAP to restart
scanning.

94-95 If this element is 0, a usable slot has been found for the page.

96-97 Moves to the next index to scan.

99-100 The next block of code is going to sleep while waiting for a slot to be free.
If the caller requested that the function not block, it returns now.

105 {
106 DECLARE_WAITQUEUE(wait, current);
107
108 current->state = TASK_UNINTERRUPTIBLE;
109 add_wait_queue(&pkmap_map_wait, &wait);
110 spin_unlock(&kmap_lock);
111 schedule();
112 remove_wait_queue(&pkmap_map_wait, &wait);
113 spin_lock(&kmap_lock);
114
115 /* Somebody else might have mapped it while we

slept */
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116 if (page->virtual)
117 return (unsigned long) page->virtual;
118
119 /* Re-start */
120 goto start;
121 }
122 }

If a slot is not available after scanning all the pages once, we sleep on the
pkmap map wait queue until we are woken up after an unmap.

106 Declares the wait queue.

108 Sets the task as interruptible because we are sleeping in kernel space.

109 Adds ourselves to the pkmap map wait queue.

110 Frees the kmap lock spinlock.

111 Calls schedule(), which will put us to sleep. We are woken up after a slot
becomes free after an unmap.

112 Removes ourselves from the wait queue.

113 Reacquires kmap lock.

116-117 If someone else mapped the page while we slept, this just returns the
address, and the reference count will be incremented by kmap high().

120 Restarts the scanning.

123 vaddr = PKMAP_ADDR(last_pkmap_nr);
124 set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page,

kmap_prot));
125
126 pkmap_count[last_pkmap_nr] = 1;
127 page->virtual = (void *) vaddr;
128
129 return vaddr;
130 }

This block is when a slot has been found, and it maps the page.

123 Gets the virtual address for the slot found.

124 Makes the PTE entry with the page and required protection and places it in
the pagetables at the found slot.

126 Initializes the value in the pkmap count array to 1. The count is incremented
in the parent function, and we are sure this is the first mapping if we are in
this function in the first place.
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127 Sets the virtual field for the page.

129 Returns the virtual address.

I.1.6 Function: flush all zero pkmaps() (mm/highmem.c)
This function cycles through the pkmap count array and sets all entries from 1

to 0 before flushing the TLB.

42 static void flush_all_zero_pkmaps(void)
43 {
44 int i;
45
46 flush_cache_all();
47
48 for (i = 0; i < LAST_PKMAP; i++) {
49 struct page *page;
50
57 if (pkmap_count[i] != 1)
58 continue;
59 pkmap_count[i] = 0;
60
61 /* sanity check */
62 if (pte_none(pkmap_page_table[i]))
63 BUG();
64
72 page = pte_page(pkmap_page_table[i]);
73 pte_clear(&pkmap_page_table[i]);
74
75 page->virtual = NULL;
76 }
77 flush_tlb_all();
78 }

46 As the global pagetables are about to change, the CPU caches of all processors
have to be flushed.

48-76 Cycles through the entire pkmap count array.

57-58 If the element is not 1, this moves to the next element.

59 Sets from 1 to 0.

62-63 Makes sure the PTE is not somehow mapped.

72-73 Unmaps the page from the PTE and clears the PTE.

75 Updates the virtual field as the page is unmapped.

77 Flushes the TLB.
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I.2 Mapping High Memory Pages Atomically
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I.2.1 Function: kmap atomic() 519

The following is an example km type enumeration for the x86. It lists the dif-
ferent uses interrupts have for atomically calling kmap. Note how KM TYPE NR is the
last element, so it doubles up as a count of the number of elements.

4 enum km_type {
5 KM_BOUNCE_READ,
6 KM_SKB_SUNRPC_DATA,
7 KM_SKB_DATA_SOFTIRQ,
8 KM_USER0,
9 KM_USER1,
10 KM_BH_IRQ,
11 KM_TYPE_NR
12 };

I.2.1 Function: kmap atomic() (include/asm-i386/highmem.h)
This is the atomic version of kmap(). Note that, at no point, is a spinlock held

or does it sleep. A spinlock is not required because every processor has its own
reserved space.

89 static inline void *kmap_atomic(struct page *page,
enum km_type type)

90 {
91 enum fixed_addresses idx;
92 unsigned long vaddr;
93
94 if (page < highmem_start_page)
95 return page_address(page);
96
97 idx = type + KM_TYPE_NR*smp_processor_id();
98 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
99 #if HIGHMEM_DEBUG
100 if (!pte_none(*(kmap_pte-idx)))
101 out_of_line_bug();
102 #endif
103 set_pte(kmap_pte-idx, mk_pte(page, kmap_prot));
104 __flush_tlb_one(vaddr);
105
106 return (void*) vaddr;
107 }

89 The parameters are the page to map and the type of usage required. One slot
per usage per processor is maintained.
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94-95 If the page is in low memory, this returns a direct mapping.

97 type gives which slot to use. KM TYPE NR * smp processor id() gives the set
of slots reserved for this processor.

98 Gets the virtual address.

100-101 For debugging code. In reality, a PTE will always exist.

103 Sets the PTE into the reserved slot.

104 Flushes the TLB for this slot.

106 Returns the virtual address.
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Contents
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I.3.1 Function: kunmap() 521
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I.3.1 Function: kunmap() (include/asm-i386/highmem.h)

74 static inline void kunmap(struct page *page)
75 {
76 if (in_interrupt())
77 out_of_line_bug();
78 if (page < highmem_start_page)
79 return;
80 kunmap_high(page);
81 }

76-77 kunmap() cannot be called from interrupt, so it exits gracefully.

78-79 If the page is already in low memory, there is no need to unmap.

80 Calls the architecture-independent function kunmap high().

I.3.2 Function: kunmap high() (mm/highmem.c)
This is the architecture-independent part of the kunmap() operation.

157 void kunmap_high(struct page *page)
158 {
159 unsigned long vaddr;
160 unsigned long nr;
161 int need_wakeup;
162
163 spin_lock(&kmap_lock);
164 vaddr = (unsigned long) page->virtual;
165 if (!vaddr)
166 BUG();
167 nr = PKMAP_NR(vaddr);
168
173 need_wakeup = 0;
174 switch (--pkmap_count[nr]) {
175 case 0:
176 BUG();
177 case 1:
188 need_wakeup = waitqueue_active(&pkmap_map_wait);
189 }
190 spin_unlock(&kmap_lock);
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191
192 /* do wake-up, if needed, race-free outside of the spin lock */
193 if (need_wakeup)
194 wake_up(&pkmap_map_wait);
195 }

163 Acquires kmap lock, protecting the virtual field and the pkmap count array.

164 Gets the virtual page.

165-166 If the virtual field is not set, it is a double unmapping or unmapping of
a nonmapped page, so it uses BUG().

167 Gets the index within the pkmap count array.

173 By default, a wakeup call to processes calling kmap() is not needed.

174 Checks the value of the index after decrement.

175-176 Falling to 0 is a bug because the TLB needs to be flushed to make 0 a
valid entry.

177-188 If it has dropped to 1 (the entry is now free, but needs a TLB flush), this
checks to see if anyone is sleeping on the pkmap map wait queue. If necessary,
the queue will be woken up after the spinlock is freed.

190 Frees kmap lock.

193-194 If waiters are on the queue and a slot has been freed, this wakes them
up.
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I.4.1 Function: kunmap atomic() (include/asm-i386/highmem.h)
This entire function is debug code. The reason is that, because pages are only

mapped here atomically, they will only be used in a tiny place for a short time before
being unmapped. It is safe to leave the page there because it will not be referenced
after unmapping, and another mapping to the same slot will simply replace it.

109 static inline void kunmap_atomic(void *kvaddr, enum km_type type)
110 {
111 #if HIGHMEM_DEBUG
112 unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
113 enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();
114
115 if (vaddr < FIXADDR_START) // FIXME
116 return;
117
118 if (vaddr != __fix_to_virt(FIX_KMAP_BEGIN+idx))
119 out_of_line_bug();
120
121 /*
122 * force other mappings to Oops if they’ll try to access
123 * this pte without first remap it
124 */
125 pte_clear(kmap_pte-idx);
126 __flush_tlb_one(vaddr);
127 #endif
128 }

112 Gets the virtual address and ensures it is aligned to a page boundary.

115-116 If the address supplied is not in the fixed area, this returns.

118-119 If the address does not correspond to the reserved slot for this type of
usage and processor, this declares it.

125-126 Unmaps the page now so that, if it is referenced again, it will cause an
Oops.
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I.5 Bounce Buffers
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I.5.1 Creating Bounce Buffers

I.5.1.1 Function: create bounce() (mm/highmem.c)
The call graph for this function is shown in Figure 9.3. It is a high-level function

for the creation of bounce buffers. It is broken into two major parts, the allocation
of the necessary resources and the copying of data from the template.

405 struct buffer_head * create_bounce(int rw,
struct buffer_head * bh_orig)

406 {
407 struct page *page;
408 struct buffer_head *bh;
409
410 if (!PageHighMem(bh_orig->b_page))
411 return bh_orig;
412
413 bh = alloc_bounce_bh();
420 page = alloc_bounce_page();
421
422 set_bh_page(bh, page, 0);
423

405 The parameters of the function are the following:

• rw is set to 1 if this is a write buffer.
• bh orig is the template buffer head to copy from.

410-411 If the template buffer head is already in low memory, this simply returns
it.

413 Allocates a buffer head from the slab allocator or from the emergency pool if
it fails.

420 Allocates a page from the buddy allocator or the emergency pool if it fails.
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422 Associates the allocated page with the allocated buffer head.

424 bh->b_next = NULL;
425 bh->b_blocknr = bh_orig->b_blocknr;
426 bh->b_size = bh_orig->b_size;
427 bh->b_list = -1;
428 bh->b_dev = bh_orig->b_dev;
429 bh->b_count = bh_orig->b_count;
430 bh->b_rdev = bh_orig->b_rdev;
431 bh->b_state = bh_orig->b_state;
432 #ifdef HIGHMEM_DEBUG
433 bh->b_flushtime = jiffies;
434 bh->b_next_free = NULL;
435 bh->b_prev_free = NULL;
436 /* bh->b_this_page */
437 bh->b_reqnext = NULL;
438 bh->b_pprev = NULL;
439 #endif
440 /* bh->b_page */
441 if (rw == WRITE) {
442 bh->b_end_io = bounce_end_io_write;
443 copy_from_high_bh(bh, bh_orig);
444 } else
445 bh->b_end_io = bounce_end_io_read;
446 bh->b_private = (void *)bh_orig;
447 bh->b_rsector = bh_orig->b_rsector;
448 #ifdef HIGHMEM_DEBUG
449 memset(&bh->b_wait, -1, sizeof(bh->b_wait));
450 #endif
451
452 return bh;
453 }

This block populates the newly created buffer head.

431 Copies in information essentially verbatim, except for the b list field because
this buffer is not directly connected to the others on the list.

433-438 For debugging-only information.

441-444 If this is a buffer that is to be written to, then the callback function to end
the I/O is bounce end io write()(See Section I.5.2.1), which is called when
the device has received all the information. Because the data exists in high
memory, it is copied “down” with copy from high bh() (See Section I.5.2.3).

437-438 If we are waiting for a device to write data into the buffer, the callback
function bounce end io read()(See Section I.5.2.2) is used.
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446-447 Copies the remaining information from the template buffer head.

452 Returns the new bounce buffer.

I.5.1.2 Function: alloc bounce bh() (mm/highmem.c)
This function first tries to allocate a buffer head from the slab allocator, and,

if that fails, an emergency pool will be used.

369 struct buffer_head *alloc_bounce_bh (void)
370 {
371 struct list_head *tmp;
372 struct buffer_head *bh;
373
374 bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO);
375 if (bh)
376 return bh;
380
381 wakeup_bdflush();

374 Tries to allocate a new buffer head from the slab allocator. Note how the
request is made to not use I/O operations that involve high I/O to avoid
recursion.

375-376 If the allocation was successful, this returns.

381 If it was not, this wakes up bdflush to launder pages.

383 repeat_alloc:
387 tmp = &emergency_bhs;
388 spin_lock_irq(&emergency_lock);
389 if (!list_empty(tmp)) {
390 bh = list_entry(tmp->next, struct buffer_head,

b_inode_buffers);
391 list_del(tmp->next);
392 nr_emergency_bhs--;
393 }
394 spin_unlock_irq(&emergency_lock);
395 if (bh)
396 return bh;
397
398 /* we need to wait I/O completion */
399 run_task_queue(&tq_disk);
400
401 yield();
402 goto repeat_alloc;
403 }

The allocation from the slab failed, so this allocates from the emergency pool.
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387 Gets the end of the emergency buffer head list.

388 Acquires the lock protecting the pools.

389-393 If the pool is not empty, this takes a buffer head from the list and
decrements the nr emergency bhs counter.

394 Releases the lock.

395-396 If the allocation was successful, this returns it.

399 If not, we are seriously short of memory, and the only way the pool will
replenish is if high memory I/O completes. Therefore, requests on tq disk
are started so that the data will be written to disk, probably freeing up pages
in the process.

401 Yields the processor.

402 Attempts to allocate from the emergency pools again.

I.5.1.3 Function: alloc bounce page() (mm/highmem.c)
This function is essentially identical to alloc bounce bh(). It first tries to

allocate a page from the buddy allocator, and, if that fails, an emergency pool will
be used.

333 struct page *alloc_bounce_page (void)
334 {
335 struct list_head *tmp;
336 struct page *page;
337
338 page = alloc_page(GFP_NOHIGHIO);
339 if (page)
340 return page;
344
345 wakeup_bdflush();

338-340 Allocates from the buddy allocator and returns the page if successful.

345 Wakes bdflush to launder pages.

347 repeat_alloc:
351 tmp = &emergency_pages;
352 spin_lock_irq(&emergency_lock);
353 if (!list_empty(tmp)) {
354 page = list_entry(tmp->next, struct page, list);
355 list_del(tmp->next);
356 nr_emergency_pages--;
357 }
358 spin_unlock_irq(&emergency_lock);
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359 if (page)
360 return page;
361
362 /* we need to wait I/O completion */
363 run_task_queue(&tq_disk);
364
365 yield();
366 goto repeat_alloc;
367 }

351 Gets the end of the emergency buffer head list.

352 Acquires the lock protecting the pools.

353-357 If the pool is not empty, this takes a page from the list and decrements
the number of available nr emergency pages.

358 Releases the lock.

359-360 If the allocation was successful, this returns it.

363 Runs the I/O task queue to try and replenish the emergency pool.

365 Yields the processor.

366 Attempts to allocate from the emergency pools again.

I.5.2 Copying Using Bounce Buffers

I.5.2.1 Function: bounce end io write() (mm/highmem.c)
This function is called when a bounce buffer used for writing to a device com-

pletes I/O. Because the buffer is copied from high memory and to the device, there
is nothing left to do except reclaim the resources.

319 static void bounce_end_io_write (struct buffer_head *bh,
int uptodate)

320 {
321 bounce_end_io(bh, uptodate);
322 }

I.5.2.2 Function: bounce end io read() (mm/highmem.c)
This is called when data has been read from the device and needs to be copied

to high memory. It is called from interrupt, so it has to be more careful.

324 static void bounce_end_io_read (struct buffer_head *bh,
int uptodate)

325 {
326 struct buffer_head *bh_orig =

(struct buffer_head *)(bh->b_private);
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327
328 if (uptodate)
329 copy_to_high_bh_irq(bh_orig, bh);
330 bounce_end_io(bh, uptodate);
331 }

328-329 The data is just copied to the bounce buffer to be moved to high memory
with copy to high bh irq() (See Section I.5.2.4).

330 Reclaims the resources.

I.5.2.3 Function: copy from high bh() (mm/highmem.c)
This function copies data from a high memory buffer head to a bounce buffer.

215 static inline void copy_from_high_bh (struct buffer_head *to,
216 struct buffer_head *from)
217 {
218 struct page *p_from;
219 char *vfrom;
220
221 p_from = from->b_page;
222
223 vfrom = kmap_atomic(p_from, KM_USER0);
224 memcpy(to->b_data, vfrom + bh_offset(from), to->b_size);
225 kunmap_atomic(vfrom, KM_USER0);
226 }

223 Maps the high-memory page into low memory. This path is protected by
the IRQ safe lock io request lock, so it is safe to call kmap atomic()
(See Section I.2.1).

224 Copies the data.

225 Unmaps the page.

I.5.2.4 Function: copy to high bh irq() (mm/highmem.c)
This is called from interrupt after the device has finished writing data to the

bounce buffer. This function copies data to high memory.

228 static inline void copy_to_high_bh_irq (struct buffer_head *to,
229 struct buffer_head *from)
230 {
231 struct page *p_to;
232 char *vto;
233 unsigned long flags;
234
235 p_to = to->b_page;
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236 __save_flags(flags);
237 __cli();
238 vto = kmap_atomic(p_to, KM_BOUNCE_READ);
239 memcpy(vto + bh_offset(to), from->b_data, to->b_size);
240 kunmap_atomic(vto, KM_BOUNCE_READ);
241 __restore_flags(flags);
242 }

236-237 Saves the flags and disables interrupts.

238 Maps the high-memory page into low memory.

239 Copies the data.

240 Unmaps the page.

241 Restores the interrupt flags.

I.5.2.5 Function: bounce end io() (mm/highmem.c)
This reclaims the resources used by the bounce buffers. If emergency pools are

depleted, the resources are added to it.

244 static inline void bounce_end_io (struct buffer_head *bh,
int uptodate)

245 {
246 struct page *page;
247 struct buffer_head *bh_orig =

(struct buffer_head *)(bh->b_private);
248 unsigned long flags;
249
250 bh_orig->b_end_io(bh_orig, uptodate);
251
252 page = bh->b_page;
253
254 spin_lock_irqsave(&emergency_lock, flags);
255 if (nr_emergency_pages >= POOL_SIZE)
256 __free_page(page);
257 else {
258 /*
259 * We are abusing page->list to manage
260 * the highmem emergency pool:
261 */
262 list_add(&page->list, &emergency_pages);
263 nr_emergency_pages++;
264 }
265
266 if (nr_emergency_bhs >= POOL_SIZE) {
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267 #ifdef HIGHMEM_DEBUG
268 /* Don’t clobber the constructed slab cache */
269 init_waitqueue_head(&bh->b_wait);
270 #endif
271 kmem_cache_free(bh_cachep, bh);
272 } else {
273 /*
274 * Ditto in the bh case, here we abuse b_inode_buffers:
275 */
276 list_add(&bh->b_inode_buffers, &emergency_bhs);
277 nr_emergency_bhs++;
278 }
279 spin_unlock_irqrestore(&emergency_lock, flags);
280 }

250 Calls the I/O completion callback for the original buffer head.

252 Gets the pointer to the buffer page to free.

254 Acquires the lock to the emergency pool.

255-256 If the page pool is full, this just returns the page to the buddy allocator.

257-264 Otherwise, it adds this page to the emergency pool.

266-272 If the buffer head pool is full, this just returns it to the slab allocator.

272-278 Otherwise, this adds this buffer head to the pool.

279 Releases the lock.
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I.6 Emergency Pools

Contents
I.6 Emergency Pools 532

I.6.1 Function: init emergency pool() 532

Only one function is of relevance to the emergency pools, and that is the init
function. It is called during system startup, and then the code is deleted because
it is never needed again.

I.6.1 Function: init emergency pool() (mm/highmem.c)
This creates a pool for emergency pages and for emergency buffer heads.

282 static __init int init_emergency_pool(void)
283 {
284 struct sysinfo i;
285 si_meminfo(&i);
286 si_swapinfo(&i);
287
288 if (!i.totalhigh)
289 return 0;
290
291 spin_lock_irq(&emergency_lock);
292 while (nr_emergency_pages < POOL_SIZE) {
293 struct page * page = alloc_page(GFP_ATOMIC);
294 if (!page) {
295 printk("couldn’t refill highmem emergency pages");
296 break;
297 }
298 list_add(&page->list, &emergency_pages);
299 nr_emergency_pages++;
300 }

288-289 If no high memory is available, this does not bother.

291 Acquires the lock protecting the pools.

292-300 Allocates POOL SIZE pages from the buddy allocator and adds them
to a linked list. It keeps a count of the number of pages in the pool with
nr emergency pages.

301 while (nr_emergency_bhs < POOL_SIZE) {
302 struct buffer_head * bh =

kmem_cache_alloc(bh_cachep, SLAB_ATOMIC);
303 if (!bh) {
304 printk("couldn’t refill highmem emergency bhs");
305 break;
306 }
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307 list_add(&bh->b_inode_buffers, &emergency_bhs);
308 nr_emergency_bhs++;
309 }
310 spin_unlock_irq(&emergency_lock);
311 printk("allocated %d pages and %d bhs reserved for the

highmem bounces\n",
312 nr_emergency_pages, nr_emergency_bhs);
313
314 return 0;
315 }

301-309 Allocates POOL SIZE buffer heads from the slab allocator and adds them
to a linked list linked by b inode buffers. It keeps track of how many heads
are in the pool with nr emergency bhs.

310 Releases the lock protecting the pools.

314 Returns success.
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J.1 Page Cache Operations

Contents
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J.1.1.1 Function: add to page cache() 537
J.1.1.2 Function: add to page cache unique() 538
J.1.1.3 Function: add to page cache() 539
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This section addresses how pages are added and removed from the page cache
and LRU lists, both of which are heavily intertwined.

J.1.1 Adding Pages to the Page Cache

J.1.1.1 Function: add to page cache() (mm/filemap.c)
This acquires the lock protecting the page cache before calling

add to page cache(), which will add the page to the page hash table and in-
ode queue, which allows the pages belonging to files to be found quickly.

667 void add_to_page_cache(struct page * page,
struct address_space * mapping,
unsigned long offset)

668 {
669 spin_lock(&pagecache_lock);
670 __add_to_page_cache(page, mapping,

offset, page_hash(mapping, offset));
671 spin_unlock(&pagecache_lock);
672 lru_cache_add(page);
673 }

669 Acquires the lock protecting the page hash and inode queues.

670 Calls the function that performs the real work.
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671 Releases the lock protecting the hash and inode queue.

672 Adds the page to the page cache. page hash() hashes into the page hash
table based on the mapping and the offset within the file. If a page is
returned, there was a collision, and the colliding pages are chained with the
page→next hash and page→pprev hash fields.

J.1.1.2 Function: add to page cache unique() (mm/filemap.c)
In many respects, this function is very similar to add to page cache(). The

principal difference is that this function will check the page cache with the
pagecache lock spinlock held before adding the page to the cache. It is for callers
that may race with another process for inserting a page in the cache, such as
add to swap cache()(See Section K.2.1.1).

675 int add_to_page_cache_unique(struct page * page,
676 struct address_space *mapping, unsigned long offset,
677 struct page **hash)
678 {
679 int err;
680 struct page *alias;
681
682 spin_lock(&pagecache_lock);
683 alias = __find_page_nolock(mapping, offset, *hash);
684
685 err = 1;
686 if (!alias) {
687 __add_to_page_cache(page,mapping,offset,hash);
688 err = 0;
689 }
690
691 spin_unlock(&pagecache_lock);
692 if (!err)
693 lru_cache_add(page);
694 return err;
695 }

682 Acquires the pagecache lock for examining the cache.

683 Checks if the page already exists in the cache with find page nolock()
(See Section J.1.4.3).

686-689 If the page does not exist in the cache, this adds it with
add to page cache() (See Section J.1.1.3).

691 Releases the pagecache lock.

692-693 If the page did not already exist in the page cache, it adds it to the LRU
lists with lru cache add()(See Section J.2.1.1).
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694 Returns 0 if this call entered the page into the page cache and 1 if it already
existed.

J.1.1.3 Function: add to page cache() (mm/filemap.c)
This clears all page flags, locks the page, increments the reference count for the

page and adds the page to the inode and hash queues.

653 static inline void __add_to_page_cache(struct page * page,
654 struct address_space *mapping, unsigned long offset,
655 struct page **hash)
656 {
657 unsigned long flags;
658
659 flags = page->flags & ~(1 << PG_uptodate |

1 << PG_error | 1 << PG_dirty |
1 << PG_referenced | 1 << PG_arch_1 |
1 << PG_checked);

660 page->flags = flags | (1 << PG_locked);
661 page_cache_get(page);
662 page->index = offset;
663 add_page_to_inode_queue(mapping, page);
664 add_page_to_hash_queue(page, hash);
665 }

659 Clears all page flags.

660 Locks the page.

661 Takes a reference to the page in case it gets freed prematurely.

662 Updates the index so it is known what file offset this page represents.

663 Adds the page to the inode queue with add page to inode queue()
(See Section J.1.1.4). This links the page using the page→list to the
clean pages list in the address space and points the page→mapping to
the same address space.

664 Adds it to the page hash with add page to hash queue()
(See Section J.1.1.5). The hash page was returned by page hash() in the
parent function. The page hash allows pagecache pages without having to
linearly search the inode queue.

J.1.1.4 Function: add page to inode queue() (mm/filemap.c)

85 static inline void add_page_to_inode_queue(
struct address_space *mapping, struct page * page)

86 {
87 struct list_head *head = &mapping->clean_pages;
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88
89 mapping->nrpages++;
90 list_add(&page->list, head);
91 page->mapping = mapping;
92 }

87 When this function is called, the page is clean, so mapping→clean pages is
the list of interest.

89 Increments the number of pages that belong to this mapping.

90 Adds the page to the clean list.

91 Sets the page→mapping field.

J.1.1.5 Function: add page to hash queue() (mm/filemap.c)
This adds page to the top of the hash bucket headed by p. Bear in mind that

p is an element of the array page hash table.

71 static void add_page_to_hash_queue(struct page * page,
struct page **p)

72 {
73 struct page *next = *p;
74
75 *p = page;
76 page->next_hash = next;
77 page->pprev_hash = p;
78 if (next)
79 next->pprev_hash = &page->next_hash;
80 if (page->buffers)
81 PAGE_BUG(page);
82 atomic_inc(&page_cache_size);
83 }

73 Records the current head of the hash bucket in next.

75 Updates the head of the hash bucket to be page.

76 Points page→next hash to the old head of the hash bucket.

77 Points page→pprev hash to point to the array element in page hash table.

78-79 This will point the pprev hash field to the head of the hash bucket, com-
pleting the insertion of the page into the linked list.

80-81 Checks that the page entered has no associated buffers.

82 Increments page cache size, which is the size of the page cache.
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J.1.2 Deleting Pages From the Page Cache

J.1.2.1 Function: remove inode page() (mm/filemap.c)

130 void remove_inode_page(struct page *page)
131 {
132 if (!PageLocked(page))
133 PAGE_BUG(page);
134
135 spin_lock(&pagecache_lock);
136 __remove_inode_page(page);
137 spin_unlock(&pagecache_lock);
138 }

132-133 If the page is not locked, it is a bug.

135 Acquires the lock, protecting the page cache.

136 remove inode page() (See Section J.1.2.2) is the top-level function for
when the pagecache lock is held.

137 Releases the pagecache lock.

J.1.2.2 Function: remove inode page() (mm/filemap.c)
This is the top-level function for removing a page from the pagecache for callers

with the pagecache lock spinlock held. Callers that do not have this lock acquired
should call remove inode page().

124 void __remove_inode_page(struct page *page)
125 {
126 remove_page_from_inode_queue(page);
127 remove_page_from_hash_queue(page);
128

126 remove page from inode queue() (See Section J.1.2.3) removes the page
from its address space at page→mapping.

127 remove page from hash queue() removes the page from the hash table in
page hash table.

J.1.2.3 Function: remove page from inode queue() (mm/filemap.c)

94 static inline void remove_page_from_inode_queue(struct page * page)
95 {
96 struct address_space * mapping = page->mapping;
97
98 if (mapping->a_ops->removepage)
99 mapping->a_ops->removepage(page);
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100 list_del(&page->list);
101 page->mapping = NULL;
102 wmb();
103 mapping->nr_pages--;
104 }

96 Gets the associated address space for this page.

98-99 Calls the filesystem-specific removepage() function if one is available.

100 Deletes the page from whatever list it belongs to in the mapping, such as the
clean pages list in most cases or the dirty pages in rarer cases.

101 Sets the page→mapping to NULL because it is no longer backed by any
address space.

103 Decrements the number of pages in the mapping.

J.1.2.4 Function: remove page from hash queue() (mm/filemap.c)

107 static inline void remove_page_from_hash_queue(struct page * page)
108 {
109 struct page *next = page->next_hash;
110 struct page **pprev = page->pprev_hash;
111
112 if (next)
113 next->pprev_hash = pprev;
114 *pprev = next;
115 page->pprev_hash = NULL;
116 atomic_dec(&page_cache_size);
117 }

109 Gets the next page after the page being removed.

110 Gets the pprev page before the page being removed. When the function
completes, pprev will be linked to next.

112 If this is not the end of the list, this updates next→pprev hash to point to
pprev.

114 Similarly, this points pprev forward to next. page is now unlinked.

116 Decrements the size of the pagecache.

J.1.3 Acquiring/Releasing Page Cache Pages

J.1.3.1 Function: page cache get() (include/linux/pagemap.h)

31 #define page_cache_get(x) get_page(x)

31 A simple call get page(), which uses atomic inc() to increment the page
reference count.
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J.1.3.2 Function: page cache release() (include/linux/pagemap.h)

32 #define page_cache_release(x) __free_page(x)

32 Calls free page(), which decrements the page count. If the count reaches 0,
the page will be freed.

J.1.4 Searching the Page Cache

J.1.4.1 Function: find get page() (include/linux/pagemap.h)
This is a top-level macro for finding a page in the page cache. It simply looks

up the page hash.

75 #define find_get_page(mapping, index) \
76 __find_get_page(mapping, index, page_hash(mapping, index))

76 page hash() locates an entry in the page hash table based on the
address space and offsets.

J.1.4.2 Function: find get page() (mm/filemap.c)
This function is responsible for finding a struct page given an entry in

page hash table as a starting point.

931 struct page * __find_get_page(struct address_space *mapping,
932 unsigned long offset, struct page **hash)
933 {
934 struct page *page;
935
936 /*
937 * We scan the hash list read-only. Addition to and removal from
938 * the hash-list needs a held write-lock.
939 */
940 spin_lock(&pagecache_lock);
941 page = __find_page_nolock(mapping, offset, *hash);
942 if (page)
943 page_cache_get(page);
944 spin_unlock(&pagecache_lock);
945 return page;
946 }

940 Acquires the read-only pagecache lock.

941 Calls the pagecache traversal function, which presumes a lock is held.

942-943 If the page was found, this obtains a reference to it with
page cache get() (See Section J.1.3.1) so that it is not freed prematurely.

944 Releases the pagecache lock.

945 Returns the page or NULL if not found.
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J.1.4.3 Function: find page nolock() (mm/filemap.c)
This function traverses the hash collision list looking for the page specified by

the address space and offset.

443 static inline struct page * __find_page_nolock(
struct address_space *mapping,
unsigned long offset,
struct page *page)

444 {
445 goto inside;
446
447 for (;;) {
448 page = page->next_hash;
449 inside:
450 if (!page)
451 goto not_found;
452 if (page->mapping != mapping)
453 continue;
454 if (page->index == offset)
455 break;
456 }
457
458 not_found:
459 return page;
460 }

445 Begins by examining the first page in the list.

450-451 If the page is NULL, the right one could not be found, so it returns
NULL.

452 If the address space does not match, this moves to the next page on the
collision list.

454 If the offset matchs, this returns it or moves on.

448 Moves to the next page on the hash list.

459 Returns the found page or NULL if not.

J.1.4.4 Function: find lock page() (include/linux/pagemap.h)
This is the top-level function for searching the pagecache for a page and having

it returned in a locked state.

84 #define find_lock_page(mapping, index) \
85 __find_lock_page(mapping, index, page_hash(mapping, index))

85 Calls the core function find lock page() after looking up what hash bucket
this page is using with page hash().
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J.1.4.5 Function: find lock page() (mm/filemap.c)
This function acquires the pagecache lock spinlock before calling the core func-

tion find lock page helper() to locate the page and lock it.

1005 struct page * __find_lock_page (struct address_space *mapping,
1006 unsigned long offset, struct page **hash)
1007 {
1008 struct page *page;
1009
1010 spin_lock(&pagecache_lock);
1011 page = __find_lock_page_helper(mapping, offset, *hash);
1012 spin_unlock(&pagecache_lock);
1013 return page;
1014 }

1010 Acquires the pagecache lock spinlock.

1011 Calls find lock page helper(), which will search the pagecache and lock
the page if it is found.

1012 Releases the pagecache lock spinlock.

1013 If the page was found, it returns it in a locked state or, if not, it returns
NULL.

J.1.4.6 Function: find lock page helper() (mm/filemap.c)
This function uses find page nolock() to locate a page within the pagecache.

If it is found, the page will be locked for returning to the caller.

972 static struct page * __find_lock_page_helper(
struct address_space *mapping,

973 unsigned long offset, struct page *hash)
974 {
975 struct page *page;
976
977 /*
978 * We scan the hash list read-only. Addition to and removal
979 * from the hash-list needs a held write-lock.
980 */
981 repeat:
982 page = __find_page_nolock(mapping, offset, hash);
983 if (page) {
984 page_cache_get(page);
985 if (TryLockPage(page)) {
986 spin_unlock(&pagecache_lock);
987 lock_page(page);
988 spin_lock(&pagecache_lock);
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989
990 /* Has the page been re-allocated while we slept? */
991 if (page->mapping != mapping || page->index != offset) {
992 UnlockPage(page);
993 page_cache_release(page);
994 goto repeat;
995 }
996 }
997 }
998 return page;
999 }

982 Uses find page nolock()(See Section J.1.4.3) to locate the page in the
pagecache.

983-984 If the page was found, this takes a reference to it.

985 Tries and locks the page with TryLockPage(). This macro is just a wrapper
around test and set bit(), which attempts to set the PG locked bit in the
page→flags.

986-988 If the lock failed, this releases the pagecache lock spinlock and calls
lock page() (See Section B.2.1.1) to lock the page. It is likely this function
will sleep until the page lock is acquired. When the page is locked, it acquires
the pagecache lock spinlock again.

991 If the mapping and index no longer match, it means that this page was
reclaimed while we were asleep. The page is unlocked, and the reference
dropped before searching the pagecache again.

998 Returns the page in a locked state or NULL if it was not in the pagecache.
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J.2.1 Adding Pages to the LRU Lists

J.2.1.1 Function: lru cache add() (mm/swap.c)
This adds a page to the LRU inactive list.

58 void lru_cache_add(struct page * page)
59 {
60 if (!PageLRU(page)) {
61 spin_lock(&pagemap_lru_lock);
62 if (!TestSetPageLRU(page))
63 add_page_to_inactive_list(page);
64 spin_unlock(&pagemap_lru_lock);
65 }
66 }

60 If the page is not already part of the LRU lists, this adds it.

61 Acquires the LRU lock.

62-63 Tests and sets the LRU bit. If it was clear, it calls
add page to inactive list().

64 Releases the LRU lock.

J.2.1.2 Function: add page to active list() (include/linux/swap.h)
This adds the page to the active list.

178 #define add_page_to_active_list(page) \
179 do { \
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180 DEBUG_LRU_PAGE(page); \
181 SetPageActive(page); \
182 list_add(&(page)->lru, &active_list); \
183 nr_active_pages++; \
184 } while (0)

180 The DEBUG LRU PAGE() macro will call BUG() if the page is already on the
LRU list or is marked active.

181 Updates the flags of the page to show it is active.

182 Adds the page to the active list.

183 Updates the count of the number of pages in the active list.

J.2.1.3 Function: add page to inactive list() (include/linux/swap.h)
This adds the page to the inactive list.

186 #define add_page_to_inactive_list(page) \
187 do { \
188 DEBUG_LRU_PAGE(page); \
189 list_add(&(page)->lru, &inactive_list); \
190 nr_inactive_pages++; \
191 } while (0)

188 The DEBUG LRU PAGE() macro will call BUG() if the page is already on the
LRU list or is marked active.

189 Adds the page to the inactive list.

190 Updates the count of the number of inactive pages on the list.

J.2.2 Deleting Pages From the LRU Lists

J.2.2.1 Function: lru cache del() (mm/swap.c)
This acquires the lock protecting the LRU lists before calling lru cache del().

90 void lru_cache_del(struct page * page)
91 {
92 spin_lock(&pagemap_lru_lock);
93 __lru_cache_del(page);
94 spin_unlock(&pagemap_lru_lock);
95 }

92 Acquires the LRU lock.

93 lru cache del() does the real work of removing the page from the LRU lists.

94 Releases the LRU lock.



J.2. LRU List Operations 549

J.2.2.2 Function: lru cache del() (mm/swap.c)
This selects which function is needed to remove the page from the LRU list.

75 void __lru_cache_del(struct page * page)
76 {
77 if (TestClearPageLRU(page)) {
78 if (PageActive(page)) {
79 del_page_from_active_list(page);
80 } else {
81 del_page_from_inactive_list(page);
82 }
83 }
84 }

77 Tests and clears the flag indicating that the page is in the LRU.

78-82 If the page is in the LRU, this selects the appropriate removal function.

78-79 If the page is active, this calls del page from active list() or, if not, it
deletes it from the inactive list with del page from inactive list().

J.2.2.3 Function: del page from active list() (include/linux/swap.h)
This removes the page from the active list.

193 #define del_page_from_active_list(page) \
194 do { \
195 list_del(&(page)->lru); \
196 ClearPageActive(page); \
197 nr_active_pages--; \
198 } while (0)

195 Deletes the page from the list.

196 Clears the flag, indicating it is part of active list. The flag indicating it is
part of the LRU list has already been cleared by lru cache del().

197 Updates the count of the number of pages in the active list.

J.2.2.4 Function: del page from inactive list() (include/linux/swap.h)

200 #define del_page_from_inactive_list(page) \
201 do { \
202 list_del(&(page)->lru); \
203 nr_inactive_pages--; \
204 } while (0)

202 Removes the page from the LRU list.

203 Updates the count of the number of pages in the inactive list.
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J.2.3 Activating Pages

J.2.3.1 Function: mark page accessed() (mm/filemap.c)
This marks that a page has been referenced. If the page is already on the

active list or the referenced flag is clear, the referenced flag will be set. If it is
in the inactive list and the referenced flag has been set, activate page() will
be called to move the page to the top of the active list.

1332 void mark_page_accessed(struct page *page)
1333 {
1334 if (!PageActive(page) && PageReferenced(page)) {
1335 activate_page(page);
1336 ClearPageReferenced(page);
1337 } else
1338 SetPageReferenced(page);
1339 }

1334-1337 If the page is on the inactive list (!PageActive()) and has been
referenced recently (PageReferenced()), activate page() is called to move
it to the active list.

1338 Otherwise, it marks the page as being referenced.

J.2.3.2 Function: activate lock() (mm/swap.c)
This acquires the LRU lock before calling activate page nolock(), which

moves the page from the inactive list to the active list.

47 void activate_page(struct page * page)
48 {
49 spin_lock(&pagemap_lru_lock);
50 activate_page_nolock(page);
51 spin_unlock(&pagemap_lru_lock);
52 }

49 Acquires the LRU lock.

50 Calls the main work function.

51 Releases the LRU lock.

J.2.3.3 Function: activate page nolock() (mm/swap.c)
This moves the page from the inactive list to the active list.

39 static inline void activate_page_nolock(struct page * page)
40 {
41 if (PageLRU(page) && !PageActive(page)) {
42 del_page_from_inactive_list(page);
43 add_page_to_active_list(page);
44 }
45 }



J.2. LRU List Operations 551

41 Makes sure the page is on the LRU and is not already on the active list.

42-43 Deletes the page from the inactive list and adds it to the active list.
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J.3 Refilling inactive list

Contents
J.3 Refilling inactive list 552

J.3.1 Function: refill inactive() 552

This section covers how pages are moved from the active lists to the inactive
lists.

J.3.1 Function: refill inactive() (mm/vmscan.c)
This moves nr pages from the active list to the inactive list. The param-

eter nr pages is calculated by shrink caches() and is a number that tries to keep
the active list two-thirds the size of the pagecache.

533 static void refill_inactive(int nr_pages)
534 {
535 struct list_head * entry;
536
537 spin_lock(&pagemap_lru_lock);
538 entry = active_list.prev;
539 while (nr_pages && entry != &active_list) {
540 struct page * page;
541
542 page = list_entry(entry, struct page, lru);
543 entry = entry->prev;
544 if (PageTestandClearReferenced(page)) {
545 list_del(&page->lru);
546 list_add(&page->lru, &active_list);
547 continue;
548 }
549
550 nr_pages--;
551
552 del_page_from_active_list(page);
553 add_page_to_inactive_list(page);
554 SetPageReferenced(page);
555 }
556 spin_unlock(&pagemap_lru_lock);
557 }

537 Acquires the lock protecting the LRU list.

538 Takes the last entry in the active list.

539-555 Keeps moving pages until nr pages are moved or the active list is
empty.

542 Gets the struct page for this entry.
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544-548 Tests and clears the referenced flag. If it has been referenced, it is moved
back to the top of the active list.

550-553 Moves one page from the active list to the inactive list.

554 Marks it referenced so that, if it is referenced again soon, it will be promoted
back to the active list without requiring a second reference.

556 Releases the lock that protects the LRU list.
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J.4 Reclaiming Pages From the LRU Lists

Contents
J.4 Reclaiming Pages From the LRU Lists 554

J.4.1 Function: shrink cache() 554

This section covers how a page is reclaimed after it has been selected for pageout.

J.4.1 Function: shrink cache() (mm/vmscan.c)

338 static int shrink_cache(int nr_pages, zone_t * classzone,
unsigned int gfp_mask, int priority)

339 {
340 struct list_head * entry;
341 int max_scan = nr_inactive_pages / priority;
342 int max_mapped = min((nr_pages << (10 - priority)),

max_scan / 10);
343
344 spin_lock(&pagemap_lru_lock);
345 while (--max_scan >= 0 &&

(entry = inactive_list.prev) != &inactive_list) {

338 The parameters are as follows:

• nr pages The number of pages to swap out

• classzone The zone we are interested in swapping pages out for. Pages
not belonging to this zone are skipped.

• gfp mask The gfp mask determining what actions may be taken, such
as if filesystem operations may be performed

• priority The priority of the function, which starts at DEF PRIORITY (6)
and decreases to the highest priority of 1

341 The maximum number of pages to scan is the number of pages in the
active list divided by the priority. At lowest priority, one-sixth of the list
may be scanned. At highest priority, the full list may be scanned.

342 The maximum amount of process-mapped pages allowed is either one-tenth of
the max scan value or nr pages∗210−priority. If this number of pages is found,
whole processes will be swapped out.

344 Locks the LRU list.

345 Keeps scanning until max scan pages have been scanned or the inactive list
is empty.

346 struct page * page;
347
348 if (unlikely(current->need_resched)) {
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349 spin_unlock(&pagemap_lru_lock);
350 __set_current_state(TASK_RUNNING);
351 schedule();
352 spin_lock(&pagemap_lru_lock);
353 continue;
354 }
355

348-354 Reschedules if the quanta has been used up.

349 Frees the LRU lock because it is about to sleep.

350 Shows that we are still running.

351 Calls schedule() so another process can be context-switched in.

352 Reacquires the LRU lock.

353 Reiterates through the loop and takes an entry inactive list again. As we
slept, another process could have changed what entries are on the list, which
is why another entry has to be taken with the spinlock held.

356 page = list_entry(entry, struct page, lru);
357
358 BUG_ON(!PageLRU(page));
359 BUG_ON(PageActive(page));
360
361 list_del(entry);
362 list_add(entry, &inactive_list);
363
364 /*
365 * Zero page counts can happen because we unlink the pages
366 * _after_ decrementing the usage count..
367 */
368 if (unlikely(!page_count(page)))
369 continue;
370
371 if (!memclass(page_zone(page), classzone))
372 continue;
373
374 /* Racy check to avoid trylocking when not worthwhile */
375 if (!page->buffers && (page_count(page) != 1 || !page->mapping))
376 goto page_mapped;

356 Gets the struct page for this entry in the LRU.

358-359 It is a bug if the page either belongs to the active list or is currently
marked as active.
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361-362 Moves the page to the top of the inactive list so that, if the page is
not freed, we can just continue knowing that it will be simply examined later.

368-369 If the page count has already reached 0, this skips over it. In
free pages(), the page count is dropped with put page testzero() be-

fore free pages ok() is called to free it. This leaves a window where a
page with a zero count is left on the LRU before it is freed. A special case to
trap this is at the beginning of free pages ok().

371-372 Skips over this page if it belongs to a zone we are not currently interested
in.

375-376 If the page is mapped by a process, goto page mapped where the
max mapped is decremented and the next page is examined. If max mapped
reaches 0, process pages will be swapped out.

382 if (unlikely(TryLockPage(page))) {
383 if (PageLaunder(page) && (gfp_mask & __GFP_FS)) {
384 page_cache_get(page);
385 spin_unlock(&pagemap_lru_lock);
386 wait_on_page(page);
387 page_cache_release(page);
388 spin_lock(&pagemap_lru_lock);
389 }
390 continue;
391 }

In this block, a page is locked, and the launder bit is set. In this case, it is the
second time this page has been found dirty. The first time it was scheduled for I/O
and placed back on the list. This time we wait until the I/O is complete and then
try to free the page.

382-383 If we could not lock the page, the PG launder bit is set, and the GFP
flags allow the caller to perform FS operations. Then...

384 Takes a reference to the page so that it does not disappear while we sleep.

385 Frees the LRU lock.

386 Waits until the I/O is complete.

387 Releases the reference to the page. If it reaches 0, the page will be freed.

388 Reacquires the LRU lock.

390 Moves to the next page.

392
393 if (PageDirty(page) &&

is_page_cache_freeable(page) &&
page->mapping) {
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394 /*
395 * It is not critical here to write it only if
396 * the page is unmapped beause any direct writer
397 * like O_DIRECT would set the PG_dirty bitflag
398 * on the physical page after having successfully
399 * pinned it and after the I/O to the page is finished,
400 * so the direct writes to the page cannot get lost.
401 */
402 int (*writepage)(struct page *);
403
404 writepage = page->mapping->a_ops->writepage;
405 if ((gfp_mask & __GFP_FS) && writepage) {
406 ClearPageDirty(page);
407 SetPageLaunder(page);
408 page_cache_get(page);
409 spin_unlock(&pagemap_lru_lock);
410
411 writepage(page);
412 page_cache_release(page);
413
414 spin_lock(&pagemap_lru_lock);
415 continue;
416 }
417 }

This handles the case where a page is dirty, is not mapped by any process, has
no buffers and is backed by a file or device mapping. The page is cleaned and will
be reclaimed by the previous block of code when the I/O is complete.

393 PageDirty() checks the PG dirty bit. is page cache freeable() will return
true if it is not mapped by any process and has no buffers.

404 Gets a pointer to the necessary writepage() function for this mapping or
device.

405-416 This block of code can only be executed if a writepage() function is
available and the GFP flags allow file operations.

406-407 Clears the dirty bit and marks that the page is being laundered.

408 Takes a reference to the page so that it will not be freed unexpectedly.

409 Unlocks the LRU list.

411 Calls the filesystem-specific writepage() function, which is taken from the
address space operations belonging to page→mapping.

412 Releases the reference to the page.

414-415 Reacquires the LRU list lock and moves to the next page.
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424 if (page->buffers) {
425 spin_unlock(&pagemap_lru_lock);
426
427 /* avoid to free a locked page */
428 page_cache_get(page);
429
430 if (try_to_release_page(page, gfp_mask)) {
431 if (!page->mapping) {
438 spin_lock(&pagemap_lru_lock);
439 UnlockPage(page);
440 __lru_cache_del(page);
441
442 /* effectively free the page here */
443 page_cache_release(page);
444
445 if (--nr_pages)
446 continue;
447 break;
448 } else {
454 page_cache_release(page);
455
456 spin_lock(&pagemap_lru_lock);
457 }
458 } else {
459 /* failed to drop the buffers so stop here */
460 UnlockPage(page);
461 page_cache_release(page);
462
463 spin_lock(&pagemap_lru_lock);
464 continue;
465 }
466 }

Page has buffers associated with it that must be freed.

425 Releases the LRU lock because we may sleep.

428 Takes a reference to the page.

430 Calls try to release page(), which will attempt to release the buffers asso-
ciated with the page. It returns 1 if it succeeds.

431-447 This is a case where an anonymous page that was in the swap cache has
now had its buffers cleared and removed. Because it was on the swap cache,
it was placed on the LRU by add to swap cache(), so it removes it now from
the LRU and drops the reference to the page. In swap writepage(), it calls
remove exclusive swap page(), which will delete the page from the swap
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cache when no more processes are mapping the page. This block will free the
page after the buffers have been written out if it was backed by a swap file.

438-440 Takes the LRU list lock, unlocks the page, deletes it from the pagecache
and frees it.

445-446 Updates nr pages to show a page has been freed and moves to the next
page.

447 If nr pages drops to 0, this exits the loop as the work is completed.

449-456 If the page does have an associated mapping, this drops the reference to
the page and reacquires the LRU lock. More work will be performed later to
remove the page from the pagecache at line 499.

459-464 If the buffers could not be freed, this unlocks the page, drops the reference
to it, reacquires the LRU lock and moves to the next page.

468 spin_lock(&pagecache_lock);
469
470 /*
471 * this is the non-racy check for busy page.
472 */
473 if (!page->mapping || !is_page_cache_freeable(page)) {
474 spin_unlock(&pagecache_lock);
475 UnlockPage(page);
476 page_mapped:
477 if (--max_mapped >= 0)
478 continue;
479
484 spin_unlock(&pagemap_lru_lock);
485 swap_out(priority, gfp_mask, classzone);
486 return nr_pages;
487 }

468 From this point on, pages in the swapcache are likely to be examined, which
is protected by the pagecache lock, which must be now held.

473-487 An anonymous page with no buffers is mapped by a process.

474-475 Releases the pagecache lock and the page.

477-478 Decrements max mapped. If it has not reached 0, it moves to the next
page.

484-485 Too many mapped pages have been found in the page cache. The LRU
lock is released, and swap out() is called to begin swapping out whole pro-
cesses.
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493 if (PageDirty(page)) {
494 spin_unlock(&pagecache_lock);
495 UnlockPage(page);
496 continue;
497 }

493-497 The page has no references, but could have been dirtied by the last
process to free it if the dirty bit was set in the PTE. It is left in the pagecache
and will get laundered later. After it has been cleaned, it can be safely deleted.

498
499 /* point of no return */
500 if (likely(!PageSwapCache(page))) {
501 __remove_inode_page(page);
502 spin_unlock(&pagecache_lock);
503 } else {
504 swp_entry_t swap;
505 swap.val = page->index;
506 __delete_from_swap_cache(page);
507 spin_unlock(&pagecache_lock);
508 swap_free(swap);
509 }
510
511 __lru_cache_del(page);
512 UnlockPage(page);
513
514 /* effectively free the page here */
515 page_cache_release(page);
516
517 if (--nr_pages)
518 continue;
519 break;
520 }

500-503 If the page does not belong to the swapcache, it is part of the inode queue
so it is removed.

504-508 Removes it from the swapcache because there are no more references to
it.

511 Deletes it from the pagecache.

512 Unlocks the page.

515 Frees the page.

517-518 Decrements nr page and moves to the next page if it is not 0.

519 If it reaches 0, the work of the function is complete.
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521 spin_unlock(&pagemap_lru_lock);
522
523 return nr_pages;
524 }

521-524 Makes the function exit. It frees the LRU lock and returns the number
of pages left to free.
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J.5 Shrinking All Caches

Contents
J.5 Shrinking All Caches 562

J.5.1 Function: shrink caches() 562
J.5.2 Function: try to free pages() 563
J.5.3 Function: try to free pages zone() 564

J.5.1 Function: shrink caches() (mm/vmscan.c)
The call graph for this function is shown in Figure 10.4.

560 static int shrink_caches(zone_t * classzone, int priority,
unsigned int gfp_mask, int nr_pages)

561 {
562 int chunk_size = nr_pages;
563 unsigned long ratio;
564
565 nr_pages -= kmem_cache_reap(gfp_mask);
566 if (nr_pages <= 0)
567 return 0;
568
569 nr_pages = chunk_size;
570 /* try to keep the active list 2/3 of the size of the cache */
571 ratio = (unsigned long) nr_pages *

nr_active_pages / ((nr_inactive_pages + 1) * 2);
572 refill_inactive(ratio);
573
574 nr_pages = shrink_cache(nr_pages, classzone, gfp_mask, priority);
575 if (nr_pages <= 0)
576 return 0;
577
578 shrink_dcache_memory(priority, gfp_mask);
579 shrink_icache_memory(priority, gfp_mask);
580 #ifdef CONFIG_QUOTA
581 shrink_dqcache_memory(DEF_PRIORITY, gfp_mask);
582 #endif
583
584 return nr_pages;
585 }

560 The parameters are as follows:

• classzone is the zone that pages should be freed from.

• priority determines how much work will be done to free pages.

• gfp mask determines what sort of actions may be taken.

• nr pages is the number of pages remaining to be freed.
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565-567 Asks the slab allocator to free up some pages with kmem cache reap()
(See Section H.1.5.1). If enough are freed, the function returns. Otherwise,
nr pages will be freed from other caches.

571-572 Moves pages from the active list to the inactive list by calling
refill inactive() (See Section J.3.1). The number of pages moved depends
on how many pages need to be freed and need to have active list about
two-thirds the size of the page cache.

574-575 Shrinks the pagecache. If enough pages are freed, this returns.

578-582 Shrinks the dcache, icache and dqcache. These are small objects in
themselves, but the cascading effect frees up a lot of disk buffers.

584 Returns the number of pages remaining to be freed.

J.5.2 Function: try to free pages() (mm/vmscan.c)
This function cycles through all pgdats and tries to balance the preferred alloca-

tion zone (usually ZONE NORMAL) for each of them. This function is only called from
one place, buffer.c:free more memory(), when the buffer manager fails to create
new buffers or grow existing ones. It calls try to free pages() with GFP NOIO as
the gfp mask.

This results in the first zone in pg data t→node zonelists having pages freed
so that buffers can grow. This array is the preferred order of zones to allocate from
and usually will begin with ZONE NORMAL, which is required by the buffer manager.
On NUMA architectures, some nodes may have ZONE DMA as the preferred zone if the
memory bank is dedicated to I/O devices. UML also uses only this zone. Because
the buffer manager is restricted in the zones it uses, there is no point balancing
other zones.

607 int try_to_free_pages(unsigned int gfp_mask)
608 {
609 pg_data_t *pgdat;
610 zonelist_t *zonelist;
611 unsigned long pf_free_pages;
612 int error = 0;
613
614 pf_free_pages = current->flags & PF_FREE_PAGES;
615 current->flags &= ~PF_FREE_PAGES;
616
617 for_each_pgdat(pgdat) {
618 zonelist = pgdat->node_zonelists +

(gfp_mask & GFP_ZONEMASK);
619 error |= try_to_free_pages_zone(

zonelist->zones[0], gfp_mask);
620 }
621
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622 current->flags |= pf_free_pages;
623 return error;
624 }

614-615 This clears the PF FREE PAGES flag if it is set so that pages freed by the
process will be returned to the global pool rather than reserved for the process
itself.

617-620 Cycles through all nodes and calls try to free pages() for the preferred
zone in each node.

618 This function is only called with GFP NOIO as a parameter. When ANDed
with GFP ZONEMASK, it will always result in 0.

622-623 Restores the process flags and returns the result.

J.5.3 Function: try to free pages zone() (mm/vmscan.c)
This tries to free SWAP CLUSTER MAX pages from the requested zone. As well as

being used by kswapd, this function is the entry for the buddy allocator’s direct-
reclaim path.

587 int try_to_free_pages_zone(zone_t *classzone,
unsigned int gfp_mask)

588 {
589 int priority = DEF_PRIORITY;
590 int nr_pages = SWAP_CLUSTER_MAX;
591
592 gfp_mask = pf_gfp_mask(gfp_mask);
593 do {
594 nr_pages = shrink_caches(classzone, priority,

gfp_mask, nr_pages);
595 if (nr_pages <= 0)
596 return 1;
597 } while (--priority);
598
599 /*
600 * Hmm.. Cache shrink failed - time to kill something?
601 * Mhwahahhaha! This is the part I really like. Giggle.
602 */
603 out_of_memory();
604 return 0;
605 }

589 Starts with the lowest priority. This is statically defined to be 6.

590 Tries and frees SWAP CLUSTER MAX pages. This is statically defined to be 32.

592 pf gfp mask() checks the PF NOIO flag in the current process flags. If no I/O
can be performed, it ensures no incompatible flags are in the GFP mask.
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593-597 Starting with the lowest priority and increasing with each pass, this calls
shrink caches() until nr pages have been freed.

595-596 If enough pages were freed, this returns, indicating that the work is
complete.

603 If enough pages could not be freed even at highest priority (where at worst
the full inactive list is scanned), this checks to see if we are out of memory.
If we are, a process will be selected to be killed.

604 Returns indicating that we failed to free enough pages.
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J.6 Swapping Out Process Pages

Contents
J.6 Swapping Out Process Pages 566

J.6.1 Function: swap out() 566
J.6.2 Function: swap out mm() 568
J.6.3 Function: swap out vma() 569
J.6.4 Function: swap out pgd() 570
J.6.5 Function: swap out pmd() 571
J.6.6 Function: try to swap out() 573

This section covers the path where too many process-mapped pages have been
found in the LRU lists. This path will start scanning whole processes and reclaiming
the mapped pages.

J.6.1 Function: swap out() (mm/vmscan.c)
The call graph for this function is shown in Figure 10.5. This function linearly

searches through every process’ pagetables trying to swap out SWAP CLUSTER MAX
number of pages. The process it starts with is the swap mm, and the starting address
is mm→swap address.

296 static int swap_out(unsigned int priority, unsigned int gfp_mask,
zone_t * classzone)

297 {
298 int counter, nr_pages = SWAP_CLUSTER_MAX;
299 struct mm_struct *mm;
300
301 counter = mmlist_nr;
302 do {
303 if (unlikely(current->need_resched)) {
304 __set_current_state(TASK_RUNNING);
305 schedule();
306 }
307
308 spin_lock(&mmlist_lock);
309 mm = swap_mm;
310 while (mm->swap_address == TASK_SIZE || mm == &init_mm) {
311 mm->swap_address = 0;
312 mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);
313 if (mm == swap_mm)
314 goto empty;
315 swap_mm = mm;
316 }
317
318 /* Make sure the mm doesn’t disappear

when we drop the lock.. */
319 atomic_inc(&mm->mm_users);
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320 spin_unlock(&mmlist_lock);
321
322 nr_pages = swap_out_mm(mm, nr_pages, &counter, classzone);
323
324 mmput(mm);
325
326 if (!nr_pages)
327 return 1;
328 } while (--counter >= 0);
329
330 return 0;
331
332 empty:
333 spin_unlock(&mmlist_lock);
334 return 0;
335 }

301 Sets the counter so that the process list is only scanned once.

303-306 Reschedules if the quanta has been used up to prevent CPU hogging.

308 Acquires the lock protecting the mm list.

309 Starts with the swap mm. It is interesting that this is never checked to make
sure it is valid. It is possible, albeit unlikely, that the process with the mm
has exited since the last scan and the slab holding the mm struct has been
reclaimed during a cache shrink, making the pointer totally invalid. The lack
of bug reports might be because the slab rarely gets reclaimed and would be
difficult to trigger in reality.

310-316 Moves to the next process if the swap address has reached the TASK SIZE
or if the mm is the init mm.

311 Starts at the beginning of the process space.

312 Gets the mm for this process.

313-314 If it is the same, no running processes can be examined.

315 Records the swap mm for the next pass.

319 Increases the reference count so that the mm does not get freed while we are
scanning.

320 Releases the mm lock.

322 Begins scanning the mm with swap out mm()(See Section J.6.2).

324 Drops the reference to the mm.

326-327 If the required number of pages has been freed, this returns success.
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328 If we failed on this pass, this increases the priority so more processes will be
scanned.

330 Returns failure.

J.6.2 Function: swap out mm() (mm/vmscan.c)
This walks through each VMA and calls swap out mm() for each one.

256 static inline int swap_out_mm(struct mm_struct * mm, int count,
int * mmcounter, zone_t * classzone)

257 {
258 unsigned long address;
259 struct vm_area_struct* vma;
260
265 spin_lock(&mm->page_table_lock);
266 address = mm->swap_address;
267 if (address == TASK_SIZE || swap_mm != mm) {
268 /* We raced: don’t count this mm but try again */
269 ++*mmcounter;
270 goto out_unlock;
271 }
272 vma = find_vma(mm, address);
273 if (vma) {
274 if (address < vma->vm_start)
275 address = vma->vm_start;
276
277 for (;;) {
278 count = swap_out_vma(mm, vma, address,

count, classzone);
279 vma = vma->vm_next;
280 if (!vma)
281 break;
282 if (!count)
283 goto out_unlock;
284 address = vma->vm_start;
285 }
286 }
287 /* Indicate that we reached the end of address space */
288 mm->swap_address = TASK_SIZE;
289
290 out_unlock:
291 spin_unlock(&mm->page_table_lock);
292 return count;
293 }

265 Acquires the pagetable lock for this mm.
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266 Starts with the address contained in swap address.

267-271 If the address is TASK SIZE, it means that a thread raced and scanned
this process already. It increases mmcounter so that swap out mm() knows to
go to another process.

272 Finds the VMA for this address.

273 Presuming a VMA was found, then ...

274-275 Starts at the beginning of the VMA.

277-285 Scans through this and each subsequent VMA calling swap out vma()
(See Section J.6.3) for each one. If the requisite number of pages (count) is
freed, this finishes scanning and returns.

288 After the last VMA has been scanned, this sets swap address to TASK SIZE
so that this process will be skipped over by swap out mm() next time.

J.6.3 Function: swap out vma() (mm/vmscan.c)
This walks through this VMA, and, for each PGD in it, calls swap out pgd().

227 static inline int swap_out_vma(struct mm_struct * mm,
struct vm_area_struct * vma,
unsigned long address, int count,
zone_t * classzone)

228 {
229 pgd_t *pgdir;
230 unsigned long end;
231
232 /* Don’t swap out areas which are reserved */
233 if (vma->vm_flags & VM_RESERVED)
234 return count;
235
236 pgdir = pgd_offset(mm, address);
237
238 end = vma->vm_end;
239 BUG_ON(address >= end);
240 do {
241 count = swap_out_pgd(mm, vma, pgdir,

address, end, count, classzone);
242 if (!count)
243 break;
244 address = (address + PGDIR_SIZE) & PGDIR_MASK;
245 pgdir++;
246 } while (address && (address < end));
247 return count;
248 }
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233-234 Skips over this VMA if the VM RESERVED flag is set. This is used by some
device drivers, such as the Small Computer System Interface (SCSI) generic
driver.

236 Gets the starting PGD for the address.

238 Marks where the end is and uses BUG() if the starting address is somehow
past the end.

240 Cycles through PGDs until the end address is reached.

241 Calls swap out pgd()(See Section J.6.4) to keep count of how many more
pages need to be freed.

242-243 If enough pages have been freed, this breaks and returns.

244-245 Moves to the next PGD and moves the address to the next PGD-aligned
address.

247 Returns the remaining number of pages to be freed.

J.6.4 Function: swap out pgd() (mm/vmscan.c)
This steps through all PMDs in the supplied PGD and calls swap out pmd().

197 static inline int swap_out_pgd(struct mm_struct * mm,
struct vm_area_struct * vma, pgd_t *dir,
unsigned long address, unsigned long end,
int count, zone_t * classzone)

198 {
199 pmd_t * pmd;
200 unsigned long pgd_end;
201
202 if (pgd_none(*dir))
203 return count;
204 if (pgd_bad(*dir)) {
205 pgd_ERROR(*dir);
206 pgd_clear(dir);
207 return count;
208 }
209
210 pmd = pmd_offset(dir, address);
211
212 pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;
213 if (pgd_end && (end > pgd_end))
214 end = pgd_end;
215
216 do {
217 count = swap_out_pmd(mm, vma, pmd,
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address, end, count, classzone);
218 if (!count)
219 break;
220 address = (address + PMD_SIZE) & PMD_MASK;
221 pmd++;
222 } while (address && (address < end));
223 return count;
224 }

202-203 If there is no PGD, this returns.

204-208 If the PGD is bad, this flags it as such and returns.

210 Gets the starting PMD.

212-214 Calculates the end to be the end of this PGD or the end of the VMA
being scanned, whichever is closer.

216-222 For each PMD in this PGD, this calls swap out pmd() (See
Section J.6.5). If enough pages get freed, it breaks and returns.

223 Returns the number of pages remaining to be freed.

J.6.5 Function: swap out pmd() (mm/vmscan.c)
For each PTE in this PMD, this calls try to swap out(). On completion,

mm→swap address is updated to show where we finished to prevent the same page
being examined soon after this scan.

158 static inline int swap_out_pmd(struct mm_struct * mm,
struct vm_area_struct * vma, pmd_t *dir,
unsigned long address, unsigned long end,
int count, zone_t * classzone)

159 {
160 pte_t * pte;
161 unsigned long pmd_end;
162
163 if (pmd_none(*dir))
164 return count;
165 if (pmd_bad(*dir)) {
166 pmd_ERROR(*dir);
167 pmd_clear(dir);
168 return count;
169 }
170
171 pte = pte_offset(dir, address);
172
173 pmd_end = (address + PMD_SIZE) & PMD_MASK;
174 if (end > pmd_end)
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175 end = pmd_end;
176
177 do {
178 if (pte_present(*pte)) {
179 struct page *page = pte_page(*pte);
180
181 if (VALID_PAGE(page) && !PageReserved(page)) {
182 count -= try_to_swap_out(mm, vma,

address, pte,
page, classzone);

183 if (!count) {
184 address += PAGE_SIZE;
185 break;
186 }
187 }
188 }
189 address += PAGE_SIZE;
190 pte++;
191 } while (address && (address < end));
192 mm->swap_address = address;
193 return count;
194 }

163-164 Returns if there is no PMD.

165-169 If the PMD is bad, this flags it as such and returns.

171 Gets the starting PTE.

173-175 Calculates the end to be the end of the PMD or the end of the VMA,
whichever is closer.

177-191 Cycles through each PTE.

178 Makes sure the PTE is marked present.

179 Gets the struct page for this PTE.

181 If it is a valid page and it is not reserved, then ...

182 Calls try to swap out().

183-186 If enough pages have been swapped out, this moves the address to the
next page and breaks to return.

189-190 Moves to the next page and PTE.

192 Updates the swap address to show where we last finished off.

193 Returns the number of pages remaining to be freed.
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J.6.6 Function: try to swap out() (mm/vmscan.c)
This function tries to swap out a page from a process. It is quite a large function,

so it will be dealt with in parts. Broadly speaking, they are the following:

• Ensure this is a page that should be swapped out (function preamble).

• Remove the page and PTE from the pagetables.

• Handle the case where the page is already in the swap cache.

• Handle the case where the page is dirty or has associated buffers.

• Handle the case where the page is being added to the swap cache.

47 static inline int try_to_swap_out(struct mm_struct * mm,
struct vm_area_struct* vma,
unsigned long address,
pte_t * page_table,
struct page *page,
zone_t * classzone)

48 {
49 pte_t pte;
50 swp_entry_t entry;
51
52 /* Don’t look at this pte if it’s been accessed recently. */
53 if ((vma->vm_flags & VM_LOCKED) ||

ptep_test_and_clear_young(page_table)) {
54 mark_page_accessed(page);
55 return 0;
56 }
57
58 /* Don’t bother unmapping pages that are active */
59 if (PageActive(page))
60 return 0;
61
62 /* Don’t bother replenishing zones not under pressure.. */
63 if (!memclass(page_zone(page), classzone))
64 return 0;
65
66 if (TryLockPage(page))
67 return 0;

53-56 If the page is locked (for tasks like I/O) or the PTE shows the page
has been accessed recently, then this clears the referenced bit and calls
mark page accessed() (See Section J.2.3.1) to make the struct page reflect
the age. It returns 0 to show it was not swapped out.

59-60 If the page is on the active list, do not swap it out.
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63-64 If the page belongs to a zone we are not interested in, do not swap it out.

66-67 If the page is already locked for I/O, this skips it.

74 flush_cache_page(vma, address);
75 pte = ptep_get_and_clear(page_table);
76 flush_tlb_page(vma, address);
77
78 if (pte_dirty(pte))
79 set_page_dirty(page);
80

74 Calls the architecture hook to flush this page from all CPUs.

75 Gets the PTE from the pagetables and clears it.

76 Calls the architecture hook to flush the TLB.

78-79 If the PTE was marked dirty, this marks the struct page dirty so that it
will be laundered correctly.

86 if (PageSwapCache(page)) {
87 entry.val = page->index;
88 swap_duplicate(entry);
89 set_swap_pte:
90 set_pte(page_table, swp_entry_to_pte(entry));
91 drop_pte:
92 mm->rss--;
93 UnlockPage(page);
94 {
95 int freeable =

page_count(page) - !!page->buffers <= 2;
96 page_cache_release(page);
97 return freeable;
98 }
99 }

Handles the case where the page is already in the swap cache.

86 Enters this block only if the page is already in the swap cache. Note that it
can also be entered by calling goto to the set swap pte and drop pte labels.

87-88 Fills in the index value for the swap entry. swap duplicate() verifies the
swap identifier is valid and increases the counter in the swap map if it is.

90 Fills the PTE with information needed to get the page from swap.

92 Updates RSS to show one less page is being mapped by the process.

93 Unlocks the page.
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95 The page is freeable if the count is currently 2 or less and has no buffers. If the
count is higher, it is either being mapped by other processes or is a file-backed
page, and the “user” is the pagecache.

96 Decrements the reference count and frees the page if it reaches 0. Note that, if
this is a file-backed page, it will not reach 0 even if no processes are mapping
it. The page will be later reclaimed from the page cache by shrink cache()
(See Section J.4.1).

97 Returns if the page was freed.

115 if (page->mapping)
116 goto drop_pte;
117 if (!PageDirty(page))
118 goto drop_pte;
124 if (page->buffers)
125 goto preserve;

115-116 If the page has an associated mapping, this drops it from the pagetables.
When no processes are mapping it, it will be reclaimed from the pagecache
by shrink cache().

117-118 If the page is clean, it is safe to drop it.

124-125 If it has associated buffers due to a truncate followed by a page fault, this
reattaches the page and PTE to the pagetables because it cannot be handled
yet.

126
127 /*
128 * This is a dirty, swappable page. First of all,
129 * get a suitable swap entry for it, and make sure
130 * we have the swap cache set up to associate the
131 * page with that swap entry.
132 */
133 for (;;) {
134 entry = get_swap_page();
135 if (!entry.val)
136 break;
137 /* Add it to the swap cache and mark it dirty
138 * (adding to the page cache will clear the dirty
139 * and uptodate bits, so we need to do it again)
140 */
141 if (add_to_swap_cache(page, entry) == 0) {
142 SetPageUptodate(page);
143 set_page_dirty(page);
144 goto set_swap_pte;
145 }
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146 /* Raced with "speculative" read_swap_cache_async */
147 swap_free(entry);
148 }
149
150 /* No swap space left */
151 preserve:
152 set_pte(page_table, pte);
153 UnlockPage(page);
154 return 0;
155 }

134 Allocates a swap entry for this page.

135-136 If one could not be allocated, it breaks out where the PTE and page will
be reattached to the process pagetables.

141 Adds the page to the swap cache.

142 Marks the page as up to date in memory.

143 Marks the page dirty so that it will be written out to swap soon.

144 Goto set swap pte, which will update the PTE with information needed to
get the page from swap later.

147 If the add to swap cache failed, it means that the page was placed in the swap
cache already by a readahead, so it drops the work done here.

152 Reattaches the PTE to the page tables.

153 Unlocks the page.

154 Returns that no page was freed.
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This section details the main loops used by the kswapd daemon, which is woken
up when memory is low. The main functions covered are the ones that determine
if kswapd can sleep and how it determines which nodes need balancing.

J.7.1 Initializing kswapd

J.7.1.1 Function: kswapd init() (mm/vmscan.c)
This starts the kswapd kernel thread.

767 static int __init kswapd_init(void)
768 {
769 printk("Starting kswapd\n");
770 swap_setup();
771 kernel_thread(kswapd, NULL, CLONE_FS

| CLONE_FILES
| CLONE_SIGNAL);

772 return 0;
773 }

770 swap setup()(See Section K.4.2) sets up how many pages will be prefetched
when reading from backing storage based on the amount of physical memory.

771 Starts the kswapd kernel thread.

J.7.2 kswapd Daemon

J.7.2.1 Function: kswapd() (mm/vmscan.c)
This is the main function of the kswapd kernel thread.

720 int kswapd(void *unused)
721 {
722 struct task_struct *tsk = current;
723 DECLARE_WAITQUEUE(wait, tsk);
724
725 daemonize();
726 strcpy(tsk->comm, "kswapd");
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727 sigfillset(&tsk->blocked);
728
741 tsk->flags |= PF_MEMALLOC;
742
746 for (;;) {
747 __set_current_state(TASK_INTERRUPTIBLE);
748 add_wait_queue(&kswapd_wait, &wait);
749
750 mb();
751 if (kswapd_can_sleep())
752 schedule();
753
754 __set_current_state(TASK_RUNNING);
755 remove_wait_queue(&kswapd_wait, &wait);
756
762 kswapd_balance();
763 run_task_queue(&tq_disk);
764 }
765 }

725 Calls daemonize(), which will make this a kernel thread, remove the mm
context, close all files and reparent the process.

726 Sets the name of the process.

727 Ignores all signals.

741 By setting this flag, the physical page allocator will always try to satisfy
requests for pages. Because this process will always be trying to free pages, it
is worth satisfying requests.

746-764 Endlessly loops.

747-748 This adds kswapd to the wait queue in preparation to sleep.

750 The memory block function (mb()) ensures that all reads and writes that
occurred before this line will be visible to all CPUs.

751 kswapd can sleep()(See Section J.7.2.2) cycles through all nodes and zones
checking the need balance field. If any of them are set to 1, kswapd cannot
sleep.

752 By calling schedule(), kswapd will now sleep until woken again by the
physical page allocator in alloc pages() (See Section F.1.3).

754-755 After it is woken up, kswapd is removed from the wait queue because
it is now running.
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762 kswapd balance()(See Section J.7.2.4) cycles through all zones and calls
try to free pages zone()(See Section J.5.3) for each zone that requires bal-
ance.

763 Runs the I/O task queue to start writing data out to disk.

J.7.2.2 Function: kswapd can sleep() (mm/vmscan.c)
This is a simple function to cycle through all pgdats to call

kswapd can sleep pgdat() on each.

695 static int kswapd_can_sleep(void)
696 {
697 pg_data_t * pgdat;
698
699 for_each_pgdat(pgdat) {
700 if (!kswapd_can_sleep_pgdat(pgdat))
701 return 0;
702 }
703
704 return 1;
705 }

699-702 for each pgdat() does exactly as the name implies. It cycles through
all available pgdats and, in this case, calls kswapd can sleep pgdat()
(See Section J.7.2.3) for each. On the x86, there will only be one pgdat.

J.7.2.3 Function: kswapd can sleep pgdat() (mm/vmscan.c)
This cycles through all zones to make sure none of them need balance. The

zone→need balanace flag is set by alloc pages() when the number of free pages
in the zone reaches the pages low watermark.

680 static int kswapd_can_sleep_pgdat(pg_data_t * pgdat)
681 {
682 zone_t * zone;
683 int i;
684
685 for (i = pgdat->nr_zones-1; i >= 0; i--) {
686 zone = pgdat->node_zones + i;
687 if (!zone->need_balance)
688 continue;
689 return 0;
690 }
691
692 return 1;
693 }

685-689 A simple for loop to cycle through all zones.
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686 The node zones field is an array of all available zones, so adding i gives the
index.

687-688 If the zone does not need balance, this continues.

689 0 is returned if any zone needs balance, indicating kswapd cannot sleep.

692 Returns indicating kswapd can sleep if the for loop completes.

J.7.2.4 Function: kswapd balance() (mm/vmscan.c)
This continuously cycles through each pgdat until none require balancing.

667 static void kswapd_balance(void)
668 {
669 int need_more_balance;
670 pg_data_t * pgdat;
671
672 do {
673 need_more_balance = 0;
674
675 for_each_pgdat(pgdat)
676 need_more_balance |= kswapd_balance_pgdat(pgdat);
677 } while (need_more_balance);
678 }

672-677 Cycles through all pgdats until none of them report that they need
balancing.

675 For each pgdat, this calls kswapd balance pgdat() to check if the node re-
quires balancing. If any node required balancing, need more balance will be
set to 1.

J.7.2.5 Function: kswapd balance pgdat() (mm/vmscan.c)
This function will check if a node requires balance by examining each of the

nodes in it. If any zone requires balancing, try to free pages zone() will be
called.

641 static int kswapd_balance_pgdat(pg_data_t * pgdat)
642 {
643 int need_more_balance = 0, i;
644 zone_t * zone;
645
646 for (i = pgdat->nr_zones-1; i >= 0; i--) {
647 zone = pgdat->node_zones + i;
648 if (unlikely(current->need_resched))
649 schedule();
650 if (!zone->need_balance)
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651 continue;
652 if (!try_to_free_pages_zone(zone, GFP_KSWAPD)) {
653 zone->need_balance = 0;
654 __set_current_state(TASK_INTERRUPTIBLE);
655 schedule_timeout(HZ);
656 continue;
657 }
658 if (check_classzone_need_balance(zone))
659 need_more_balance = 1;
660 else
661 zone->need_balance = 0;
662 }
663
664 return need_more_balance;
665 }

646-662 Cycles through each zone and calls try to free pages zone()
(See Section J.5.3) if it needs rebalancing.

647 node zones is an array, and i is an index within it.

648-649 Calls schedule() if the quanta is expired to prevent kswapd from hog-
ging the CPU.

650-651 If the zone does not require balance, this moves to the next one.

652-657 If the function returns 0, it means the out of memory() function was
called because a sufficient number of pages could not be freed. kswapd sleeps
for 1 second to give the system a chance to reclaim the killed processes’ pages
and to perform I/O. The zone is marked as balanced, so kswapd will ignore
this zone until the allocator function alloc pages() complains again.

658-661 If it was successful, check classzone need balance() is called to see if
the zone requires further balancing.

664 Returns 1 if one zone requires further balancing.
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K.1 Scanning for Free Entries
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K.1.1 Function: get swap page() (mm/swapfile.c)
The call graph for this function is shown in Figure 11.2. This is the high-level

API function for searching the swap areas for a free swap lot and returning the
resulting swp entry t.

99 swp_entry_t get_swap_page(void)
100 {
101 struct swap_info_struct * p;
102 unsigned long offset;
103 swp_entry_t entry;
104 int type, wrapped = 0;
105
106 entry.val = 0; /* Out of memory */
107 swap_list_lock();
108 type = swap_list.next;
109 if (type < 0)
110 goto out;
111 if (nr_swap_pages <= 0)
112 goto out;
113
114 while (1) {
115 p = &swap_info[type];
116 if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {
117 swap_device_lock(p);
118 offset = scan_swap_map(p);
119 swap_device_unlock(p);
120 if (offset) {
121 entry = SWP_ENTRY(type,offset);
122 type = swap_info[type].next;
123 if (type < 0 ||
124 p->prio != swap_info[type].prio) {
125 swap_list.next = swap_list.head;
126 } else {
127 swap_list.next = type;
128 }
129 goto out;
130 }
131 }
132 type = p->next;
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133 if (!wrapped) {
134 if (type < 0 || p->prio != swap_info[type].prio) {
135 type = swap_list.head;
136 wrapped = 1;
137 }
138 } else
139 if (type < 0)
140 goto out; /* out of swap space */
141 }
142 out:
143 swap_list_unlock();
144 return entry;
145 }

107 Locks the list of swap areas.

108 Gets the next swap area that is to be used for allocating from. This list will
be ordered depending on the priority of the swap areas.

109-110 If there are no swap areas, this returns NULL.

111-112 If the accounting says no swap slots are available, this returns NULL.

114-141 Cycles through all swap areas.

115 Gets the current swap info struct from the swap info array.

116 If this swap area is available for writing to and is active, then. . .

117 Locks the swap area.

118 Calls scan swap map() (See Section K.1.2), which searches the requested
swap map for a free slot.

119 Unlocks the swap device.

120-130 If a slot was free, then...

121 Encodes an identifier for the entry with SWP ENTRY().

122 Records the next swap area to use.

123-126 If the next area is the end of the list or the priority of the next swap area
does not match the current one, this moves back to the head.

126-128 Otherwise, it moves to the next area.

129 Goto out.

132 Moves to the next swap area.
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133-138 Checks for wrapaound. It sets wrapped to 1 if we get to the end of the
list of swap areas.

139-140 If no swap areas are available, goto out.

142 The exit to this function.

143 Unlocks the swap area list.

144 Returns the entry if one was found and returns NULL otherwise.

K.1.2 Function: scan swap map() (mm/swapfile.c)
This function tries to allocate SWAPFILE CLUSTER number of pages sequentially

in swap. When it has allocated that many, it searches for another block of free slots
of size SWAPFILE CLUSTER. If it fails to find one, it resorts to allocating the first free
slot. This clustering attempts to make sure that slots are allocated and freed in
SWAPFILE CLUSTER-sized chunks.

36 static inline int scan_swap_map(struct swap_info_struct *si)
37 {
38 unsigned long offset;
47 if (si->cluster_nr) {
48 while (si->cluster_next <= si->highest_bit) {
49 offset = si->cluster_next++;
50 if (si->swap_map[offset])
51 continue;
52 si->cluster_nr--;
53 goto got_page;
54 }
55 }

This block allocates SWAPFILE CLUSTER pages sequentially. cluster nr is ini-
tialized to SWAPFILE CLUTER and decrements with each allocation.

47 If cluster nr is still postive, this allocates the next available sequential slot.

48 When the current offset to use (cluster next) is less then the highest known
free slot (highest bit), then ...

49 Records the offset and updates cluster next to the next free slot.

50-51 If the slot is not actually free, this moves to the next one.

52 If a slot has been found, this decrements the cluster nr field.

53 Goto the out path.
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56 si->cluster_nr = SWAPFILE_CLUSTER;
57
58 /* try to find an empty (even not aligned) cluster. */
59 offset = si->lowest_bit;
60 check_next_cluster:
61 if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)
62 {
63 int nr;
64 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)
65 if (si->swap_map[nr])
66 {
67 offset = nr+1;
68 goto check_next_cluster;
69 }
70 /* We found a completly empty cluster, so start
71 * using it.
72 */
73 goto got_page;
74 }

At this stage, SWAPFILE CLUSTER pages have been allocated sequentially, so this
finds the next free block of SWAPFILE CLUSTER pages.

56 Reinitializes the count of sequential pages to allocate to SWAPFILE CLUSTER.

59 Starts searching at the lowest known free slot.

61 If the offset plus the cluster size is less than the known last free slot, this
examines all the pages to see if this is a large free block.

64 Scans from offset to offset + SWAPFILE CLUSTER.

65-69 If this slot is used, this starts searching again for a free slot, beginning after
this known allocated one.

73 A large cluster was found, so this uses it.

75 /* No luck, so now go finegrined as usual. -Andrea */
76 for (offset = si->lowest_bit; offset <= si->highest_bit ;

offset++) {
77 if (si->swap_map[offset])
78 continue;
79 si->lowest_bit = offset+1;

This unusual for loop extract starts scanning for a free page starting from
lowest bit.

77-78 If the slot is in use, this moves to the next one.
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79 Updates the lowest bit known probable free slot to the succeeding one.

80 got_page:
81 if (offset == si->lowest_bit)
82 si->lowest_bit++;
83 if (offset == si->highest_bit)
84 si->highest_bit--;
85 if (si->lowest_bit > si->highest_bit) {
86 si->lowest_bit = si->max;
87 si->highest_bit = 0;
88 }
89 si->swap_map[offset] = 1;
90 nr_swap_pages--;
91 si->cluster_next = offset+1;
92 return offset;
93 }
94 si->lowest_bit = si->max;
95 si->highest_bit = 0;
96 return 0;
97 }

If a slot has been found, this does some housekeeping and returns it.

81-82 If this offset is the known lowest free slot(lowest bit), this increments it.

83-84 If this offset is the highest known likely free slot, this decrements it.

85-88 If the low and high mark meet, the swap area is not worth searching any
more because these marks represent the lowest and highest known free slots.
This sets the low slot to be the highest possible slot and the high mark to 0
to cut down on search time later. This will be fixed up the next time a slot is
freed.

89 Sets the reference count for the slot.

90 Updates the accounting for the number of available swap pages
(nr swap pages).

91 Sets cluster next to the adjacent slot, so the next search will start here.

92 Returns the free slot.

94-96 If a free slot is not available, this marks the area unsearchable and returns
0.
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K.2 Swap Cache
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K.2.1 Adding Pages to the Swap Cache

K.2.1.1 Function: add to swap cache() (mm/swap state.c)
The call graph for this function is shown in Figure 11.3. This function

wraps around the normal page cache handler. It first checks if the page is
already in the swap cache with swap duplicate(), and, if it is not, it calls
add to page cache unique() instead.

70 int add_to_swap_cache(struct page *page, swp_entry_t entry)
71 {
72 if (page->mapping)
73 BUG();
74 if (!swap_duplicate(entry)) {
75 INC_CACHE_INFO(noent_race);
76 return -ENOENT;
77 }
78 if (add_to_page_cache_unique(page, &swapper_space, entry.val,
79 page_hash(&swapper_space, entry.val)) != 0) {
80 swap_free(entry);
81 INC_CACHE_INFO(exist_race);
82 return -EEXIST;
83 }
84 if (!PageLocked(page))
85 BUG();
86 if (!PageSwapCache(page))
87 BUG();
88 INC_CACHE_INFO(add_total);
89 return 0;
90 }

72-73 A check is made with PageSwapCache() before this function is called to
make sure the page is not already in the swap cache. This check here ensures
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the page has no other existing mapping in case the caller was careless and did
not make the check.

74-77 Uses swap duplicate() (See Section K.2.1.2) to try and increment the
count for this entry. If a slot already exists in the swap map, this increments
the statistic recording the number of races involving adding pages to the swap
cache and returns -ENOENT.

78 Tries and adds the page to the page cache with add to page cache unique()
(See Section J.1.1.2). This function is similar to add to page cache()
(See Section J.1.1.1) except it searches the page cache for a duplicate entry
with find page nolock(). The managing address space is swapper space.
The “offset within the file” in this case is the offset within swap map, so
entry.val, and finally the page, is hashed based on address space and is
offset within swap map.

80-83 If it already existed in the page cache, we raced, so this increments the
statistic recording the number of races to insert an existing page into the
swap cache and returns EEXIST.

84-85 If the page is locked for I/O, it is a bug.

86-87 If it is not now in the swap cache, something went seriously wrong.

88 Increments the statistic recording the total number of pages in the swap cache.

89 Returns success.

K.2.1.2 Function: swap duplicate() (mm/swapfile.c)
This function verifies a swap entry is valid and, if so, increments its swap map

count.

1161 int swap_duplicate(swp_entry_t entry)
1162 {
1163 struct swap_info_struct * p;
1164 unsigned long offset, type;
1165 int result = 0;
1166
1167 type = SWP_TYPE(entry);
1168 if (type >= nr_swapfiles)
1169 goto bad_file;
1170 p = type + swap_info;
1171 offset = SWP_OFFSET(entry);
1172
1173 swap_device_lock(p);
1174 if (offset < p->max && p->swap_map[offset]) {
1175 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1176 p->swap_map[offset]++;
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1177 result = 1;
1178 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1179 if (swap_overflow++ < 5)
1180 printk(KERN_WARNING "swap_dup: swap entry

overflow\n");
1181 p->swap_map[offset] = SWAP_MAP_MAX;
1182 result = 1;
1183 }
1184 }
1185 swap_device_unlock(p);
1186 out:
1187 return result;
1188
1189 bad_file:
1190 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1191 goto out;
1192 }

1161 The parameter is the swap entry to increase the swap map count for.

1167-1169 Gets the offset within the swap info for the swap info struct con-
taining this entry. If it is greater than the number of swap areas, goto
bad file.

1170-1171 Gets the relevant swap info struct and gets the offset within its
swap map.

1173 Locks the swap device.

1174 Makes a quick sanity check to ensure the offset is within the swap map and
that the slot indicated has a positive count. A 0 count would mean that the
slot is not free, and this is a bogus swp entry t.

1175-1177 If the count is not SWAP MAP MAX, this increments it and returns 1 for
success.

1178-1183 If not, the count would overflow, so this sets it to SWAP MAP MAX and
reserves the slot permanently. In reality, this condition is virtually impossible.

1185-1187 Unlocks the swap device and returns.

1190-1191 If a bad device was used, this prints out the error message and returns
failure.

K.2.2 Deleting Pages From the Swap Cache

K.2.2.1 Function: swap free() (mm/swapfile.c)
This decrements the corresponding swap map entry for the swp entry t.
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214 void swap_free(swp_entry_t entry)
215 {
216 struct swap_info_struct * p;
217
218 p = swap_info_get(entry);
219 if (p) {
220 swap_entry_free(p, SWP_OFFSET(entry));
221 swap_info_put(p);
222 }
223 }

218 swap info get() (See Section K.2.3.1) fetches the correct swap info struct
and performs a number of debugging checks to ensure it is a valid area and a
valid swap map entry. If all is sane, it will lock the swap device.

219-222 If it is valid, the corresponding swap map entry is decre-
mented with swap entry free() (See Section K.2.2.2) and swap info put()
(See Section K.2.3.2) is called to free the device.

K.2.2.2 Function: swap entry free() (mm/swapfile.c)

192 static int swap_entry_free(struct swap_info_struct *p,
unsigned long offset)

193 {
194 int count = p->swap_map[offset];
195
196 if (count < SWAP_MAP_MAX) {
197 count--;
198 p->swap_map[offset] = count;
199 if (!count) {
200 if (offset < p->lowest_bit)
201 p->lowest_bit = offset;
202 if (offset > p->highest_bit)
203 p->highest_bit = offset;
204 nr_swap_pages++;
205 }
206 }
207 return count;
208 }

194 Gets the current count.

196 If the count indicates the slot is not permanently reserved, then...

197-198 Decrements the count and stores it in the swap map.

199 If the count reaches 0, the slot is free, so it updates some information.
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200-201 If this freed slot is below lowest bit, this updates lowest bit, which
indicates the lowest known free slot.

202-203 Similarly, this updates the highest bit if this newly freed slot is above
it.

204 Increments the count indicating the number of free swap slots.

207 Returns the current count.

K.2.3 Acquiring/Releasing Swap Cache Pages

K.2.3.1 Function: swap info get() (mm/swapfile.c)
This function finds the swap info struct for the given entry, performs some

basic checking and then locks the device.

147 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
148 {
149 struct swap_info_struct * p;
150 unsigned long offset, type;
151
152 if (!entry.val)
153 goto out;
154 type = SWP_TYPE(entry);
155 if (type >= nr_swapfiles)
156 goto bad_nofile;
157 p = & swap_info[type];
158 if (!(p->flags & SWP_USED))
159 goto bad_device;
160 offset = SWP_OFFSET(entry);
161 if (offset >= p->max)
162 goto bad_offset;
163 if (!p->swap_map[offset])
164 goto bad_free;
165 swap_list_lock();
166 if (p->prio > swap_info[swap_list.next].prio)
167 swap_list.next = type;
168 swap_device_lock(p);
169 return p;
170
171 bad_free:
172 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset,

entry.val);
173 goto out;
174 bad_offset:
175 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset,

entry.val);
176 goto out;
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177 bad_device:
178 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file,

entry.val);
179 goto out;
180 bad_nofile:
181 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file,

entry.val);
182 out:
183 return NULL;
184 }

152-153 If the supplied entry is NULL, this returns.

154 Gets the offset within the swap info array.

155-156 Ensures it is a valid area.

157 Gets the address of the area.

158-159 If the area is not active yet, this prints a bad device error and returns.

160 Gets the offset within the swap map.

161-162 Makes sure the offset is not after the end of the map.

163-164 Makes sure the slot is currently in use.

165 Locks the swap area list.

166-167 If this area is of higher priority than the area that would be next, this
ensures the current area is used.

168-169 Locks the swap device and returns the swap area descriptor.

K.2.3.2 Function: swap info put() (mm/swapfile.c)
This function simply unlocks the area and list.

186 static void swap_info_put(struct swap_info_struct * p)
187 {
188 swap_device_unlock(p);
189 swap_list_unlock();
190 }

188 Unlocks the device.

189 Unlocks the swap area list.
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K.2.4 Searching the Swap Cache

K.2.4.1 Function: lookup swap cache() (mm/swap state.c)
This is a top-level function for finding a page in the swap cache.

161 struct page * lookup_swap_cache(swp_entry_t entry)
162 {
163 struct page *found;
164
165 found = find_get_page(&swapper_space, entry.val);
166 /*
167 * Unsafe to assert PageSwapCache and mapping on page found:
168 * if SMP nothing prevents swapoff from deleting this page from
169 * the swap cache at this moment. find_lock_page would prevent
170 * that, but no need to change: we _have_ got the right page.
171 */
172 INC_CACHE_INFO(find_total);
173 if (found)
174 INC_CACHE_INFO(find_success);
175 return found;
176 }

165 find get page()(See Section J.1.4.1) is the principal function for returning
the struct page. It uses the normal page hashing and cache functions for
quickly finding it.

172 Increases the statistic recording the number of times a page was searched for
in the cache.

173-174 If one was found, this increments the successful find count.

175 Returns the struct page or NULL if it did not exist.
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K.3.1 Reading Backing Storage

K.3.1.1 Function: read swap cache async() (mm/swap state.c)
This function will return the requested page from the swap cache. If it does

not exist, a page will be allocated and placed in the swap cache. The data is then
scheduled to be read from disk with rw swap page().

184 struct page * read_swap_cache_async(swp_entry_t entry)
185 {
186 struct page *found_page, *new_page = NULL;
187 int err;
188
189 do {
196 found_page = find_get_page(&swapper_space, entry.val);
197 if (found_page)
198 break;
199
200 /*
201 * Get a new page to read into from swap.
202 */
203 if (!new_page) {
204 new_page = alloc_page(GFP_HIGHUSER);
205 if (!new_page)
206 break; /* Out of memory */
207 }
208
209 /*
210 * Associate the page with swap entry in the swap cache.
211 * May fail (-ENOENT) if swap entry has been freed since
212 * our caller observed it. May fail (-EEXIST) if there
213 * is already a page associated with this entry in the
214 * swap cache: added by a racing read_swap_cache_async,
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215 * or by try_to_swap_out (or shmem_writepage) re-using
216 * the just freed swap entry for an existing page.
217 */
218 err = add_to_swap_cache(new_page, entry);
219 if (!err) {
220 /*
221 * Initiate read into locked page and return.
222 */
223 rw_swap_page(READ, new_page);
224 return new_page;
225 }
226 } while (err != -ENOENT);
227
228 if (new_page)
229 page_cache_release(new_page);
230 return found_page;
231 }

189 Loops in case add to swap cache() fails to add a page to the swap cache.

196 First searches the swap cache with find get page()(See Section J.1.4.1)
to see if the page is already available. Ordinarily, lookup swap cache()
(See Section K.2.4.1) would be called, but it updates statistics (such as the
number of cache searches), so find get page() (See Section J.1.4.1) is called
directly.

203-207 If the page is not in the swap cache and we have not allocated one yet,
this allocates one with alloc page().

218 Adds the newly allocated page to the swap cache with add to swap cache()
(See Section K.2.1.1).

223 Schedules the data to be read with rw swap page()(See Section K.3.3.1). The
page will be returned locked and will be unlocked when I/O completes.

224 Returns the new page.

226 Loops until add to swap cache() succeeds or another process successfully
inserts the page into the swap cache.

228-229 This is either the error path, or another process added the page to
the swap cache for us. If a new page was allocated, this frees it with
page cache release() (See Section J.1.3.2).

230 Returns either the page found in the swap cache or an error.
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K.3.2 Writing Backing Storage

K.3.2.1 Function: swap writepage() (mm/swap state.c)
This is the function registered in swap aops for writing out pages. Its function

is pretty simple. First, it calls remove exclusive swap page() to try and free the
page. If the page was freed, the page will be unlocked here before returning because
no I/O is pending on the page. Otherwise, rw swap page() is called to sync the
page with backing storage.

24 static int swap_writepage(struct page *page)
25 {
26 if (remove_exclusive_swap_page(page)) {
27 UnlockPage(page);
28 return 0;
29 }
30 rw_swap_page(WRITE, page);
31 return 0;
32 }

26-29 remove exclusive swap page()(See Section K.3.2.2) will reclaim the page
from the swap cache if possible. If the page is reclaimed, this unlocks it before
returning.

30 Otherwise, the page is still in the swap cache, so this synchronizes it with
backing storage by calling rw swap page() (See Section K.3.3.1).

K.3.2.2 Function: remove exclusive swap page() (mm/swapfile.c)
This function will try to work out if other processes are sharing this page. If

possible, the page will be removed from the swap cache and freed. After it is
removed from the swap cache, swap free() is decremented to indicate that the
swap cache is no longer using the slot. The count will instead reflect the number of
PTEs that contain a swp entry t for this slot.

287 int remove_exclusive_swap_page(struct page *page)
288 {
289 int retval;
290 struct swap_info_struct * p;
291 swp_entry_t entry;
292
293 if (!PageLocked(page))
294 BUG();
295 if (!PageSwapCache(page))
296 return 0;
297 if (page_count(page) - !!page->buffers != 2) /* 2: us + cache */
298 return 0;
299
300 entry.val = page->index;
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301 p = swap_info_get(entry);
302 if (!p)
303 return 0;
304
305 /* Is the only swap cache user the cache itself? */
306 retval = 0;
307 if (p->swap_map[SWP_OFFSET(entry)] == 1) {
308 /* Recheck the page count with the pagecache lock held.. */
309 spin_lock(&pagecache_lock);
310 if (page_count(page) - !!page->buffers == 2) {
311 __delete_from_swap_cache(page);
312 SetPageDirty(page);
313 retval = 1;
314 }
315 spin_unlock(&pagecache_lock);
316 }
317 swap_info_put(p);
318
319 if (retval) {
320 block_flushpage(page, 0);
321 swap_free(entry);
322 page_cache_release(page);
323 }
324
325 return retval;
326 }

293-294 This operation should only be made with the page locked.

295-296 If the page is not in the swap cache, then there is nothing to do.

297-298 If there are other users of the page, then it cannot be reclaimed, so it
returns.

300 The swp entry t for the page is stored in page→index as explained in
Section 2.5.

301 Gets the swap info struct with swap info get() (See Section K.2.3.1).

307 If the only user of the swap slot is the swap cache itself (i.e, no process is
mapping it), this deletes this page from the swap cache to free the slot. Later,
the swap slot usage count will be decremented because the swap cache is no
longer using it.

310 If the current user is the only user of this page, it is safe to remove from the
swap cache. If another process is sharing it, it must remain here.

311 Deletes from the swap cache.
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313 Sets retval to 1 so that the caller knows the page was freed and so that
swap free() (See Section K.2.2.1) will be called to decrement the usage count
in the swap map.

317 Drops the reference to the swap slot that was taken with swap info get()
(See Section K.2.3.1).

320 The slot is being freed to call block flushpage() so that all I/O will complete
and any buffers associated with the page will be freed.

321 Frees the swap slot with swap free().

322 Drops the reference to the page.

K.3.2.3 Function: free swap and cache() (mm/swapfile.c)
This function frees an entry from the swap cache and tries to reclaim the page.

Note that this function only applies to the swap cache.

332 void free_swap_and_cache(swp_entry_t entry)
333 {
334 struct swap_info_struct * p;
335 struct page *page = NULL;
336
337 p = swap_info_get(entry);
338 if (p) {
339 if (swap_entry_free(p, SWP_OFFSET(entry)) == 1)
340 page = find_trylock_page(&swapper_space, entry.val);
341 swap_info_put(p);
342 }
343 if (page) {
344 page_cache_get(page);
345 /* Only cache user (+us), or swap space full? Free it! */
346 if (page_count(page) - !!page->buffers == 2 ||

vm_swap_full()) {
347 delete_from_swap_cache(page);
348 SetPageDirty(page);
349 }
350 UnlockPage(page);
351 page_cache_release(page);
352 }
353 }

337 Gets the swap info struct for the requsted entry.

338-342 Presuming the swap area information struct exists, this calls
swap entry free() to free the swap entry. The page for the entry is then
located in the swap cache using find trylock page(). Note that the page is
returned locked.
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341 Drops the reference taken to the swap info struct at line 337.

343-352 If the page was located, then we try to reclaim it.

344 Takes a reference to the page so that it will not be freed prematurely.

346-349 The page is deleted from the swap cache if no processes are map-
ping the page or if the swap area is more than 50 percent full (checked by
vm swap full()).

350 Unlocks the page again.

351 Drops the local reference to the page taken at line 344.

K.3.3 Block I/O

K.3.3.1 Function: rw swap page() (mm/page io.c)
This is the main function used for reading data from backing storage into a

page or writing data from a page to backing storage. Which operation it performs
depends on the first parameter rw. It is basically a wrapper function around the
core function rw swap page base(). This simply enforces that the operations are
only performed on pages in the swap cache.

85 void rw_swap_page(int rw, struct page *page)
86 {
87 swp_entry_t entry;
88
89 entry.val = page->index;
90
91 if (!PageLocked(page))
92 PAGE_BUG(page);
93 if (!PageSwapCache(page))
94 PAGE_BUG(page);
95 if (!rw_swap_page_base(rw, entry, page))
96 UnlockPage(page);
97 }

85 rw indicates whether a read or write is taking place.

89 Gets the swp entry t from the index field.

91-92 If the page is not locked for I/O, it is a bug.

93-94 If the page is not in the swap cache, it is a bug.

95 Calls the core function rw swap page base(). If it returns failure, the page is
unlocked with UnlockPage() so that it can be freed.
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K.3.3.2 Function: rw swap page base() (mm/page io.c)
This is the core function for reading or writing data to the backing storage.

Whether it is writing to a partition or a file, the block layer brw page() function is
used to perform the actual I/O. This function sets up the necessary buffer informa-
tion for the block layer to do its job. The brw page() performs asynchronous I/O,
so it is likely it will return with the page locked, which will be unlocked when the
I/O completes.

36 static int rw_swap_page_base(int rw, swp_entry_t entry,
struct page *page)

37 {
38 unsigned long offset;
39 int zones[PAGE_SIZE/512];
40 int zones_used;
41 kdev_t dev = 0;
42 int block_size;
43 struct inode *swapf = 0;
44
45 if (rw == READ) {
46 ClearPageUptodate(page);
47 kstat.pswpin++;
48 } else
49 kstat.pswpout++;
50

36 The parameters are the following:

• rw indicates whether the operation is a read or a write.

• entry is the swap entry for locating the data in backing storage.

• page is the page that is being read or written to.

39 zones is a parameter required by the block layer for brw page(). It is ex-
pected to contain an array of block numbers that are to be written to. This
is primarily of importance when the backing storage is a file rather than a
partition.

45-47 If the page is to be read from disk, this clears the Uptodate flag because
the page is obviously not up to date if we are reading information from the
disk. It increments the pages-swapped-in (pswpin) statistic.

49 If not, it just updates the pages-swapped-out (pswpout) statistic.

51 get_swaphandle_info(entry, &offset, &dev, &swapf);
52 if (dev) {
53 zones[0] = offset;
54 zones_used = 1;
55 block_size = PAGE_SIZE;
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56 } else if (swapf) {
57 int i, j;
58 unsigned int block =
59 offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits);
60
61 block_size = swapf->i_sb->s_blocksize;
62 for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size)
63 if (!(zones[i] = bmap(swapf,block++))) {
64 printk("rw_swap_page: bad swap file\n");
65 return 0;
66 }
67 zones_used = i;
68 dev = swapf->i_dev;
69 } else {
70 return 0;
71 }
72
73 /* block_size == PAGE_SIZE/zones_used */
74 brw_page(rw, page, dev, zones, block_size);
75 return 1;
76 }

51 get swaphandle info()(See Section K.3.3.3) returns either the kdev t or
struct inode that represents the swap area, whichever is appropriate.

52-55 If the storage area is a partition, then there is only one block to be written,
which is the size of a page. Hence, zones only has one entry, which is the
offset within the partition to be written, and the block size is PAGE SIZE.

56 If not, it is a swap file, so each of the blocks in the file that make up the page
has to be mapped with bmap() before calling brw page().

58-59 Calculates what the starting block is.

61 The size of individual block is stored in the superblock information for the
filesystem the file resides on.

62-66 Calls bmap() for every block that makes up the full page. Each block is
stored in the zones array for passing to brw page(). If any block fails to be
mapped, 0 is returned.

67 Records how many blocks make up the page in zones used.

68 Records which device is being written to.

74 Calls brw page() from the block layer to schedule the I/O to occur. This
function returns immediately because the I/O is asychronous. When the I/O
is completed, a callback function (end buffer io async()) is called, which
unlocks the page. Any process waiting on the page will be woken up at that
point.
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75 Returns success.

K.3.3.3 Function: get swaphandle info() (mm/swapfile.c)
This function is responsible for returning either the kdev t or struct inode

that is managing the swap area that entry belongs to.

1197 void get_swaphandle_info(swp_entry_t entry, unsigned long *offset,
1198 kdev_t *dev, struct inode **swapf)
1199 {
1200 unsigned long type;
1201 struct swap_info_struct *p;
1202
1203 type = SWP_TYPE(entry);
1204 if (type >= nr_swapfiles) {
1205 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_file,

entry.val);
1206 return;
1207 }
1208
1209 p = &swap_info[type];
1210 *offset = SWP_OFFSET(entry);
1211 if (*offset >= p->max && *offset != 0) {
1212 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_offset,

entry.val);
1213 return;
1214 }
1215 if (p->swap_map && !p->swap_map[*offset]) {
1216 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_offset,

entry.val);
1217 return;
1218 }
1219 if (!(p->flags & SWP_USED)) {
1220 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_file,

entry.val);
1221 return;
1222 }
1223
1224 if (p->swap_device) {
1225 *dev = p->swap_device;
1226 } else if (p->swap_file) {
1227 *swapf = p->swap_file->d_inode;
1228 } else {
1229 printk(KERN_ERR "rw_swap_page: no swap file or device\n");
1230 }
1231 return;
1232 }
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1203 Extracts which area within swap info this entry belongs to.

1204-1206 If the index is for an area that does not exist, this prints out an
information message and returns. Bad file is a static array declared near the
top of mm/swapfile.c that says “Bad swap file entry.”

1209 Gets the swap info struct from swap info.

1210 Extracts the offset within the swap area for this entry.

1211-1214 Makes sure the offset is not after the end of the file. It prints out the
message in Bad offset if it is.

1215-1218 If the offset is currently not being used, it means that entry is a stale
entry, so it prints out the error message in Unused offset.

1219-1222 If the swap area is currently not active, this prints out the error mes-
sage in Unused file.

1224 If the swap area is a device, this returns the kdev t in
swap info struct→swap device.

1226-1227 If it is a swap file, this returns the struct inode, which is available
through swap info struct→swap file→d inode.

1229 If not, there is no swap file or device for this entry, so it prints out the error
message and returns.
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K.4.1 Function: sys swapon() (mm/swapfile.c)
This quite large function is responsible for the activating of swap space. Broadly

speaking, the tasks it takes are as follows:

• Find a free swap info struct in the swap info array and initialize it with
default values.

• Call user path walk(), which traverses the directory tree for the supplied
specialfile and populates a namidata structure with the available data on
the file, such as the dentry and the filesystem information for where it is
stored (vfsmount).

• Populate swap info struct fields pertaining to the dimensions of the swap
area and how to find it. If the swap area is a partition, the block size will
be configured to the PAGE SIZE before calculating the size. If it is a file, the
information is obtained directly from the inode.

• Ensure the area is not already activated. If not, allocate a page from mem-
ory and read the first page-sized slot from the swap area. This page con-
tains information, such as the number of good slots and how to populate the
swap info struct→swap map with the bad entries.

• Allocate memory with vmalloc() for swap info struct→swap map and ini-
tialize each entry with 0 for good slots and SWAP MAP BAD otherwise. Ideally,
the header information will be a version 2 file format because version 1 was
limited to swap areas of just under 128MiB for architectures with 4KiB page
sizes like the x86.

• After ensuring the information indicated in the header matches the actual
swap area, fill in the remaining information in the swap info struct, such
as the maximum number of pages and the available good pages. Update the
global statistics for nr swap pages and total swap pages.

• The swap area is now fully active and initialized, so it is inserted into the
swap list in the correct position based on priority of the newly activated area.

855 asmlinkage long sys_swapon(const char * specialfile,
int swap_flags)

856 {
857 struct swap_info_struct * p;
858 struct nameidata nd;
859 struct inode * swap_inode;
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860 unsigned int type;
861 int i, j, prev;
862 int error;
863 static int least_priority = 0;
864 union swap_header *swap_header = 0;
865 int swap_header_version;
866 int nr_good_pages = 0;
867 unsigned long maxpages = 1;
868 int swapfilesize;
869 struct block_device *bdev = NULL;
870 unsigned short *swap_map;
871
872 if (!capable(CAP_SYS_ADMIN))
873 return -EPERM;
874 lock_kernel();
875 swap_list_lock();
876 p = swap_info;

855 The two parameters are the path to the swap area and the flags for activation.

872-873 The activating process must have the CAP SYS ADMIN capability or be the
superuser to activate a swap area.

874 Acquires the Big Kernel Lock (BKL).

875 Locks the list of swap areas.

876 Gets the first swap area in the swap info array.

877 for (type = 0 ; type < nr_swapfiles ; type++,p++)
878 if (!(p->flags & SWP_USED))
879 break;
880 error = -EPERM;
881 if (type >= MAX_SWAPFILES) {
882 swap_list_unlock();
883 goto out;
884 }
885 if (type >= nr_swapfiles)
886 nr_swapfiles = type+1;
887 p->flags = SWP_USED;
888 p->swap_file = NULL;
889 p->swap_vfsmnt = NULL;
890 p->swap_device = 0;
891 p->swap_map = NULL;
892 p->lowest_bit = 0;
893 p->highest_bit = 0;
894 p->cluster_nr = 0;
895 p->sdev_lock = SPIN_LOCK_UNLOCKED;
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896 p->next = -1;
897 if (swap_flags & SWAP_FLAG_PREFER) {
898 p->prio =
899 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
900 } else {
901 p->prio = --least_priority;
902 }
903 swap_list_unlock();

Finds a free swap info struct and initializes it with default values.

877-879 Cycles through the swap info until a struct is found that is not in use.

880 By default, the error returned is Permission Denied, which indicates the caller
did not have the proper permissions or too many swap areas are already in
use.

881 If no struct was free, MAX SWAPFILE areas have already been activated, so this
unlocks the swap list and returns.

885-886 If the selected swap area is after the last known active area
(nr swapfiles), this updates nr swapfiles.

887 Sets the flag, indicating the area is in use.

888-896 Initializes fields to default values.

897-902 If the caller has specified a priority, this uses it or sets it to
least priority and decrements it. This way, the swap areas will be pri-
oritized in order of activation.

903 Releases the swap list lock.

904 error = user_path_walk(specialfile, &nd);
905 if (error)
906 goto bad_swap_2;
907
908 p->swap_file = nd.dentry;
909 p->swap_vfsmnt = nd.mnt;
910 swap_inode = nd.dentry->d_inode;
911 error = -EINVAL;
912

This block traverses the VFS and gets some information about the special file.

904 user path walk() traverses the directory structure to obtain a nameidata
structure describing the specialfile.

905-906 If it failed, this returns failure.

S
w
a
p

M
a
n
a
g
em

en
t



610 Swap Management Appendix K

908 Fills in the swap file field with the returned dentry.

909 Similarly, fills in the swap vfsmnt.

910 Records the inode of the special file.

911 Now the default error is -EINVAL, indicating that the special file was found
but it was not a block device or a regular file.

913 if (S_ISBLK(swap_inode->i_mode)) {
914 kdev_t dev = swap_inode->i_rdev;
915 struct block_device_operations *bdops;
916 devfs_handle_t de;
917
918 p->swap_device = dev;
919 set_blocksize(dev, PAGE_SIZE);
920
921 bd_acquire(swap_inode);
922 bdev = swap_inode->i_bdev;
923 de = devfs_get_handle_from_inode(swap_inode);
924 bdops = devfs_get_ops(de);
925 if (bdops) bdev->bd_op = bdops;
926
927 error = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0,

BDEV_SWAP);
928 devfs_put_ops(de);/* Decrement module use count

* now we’re safe*/
929 if (error)
930 goto bad_swap_2;
931 set_blocksize(dev, PAGE_SIZE);
932 error = -ENODEV;
933 if (!dev || (blk_size[MAJOR(dev)] &&
934 !blk_size[MAJOR(dev)][MINOR(dev)]))
935 goto bad_swap;
936 swapfilesize = 0;
937 if (blk_size[MAJOR(dev)])
938 swapfilesize = blk_size[MAJOR(dev)][MINOR(dev)]
939 >> (PAGE_SHIFT - 10);
940 } else if (S_ISREG(swap_inode->i_mode))
941 swapfilesize = swap_inode->i_size >> PAGE_SHIFT;
942 else
943 goto bad_swap;

If a partition, this code configures the block device before calculating the size of
the area, or it obtains it from the inode for the file.

913 Checks if the special file is a block device.
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914-939 This code segment handles the case where the swap area is a partition.

914 Records a pointer to the device structure for the block device.

918 Stores a pointer to the device structure describing the special file that will be
needed for block I/O operations.

919 Sets the block size on the device to be PAGE SIZE because it will be page-sized
chunks swap is interested in.

921 The bd acquire() function increments the usage count for this block device.

922 Gets a pointer to the block device structure, which is a descriptor for the
device file, which is needed to open it.

923 Gets a devfs handle if it is enabled. devfs is beyond the scope of this book.

924-925 Increments the usage count of this device entry.

927 Opens the block device in read/write mode and sets the BDEV SWAP flag, which
is an enumerated type, but is ignored when do open() is called.

928 Decrements the use count of the devfs entry.

929-930 If an error occured on open, this returns failure.

931 Sets the block size again.

932 After this point, the default error is to indicate no device could be found.

933-935 Ensures the returned device is ok.

937-939 Calculates the size of the swap file as the number of page-sized chunks
that exist in the block device as indicated by blk size. The size of the swap
area is calculated to make sure the information in the swap area is sane.

941 If the swap area is a regular file, this obtains the size directly from the inode
and calculates how many page-sized chunks exist.

943 If the file is not a block device or regular file, this returns error.

945 error = -EBUSY;
946 for (i = 0 ; i < nr_swapfiles ; i++) {
947 struct swap_info_struct *q = &swap_info[i];
948 if (i == type || !q->swap_file)
949 continue;
950 if (swap_inode->i_mapping ==

q->swap_file->d_inode->i_mapping)
951 goto bad_swap;
952 }
953
954 swap_header = (void *) __get_free_page(GFP_USER);
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955 if (!swap_header) {
956 printk("Unable to start swapping: out of memory :-)\n");
957 error = -ENOMEM;
958 goto bad_swap;
959 }
960
961 lock_page(virt_to_page(swap_header));
962 rw_swap_page_nolock(READ, SWP_ENTRY(type,0),

(char *) swap_header);
963
964 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
965 swap_header_version = 1;
966 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
967 swap_header_version = 2;
968 else {
969 printk("Unable to find swap-space signature\n");
970 error = -EINVAL;
971 goto bad_swap;
972 }

945 The next check makes sure the area is not already active. If it is, the error
-EBUSY will be returned.

946-962 Reads through the while swap info struct and ensures the area to be
activated if not already active.

954-959 Allocates a page for reading the swap area information from disk.

961 The function lock page() locks a page and makes sure it is synced with the
disk if it is file backed. In this case, it will just mark the page as locked, which
is required for the rw swap page nolock() function.

962 Reads the first page slot in the swap area into swap header.

964-672 Checks the version based on the swap area information and sets
swap header version variable with it. If the swap area could not be identi-
fied, it returns -EINVAL.

974 switch (swap_header_version) {
975 case 1:
976 memset(((char *) swap_header)+PAGE_SIZE-10,0,10);
977 j = 0;
978 p->lowest_bit = 0;
979 p->highest_bit = 0;
980 for (i = 1 ; i < 8*PAGE_SIZE ; i++) {
981 if (test_bit(i,(char *) swap_header)) {
982 if (!p->lowest_bit)
983 p->lowest_bit = i;
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984 p->highest_bit = i;
985 maxpages = i+1;
986 j++;
987 }
988 }
989 nr_good_pages = j;
990 p->swap_map = vmalloc(maxpages * sizeof(short));
991 if (!p->swap_map) {
992 error = -ENOMEM;
993 goto bad_swap;
994 }
995 for (i = 1 ; i < maxpages ; i++) {
996 if (test_bit(i,(char *) swap_header))
997 p->swap_map[i] = 0;
998 else
999 p->swap_map[i] = SWAP_MAP_BAD;
1000 }
1001 break;
1002

This block reads in the information needed to populate the swap map when the
swap area is version 1.

976 Zeros-out the magic string identifying the version of the swap area.

978-979 Initializes fields in swap info struct to 0.

980-988 A bitmap with 8*PAGE SIZE entries is stored in the swap area. The full
page, minus 10 bits for the magic string, is used to describe the swap map
and limits swap areas to just under 128MiB in size. If the bit is set to 1, a
slot on disk is available. This pass will calculate how many slots are available,
so a swap map may be allocated.

981 Tests if the bit for this slot is set.

982-983 If the lowest bit field is not yet set, this sets it to this slot. In most
cases, lowest bit will be initialized to 1.

984 As long as new slots are found, this keeps updating the highest bit.

985 Counts the number of pages.

986 j is the count of good pages in the area.

990 Allocates memory for the swap map with vmalloc().

991-994 If memory could not be allocated, this returns ENOMEM.

995-1000 For each slot, this checks if the slot is “good.” If yes, it initializes the
slot count to 0, or sets it to SWAP MAP BAD, so it will not be used.
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1001 Exits the switch statement.

1003 case 2:
1006 if (swap_header->info.version != 1) {
1007 printk(KERN_WARNING
1008 "Unable to handle swap header version %d\n",
1009 swap_header->info.version);
1010 error = -EINVAL;
1011 goto bad_swap;
1012 }
1013
1014 p->lowest_bit = 1;
1015 maxpages = SWP_OFFSET(SWP_ENTRY(0,~0UL)) - 1;
1016 if (maxpages > swap_header->info.last_page)
1017 maxpages = swap_header->info.last_page;
1018 p->highest_bit = maxpages - 1;
1019
1020 error = -EINVAL;
1021 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1022 goto bad_swap;
1023
1025 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1026 error = -ENOMEM;
1027 goto bad_swap;
1028 }
1029
1030 error = 0;
1031 memset(p->swap_map, 0, maxpages * sizeof(short));
1032 for (i=0; i<swap_header->info.nr_badpages; i++) {
1033 int page = swap_header->info.badpages[i];
1034 if (page <= 0 ||

page >= swap_header->info.last_page)
1035 error = -EINVAL;
1036 else
1037 p->swap_map[page] = SWAP_MAP_BAD;
1038 }
1039 nr_good_pages = swap_header->info.last_page -
1040 swap_header->info.nr_badpages -
1041 1 /* header page */;
1042 if (error)
1043 goto bad_swap;
1044 }

This block reads the header information when the file format is version 2.

1006-1012 Makes absolutely sure we can handle this swap file format and returns
-EINVAL if we cannot. Remember that, with this version, the swap header
struct is placed nicely on disk.
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1014 Initializes lowest bit to the known lowest available slot.

1015-1017 Calculates the maxpages initially as the maximum possible size of a
swap map and then sets it to the size indicated by the information on disk.
This ensures the swap map array is not accidently overloaded.

1018 Initializes highest bit.

1020-1022 Makes sure the number of bad pages that exists does not exceed
MAX SWAP BADPAGES.

1025-1028 Allocates memory for the swap map with vmalloc().

1031 Initializes the full swap map to 0 indicating all slots are available.

1032-1038 Using the information loaded from disk, this sets each slot that is
unusable to SWAP MAP BAD.

1039-1041 Calculates the number of available good pages.

1042-1043 Returns if an error occurred.

1045
1046 if (swapfilesize && maxpages > swapfilesize) {
1047 printk(KERN_WARNING
1048 "Swap area shorter than signature indicates\n");
1049 error = -EINVAL;
1050 goto bad_swap;
1051 }
1052 if (!nr_good_pages) {
1053 printk(KERN_WARNING "Empty swap-file\n");
1054 error = -EINVAL;
1055 goto bad_swap;
1056 }
1057 p->swap_map[0] = SWAP_MAP_BAD;
1058 swap_list_lock();
1059 swap_device_lock(p);
1060 p->max = maxpages;
1061 p->flags = SWP_WRITEOK;
1062 p->pages = nr_good_pages;
1063 nr_swap_pages += nr_good_pages;
1064 total_swap_pages += nr_good_pages;
1065 printk(KERN_INFO "Adding Swap:

%dk swap-space (priority %d)\n",
1066 nr_good_pages<<(PAGE_SHIFT-10), p->prio);

1046-1051 Ensures the information loaded from disk matches the actual dimen-
sions of the swap area. If they do not match, this prints a warning and returns
an error.
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1052-1056 If no good pages were available, this returns an error.

1057 Makes sure the first page in the map containing the swap header information
is not used. If it was, the header information would be overwritten the first
time this area was used.

1058-1059 Locks the swap list and the swap device.

1060-1062 Fills in the remaining fields in the swap info struct.

1063-1064 Updates global statistics for the number of available swap pages
(nr swap pages) and the total number of swap pages (total swap pages).

1065-1066 Prints an informational message about the swap activation.

1068 /* insert swap space into swap_list: */
1069 prev = -1;
1070 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1071 if (p->prio >= swap_info[i].prio) {
1072 break;
1073 }
1074 prev = i;
1075 }
1076 p->next = i;
1077 if (prev < 0) {
1078 swap_list.head = swap_list.next = p - swap_info;
1079 } else {
1080 swap_info[prev].next = p - swap_info;
1081 }
1082 swap_device_unlock(p);
1083 swap_list_unlock();
1084 error = 0;
1085 goto out;

1070-1080 Inserts the new swap area into the correct slot in the swap list based
on priority.

1082 Unlocks the swap device.

1083 Unlocks the swap list.

1084-1085 Returns success.

1086 bad_swap:
1087 if (bdev)
1088 blkdev_put(bdev, BDEV_SWAP);
1089 bad_swap_2:
1090 swap_list_lock();
1091 swap_map = p->swap_map;
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1092 nd.mnt = p->swap_vfsmnt;
1093 nd.dentry = p->swap_file;
1094 p->swap_device = 0;
1095 p->swap_file = NULL;
1096 p->swap_vfsmnt = NULL;
1097 p->swap_map = NULL;
1098 p->flags = 0;
1099 if (!(swap_flags & SWAP_FLAG_PREFER))
1100 ++least_priority;
1101 swap_list_unlock();
1102 if (swap_map)
1103 vfree(swap_map);
1104 path_release(&nd);
1105 out:
1106 if (swap_header)
1107 free_page((long) swap_header);
1108 unlock_kernel();
1109 return error;
1110 }

1087-1088 Drops the reference to the block device.

1090-1104 This is the error path where the swap list needs to be unlocked, the slot
in swap info reset to being unused and the memory allocated for swap map
freed if it was assigned.

1104 Drops the reference to the special file.

1106-1107 Releases the page containing the swap header information because it
is no longer needed.

1108 Drops the Big Kernel Lock.

1109 Returns the error or success value.

K.4.2 Function: swap setup() (mm/swap.c)
This function is called during the initialization of kswapd to set the size of

page cluster. This variable determines how many pages readahead from files and
from backing storage when paging in data.

100 void __init swap_setup(void)
101 {
102 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);
103
104 /* Use a smaller cluster for small-memory machines */
105 if (megs < 16)
106 page_cluster = 2;
107 else
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108 page_cluster = 3;
109 /*
110 * Right now other parts of the system means that we
111 * _really_ don’t want to cluster much more
112 */
113 }

102 Calculates how much memory the system has in megabytes.

105 In low memory systems, this sets page cluster to 2, which means that, at
most, four pages will be paged in from disk during readahead.

108 If not, readahead will be eight pages.



K.5. Deactivating a Swap Area 619

K.5 Deactivating a Swap Area

Contents
K.5 Deactivating a Swap Area 619

K.5.1 Function: sys swapoff() 619
K.5.2 Function: try to unuse() 623
K.5.3 Function: unuse process() 627
K.5.4 Function: unuse vma() 628
K.5.5 Function: unuse pgd() 629
K.5.6 Function: unuse pmd() 630
K.5.7 Function: unuse pte() 631

K.5.1 Function: sys swapoff() (mm/swapfile.c)
This function is principally concerned with updating the swap info struct and

the swap lists. The main task of paging in all pages in the area is the responsibility
of try to unuse(). The function tasks are broadly the following:

• Call user path walk() to acquire the information about the special file to be
deactivated and then take the BKL.

• Remove the swap info struct from the swap list and update the global statis-
tics on the number of swap pages available (nr swap pages) and the total
number of swap entries (total swap pages). After this is acquired, the BKL
can be released again.

• Call try to unuse(), which will page in all pages from the swap area to be
deactivated.

• If there was not enough available memory to page in all the entries, the swap
area is reinserted back into the running system because it cannot be simply
dropped. If it succeeded, the swap info struct is placed into an uninitialized
state, and the swap map memory freed with vfree().

720 asmlinkage long sys_swapoff(const char * specialfile)
721 {
722 struct swap_info_struct * p = NULL;
723 unsigned short *swap_map;
724 struct nameidata nd;
725 int i, type, prev;
726 int err;
727
728 if (!capable(CAP_SYS_ADMIN))
729 return -EPERM;
730
731 err = user_path_walk(specialfile, &nd);
732 if (err)
733 goto out;
734
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728-729 Only the superuser or a process with CAP SYS ADMIN capabilities may
deactivate an area.

731-732 Acquires information about the special file representing the swap area
with user path walk(). Goto out if an error occured.

735 lock_kernel();
736 prev = -1;
737 swap_list_lock();
738 for (type = swap_list.head; type >= 0;

type = swap_info[type].next) {
739 p = swap_info + type;
740 if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {
741 if (p->swap_file == nd.dentry)
742 break;
743 }
744 prev = type;
745 }
746 err = -EINVAL;
747 if (type < 0) {
748 swap_list_unlock();
749 goto out_dput;
750 }
751
752 if (prev < 0) {
753 swap_list.head = p->next;
754 } else {
755 swap_info[prev].next = p->next;
756 }
757 if (type == swap_list.next) {
758 /* just pick something that’s safe... */
759 swap_list.next = swap_list.head;
760 }
761 nr_swap_pages -= p->pages;
762 total_swap_pages -= p->pages;
763 p->flags = SWP_USED;

Acquires the BKL, finds the swap info struct for the area to be deactivated
and removes it from the swap list.

735 Acquires the BKL.

737 Locks the swap list.

738-745 Traverses the swap list and finds the swap info struct for the requested
area. It uses the dentry to identify the area.

747-750 If the struct could not be found, this returns.
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752-760 Removes from the swap list, making sure that this is not the head.

761 Updates the total number of free swap slots.

762 Updates the total number of existing swap slots.

763 Marks the area as active, but may not be written to.

764 swap_list_unlock();
765 unlock_kernel();
766 err = try_to_unuse(type);

764 Unlocks the swap list.

765 Releases the BKL.

766 Pages in all pages from this swap area.

767 lock_kernel();
768 if (err) {
769 /* re-insert swap space back into swap_list */
770 swap_list_lock();
771 for (prev = -1, i = swap_list.head;

i >= 0;
prev = i, i = swap_info[i].next)

772 if (p->prio >= swap_info[i].prio)
773 break;
774 p->next = i;
775 if (prev < 0)
776 swap_list.head = swap_list.next = p - swap_info;
777 else
778 swap_info[prev].next = p - swap_info;
779 nr_swap_pages += p->pages;
780 total_swap_pages += p->pages;
781 p->flags = SWP_WRITEOK;
782 swap_list_unlock();
783 goto out_dput;
784 }

This block acquires the BKL. If we failed to page in all pages, then it reinserts
the area into the swap list.

767 Acquires the BKL.

770 Locks the swap list.

771-778 Reinserts the area into the swap list. The position it is inserted at
depends on the swap area priority.

779-780 Updates the global statistics.
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781 Marks the area as safe to write to again.

782-783 Unlocks the swap list and returns.

785 if (p->swap_device)
786 blkdev_put(p->swap_file->d_inode->i_bdev, BDEV_SWAP);
787 path_release(&nd);
788
789 swap_list_lock();
790 swap_device_lock(p);
791 nd.mnt = p->swap_vfsmnt;
792 nd.dentry = p->swap_file;
793 p->swap_vfsmnt = NULL;
794 p->swap_file = NULL;
795 p->swap_device = 0;
796 p->max = 0;
797 swap_map = p->swap_map;
798 p->swap_map = NULL;
799 p->flags = 0;
800 swap_device_unlock(p);
801 swap_list_unlock();
802 vfree(swap_map);
803 err = 0;
804
805 out_dput:
806 unlock_kernel();
807 path_release(&nd);
808 out:
809 return err;
810 }

This block is used if the swap area was successfully deactivated to close the block
device and mark the swap info struct free.

785-786 Closes the block device.

787 Releases the path information.

789-790 Acquires the swap list and swap device lock.

791-799 Resets the fields in swap info struct to default values.

800-801 Releases the swap list and swap device.

801 Frees the memory used for the swap map.

806 Releases the BKL.

807 Releases the path information in the event we reached here by the error path.

809 Returns success or failure.
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K.5.2 Function: try to unuse() (mm/swapfile.c)
This function is heavily commented in the source code, albeit it consists of

speculation or is slightly inaccurate at parts. The comments are omitted here for
brevity.

513 static int try_to_unuse(unsigned int type)
514 {
515 struct swap_info_struct * si = &swap_info[type];
516 struct mm_struct *start_mm;
517 unsigned short *swap_map;
518 unsigned short swcount;
519 struct page *page;
520 swp_entry_t entry;
521 int i = 0;
522 int retval = 0;
523 int reset_overflow = 0;
525
540 start_mm = &init_mm;
541 atomic_inc(&init_mm.mm_users);
542

540-541 The starting mm struct to page in pages for is init mm. The count is
incremented even though this particular struct will not disappear to prevent
having to write special cases in the remainder of the function.

556 while ((i = find_next_to_unuse(si, i))) {
557 /*
558 * Get a page for the entry, using the existing swap
559 * cache page if there is one. Otherwise, get a clean
560 * page and read the swap into it.
561 */
562 swap_map = &si->swap_map[i];
563 entry = SWP_ENTRY(type, i);
564 page = read_swap_cache_async(entry);
565 if (!page) {
572 if (!*swap_map)
573 continue;
574 retval = -ENOMEM;
575 break;
576 }
577
578 /*
579 * Don’t hold on to start_mm if it looks like exiting.
580 */
581 if (atomic_read(&start_mm->mm_users) == 1) {
582 mmput(start_mm);
583 start_mm = &init_mm;
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584 atomic_inc(&init_mm.mm_users);
585 }

556 This is the beginning of the major loop in this function. Starting from the
beginning of the swap map, it searches for the next entry to be freed with
find next to unuse() until all swap map entries have been paged in.

562-564 Gets the swp entry t and calls read swap cache async()
(See Section K.3.1.1) to find the page in the swap cache or to have a new
page allocated for reading in from the disk.

565-576 If we failed to get the page, it means the slot has already been freed inde-
pendently by another process or thread (process could be exiting elsewhere)
or we are out of memory. If independently freed, we continue to the next map,
or we return -ENOMEM.

581 Checks to make sure this mm is not exiting. If it is, it decrements its count
and goes back to init mm.

587 /*
588 * Wait for and lock page. When do_swap_page races with
589 * try_to_unuse, do_swap_page can handle the fault much
590 * faster than try_to_unuse can locate the entry. This
591 * apparently redundant "wait_on_page" lets try_to_unuse
592 * defer to do_swap_page in such a case - in some tests,
593 * do_swap_page and try_to_unuse repeatedly compete.
594 */
595 wait_on_page(page);
596 lock_page(page);
597
598 /*
599 * Remove all references to entry, without blocking.
600 * Whenever we reach init_mm, there’s no address space
601 * to search, but use it as a reminder to search shmem.
602 */
603 shmem = 0;
604 swcount = *swap_map;
605 if (swcount > 1) {
606 flush_page_to_ram(page);
607 if (start_mm == &init_mm)
608 shmem = shmem_unuse(entry, page);
609 else
610 unuse_process(start_mm, entry, page);
611 }

595 Waits on the page to complete I/O. After it returns, we know for a fact the
page exists in memory with the same information as that on disk.
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596 Locks the page.

604 Gets the swap map reference count.

605 If the count is positive, then...

606 As the page is about to be inserted into process pagetables, it must be freed
from the D-Cache, or the process may not “see” changes made to the page by
the kernel.

607-608 If we are using the init mm, this calls shmem unuse()
(See Section L.6.2), which will free the page from any shared memory regions
that are in use.

610 If not, this updates the PTE in the current mm, which references this page.

612 if (*swap_map > 1) {
613 int set_start_mm = (*swap_map >= swcount);
614 struct list_head *p = &start_mm->mmlist;
615 struct mm_struct *new_start_mm = start_mm;
616 struct mm_struct *mm;
617
618 spin_lock(&mmlist_lock);
619 while (*swap_map > 1 &&
620 (p = p->next) != &start_mm->mmlist) {
621 mm = list_entry(p, struct mm_struct,

mmlist);
622 swcount = *swap_map;
623 if (mm == &init_mm) {
624 set_start_mm = 1;
625 spin_unlock(&mmlist_lock);
626 shmem = shmem_unuse(entry, page);
627 spin_lock(&mmlist_lock);
628 } else
629 unuse_process(mm, entry, page);
630 if (set_start_mm && *swap_map < swcount) {
631 new_start_mm = mm;
632 set_start_mm = 0;
633 }
634 }
635 atomic_inc(&new_start_mm->mm_users);
636 spin_unlock(&mmlist_lock);
637 mmput(start_mm);
638 start_mm = new_start_mm;
639 }

612-637 If an entry still exists, this begins traversing through all mm structs to
find references to this page and updates the respective PTE.
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618 Locks the mm list.

619-632 Keeps searching until all mm structs have been found. Do not traverse
the full list more than once.

621 Gets the mm struct for this list entry.

623-627 Calls shmem unuse()(See Section L.6.2) if the mm is init mm because
that indicates that is a page from the virtual filesystem. If not, it calls
unuse process() (See Section K.5.3) to traverse the current process’s pageta-
bles searching for the swap entry. If found, the entry will be freed, and the
page reinstantiated in the PTE.

630-633 Records if we need to start searching mm structs starting from init mm
again.

654 if (*swap_map == SWAP_MAP_MAX) {
655 swap_list_lock();
656 swap_device_lock(si);
657 nr_swap_pages++;
658 *swap_map = 1;
659 swap_device_unlock(si);
660 swap_list_unlock();
661 reset_overflow = 1;
662 }

654 If the swap map entry is permanently mapped, we have to hope that all
processes have their PTEs updated to point to the page and, in reality, that
the swap map entry is free. In reality, it is highly unlikely a slot would be
permanently reserved in the first place.

654-661 Locks the list and swap device, sets the swap map entry to 1, unlocks
them again and records that a reset overflow occured.

683 if ((*swap_map > 1) && PageDirty(page) &&
PageSwapCache(page)) {

684 rw_swap_page(WRITE, page);
685 lock_page(page);
686 }
687 if (PageSwapCache(page)) {
688 if (shmem)
689 swap_duplicate(entry);
690 else
691 delete_from_swap_cache(page);
692 }

683-686 In the very rare event a reference still exists to the page, this writes the
page back to disk so, at least if another process really has a reference to it, it
will copy the page back in from disk correctly.
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687-689 If the page is in the swap cache and belongs to the shared memory
filesystem, a new reference is taken to it with swap duplicate() so that we
can try and remove it again later with shmem unuse().

691 If not, for normal pages, this just deletes them from the swap cache.

699 SetPageDirty(page);
700 UnlockPage(page);
701 page_cache_release(page);

699 Marks the page dirty so that the swap out code will preserve the page, and,
if it needs to remove it again, it will write it correctly to a new swap area.

700 Unlocks the page.

701 Releases our reference to it in the pagecache.

708 if (current->need_resched)
714 schedule();
715 }
716
717 mmput(start_mm);
718 if (reset_overflow) {
719 printk(KERN_WARNING "swapoff: cleared swap entry

overflow\n");
720 swap_overflow = 0;
721 }
722 return retval;
723 }

708-709 Calls schedule() if necessary so that the deactivation of swap does not
hog the entire CPU.

717 Drops our reference to the mm.

718-721 If a permanently mapped page had to be removed, this prints out a
warning so that, in the very unlikely event an error occurs later, there will be
a hint to what might have happened.

717 Returns success or failure.

K.5.3 Function: unuse process() (mm/swapfile.c)
This function begins the pagetable walk required to remove the requested page

and entry from the process pagetables managed by mm. This is only required when
a swap area is being deactivated, so, although expensive, it is a very rare operation.
This set of functions should be instantly recognizable as a standard pagetable walk.
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454 static void unuse_process(struct mm_struct * mm,
455 swp_entry_t entry, struct page* page)
456 {
457 struct vm_area_struct* vma;
458
459 /*
460 * Go through process’ page directory.
461 */
462 spin_lock(&mm->page_table_lock);
463 for (vma = mm->mmap; vma; vma = vma->vm_next) {
464 pgd_t * pgd = pgd_offset(mm, vma->vm_start);
465 unuse_vma(vma, pgd, entry, page);
466 }
467 spin_unlock(&mm->page_table_lock);
468 return;
469 }

462 Locks the process pagetables.

463 Moves through every VMA managed by this mm. Remember that one page
frame could be mapped in multiple locations.

462 Gets the PGD managing the beginning of this VMA.

465 Calls unuse vma()(See Section K.5.4) to search the VMA for the page.

467-468 The full mm has been searched, so this unlocks the process pagetables and
returns.

K.5.4 Function: unuse vma() (mm/swapfile.c)
This function searches the requested VMA for pagetable entries mapping the

page and using the given swap entry. It calls unuse pgd() for every PGD that
this VMA maps.

440 static void unuse_vma(struct vm_area_struct * vma, pgd_t *pgdir,
441 swp_entry_t entry, struct page* page)
442 {
443 unsigned long start = vma->vm_start, end = vma->vm_end;
444
445 if (start >= end)
446 BUG();
447 do {
448 unuse_pgd(vma, pgdir, start, end - start, entry, page);
449 start = (start + PGDIR_SIZE) & PGDIR_MASK;
450 pgdir++;
451 } while (start && (start < end));
452 }
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443 Gets the virtual addresses for the start and end of the VMA.

445-446 Checks that the start is not after the end. There would need to be
serious brain damage in the kernel for this to occur.

447-451 Walks through the VMA in PGDIR SIZE-sized strides until the end of
the VMA is reached. This effectively walks through every PGD that maps
portions of this VMA.

448 Calls unuse pgd()(See Section K.5.5) to walk through just this PGD to un-
map page.

449 Moves the virtual address start to the beginning of the next PGD.

450 Moves pgdir to the next PGD in the VMA.

K.5.5 Function: unuse pgd() (mm/swapfile.c)
This function searches the requested PGD for pagetable entries mapping the

page and using the given swap entry. It calls unuse pmd() for every PMD this
PGD maps.

409 static inline void unuse_pgd(struct vm_area_struct * vma, pgd_t *dir,
410 unsigned long address, unsigned long size,
411 swp_entry_t entry, struct page* page)
412 {
413 pmd_t * pmd;
414 unsigned long offset, end;
415
416 if (pgd_none(*dir))
417 return;
418 if (pgd_bad(*dir)) {
419 pgd_ERROR(*dir);
420 pgd_clear(dir);
421 return;
422 }
423 pmd = pmd_offset(dir, address);
424 offset = address & PGDIR_MASK;
425 address &= ~PGDIR_MASK;
426 end = address + size;
427 if (end > PGDIR_SIZE)
428 end = PGDIR_SIZE;
429 if (address >= end)
430 BUG();
431 do {
432 unuse_pmd(vma, pmd, address, end - address, offset, entry,
433 page);
434 address = (address + PMD_SIZE) & PMD_MASK;
435 pmd++;
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436 } while (address && (address < end));
437 }

416-417 If there is no PGD here, this returns.

418-422 If the PGD is bad, this sets the appropriate error, clears the PGD and
returns. There are very few architectures where this condition can occur.

423 Gets the address of the first PMD in this PGD.

424 Calculates offset as the offset within the PGD the address is for. Remember
that on the first time this function is called, it might be searching a partial
PGD.

425 Aligns the address to the PGD.

426 Calculates the end address of the search.

427-428 If the end is beyond this PGD, this sets the end just to the end of this
PGD.

429-430 If the starting address is after the end address, something is very seriously
wrong.

431-436 Steps through the PGD in PMD SIZE-sized strides and calls unuse pmd()
(See Section K.5.6) for every PMD in this PGD.

K.5.6 Function: unuse pmd() (mm/swapfile.c)
This function searches the requested PMD for pagetable entries mapping the

page and using the given swap entry. It calls unuse pte() for every PTE this
PMD maps.

381 static inline void unuse_pmd(struct vm_area_struct * vma, pmd_t *dir,
382 unsigned long address, unsigned long size, unsigned long offset,
383 swp_entry_t entry, struct page* page)
384 {
385 pte_t * pte;
386 unsigned long end;
387
388 if (pmd_none(*dir))
389 return;
390 if (pmd_bad(*dir)) {
391 pmd_ERROR(*dir);
392 pmd_clear(dir);
393 return;
394 }
395 pte = pte_offset(dir, address);
396 offset += address & PMD_MASK;
397 address &= ~PMD_MASK;
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398 end = address + size;
399 if (end > PMD_SIZE)
400 end = PMD_SIZE;
401 do {
402 unuse_pte(vma, offset+address-vma->vm_start, pte, entry, page);
403 address += PAGE_SIZE;
404 pte++;
405 } while (address && (address < end));
406 }

388-389 Returns if no PMD exists.

390-394 Sets the appropriate error and clears the PMD if it is bad. There are
very few architectures where this condition can occur.

395 Calculates the starting PTE for this address.

396 Sets offset to be the offset within the PMD we are starting at.

397 Aligns address to the PMD.

398-400 Calculates the end address. If it is beyond the end of this PMD, it sets
it to the end of this PMD.

401-405 Steps through this PMD in PAGE SIZE-sized chunks and calls
unuse pte() (See Section K.5.7) for each PTE.

K.5.7 Function: unuse pte() (mm/swapfile.c)
This function checks if the PTE at dir matches the entry we are searching for.

If it does, the swap entry is freed, and a reference is taken to the page representing
the PTE that will be updated to map it.

365 static inline void unuse_pte(struct vm_area_struct * vma,
unsigned long address,

366 pte_t *dir, swp_entry_t entry, struct page* page)
367 {
368 pte_t pte = *dir;
369
370 if (likely(pte_to_swp_entry(pte).val != entry.val))
371 return;
372 if (unlikely(pte_none(pte) || pte_present(pte)))
373 return;
374 get_page(page);
375 set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot)));
376 swap_free(entry);
377 ++vma->vm_mm->rss;
378 }

370-371 If the entry does not match the PTE, this returns.
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372-373 If there is no PTE or it is already present (meaning there is no way this
entry is mapped here), this returns.

374 Otherwise, we have found the entry we are looking for, so it takes a reference
to the page because a new PTE is about to map it.

375 Updates the PTE to map page.

376 Frees the swap entry.

377 Increments the RSS count for this process.
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L.1 Initializing shmfs

Contents
L.1 Initializing shmfs 635

L.1.1 Function: init tmpfs() 635
L.1.2 Function: shmem read super() 637
L.1.3 Function: shmem set size() 639

L.1.1 Function: init tmpfs() (mm/shmem.c)
This function is responsible for registering and mounting the tmpfs and shmemfs

filesystems.

1451 #ifdef CONFIG_TMPFS
1453 static DECLARE_FSTYPE(shmem_fs_type, "shm",

shmem_read_super, FS_LITTER);
1454 static DECLARE_FSTYPE(tmpfs_fs_type, "tmpfs",

shmem_read_super, FS_LITTER);
1455 #else
1456 static DECLARE_FSTYPE(tmpfs_fs_type, "tmpfs",

shmem_read_super, FS_LITTER|FS_NOMOUNT);
1457 #endif

1560 static int __init init_tmpfs(void)
1561 {
1562 int error;
1563
1564 error = register_filesystem(&tmpfs_fs_type);
1565 if (error) {
1566 printk(KERN_ERR "Could not register tmpfs\n");
1567 goto out3;
1568 }
1569 #ifdef CONFIG_TMPFS
1570 error = register_filesystem(&shmem_fs_type);
1571 if (error) {
1572 printk(KERN_ERR "Could not register shm fs\n");
1573 goto out2;
1574 }
1575 devfs_mk_dir(NULL, "shm", NULL);
1576 #endif
1577 shm_mnt = kern_mount(&tmpfs_fs_type);
1578 if (IS_ERR(shm_mnt)) {
1579 error = PTR_ERR(shm_mnt);
1580 printk(KERN_ERR "Could not kern_mount tmpfs\n");
1581 goto out1;
1582 }
1583
1584 /* The internal instance should not do size checking */
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1585 shmem_set_size(SHMEM_SB(shm_mnt->mnt_sb),
ULONG_MAX, ULONG_MAX);

1586 return 0;
1587
1588 out1:
1589 #ifdef CONFIG_TMPFS
1590 unregister_filesystem(&shmem_fs_type);
1591 out2:
1592 #endif
1593 unregister_filesystem(&tmpfs_fs_type);
1594 out3:
1595 shm_mnt = ERR_PTR(error);
1596 return error;
1597 }
1598 module_init(init_tmpfs)

1551 The shm filesystem is only mountable if CONFIG TMPFS is defined at compile
time. Even if it is not specified, a tmpfs will still be set up for anonymous
shared memory resulting from a fork().

1553 DECLARE FSTYPE(), declared in <linux/fs.h>, declares tmpfs fs type as
type struct file system type and fills in four fields. “tmpfs” is its human-
readable name. shmem read super() is the function that is used to read the
superblock for the filesystem (a detailed description of superblocks and how
they pertain to filesystems is beyond the scope of this book). FS LITTER is
a flag that indicates the filesystem tree should be maintained in the dcache.
Finally, the macro sets the module owner of the filesystem to be the module
loading the filesystem.

1560 init places this function in the init section. This means that, after the
kernel has finished bootstrapping, the code for the function will be removed.

1564-1568 Registers the filesystem tmpfs fs type, which was declared in line
1433. If it fails, goto out3 where the appropriate error will be returned.

1569-1574 If tmpfs is specified at configure time, this registers the shmem filesys-
tem. If it fails, goto out2 where tmpfs fs type will be unregistered before
returning the error.

1575 If /dev/ is being managed by the device filesystem (devfs), this creates a
new shm directory. If the kernel does not use devfs, the system administrator
must manually create the directory.

1577 kern mount() mounts a filesystem internally. In other words, the filesystem
is mounted and active, but it is not visible to the user anywhere in the VFS.
The mount point is shm mnt, which is local to the shmem.c file and of type
struct vfsmount. This variable is needed for searching the filesystem and
for unmounting it later.
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1578-1582 Ensures the filesystem is mounted correctly, but, if it did not, goto
out1 where the filesystems will be unregistered before returning the error.

1585 The function shmem set size() (See Section L.1.3) is responsible for set-
ting the maximum number of blocks and inodes that may be created in this
filesystem.

1598 module init() in this instance indicates that init shmem fs() should be
called when the module is loaded. If it is compiled directly into the kernel,
the function will be called on system startup.

L.1.2 Function: shmem read super() (mm/shmem.c)
This is the callback function provided for the filesystem that reads the su-

perblock. With an ordinary filesystem, this would entail reading the information
from the disk, but, because this is a RAM-based filesystem, it instead populates a
struct super block.

1452 static struct super_block *shmem_read_super(struct super_block *sb,
void* data, int silent)

1453 {
1454 struct inode *inode;
1455 struct dentry *root;
1456 unsigned long blocks, inodes;
1457 int mode = S_IRWXUGO | S_ISVTX;
1458 uid_t uid = current->fsuid;
1459 gid_t gid = current->fsgid;
1460 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1461 struct sysinfo si;
1462
1463 /*
1464 * Per default we only allow half of the physical ram per
1465 * tmpfs instance
1466 */
1467 si_meminfo(&si);
1468 blocks = inodes = si.totalram / 2;
1469
1470 #ifdef CONFIG_TMPFS
1471 if (shmem_parse_options(data, &mode, &uid,

&gid, &blocks, &inodes))
1472 return NULL;
1473 #endif
1474
1475 spin_lock_init(&sbinfo->stat_lock);
1476 sbinfo->max_blocks = blocks;
1477 sbinfo->free_blocks = blocks;
1478 sbinfo->max_inodes = inodes;
1479 sbinfo->free_inodes = inodes;
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1480 sb->s_maxbytes = SHMEM_MAX_BYTES;
1481 sb->s_blocksize = PAGE_CACHE_SIZE;
1482 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1483 sb->s_magic = TMPFS_MAGIC;
1484 sb->s_op = &shmem_ops;
1485 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
1486 if (!inode)
1487 return NULL;
1488
1489 inode->i_uid = uid;
1490 inode->i_gid = gid;
1491 root = d_alloc_root(inode);
1492 if (!root) {
1493 iput(inode);
1494 return NULL;
1495 }
1496 sb->s_root = root;
1497 return sb;
1498 }

1471 The parameters are the following:

• sb is the super block to populate.

• data contains the mount arguments.

• silent is unused in this function.

1457-1459 Sets the default mode, uid and gid. These may be overridden with the
parameters passed as mount options.

1460 Each super block is allowed to have a filesystem-specific struct that is
contained within a union called super block→u. The macro SHMEM SB()
returns the struct shmem sb info contained within this union.

1467 si meminfo() populates struct sysinfo with total memory, avail-
able memory and usage statistics. The function is defined in
arch/i386/mm/init.c and is architecture dependent.

1468 By default, this only allows the filesystem to consume half of total available
physical memory.

1471-1472 If tmpfs is available, this parses the mount options and allows them
to override the defaults.

1475 Acquires the lock protecting sbinfo, which is the struct shmem sb info in
the super block.

1483 Populates the sb and sbinfo fields.
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1484 The shmem ops is a struct of function pointers for super block operations,
such as remounting the filesystem and deleting an inode.

1485-1487 This block allocates a special inode, that represents the root of the
filesystem.

1489-1490 Sets the uid and gid of the root of the new filesystem.

1496 Sets the root inode into the super block.

1497 Returns the populated superblock.

L.1.3 Function: shmem set size() (mm/shmem.c)
This function updates the number of available blocks and inodes in the filesys-

tem. It is set while the filesystem is being mounted or remounted.

861 static int shmem_set_size(struct shmem_sb_info *info,
862 unsigned long max_blocks,

unsigned long max_inodes)
863 {
864 int error;
865 unsigned long blocks, inodes;
866
867 spin_lock(&info->stat_lock);
868 blocks = info->max_blocks - info->free_blocks;
869 inodes = info->max_inodes - info->free_inodes;
870 error = -EINVAL;
871 if (max_blocks < blocks)
872 goto out;
873 if (max_inodes < inodes)
874 goto out;
875 error = 0;
876 info->max_blocks = max_blocks;
877 info->free_blocks = max_blocks - blocks;
878 info->max_inodes = max_inodes;
879 info->free_inodes = max_inodes - inodes;
880 out:
881 spin_unlock(&info->stat_lock);
882 return error;
883 }

861 The parameters are the info representing the filesystem superblock, the max-
imum number of blocks (max blocks) and the maximum number of inodes
(max inodes).

867 Locks the superblock info spinlock.
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868 Calculates the number of blocks currently in use by the filesystem. On
initial mount, this is unimportant, but, if the filesystem is being remounted,
the function must ensure that the new filesystem is not too small.

869 Calculates the number of inodes currently in use.

871-872 If the remounted filesystem would have too few blocks to store the current
information, goto out to return -EINVAL.

873-874 Similarly, makes sure there are enough available inodes or returns
-EINVAL.

875 It is safe to mount the filesystem, so this sets error to 0 indicating that this
operation will be successful.

876-877 Sets the maximum number of blocks and number of available blocks in
the filesystems’ superblock info struct.

878-879 Sets the maximum and available number of inodes.

881 Unlocks the filesystems’ superblock info struct.

882 Returns 0 if successful or -EINVAL if not.
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L.2.1 Function: shmem create() (mm/shmem.c)
This is the top-level function called when creating a new file.

1164 static int shmem_create(struct inode *dir,
struct dentry *dentry,
int mode)

1165 {
1166 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1167 }

1164 The parameters are the following:

• dir is the inode of the directory the new file is being created in.

• entry is the dentry of the new file being created.

• mode is the flags passed to the open system call.

1166 Calls shmem mknod()(See Section L.2.2) and adds the S IFREG flag to the
mode flags so that a regular file will be created.

L.2.2 Function: shmem mknod() (mm/shmem.c)

1139 static int shmem_mknod(struct inode *dir,
struct dentry *dentry,
int mode, int dev)

1140 {
1141 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1142 int error = -ENOSPC;
1143
1144 if (inode) {
1145 dir->i_size += BOGO_DIRENT_SIZE;
1146 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1147 d_instantiate(dentry, inode);
1148 dget(dentry); /* Extra count - pin the dentry in core */
1149 error = 0;
1150 }
1151 return error;
1152 }

1141 Calls shmem get inode() (See Section L.2.3) to create a new inode.
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1144 If the inode was successfully created, this updates the directory statistics
and instantiates the new file.

1145 Updates the size of the directory.

1146 Updates the ctime and mtime fields.

1147 Instantiates the inode.

1148 Takes a reference to the dentry so that it will be pinned and not accidentally
reclaimed during pageout. Unlike normal files, there is no automatic way of
recreating dentries after they are deleted.

1149 Indicates the call ended successfully.

1151 Returns success or -ENOSPC on error.

L.2.3 Function: shmem get inode() (mm/shmem.c)

809 struct inode *shmem_get_inode(struct super_block *sb,
int mode,
int dev)

810 {
811 struct inode *inode;
812 struct shmem_inode_info *info;
813 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
814
815 spin_lock(&sbinfo->stat_lock);
816 if (!sbinfo->free_inodes) {
817 spin_unlock(&sbinfo->stat_lock);
818 return NULL;
819 }
820 sbinfo->free_inodes--;
821 spin_unlock(&sbinfo->stat_lock);
822
823 inode = new_inode(sb);

This preamble section is responsible for updating the free inode count and allo-
cating an inode with new inode().

815 Acquires the sbinfo spinlock because it is about to be updated.

816-819 Makes sure there are free inodes, and if not, it returns NULL.

820-821 Updates the free inode count and frees the lock.

823 new inode() is part of the filesystem layer and declared in <linux/fs.h>.
Exactly how it works is beyond the scope of this document, but the summary
is simple. It allocates an inode from the slab allocator, zeros most fields
and populates inode→i sb, inode→i dev and inode→i blkbits based on
information in the super block.
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824 if (inode) {
825 inode->i_mode = mode;
826 inode->i_uid = current->fsuid;
827 inode->i_gid = current->fsgid;
828 inode->i_blksize = PAGE_CACHE_SIZE;
829 inode->i_blocks = 0;
830 inode->i_rdev = NODEV;
831 inode->i_mapping->a_ops = &shmem_aops;
832 inode->i_atime = inode->i_mtime

= inode->i_ctime
= CURRENT_TIME;

833 info = SHMEM_I(inode);
834 info->inode = inode;
835 spin_lock_init(&info->lock);
836 switch (mode & S_IFMT) {
837 default:
838 init_special_inode(inode, mode, dev);
839 break;
840 case S_IFREG:
841 inode->i_op = &shmem_inode_operations;
842 inode->i_fop = &shmem_file_operations;
843 spin_lock(&shmem_ilock);
844 list_add_tail(&info->list, &shmem_inodes);
845 spin_unlock(&shmem_ilock);
846 break;
847 case S_IFDIR:
848 inode->i_nlink++;
849 /* Some things misbehave if size == 0 on a directory */
850 inode->i_size = 2 * BOGO_DIRENT_SIZE;
851 inode->i_op = &shmem_dir_inode_operations;
852 inode->i_fop = &dcache_dir_ops;
853 break;
854 case S_IFLNK:
855 break;
856 }
857 }
858 return inode;
859 }

824-858 Fills in the inode fields if created successfully.

825-830 Fills in the basic inode information.

831 Sets the address space operations to use shmem aops, which sets up the
function shmem writepage()(See Section L.6.1) to be used as a page write-
back callback for the address space.

832-834 Fills in more basic information.
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835-836 Initializes the inodes semaphore and spinlock.

836-856 Determines how to fill the remaining fields based on the mode flags passed
in.

838 In this case, a special inode is being created. Specifically, this is while the
filesystem is being mounted and the root inode is being created.

840-846 Creates an inode for a regular file. The main point to note here is that the
inode→i op and inode→i fop fields are set to shmem inode operations,
and shmem file operations, respectively.

847-852 Creates an inode for a new directory. The i nlink and i size fields are
updated to show the increased number of files and the size of the directory.
The main point to note here is that the inode→i op and inode→i fop fields
are set to shmem dir inode operations and dcach dir ops, respectively.

854-855 If linking a file, this does nothing for now because it is handled by the
parent function shmem link().

858 Returns the new inode or NULL if it could not be created.
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L.3.1 Memory Mapping

The tasks for memory mapping a virtual file are simple. The only changes that need
to be made are to update the VMAs vm operations struct field (vma→vm ops) to
use the shmfs equivalents for faulting.

L.3.1.1 Function: shmem mmap() (mm/shmem.c)

796 static int shmem_mmap(struct file * file, struct vm_area_struct * vma)
797 {
798 struct vm_operations_struct *ops;
799 struct inode *inode = file->f_dentry->d_inode;
800
801 ops = &shmem_vm_ops;
802 if (!S_ISREG(inode->i_mode))
803 return -EACCES;
804 UPDATE_ATIME(inode);
805 vma->vm_ops = ops;
806 return 0;
807 }

801 ops is now the vm operations struct to be used for the virtual filesystem.

802 Makes sure that the inode being mapped is a regular file. If not, it returns
-EACCESS.

804 Updates the atime for the inode to show it was accessed.

805 Updates vma→vm ops so that shmem nopage() (See Section L.5.1.1) will be
used to handle page faults within the mapping.
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L.3.2 Reading Files

L.3.2.1 Function: shmem file read() (mm/shmem.c)
This is the top-level function called for read()ing a tmpfs file.

1088 static ssize_t shmem_file_read(struct file *filp, char *buf,
size_t count, loff_t *ppos)

1089 {
1090 read_descriptor_t desc;
1091
1092 if ((ssize_t) count < 0)
1093 return -EINVAL;
1094 if (!access_ok(VERIFY_WRITE, buf, count))
1095 return -EFAULT;
1096 if (!count)
1097 return 0;
1098
1099 desc.written = 0;
1100 desc.count = count;
1101 desc.buf = buf;
1102 desc.error = 0;
1103
1104 do_shmem_file_read(filp, ppos, &desc);
1105 if (desc.written)
1106 return desc.written;
1107 return desc.error;
1108 }

1088 The parameters are the following:

• filp is a pointer to the struct file being read.

• buf is the buffer that should be filled.

• count is the number of bytes that should be read.

• ppos is the current position.

1092-1093 count cannot be negative.

1094-1095 access ok() ensures that it is safe to write count number of bytes to
the userspace buffer. If it can’t, -EFAULT will be returned.

1099-1102 Initializes a read descriptor t struct, which will eventually be passed
to file read actor()(See Section L.3.2.3).

1104 Calls do shmem file read() to start performing the actual read.

1105-1106 Returns the number of bytes that were written to the userspace buffer.

1107 If none were written, it returns the error.
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L.3.2.2 Function: do shmem file read() (mm/shmem.c)
This function retrieves the pages needed for the file read with shmem getpage()

and calls file read actor() to copy the data to userspace.

1003 static void do_shmem_file_read(struct file *filp,
loff_t *ppos,

read_descriptor_t *desc)
1004 {
1005 struct inode *inode = filp->f_dentry->d_inode;
1006 struct address_space *mapping = inode->i_mapping;
1007 unsigned long index, offset;
1008
1009 index = *ppos >> PAGE_CACHE_SHIFT;
1010 offset = *ppos & ~PAGE_CACHE_MASK;
1011
1012 for (;;) {
1013 struct page *page = NULL;
1014 unsigned long end_index, nr, ret;
1015
1016 end_index = inode->i_size >> PAGE_CACHE_SHIFT;
1017 if (index > end_index)
1018 break;
1019 if (index == end_index) {
1020 nr = inode->i_size & ~PAGE_CACHE_MASK;
1021 if (nr <= offset)
1022 break;
1023 }
1024
1025 desc->error = shmem_getpage(inode, index, &page, SGP_READ);
1026 if (desc->error) {
1027 if (desc->error == -EINVAL)
1028 desc->error = 0;
1029 break;
1030 }
1031
1036 nr = PAGE_CACHE_SIZE;
1037 end_index = inode->i_size >> PAGE_CACHE_SHIFT;
1038 if (index == end_index) {
1039 nr = inode->i_size & ~PAGE_CACHE_MASK;
1040 if (nr <= offset) {
1041 page_cache_release(page);
1042 break;
1043 }
1044 }
1045 nr -= offset;
1046
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1047 if (page != ZERO_PAGE(0)) {
1053 if (mapping->i_mmap_shared != NULL)
1054 flush_dcache_page(page);
1055 /*
1056 * Mark the page accessed if we read the
1057 * beginning or we just did an lseek.
1058 */
1059 if (!offset || !filp->f_reada)
1060 mark_page_accessed(page);
1061 }
1062
1073 ret = file_read_actor(desc, page, offset, nr);
1074 offset += ret;
1075 index += offset >> PAGE_CACHE_SHIFT;
1076 offset &= ~PAGE_CACHE_MASK;
1077
1078 page_cache_release(page);
1079 if (ret != nr || !desc->count)
1080 break;
1081 }
1082
1083 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1084 filp->f_reada = 1;
1085 UPDATE_ATIME(inode);
1086 }

1005-1006 Retrieves the inode and mapping using the struct file.

1009 index is the page index within the file that contains the data.

1010 offset is the offset within the page that is currently being read.

1012-1081 Loops until the requested number of bytes has been read. nr is
the number of bytes that are still to be read within the current page.
desc→count starts as the number of bytes to read and is decremented by
file read actor() (See Section L.3.2.3).

1016-1018 end index is the index of the last page in the file. It breaks when the
end of the file is reached.

1019-1023 When the last page is reached, this sets nr to be the number of bytes to
be read within this page. If the file pointer is after nr, this breaks because there
is no more data to be read. This could happen after the file was truncated.

1025-1030 shmem getpage()(See Section L.5.1.2) will locate the requested page
in the page cache, swap cache or page it in. If an error occurs, this records it
in desc→error and returns.
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1036 nr is the number of pages that must be read from the page so it initializes
it to the size of a page because this full page is being read.

1037 Initializes end index, which is index of the page at the end of the file.

1038-1044 If this is the last page in the file, this updates nr to be the number of
bytes in the page. If nr is currently after the end of the file (could happen after
truncate), this releases the reference to the page (taken by shmem getpage())
and exits the loop.

1045 Updates the number of bytes to be read. Remember that offset is where
the file reader is currently within the page.

1047-1061 If the page being read is not the global zero page, this takes care of
potential aliasing problems by calling flush dcache page(). If the page is
being read the first time or an lseek() just occured (f reada is zero), this
marks the page accessed with mark page accesssed().

1073 Calls file read actor()(See Section L.3.2.3) to copy the data to userspace.
It returns the number of bytes that were copied and updates the user buffer
pointers and remaining count.

1074 Updates the offset within the page being read.

1075 Moves the index to the next page if necessary.

1076 Ensures that offset is an offset within a page.

1078 Releases the reference to the page being copied. The reference was taken by
shmem getpage().

1079-1080 If the requested bytes have been read, this returns.

1083 Updates the file pointer.

1084 Enables file readahead.

1085 Updates the access time for the inode because it has just been read from.

L.3.2.3 Function: file read actor() (mm/filemap.c)
This function is responsible for copying data from a page to a userspace buffer.

It is ultimately called by a number of functions, including generic file read()
and shmem file read().

1669 int file_read_actor(read_descriptor_t * desc,
struct page *page,
unsigned long offset,
unsigned long size)

1670 {
1671 char *kaddr;
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1672 unsigned long left, count = desc->count;
1673
1674 if (size > count)
1675 size = count;
1676
1677 kaddr = kmap(page);
1678 left = __copy_to_user(desc->buf, kaddr + offset, size);
1679 kunmap(page);
1680
1681 if (left) {
1682 size -= left;
1683 desc->error = -EFAULT;
1684 }
1685 desc->count = count - size;
1686 desc->written += size;
1687 desc->buf += size;
1688 return size;
1689 }

1669 The parameters are the following:

• desc is a structure containing information about the read, including the
buffer and the total number of bytes that are to be read from this file.

• page is the page containing file data that is to be copied to userspace.

• offset is the offset within the page that is being copied.

• size is the number of bytes to be read from page.

1672 count is now the number of bytes that are to be read from the file.

1674-1675 Makes sure to not read more bytes than are requested.

1677 Maps the page into low memory with kmap(). See Section I.1.1.

1678 Copies the data from the kernel page to the userspace buffer.

1679 Unmaps the page. See Section I.3.1.

1681-1684 If all the bytes were not copied, it must be because the buffer was
not accessible. This updates size so that desc→count will reflect how many
bytes are still to be copied by the read. -EFAULT will be returned to the
process performing the read.

1685-1687 Updates the desc struct to show the current status of the read.

1688 Returns the number of bytes that were written to the userspace buffer.
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L.3.3 Writing

L.3.3.1 Function: shmem file write() (mm/shmem.c)

925 shmem_file_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)

926 {
927 struct inode *inode = file->f_dentry->d_inode;
928 loff_t pos;
929 unsigned long written;
930 int err;
931
932 if ((ssize_t) count < 0)
933 return -EINVAL;
934
935 if (!access_ok(VERIFY_READ, buf, count))
936 return -EFAULT;
937
938 down(&inode->i_sem);
939
940 pos = *ppos;
941 written = 0;
942
943 err = precheck_file_write(file, inode, &count, &pos);
944 if (err || !count)
945 goto out;
946
947 remove_suid(inode);
948 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
949

This block is the function preamble.

927 Gets the inode that represents the file being written.

932-933 Returns -EINVAL if the user tries to write a negative number of bytes.

935-936 Returns -EFAULT if the userspace buffer is inaccessible.

938 Acquires the semaphore protecting the inode.

940 Records the beginning of where the write is taking place.

941 Initializes the written number of bytes to 0.

943 precheck file write() performs a number of checks to make sure the write
is ok to proceed. This includes updating pos to be the end of the file if opened
in append mode and checking that the process limits will not be exceeded.

944-945 If the write cannot proceed, goto out.
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947 Clears the SUID bit if it is set.

948 Updates the inodes ctime and mtime.

950 do {
951 struct page *page = NULL;
952 unsigned long bytes, index, offset;
953 char *kaddr;
954 int left;
955
956 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
957 index = pos >> PAGE_CACHE_SHIFT;
958 bytes = PAGE_CACHE_SIZE - offset;
959 if (bytes > count)
960 bytes = count;
961
962 /*
963 * We don’t hold page lock across copy from user -
964 * what would it guard against? - so no deadlock here.
965 */
966
967 err = shmem_getpage(inode, index, &page, SGP_WRITE);
968 if (err)
969 break;
970
971 kaddr = kmap(page);
972 left = __copy_from_user(kaddr + offset, buf, bytes);
973 kunmap(page);
974
975 written += bytes;
976 count -= bytes;
977 pos += bytes;
978 buf += bytes;
979 if (pos > inode->i_size)
980 inode->i_size = pos;
981
982 flush_dcache_page(page);
983 SetPageDirty(page);
984 SetPageReferenced(page);
985 page_cache_release(page);
986
987 if (left) {
988 pos -= left;
989 written -= left;
990 err = -EFAULT;
991 break;
992 }
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993 } while (count);
994
995 *ppos = pos;
996 if (written)
997 err = written;
998 out:
999 up(&inode->i_sem);
1000 return err;
1001 }

950-993 Loops until all the requested bytes have been written.

956 Sets offset to be the offset within the current page being written.

957 index is the page index within the file currently being written.

958 bytes is the number of bytes within the current page remaining to be written.

959-960 If bytes indicates that more bytes should be written than was requested
(count), this sets bytes to count.

967-969 Locates the page to be written to. The SGP WRITE flag indicates that a
page should be allocated if one does not already exist. If the page could not
be found or allocated, this breaks out of the loop.

971-973 Maps the page to be written to and copies the bytes from the userspace
buffer before unmapping the page again.

975 Updates the number of bytes written.

976 Updates the number of bytes remaining to write.

977 Updates the position within the file.

978 Updates the pointer within the userspace buffer.

979-980 If the file is now bigger, this updates inode→i size.

982 Flushes the dcache to avoid aliasing problems.

983-984 Sets the page as dirty and referenced.

985 Releases the reference to the page taken by shmem getpage().

987-992 If all the requested bytes were not read from the userspace buffer, this
updates the written statistics and the postition within the file and buffer.

995 Updates the file pointer.

996-997 If all the requested bytes were not written, this sets the error return
variable.

999 Releases the inodes semaphore.

1000 Returns success or else returns the number of bytes remaining to be written.
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L.3.4 Symbolic Linking

L.3.4.1 Function: shmem symlink() (mm/shmem.c)
This function is responsible for creating a symbolic link symname and for deciding

where to store the information. The name of the link will be stored in the inode if
the name is small enough and in a pageframe otherwise.

1272 static int shmem_symlink(struct inode * dir,
struct dentry *dentry,
const char * symname)

1273 {
1274 int error;
1275 int len;
1276 struct inode *inode;
1277 struct page *page = NULL;
1278 char *kaddr;
1279 struct shmem_inode_info *info;
1280
1281 len = strlen(symname) + 1;
1282 if (len > PAGE_CACHE_SIZE)
1283 return -ENAMETOOLONG;
1284
1285 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1286 if (!inode)
1287 return -ENOSPC;
1288
1289 info = SHMEM_I(inode);
1290 inode->i_size = len-1;

This block performs basic sanity checks and creates a new inode for the symbolic
link.

1272 The parameter symname is the name of the link to create.

1281 Calculates the length (len) of the link.

1282-1283 If the name is larger than a page, this returns -ENAMETOOLONG.

1285-1287 Allocates a new inode. Returns -ENOSPC if it fails.

1289 Gets the private information struct.

1290 The size of the inode is the length of the link.

1291 if (len <= sizeof(struct shmem_inode_info)) {
1292 /* do it inline */
1293 memcpy(info, symname, len);
1294 inode->i_op = &shmem_symlink_inline_operations;
1295 } else {
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1296 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
1297 if (error) {
1298 iput(inode);
1299 return error;
1300 }
1301 inode->i_op = &shmem_symlink_inode_operations;
1302 spin_lock(&shmem_ilock);
1303 list_add_tail(&info->list, &shmem_inodes);
1304 spin_unlock(&shmem_ilock);
1305 kaddr = kmap(page);
1306 memcpy(kaddr, symname, len);
1307 kunmap(page);
1308 SetPageDirty(page);
1309 page_cache_release(page);
1310 }

This block is responsible for storing the link information.

1291-1295 If the length of the name is smaller than the space used for the
shmem inode info, this copies the name into the space reserved for the private
struct.

1294 Sets the inode→i op to shmem symlink inline operations, which has
functions that know the link name is in the inode.

1296 Allocates a page with shmem getpage locked.

1297-1300 If an error occured, this drops the reference to the inode and returns
the error.

1301 Uses shmem symlink inode operations, which understands that the link
information is contained within a page.

1302 shmem ilock is a global spinlock that protects a global linked list of inodes,
which are linked by the private information structs info→list field.

1303 Adds the new inode to the global list.

1304 Releases shmem ilock.

1305 Maps the page.

1306 Copies in the link information.

1307 Unmaps the page.

1308 Sets the page dirty.

1309 Releases our reference to it.
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1311 dir->i_size += BOGO_DIRENT_SIZE;
1312 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1313 d_instantiate(dentry, inode);
1314 dget(dentry);
1315 return 0;
1316 }

1311 Increments the size of the directory as a new inode has been added.
BOGO DIRENT SIZE is just a pseudosize of inodes so that ls output looks nice.

1312 Updates the i ctime and i mtime.

1313-1314 Instantiates the inode.

1315 Returns success.

L.3.4.2 Function: shmem readlink inline() (mm/shmem.c)

1318 static int shmem_readlink_inline(struct dentry *dentry,
char *buffer, int buflen)

1319 {
1320 return vfs_readlink(dentry, buffer, buflen,

(const char *)SHMEM_I(dentry->d_inode));
1321 }

1320 The link name is contained within the inode, so it passes it as a parameter
to the VFS layer with vfs readlink().

L.3.4.3 Function: shmem follow link inline() (mm/shmem.c)

1323 static int shmem_follow_link_inline(struct dentry *dentry,
struct nameidata *nd)

1324 {
1325 return vfs_follow_link(nd,

(const char *)SHMEM_I(dentry->d_inode));
1326 }

1325 The link name is contained within the inode, so it passes it as a parameter
to the VFS layer with vfs followlink().

L.3.4.4 Function: shmem readlink() (mm/shmem.c)

1328 static int shmem_readlink(struct dentry *dentry,
char *buffer, int buflen)

1329 {
1330 struct page *page - NULL;
1331 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ);
1332 if (res)
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1333 return res;
1334 res = vfs_readlink(dentry,buffer,buflen, kmap(page));
1335 kunmap(page);
1336 mark_page_accessed(page);
1337 page_cache_release(page);
1338 return res;
1339 }

1331 The link name is contained in a page associated with the symlink, so it calls
shmem getpage()(See Section L.5.1.2) to get a pointer to it.

1332-1333 If an error occurred, this returns NULL.

1334 Maps the page with kmap() (See Section I.1.1) and passes it as a pointer to
vfs readlink(). The link is at the beginning of the page.

1335 Unmaps the page.

1336 Marks the page accessed.

1337 Drops our reference to the page taken by shmem getpage().

1338 Returns the link.

1231 static int shmem_follow_link(struct dentry *dentry,
struct nameidata *nd)

1232 {
1233 struct page * page;
1234 int res = shmem_getpage(dentry->d_inode, 0, &page);
1235 if (res)
1236 return res;
1237
1238 res = vfs_follow_link(nd, kmap(page));
1239 kunmap(page);
1240 page_cache_release(page);
1241 return res;
1242 }

1234 The link name is within a page, so it gets the page with shmem getpage().

1235-1236 Returns the error if one occurred.

1238 Maps the page and passes it as a pointer to vfs follow link().

1239 Unmaps the page.

1240 Drops our reference to the page.

1241 Returns success.
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L.3.5 Synchronizing

L.3.5.1 Function: shmem sync file() (mm/shmem.c)
This function simply returns 0 because the file exists only in memory and does

not need to be synchronized with a file on disk.

1446 static int shmem_sync_file(struct file * file,
struct dentry *dentry,
int datasync)

1447 {
1448 return 0;
1449 }
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L.4.1 Truncating

L.4.1.1 Function: shmem truncate() (mm/shmem.c)
By the time this function has been called, the inode→i size has been set to

the new size by vmtruncate(). It is the job of this function to either create or
remove pages as necessary to set the size of the file.

351 static void shmem_truncate(struct inode *inode)
352 {
353 struct shmem_inode_info *info = SHMEM_I(inode);
354 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
355 unsigned long freed = 0;
356 unsigned long index;
357
358 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
359 index = (inode->i_size + PAGE_CACHE_SIZE - 1)

>> PAGE_CACHE_SHIFT;
360 if (index >= info->next_index)
361 return;
362
363 spin_lock(&info->lock);
364 while (index < info->next_index)
365 freed += shmem_truncate_indirect(info, index);
366 BUG_ON(info->swapped > info->next_index);
367 spin_unlock(&info->lock);
368
369 spin_lock(&sbinfo->stat_lock);
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370 sbinfo->free_blocks += freed;
371 inode->i_blocks -= freed*BLOCKS_PER_PAGE;
372 spin_unlock(&sbinfo->stat_lock);
373 }

353 Gets the private filesystem information for this inode with SHMEM I().

354 Gets the superblock private information.

358 Updates the ctime and mtime for the inode.

359 Gets the index of the page that is the new end of the file. The old size is
stored in info→next index.

360-361 If the file is being expanded, this just returns because the global zero
page will be used to represent the expanded region.

363 Acquires the private info spinlock.

364-365 Continually calls shmem truncate indirect() until the file is truncated
to the desired size.

366 It is a bug if the shmem info info struct indicates that more pages are
swapped out than there are pages in the file.

367 Releases the private info spinlock.

369 Acquires the superblock private info spinlock.

370 Updates the number of free blocks available.

371 Updates the number of blocks being used by this inode.

372 Releases the superblock private info spinlock.

L.4.1.2 Function: shmem truncate indirect() (mm/shmem.c)
This function locates the last doubly-indirect block in the inode and calls

shmem truncate direct() to truncate it.

308 static inline unsigned long
309 shmem_truncate_indirect(struct shmem_inode_info *info,

unsigned long index)
310 {
311 swp_entry_t ***base;
312 unsigned long baseidx, start;
313 unsigned long len = info->next_index;
314 unsigned long freed;
315
316 if (len <= SHMEM_NR_DIRECT) {
317 info->next_index = index;
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318 if (!info->swapped)
319 return 0;
320 freed = shmem_free_swp(info->i_direct + index,
321 info->i_direct + len);
322 info->swapped -= freed;
323 return freed;
324 }
325
326 if (len <= ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT) {
327 len -= SHMEM_NR_DIRECT;
328 base = (swp_entry_t ***) &info->i_indirect;
329 baseidx = SHMEM_NR_DIRECT;
330 } else {
331 len -= ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT;
332 BUG_ON(len > ENTRIES_PER_PAGEPAGE*ENTRIES_PER_PAGE/2);
333 baseidx = len - 1;
334 baseidx -= baseidx % ENTRIES_PER_PAGEPAGE;
335 base = (swp_entry_t ***) info->i_indirect +
336 ENTRIES_PER_PAGE/2 + baseidx/ENTRIES_PER_PAGEPAGE;
337 len -= baseidx;
338 baseidx += ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT;
339 }
340
341 if (index > baseidx) {
342 info->next_index = index;
343 start = index - baseidx;
344 } else {
345 info->next_index = baseidx;
346 start = 0;
347 }
348 return *base? shmem_truncate_direct(info, base, start, len): 0;
349 }

313 len is the second to last page that is currently in use by the file.

316-324 If the file is small and all entries are stored in the direct block infor-
mation, this calls shmem free swp() and passes it the first swap entry in
info→i direct and the number of entries to truncate.

326-339 The pages to be truncated are in the indirect blocks somewhere. This
section of code is dedicated to calculating three variables, base, baseidx and
len. base is the beginning of the page that contains pointers to swap entries to
be truncated. baseidx is the page index of the first entry within the indirect
block being used and len is the number of entries to be truncated from in
this pass.

326-330 Calculates the variables for a doubly-indirect block. The base
is then set to the swap entry at the beginnning of info→i indirect.
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baseidx is SHMEM NR DIRECT, which is the page index at the beginning of
info→i indirect. At this point, len is the number of pages in the file, so
the number of direct blocks is subtracted to leave the remaining number of
pages.

330-339 If not, this is a triply-indexed block, so the next level must be traversed
before the base, baseidx and len are calculated.

341-344 If the file is going to be bigger after the truncation, this updates
next index to the new end of the file and makes start the beginning of
the indirect block.

344-347 If the file is being made smaller, this moves the current end of the file to
the beginning of this indirect block that is about to be truncated.

348 If there is a block at base, this calls shmem truncate direct() to truncate
pages in it.

L.4.1.3 Function: shmem truncate direct() (mm/shmem.c)
This function is responsible for cycling through an indirect block and calling

shmem free swp for each page that contains swap vectors that are to be truncated.

264 static inline unsigned long
265 shmem_truncate_direct(struct shmem_inode_info *info,

swp_entry_t ***dir,
unsigned long start, unsigned long len)

266 {
267 swp_entry_t **last, **ptr;
268 unsigned long off, freed_swp, freed = 0;
269
270 last = *dir + (len + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;
271 off = start % ENTRIES_PER_PAGE;
272
273 for (ptr = *dir + start/ENTRIES_PER_PAGE;

ptr < last;
ptr++, off = 0) {

274 if (!*ptr)
275 continue;
276
277 if (info->swapped) {
278 freed_swp = shmem_free_swp(*ptr + off,
279 *ptr + ENTRIES_PER_PAGE);
280 info->swapped -= freed_swp;
281 freed += freed_swp;
282 }
283
284 if (!off) {
285 freed++;
286 free_page((unsigned long) *ptr);
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287 *ptr = 0;
288 }
289 }
290
291 if (!start) {
292 freed++;
293 free_page((unsigned long) *dir);
294 *dir = 0;
295 }
296 return freed;
297 }

270 last is the last page within the indirect block that is to be truncated.

271 off is the offset within the page that the truncation is if this is a partial
truncation rather than a full-page truncation.

273-289 Beginning with the startth block in dir, this truncates pages until last
is reached.

274-275 If no page is here, this continues to the next one.

277-282 If the info struct indicates that pages are swapped out belonging to this
inode, it calls shmem free swp() to free any swap slot associated with this
page. If one was freed, this updates infoswapped and increments the count
of the freed number of pages.

284-288 If this is not a partial truncate, it frees the page.

291-295 If this whole indirect block is now free, this reclaims the page.

296 Returns the number of pages freed.

L.4.1.4 Function: shmem free swp() (mm/shmem.c)
This frees count number of swap entries starting with the entry at dir.

240 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
241 {
242 swp_entry_t *ptr;
243 int freed = 0;
244
245 for (ptr = dir; ptr < edir; ptr++) {
246 if (ptr->val) {
247 free_swap_and_cache(*ptr);
248 *ptr = (swp_entry_t){0};
249 freed++;
250 }
251 }
252 return freed;
254 }
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245-251 Loops through each of the swap entries to be freed.

246-250 If a swap entry exists, this frees it with free swap and cache() and sets
the swap entry to 0. It increments the number of pages freed.

252 Returns the total number of pages freed.

L.4.2 Linking

L.4.2.1 Function: shmem link() (mm/shmem.c)
This function creates a hard link with dentry to old dentry.

1172 static int shmem_link(struct dentry *old_dentry,
struct inode *dir,
struct dentry *dentry)

1173 {
1174 struct inode *inode = old_dentry->d_inode;
1175
1176 if (S_ISDIR(inode->i_mode))
1177 return -EPERM;
1178
1179 dir->i_size += BOGO_DIRENT_SIZE;
1180 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1181 inode->i_nlink++;
1182 atomic_inc(&inode->i_count);
1183 dget(dentry);
1184 d_instantiate(dentry, inode);
1185 return 0;
1186 }

1174 Gets the inode corresponding to old dentry.

1176-1177 If it is linking to a directory, this returns -EPERM. Strictly speak-
ing, root should be allowed to hard-link directories, although it is not recom-
mended because of the possibility of creating a loop within the filesystem that
utilities like find get lost in. tmpfs simply does not allow the hard-linking of
directories.

1179 Increments the size of the directory with the new link.

1180 Updates the directories mtime and ctime and updates the inode ctime.

1181 Increments the number of links leading to inode.

1183 Gets an extra reference to the new dentry with dget().

1184 Instantiates the new dentry.

1185 Returns success.
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L.4.3 Unlinking

L.4.3.1 Function: shmem unlink() (mm/shmem.c)

1221 static int shmem_unlink(struct inode* dir,
struct dentry *dentry)

1222 {
1223 struct inode *inode = dentry->d_inode;
1224
1225 dir->i_size -= BOGO_DIRENT_SIZE;
1226 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1227 inode->i_nlink--;
1228 dput(dentry);
1229 return 0;
1230 }

1223 Gets the inode for the dentry being unlinked.

1225 Updates the directory inode’s size.

1226 Updates the various ctime and mtime variables.

1227 Decrements the number of links to the inode.

1228 Calls dput() to decrement the reference to the dentry. This function will
also call iput() to clear up the inode if its reference count reaches zero.

L.4.4 Making Directories

L.4.4.1 Function: shmem mkdir() (mm/shmem.c)

1154 static int shmem_mkdir(struct inode *dir,
struct dentry *dentry,
int mode)

1155 {
1156 int error;
1157
1158 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1159 return error;
1160 dir->i_nlink++;
1161 return 0;
1162 }

1158 Calls shmem mknod()(See Section L.2.2) to create a special file. By specifying
the S IFDIR flag, a directory will be created.

1160 Increments the parent directory’s i nlink field.
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L.4.5 Removing Directories

L.4.5.1 Function: shmem rmdir() (mm/shmem.c)

1232 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1233 {
1234 if (!shmem_empty(dentry))
1235 return -ENOTEMPTY;
1236
1237 dir->i_nlink--;
1238 return shmem_unlink(dir, dentry);
1239 }

1234-1235 Checks to see if the directory is empty with shmem empty()
(See Section L.4.5.2). If it is not, it returns -ENOTEMPTY.

1237 Decrements the parent directory’s i nlink field.

1238 Returns the result of shmem unlink()(See Section L.4.3.1), which should
delete the directory.

L.4.5.2 Function: shmem empty() (mm/shmem.c)
This function checks to see if a directory is empty or not.

1201 static int shmem_empty(struct dentry *dentry)
1202 {
1203 struct list_head *list;
1204
1205 spin_lock(&dcache_lock);
1206 list = dentry->d_subdirs.next;
1207
1208 while (list != &dentry->d_subdirs) {
1209 struct dentry *de = list_entry(list,

struct dentry, d_child);
1210
1211 if (shmem_positive(de)) {
1212 spin_unlock(&dcache_lock);
1213 return 0;
1214 }
1215 list = list->next;
1216 }
1217 spin_unlock(&dcache_lock);
1218 return 1;
1219 }

1205 The dcache lock protects many things, but it mainly protects dcache
lookups, which is what will be required for this function, so this acquires
it.
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1208 Cycles through the subdirs list, which contains all children dentries and sees
one active dentry can be found. If it is, 0 will be returned, indicating the
directory is not empty.

1209 Gets the dentry for this child.

1211 shmem positive()(See Section L.4.5.3) returns if the dentry has a valid in-
ode associated with it and is currently hashed. If it is hashed, it means that
the dentry is active, and the directory is not empty.

1212-1213 If the directory is not empty, this frees the spinlock and returns.

1215 Moves to the next child.

1217-1218 The directory is empty. This frees the spinlock and returns.

L.4.5.3 Function: shmem positive() (mm/shmem.c)

1188 static inline int shmem_positive(struct dentry *dentry)
1189 {
1190 return dentry->d_inode && !d_unhashed(dentry);
1191 }

1190 Returns true if the dentry has a valid inode and is currently hashed.
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L.5 Page Faulting Within a Virtual File
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L.5.1 Reading Pages During Page Fault

L.5.1.1 Function: shmem nopage() (mm/shmem.c)
This is the top-level nopage() function that is called by do no page() when

faulting in a page. This is called regardless of the fault being the first fault or if it
is being faulted in from backing storage.

763 struct page * shmem_nopage(struct vm_area_struct *vma,
unsigned long address,
int unused)

764 {
765 struct inode *inode = vma->vm_file->f_dentry->d_inode;
766 struct page *page = NULL;
767 unsigned long idx;
768 int error;
769
770 idx = (address - vma->vm_start) >> PAGE_SHIFT;
771 idx += vma->vm_pgoff;
772 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
773
774 error = shmem_getpage(inode, idx, &page, SGP_CACHE);
775 if (error)
776 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
777
778 mark_page_accessed(page);
779 flush_page_to_ram(page);
780 return page;
781 }

763 The two parameters of relevance are the VMA the fault occurred in and the
faulting address.

765 Records the inode that the fault occurred in.

770-772 Calculates the idx as the offset in counts of PAGE SIZE within the virtual
file.
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772 This adjustment takes into account the possibility that an entry in the page
cache is a different size to a page. At the moment, there is no difference.

774-775 shmem getpage()(See Section L.5.1.2) is responsible for locating the
page at idx.

775-776 If an error occurred, this decides whether to return an OOM error or an
invalid faulting address error.

778 Marks the page accessed so that it will be moved to the top of the LRU lists.

779 flush page to ram() is responsible for avoiding dcache aliasing problems.

780 Returns the faulted-in page.

L.5.1.2 Function: shmem getpage() (mm/shmem.c)

583 static int shmem_getpage(struct inode *inode,
unsigned long idx,

struct page **pagep,
enum sgp_type sgp)

584 {
585 struct address_space *mapping = inode->i_mapping;
586 struct shmem_inode_info *info = SHMEM_I(inode);
587 struct shmem_sb_info *sbinfo;
588 struct page *filepage = *pagep;
589 struct page *swappage;
590 swp_entry_t *entry;
591 swp_entry_t swap;
592 int error = 0;
593
594 if (idx >= SHMEM_MAX_INDEX)
595 return -EFBIG;
596 /*
597 * Normally, filepage is NULL on entry, and either found
598 * uptodate immediately, or allocated and zeroed, or read
599 * in under swappage, which is then assigned to filepage.
600 * But shmem_readpage and shmem_prepare_write pass in a locked
601 * filepage, which may be found not uptodate by other callers
602 * too, and may need to be copied from the swappage read in.
603 */
604 repeat:
605 if (!filepage)
606 filepage = find_lock_page(mapping, idx);
607 if (filepage && Page_Uptodate(filepage))
608 goto done;
609
610 spin_lock(&info->lock);
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611 entry = shmem_swp_alloc(info, idx, sgp);
612 if (IS_ERR(entry)) {
613 spin_unlock(&info->lock);
614 error = PTR_ERR(entry);
615 goto failed;
616 }
617 swap = *entry;

583 The parameters are the following:

• inode is the inode that the fault is occurring in.

• idx is the index of the page within the file that is being faulted.

• pagep if NULL will become the faulted page if successful. If a valid page
is passed in, this function will make sure it is up to date.

• sgp indicates what type of access this is, which determines how a page
will be located and returned.

586 SHMEM I() returns the shmem inode info contained with the filesystem-
specific information within the superblock information.

594-595 Makes sure the index is not beyond the end of the file.

605-606 If no page was passed in with the pagep parameter, then this tries and
locates the page and locks it with find lock page() (See Section J.1.4.4).

607-608 If the page was found and is up to date, goto done because this function
has nothing more to do.

610 Locks the inode private information struct.

611 Searches for the swap entry for this idx with shmem swp alloc(). If one did
not previously exist, it will be allocated.

612-616 If an error occurred, this releases the spinlock and returns the error.

619 if (swap.val) {
620 /* Look it up and read it in.. */
621 swappage = lookup_swap_cache(swap);
622 if (!swappage) {
623 spin_unlock(&info->lock);
624 swapin_readahead(swap);
625 swappage = read_swap_cache_async(swap);
626 if (!swappage) {
627 spin_lock(&info->lock);
628 entry = shmem_swp_alloc(info, idx, sgp);
629 if (IS_ERR(entry))
630 error = PTR_ERR(entry);
631 else if (entry->val == swap.val)



L.5. Page Faulting Within a Virtual File 671

632 error = -ENOMEM;
633 spin_unlock(&info->lock);
634 if (error)
635 goto failed;
636 goto repeat;
637 }
638 wait_on_page(swappage);
639 page_cache_release(swappage);
640 goto repeat;
641 }
642
643 /* We have to do this with page locked to prevent races */
644 if (TryLockPage(swappage)) {
645 spin_unlock(&info->lock);
646 wait_on_page(swappage);
647 page_cache_release(swappage);
648 goto repeat;
649 }
650 if (!Page_Uptodate(swappage)) {
651 spin_unlock(&info->lock);
652 UnlockPage(swappage);
653 page_cache_release(swappage);
654 error = -EIO;
655 goto failed;
656 }

In this block, a valid swap entry exists for the page. The page will be first
searched for in the swap cache, and, if it does not exist there, it will be read in from
backing storage.

619-690 This set of lines deals with the case where a valid swap entry exists.

612 Searches for swappage in the swap cache with lookup swap cache()
(See Section K.2.4.1).

622-641 If the page does not exist in the swap cache, this reads it in from backing
storage with read swap cache async(). In line 638, wait on page() is called
to wait until the I/O completes. After the I/O completes, the reference to the
page is released, and the repeat label is jumped to reacquire the spinlocks
and try again.

644-649 Tries and locks the page. If it fails, it waits until it can be locked and
jumps to repeat to try again.

650-656 If the page is not up to date, the I/O failed for some reason, so this
returns the error.

658 delete_from_swap_cache(swappage);
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659 if (filepage) {
660 entry->val = 0;
661 info->swapped--;
662 spin_unlock(&info->lock);
663 flush_page_to_ram(swappage);
664 copy_highpage(filepage, swappage);
665 UnlockPage(swappage);
666 page_cache_release(swappage);
667 flush_dcache_page(filepage);
668 SetPageUptodate(filepage);
669 SetPageDirty(filepage);
670 swap_free(swap);
671 } else if (add_to_page_cache_unique(swappage,
672 mapping, idx, page_hash(mapping, idx)) == 0) {
673 entry->val = 0;
674 info->swapped--;
675 spin_unlock(&info->lock);
676 filepage = swappage;
677 SetPageUptodate(filepage);
678 SetPageDirty(filepage);
679 swap_free(swap);
680 } else {
681 if (add_to_swap_cache(swappage, swap) != 0)
682 BUG();
683 spin_unlock(&info->lock);
684 SetPageUptodate(swappage);
685 SetPageDirty(swappage);
686 UnlockPage(swappage);
687 page_cache_release(swappage);
688 goto repeat;
689 }

At this point, the page exists in the swap cache.

658 Deletes the page from the swap cache so that we can attempt to add it to the
pagecache.

659-670 If the caller supplied a page with the pagep parameter, this updates
pagep with the data in swappage.

671-680 If not, this tries and adds swappage to the pagecache. Note that
info→swapped is updated, and the page is marked up to date before the
swap entry is freed, with swap free().

681-689 If we failed to add the page to the page cache, this adds it back to the
swap cache with add to swap cache(). The page is marked up to date before
being unlocked and goto repeat to try again.
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690 } else if (sgp == SGP_READ && !filepage) {
691 filepage = find_get_page(mapping, idx);
692 if (filepage &&
693 (!Page_Uptodate(filepage) || TryLockPage(filepage))) {
694 spin_unlock(&info->lock);
695 wait_on_page(filepage);
696 page_cache_release(filepage);
697 filepage = NULL;
698 goto repeat;
699 }
700 spin_unlock(&info->lock);

In this block, a valid swap entry does not exist for the idx. If the page is being
read and the pagep is NULL, this locates the page in the pagecache.

691 Calls find get page() (See Section J.1.4.1) to find the page in the pagecache.

692-699 If the page was found, but was not up to date or could not be locked, this
releases the spinlock and waits until the page is unlocked. Then goto repeat
to reacquire the spinlock and try again.

700 Releases the spinlock.

701 } else {
702 sbinfo = SHMEM_SB(inode->i_sb);
703 spin_lock(&sbinfo->stat_lock);
704 if (sbinfo->free_blocks == 0) {
705 spin_unlock(&sbinfo->stat_lock);
706 spin_unlock(&info->lock);
707 error = -ENOSPC;
708 goto failed;
709 }
710 sbinfo->free_blocks--;
711 inode->i_blocks += BLOCKS_PER_PAGE;
712 spin_unlock(&sbinfo->stat_lock);
713
714 if (!filepage) {
715 spin_unlock(&info->lock);
716 filepage = page_cache_alloc(mapping);
717 if (!filepage) {
718 shmem_free_block(inode);
719 error = -ENOMEM;
720 goto failed;
721 }
722
723 spin_lock(&info->lock);
724 entry = shmem_swp_alloc(info, idx, sgp);
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725 if (IS_ERR(entry))
726 error = PTR_ERR(entry);
727 if (error || entry->val ||
728 add_to_page_cache_unique(filepage,
729 mapping, idx, page_hash(mapping, idx)) != 0) {
730 spin_unlock(&info->lock);
731 page_cache_release(filepage);
732 shmem_free_block(inode);
733 filepage = NULL;
734 if (error)
735 goto failed;
736 goto repeat;
737 }
738 }
739
740 spin_unlock(&info->lock);
741 clear_highpage(filepage);
742 flush_dcache_page(filepage);
743 SetPageUptodate(filepage);
744 }

If not, a page that is not in the page cache is being written to. It will need to
be allocated.

702 Gets the superblock info with SHMEM SB().

703 Acquires the superblock info spinlock.

704-709 If no free blocks are left in the filesystem, this releases the spinlocks, sets
the return error to -ENOSPC and goto failed.

710 Decrements the number of available blocks.

711 Increments the block usage count for the inode.

712 Releases the superblock private information spinlock.

714-715 If a page was not supplied by pagep, this allocates a page and swap entry
for the new page.

715 Releases the info spinlock because page cache alloc() may sleep.

716 Allocates a new page.

717-721 If the allocation failed, this frees the block with shmem free block()
and sets the return error to -ENOMEM before goto failed.

723 Reacquires the info spinlock.

724 shmem swp entry() locates a swap entry for the page. If one does not already
exist (which is likely for this page), one will be allocated and returned.
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725-726 If no swap entry was found or allocated, this sets the return error.

728-729 If no error occurred, this adds the page to the pagecache.

730-732 If the page was not added to the pagecache (because we raced and another
process inserted the page while we had the spinlock released, for example),
this drops the reference to the new page and frees the block.

734-735 If an error occurred, goto failed to report the error.

736 Otherwise, goto repeat where the desired page will be searched for within
the pagecache again.

740 Releases the info spinlock.

741 Zero-fills the new page.

742 Flushes the dcache to avoid possible CPU dcache aliasing.

743 Marks the page as being up to date.

745 done:
746 if (!*pagep) {
747 if (filepage) {
748 UnlockPage(filepage);
749 *pagep = filepage;
750 } else
751 *pagep = ZERO_PAGE(0);
752 }
753 return 0;
754
755 failed:
756 if (*pagep != filepage) {
757 UnlockPage(filepage);
758 page_cache_release(filepage);
759 }
760 return error;
761 }

746-752 If a page was not passed in by pagep, this decides what to return. If a
page was allocated for writing, this unlocks and returns filepage. Otherwise,
the caller is just a reader, so if returns the global zero-filled page.

753 Returns success.

755 This is the failure path.

756 If a page was allocated by this function and stored in filepage, this unlocks
it and drops the reference to it, which will free it.

760 Returns the error code.
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L.5.2 Locating Swapped Pages

L.5.2.1 Function: shmem alloc entry() (mm/shmem.c)
This function is a top-level function that returns the swap entry corresponding

to a particular page index within a file. If the swap entry does not exist, one will
be allocated.

183 static inline swp_entry_t * shmem_alloc_entry (
struct shmem_inode_info *info,
unsigned long index)

184 {
185 unsigned long page = 0;
186 swp_entry_t * res;
187
188 if (index >= SHMEM_MAX_INDEX)
189 return ERR_PTR(-EFBIG);
190
191 if (info->next_index <= index)
192 info->next_index = index + 1;
193
194 while ((res = shmem_swp_entry(info,index,page)) ==

ERR_PTR(-ENOMEM)) {
195 page = get_zeroed_page(GFP_USER);
196 if (!page)
197 break;
198 }
199 return res;
200 }

188-189 SHMEM MAX INDEX is calculated at compile time, and it indicates the
largest possible virtual file in pages. If the var is greater than the maximum
possible sized file, this returns -EFBIG.

191-192 next index records the index of the page at the end of the file.
inode→i size alone is insufficient because the next index field is needed
for file truncation.

194-198 Calls shmem swp entry() to locate the swp entry t for the requested
index. While searching, shmem swp entry() may need a number of pages. If
it does, it returns -ENOMEM, which indicates that get zeroed page() should
be called before trying again.

199 Returns the swp entry t.

L.5.2.2 Function: shmem swp entry() (mm/shmem.c)
This function uses information within the inode to locate the swp entry t for a

given index. The inode itself is able to store SHMEM NR DIRECT swap vectors. After
that, indirect blocks are used.
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127 static swp_entry_t *shmem_swp_entry (struct shmem_inode_info *info,
unsigned long index,
unsigned long page)

128 {
129 unsigned long offset;
130 void **dir;
131
132 if (index < SHMEM_NR_DIRECT)
133 return info->i_direct+index;
134 if (!info->i_indirect) {
135 if (page) {
136 info->i_indirect = (void **) *page;
137 *page = 0;
138 }
139 return NULL;
140 }
141
142 index -= SHMEM_NR_DIRECT;
143 offset = index % ENTRIES_PER_PAGE;
144 index /= ENTRIES_PER_PAGE;
145 dir = info->i_indirect;
146
147 if (index >= ENTRIES_PER_PAGE/2) {
148 index -= ENTRIES_PER_PAGE/2;
149 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
150 index %= ENTRIES_PER_PAGE;
151 if (!*dir) {
152 if (page) {
153 *dir = (void *) *page;
154 *page = 0;
155 }
156 return NULL;
157 }
158 dir = ((void **)*dir);
159 }
160
161 dir += index;
162 if (!*dir) {
163 if (!page || !*page)
164 return NULL;
165 *dir = (void *) *page;
166 *page = 0;
167 }
168 return (swp_entry_t *) *dir + offset;
169 }
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132-133 If the index is below SHMEM NR DIRECT, then the swap vector is contained
within the direct block, so this returns it.

134-140 If a page does not exist at this indirect block, this installs the page that
was passed in with the page parameter and returns NULL. This tells the
called to allocate a new page and calls the function again.

142 Treats the indirect blocks as starting from index 0.

143 ENTRIES PER PAGE is the number of swap vectors contained within each page
in the indirect block. offset is now the index of the desired swap vector
within the indirect block page when it is found.

144 index is now the directory number within the indirect block list that must be
found.

145 Gets a pointer to the first indirect block we are interested in.

147-159 If the required directory (index) is greater than ENTRIES PER PAGE/2,
then it is a triple-indirect block, so the next block must be traversed.

148 Pointers to the next set of directory blocks are in the second half of the
current block, so this calculates index as an offset within the second half of
the current block.

149 Calculates dir as a pointer to the next directory block.

150 index is now a pointer within dir to a page containing the swap vectors we
are interested in.

151-156 If dir has not been allocated, this installs the page supplied with the
page parameter and returns NULL so that the caller will allocate a new page
and call the function again.

158 dir is now the base of the page of swap vectors containing the one we are
interested in.

161 Moves dir forward to the entry we want.

162-167 If an entry does not exist, this installs the page supplied as a parameter
if available. If not, it returns NULL so that one will be allocated, and the
function will be called again.

168 Returns the found swap vector.
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L.6.1 Function: shmem writepage() (mm/shmem.c)
This function is responsible for moving a page from the page cache to the swap

cache.

522 static int shmem_writepage(struct page *page)
523 {
524 struct shmem_inode_info *info;
525 swp_entry_t *entry, swap;
526 struct address_space *mapping;
527 unsigned long index;
528 struct inode *inode;
529
530 BUG_ON(!PageLocked(page));
531 if (!PageLaunder(page))
532 return fail_writepage(page);
533
534 mapping = page->mapping;
535 index = page->index;
536 inode = mapping->host;
537 info = SHMEM_I(inode);
538 if (info->flags & VM_LOCKED)
539 return fail_writepage(page);

This block is the function preamble to make sure the operation is possible.

522 The parameter is the page to move to the swap cache.

530 It is a bug if the page is already locked for I/O.

531-532 If the launder bit has not been set, this calls fail writepage().
fail writepage() is used by in-memory filesystems to mark the page dirty
and reactivates it so that the page reclaimer does not repeatadly attempt to
write the same page.

534-537 Records variables that are needed as parameters later in the function.

538-539 If the inode filesystem information is locked, this fails.

540 getswap:
541 swap = get_swap_page();
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542 if (!swap.val)
543 return fail_writepage(page);
544
545 spin_lock(&info->lock);
546 BUG_ON(index >= info->next_index);
547 entry = shmem_swp_entry(info, index, NULL);
548 BUG_ON(!entry);
549 BUG_ON(entry->val);
550

This block is responsible for allocating a swap slot from the backing storage and
a swp entry t within the inode.

541-543 Locates a free swap slot with get swap page() (See Section K.1.1). If
fails, it calls fail writepage().

545 Locks the inode information.

547 Gets a free swp entry t from the filesystem-specific private inode information
with shmem swp entry().

551 /* Remove it from the page cache */
552 remove_inode_page(page);
553 page_cache_release(page);
554
555 /* Add it to the swap cache */
556 if (add_to_swap_cache(page, swap) != 0) {
557 /*
558 * Raced with "speculative" read_swap_cache_async.
559 * Add page back to page cache, unref swap, try again.
560 */
561 add_to_page_cache_locked(page, mapping, index);
562 spin_unlock(&info->lock);
563 swap_free(swap);
564 goto getswap;
565 }
566
567 *entry = swap;
568 info->swapped++;
569 spin_unlock(&info->lock);
570 SetPageUptodate(page);
571 set_page_dirty(page);
572 UnlockPage(page);
573 return 0;
574 }

This block moves from the pagecache to the swap cache and updates statistics.
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552 remove inode page()(See Section J.1.2.1) removes the page from the inode
and hash lists the page is a member of.

553 page cache release() drops the local reference to the page taken for the
writepage() operation.

556 Adds the page to the swap cache. After this returns, the page→mapping will
now be swapper space.

561 The operation failed, so this adds the page back to the pagecache.

562 Unlocks the private information.

563-564 Frees the swap slot and tries again.

567 Here, the page has successfully become part of the swap cache. This updates
the inode information to point to the swap slot in backing storage.

568 Increments the counter recording the number of pages belonging to this inode
that are in swap.

569 Frees the private inode information.

570-571 Moves the page to the address space dirty pages list so that it will be
written to backing storage.

573 Returns success.

L.6.2 Function: shmem unuse() (mm/shmem.c)
This function will search the shmem inodes list for the inode that holds the

information for the requested entry and page. It is a very expensive operation,
but it is only called when a swap area is being deactivated, so it is not a significant
problem. On return, the swap entry will be freed, and the page will be moved from
the swap cache to the pagecache.

498 int shmem_unuse(swp_entry_t entry, struct page *page)
499 {
500 struct list_head *p;
501 struct shmem_inode_info * nfo;
502
503 spin_lock(&shmem_ilock);
504 list_for_each(p, &shmem_inodes) {
505 info = list_entry(p, struct shmem_inode_info, list);
506
507 if (info->swapped && shmem_unuse_inode(info, entry, page)) {
508 /* move head to start search for next from here */
509 list_move_tail(&shmem_inodes, &info->list);
510 found = 1;
511 break;
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512 }
513 }
514 spin_unlock(&shmem_ilock);
515 return found;
516 }

503 Acquires the shmem ilock spinlock, protecting the inode list.

504 Cycles through each entry in the shmem inodes list searching for the inode
holding the requested entry and page.

509 Moves the inode to the top of the list. In the event that we are reclaiming
many pages, the next search will find the inode of interest at the top of the
list.

510 Indicates that the page was found.

511 This page and entry have been found to break out of the loop.

514 Releases the shmem ilock spinlock.

515 Returns if the page was found or not by shmem unuse inode().

L.6.3 Function: shmem unuse inode() (mm/shmem.c)
This function searches the inode information in info to determine if the entry

and page belong to it. If they do, the entry will be cleared, and the page will be
removed from the swap cache and moved to the pagecache instead.

436 static int shmem_unuse_inode(struct shmem_inode_info *info,
swp_entry_t entry,

struct page *page)
437 {
438 struct inode *inode;
439 struct address_space *mapping;
440 swp_entry_t *ptr;
441 unsigned long idx;
442 int offset;
443
444 idx = 0;
445 ptr = info->i_direct;
446 spin_lock(&info->lock);
447 offset = info->next_index;
448 if (offset > SHMEM_NR_DIRECT)
449 offset = SHMEM_NR_DIRECT;
450 offset = shmem_find_swp(entry, ptr, ptr + offset);
451 if (offset >= 0)
452 goto found;
453
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454 for (idx = SHMEM_NR_DIRECT; idx < info->next_index;
455 idx += ENTRIES_PER_PAGE) {
456 ptr = shmem_swp_entry(info, idx, NULL);
457 if (!ptr)
458 continue;
459 offset = info->next_index - idx;
460 if (offset > ENTRIES_PER_PAGE)
461 offset = ENTRIES_PER_PAGE;
462 offset = shmem_find_swp(entry, ptr, ptr + offset);
463 if (offset >= 0)
464 goto found;
465 }
466 spin_unlock(&info->lock);
467 return 0;
468 found:
470 idx += offset;
471 inode = info->inode;
472 mapping = inode->i_mapping;
473 delete_from_swap_cache(page);
474
475 /* Racing against delete or truncate?

* Must leave out of page cache */
476 limit = (inode->i_state & I_FREEING)? 0:
477 (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
478
479 if (idx >= limit || add_to_page_cache_unique(page,
480 mapping, idx, page_hash(mapping, idx)) == 0) {
481 ptr[offset].val = 0;
482 info->swapped--;
483 } else if (add_to_swap_cache(page, entry) != 0)
484 BUG();
485 spin_unlock(&info->lock);
486 SetPageUptodate(page);
487 /*
488 * Decrement swap count even when the entry is left behind:
489 * try_to_unuse will skip over mms, then reincrement count.
490 */
491 swap_free(entry);
492 return 1;
493 }

445 Initializes ptr to start at the beginning of the direct block for the inode being
searched.

446 Locks the inode private information.

447 Initializes offset to be the last page index in the file.
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448-449 If offset is beyond the end of the direct block, this sets it to the end of
the direct block for the moment.

450 Uses shmem find swap()(See Section L.6.4) to search the direct block for the
entry.

451-452 If the entry was in the direct block, goto found. Otherwise, we have to
search the indirect blocks.

454-465 Searches each of the indirect blocks for the entry.

456 shmem swp entry()(See Section L.5.2.2) returns the swap vector at the cur-
rent idx within the inode. As idx is incremented in ENTRIES PER PAGE-sized
strides, this will return the beginning of the next indirect block being searched.

457-458 If an error occurred, the indirect block does not exist, so it continues,
which probably will exit the loop.

459 Calculates how many pages are left in the end of the file to see if we only have
to search a partially filled indirect block.

460-461 If offset is greater than the size of an indirect block, this sets off-
set to ENTRIES PER PAGE, so this full indirect block will be searched by
shmem find swp().

462 Searches the entire of the current indirect block for entry with
shmem find swp() (See Section L.6.4).

463-467 If the entry was found, goto found. Otherwise, the next indirect block
will be searched. If the entry is never found, the info struct will be unlocked,
and 0 will be returned, indicating that this inode did not contain the entry
and page.

468 The entry was found, so perform the necessary tasks to free it with
swap free().

470 Moves idx to the location of the swap vector within the block.

471-472 Gets the inode and mapping.

473 Deletes the page from the swap cache.

476-477 Checks if the inode is currently being deleted or truncated by examining
inode→i state. If it is, this sets limit to the index of the last page in the
adjusted file size.

479-482 If the page is not being truncated or deleted, this adds it to the pagecache
with add to page cache unique(). If successful, this clears the swap entry
and decrement info→swapped.

483-484 If not, this adds the page back to the swap cache where it will be reclaimed
later.
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485 Releases the info spinlock.

486 Marks the page up to date.

491 Decrements the swap count.

492 Returns success.

L.6.4 Function: shmem find swp() (mm/shmem.c)
This function searches an indirect block between the two pointers ptr and eptr

for the requested entry. Note that the two pointers must be in the same indirect
block.

425 static inline int shmem_find_swp(swp_entry_t entry,
swp_entry_t *dir,
swp_entry_t *edir)

426 {
427 swp_entry_t *ptr;
428
429 for (ptr = dir; ptr < edir; ptr++) {
430 if (ptr->val == entry.val)
431 return ptr - dir;
432 }
433 return -1;
434 }

429 Loops between the dir and edir pointers.

430 If the current ptr entry matches the requested entry, then this returns the off-
set from dir. Because shmem unuse inode() is the only user of this function,
this will result in the offset within the indirect block being returned.

433 Returns indicating that the entry was not found.
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L.7 Setting Up Shared Regions
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L.7.1 Function: shmem zero setup() (mm/shmem.c)
This function is called to set up a VMA that is a shared region backed by

anonymous pages. The call graph that shows this function is in Figure 12.5. This
occurs when mmap() creates an anonymous region with the MAP SHARED flag.

1664 int shmem_zero_setup(struct vm_area_struct *vma)
1665 {
1666 struct file *file;
1667 loff_t size = vma->vm_end - vma->vm_start;
1668
1669 file = shmem_file_setup("dev/zero", size);
1670 if (IS_ERR(file))
1671 return PTR_ERR(file);
1672
1673 if (vma->vm_file)
1674 fput(vma->vm_file);
1675 vma->vm_file = file;
1676 vma->vm_ops = &shmem_vm_ops;
1677 return 0;
1678 }

1667 Calculates the size.

1669 Calls shmem file setup()(See Section L.7.2) to create a file called dev/zero
and of the calculated size. We will see in the functions code commentary why
the name does not have to be unique.

1673-1674 If a file already exists for this virtual area, this calls fput() to drop
its reference.

1675 Records the new file pointer.

1676 Sets the vm ops so that shmem nopage() (See Section L.5.1.1) will be called
when a page needs to be faulted in for this VMA.

L.7.2 Function: shmem file setup() (mm/shmem.c)
This function is called to create a new file in shmfs, the internal filesystem.

Because the filesystem is internal, the supplied name does not have to be unique
within each directory. Hence, every file that is created by an anonymous region with
shmem zero setup() will be called “dev/zero,” and regions created with shmget()
will be called “SYSVNN” where NN is the key that is passed as the first argument to
shmget().
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1607 struct file *shmem_file_setup(char *name, loff_tsize)
1608 {
1609 int error;
1610 struct file *file;
1611 struct inode *inode;
1612 struct dentry *dentry, *root;
1613 struct qstr this;
1614 int vm_enough_memory(long pages);
1615
1616 if (IS_ERR(shm_mnt))
1617 return (void *)shm_mnt;
1618
1619 if (size > SHMEM_MAX_BYTES)
1620 return ERR_PTR(-EINVAL);
1621
1622 if (!vm_enough_memory(VM_ACCT(size)))
1623 return ERR_PTR(-ENOMEM);
1624
1625 this.name = name;
1626 this.len = strlen(name);
1627 this.hash = 0; /* will go */

1607 The parameters are the name of the file to create and its expected size.

1614 vm enough memory()(See Section M.1.1) checks to make sure there is enough
memory to satisify the mapping.

1616-1617 If there is an error with the mount point, this returns the error.

1619-1620 Do not create a file greater than SHMEM MAX BYTES, which is calculated
at top of mm/shmem.c.

1622-1623 Makes sure there is enough memory to satisify the mapping.

1625-1627 Populates the struct qstr, which is the string type used for dnodes.

1628 root = shm_mnt->mnt_root;
1629 dentry = d_alloc(root, &this);
1630 if (!dentry)
1631 return ERR_PTR(-ENOMEM);
1632
1633 error = -ENFILE;
1634 file = get_empty_filp();
1635 if (!file)
1636 goto put_dentry;
1637
1638 error = -ENOSPC;
1639 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
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1640 if (!inode)
1641 goto close_file;
1642
1643 d_instantiate(dentry, inode);
1644 inode->i_size = size;
1645 inode->i_nlink = 0; /* It is unlinked */
1646 file->f_vfsmnt = mntget(shm_mnt);
1647 file->f_dentry = dentry;
1648 file->f_op = &shmem_file_operations;
1649 file->f_mode = FMODE_WRITE | FMODE_READ;
1650 return file;
1651
1652 close_file:
1653 put_filp(file);
1654 put_dentry:
1655 dput(dentry);
1656 return ERR_PTR(error);
1657 }

1628 root is assigned to be the dnode representing the root of shmfs.

1629 Allocates a new dentry with d alloc().

1630-1631 Returns -ENOMEM if one could not be allocated.

1634 Gets an empty struct file from the filetable. If one could not be found,
-ENFILE will be returned, indicating a filetable overflow.

1639-1641 Creates a new inode, which is a regular file (S IFREG) and globally
readable, writable and executable. If it fails, it returns -ENOSPC, indicating
no space is left in the filesystem.

1643 d instantiate() fills in the inode information for a dentry. It is defined in
fs/dcache.c.

1644-1649 Fills in the remaining inode and file information.

1650 Returns the newly created struct file.

1653 The error path when an inode could not be created. put filp() fill free up
the struct file entry in the filetable.

1655 dput() will drop the reference to the dentry, which destroys it.

1656 Returns the error code.
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L.8.1 Creating a SYSV Shared Region

L.8.1.1 Function: sys shmget() (ipc/shm.c)

229 asmlinkage long sys_shmget (key_t key, size_t size, int shmflg)
230 {
231 struct shmid_kernel *shp;
232 int err, id = 0;
233
234 down(&shm_ids.sem);
235 if (key == IPC_PRIVATE) {
236 err = newseg(key, shmflg, size);
237 } else if ((id = ipc_findkey(&shm_ids, key)) == -1) {
238 if (!(shmflg & IPC_CREAT))
239 err = -ENOENT;
240 else
241 err = newseg(key, shmflg, size);
242 } else if ((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) {
243 err = -EEXIST;
244 } else {
245 shp = shm_lock(id);
246 if(shp==NULL)
247 BUG();
248 if (shp->shm_segsz < size)
249 err = -EINVAL;
250 else if (ipcperms(&shp->shm_perm, shmflg))
251 err = -EACCES;
252 else
253 err = shm_buildid(id, shp->shm_perm.seq);
254 shm_unlock(id);
255 }
256 up(&shm_ids.sem);
257 return err;
258 }

234 Acquires the semaphore protecting shared memory IDs.
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235-236 If IPC PRIVATE is specified, most of the flags are ignored, and the region
is created with newseg(). This flag is intended to provide exclusive access to
a shared region, but Linux does not guarantee exclusive access.

237 If not, this searches to see if the key already exists with ipc findkey().

238-239 If it does not and IPC CREAT was not specified, then this returns -ENOENT.

241 If not, this creates a new region with newseg().

242-243 If the region already exists and the process requested a new region that
did not previously exist to be created, this returns -EEXIST.

244-255 If not, we are accessing an existing region, so it locks it, makes sure we
have the required permissions, builds a segment identifier with shm buildid()
and unlocks the region again. The segment identifier will be returned back to
userspace.

256 Releases the semaphore protecting IDs.

257 Returns either the error or the segment identifier.

L.8.1.2 Function: newseg() (ipc/shm.c)
This function creates a new shared segment.

178 static int newseg (key_t key, int shmflg, size_t size)
179 {
180 int error;
181 struct shmid_kernel *shp;
182 int numpages = (size + PAGE_SIZE -1) >> PAGE_SHIFT;
183 struct file * file;
184 char name[13];
185 int id;
186
187 if (size < SHMMIN || size > shm_ctlmax)
188 return -EINVAL;
189
190 if (shm_tot + numpages >= shm_ctlall)
191 return -ENOSPC;
192
193 shp = (struct shmid_kernel *) kmalloc (sizeof (*shp), GFP_USER);
194 if (!shp)
195 return -ENOMEM;
196 sprintf (name, "SYSV%08x", key);

This block allocates the segment descriptor.

182 Calculates the number of pages the region will occupy.
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187-188 Ensures the size of the region does not break limits.

190-191 Makes sure the total number of pages required for the segment will not
break limits.

193 Allocates the descriptor with kmalloc()(See Section H.4.2.1).

196 Prints the name of the file to be created in shmfs. The name is SYSVNN where
NN is the key identifier of the region.

197 file = shmem_file_setup(name, size);
198 error = PTR_ERR(file);
199 if (IS_ERR(file))
200 goto no_file;
201
202 error = -ENOSPC;
203 id = shm_addid(shp);
204 if(id == -1)
205 goto no_id;
206 shp->shm_perm.key = key;
207 shp->shm_flags = (shmflg & S_IRWXUGO);
208 shp->shm_cprid = current->pid;
209 shp->shm_lprid = 0;
210 shp->shm_atim = shp->shm_dtim = 0;
211 shp->shm_ctim = CURRENT_TIME;
212 shp->shm_segsz = size;
213 shp->shm_nattch = 0;
214 shp->id = shm_buildid(id,shp->shm_perm.seq);
215 shp->shm_file = file;
216 file->f_dentry->d_inode->i_ino = shp->id;
217 file->f_op = &shm_file_operations;
218 shm_tot += numpages;
219 shm_unlock (id);
220 return shp->id;
221
222 no_id:
223 fput(file);
224 no_file:
225 kfree(shp);
226 return error;
227 }

197 Creates a new file in shmfs with shmem file setup()(See Section L.7.2).

198-200 Makes sure no error occurred with the file creation.

202 By default, the error to return indicates that no shared memory identifiers
are available or that the size of the request is too large.
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206-213 Fills in fields in the segment descriptor.

214 Builds a segment identifier, which is what is returned to the caller of shmget().

215-217 Sets the file pointers and file operations structure.

218 Updates shm tot to the total number of pages used by shared segments.

220 Returns the identifier.

L.8.2 Attaching a SYSV Shared Region

L.8.2.1 Function: sys shmat() (ipc/shm.c)

568 asmlinkage long sys_shmat (int shmid, char *shmaddr,
int shmflg, ulong *raddr)

569 {
570 struct shmid_kernel *shp;
571 unsigned long addr;
572 unsigned long size;
573 struct file * file;
574 int err;
575 unsigned long flags;
576 unsigned long prot;
577 unsigned long o_flags;
578 int acc_mode;
579 void *user_addr;
580
581 if (shmid < 0)
582 return -EINVAL;
583
584 if ((addr = (ulong)shmaddr)) {
585 if (addr & (SHMLBA-1)) {
586 if (shmflg & SHM_RND)
587 addr &= ~(SHMLBA-1); /* round down */
588 else
589 return -EINVAL;
590 }
591 flags = MAP_SHARED | MAP_FIXED;
592 } else {
593 if ((shmflg & SHM_REMAP))
594 return -EINVAL;
595
596 flags = MAP_SHARED;
597 }
598
599 if (shmflg & SHM_RDONLY) {
600 prot = PROT_READ;
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601 o_flags = O_RDONLY;
602 acc_mode = S_IRUGO;
603 } else {
604 prot = PROT_READ | PROT_WRITE;
605 o_flags = O_RDWR;
606 acc_mode = S_IRUGO | S_IWUGO;
607 }

This section ensures the parameters to shmat() are valid.

581-582 Negative identifiers are not allowed, so this returns -EINVAL if one is
supplied.

584-591 If the caller supplied an address, this makes sure it is ok.

585 SHMLBA is the segment boundary address multiple. In Linux, this is always
PAGE SIZE. If the address is not page aligned, this checks if the caller specified
SHM RND, which allows the address to be changed. If specified, it rounds the
address down to the nearest page boundary. Otherwise, it returns -EINVAL.

591 Sets the flags to use with the VMA to create a shared region (MAP SHARED)
with a fixed address (MAP FIXED).

593-596 If an address was not supplied, this makes sure the SHM REMAP was spec-
ified and only uses the MAP SHARED flag with the VMA. This means that
do mmap() (See Section D.2.1.1) will find a suitable address to attach the
shared region.

613 shp = shm_lock(shmid);
614 if(shp == NULL)
615 return -EINVAL;
616 err = shm_checkid(shp,shmid);
617 if (err) {
618 shm_unlock(shmid);
619 return err;
620 }
621 if (ipcperms(&shp->shm_perm, acc_mode)) {
622 shm_unlock(shmid);
623 return -EACCES;
624 }
625 file = shp->shm_file;
626 size = file->f_dentry->d_inode->i_size;
627 shp->shm_nattch++;
628 shm_unlock(shmid);

This block ensures the IPC permissions are valid.

613 shm lock() locks the descriptor corresponding to shmid and returns a pointer
to the descriptor.

S
h
ar

ed
M

em
o
ry

V
ir
tu

a
l
F
ile

sy
st

em



694 Shared Memory Virtual Filesystem Appendix L

614-615 Makes sure the descriptor exists.

616-620 Makes sure the ID matches the descriptor.

621-624 Makes sure the caller has the correct permissions.

625 Gets a pointer to the struct file, which do mmap() requires.

626 Gets the size of the shared region, so do mmap() knows what size of VMA to
create.

627 Temporarily increments shm nattach(), which normally indicates how many
VMAs are using the segment. This is to prevent the segment being freed
prematurely. The real counter will be incremented by shm open(), which
is the open() callback used by the vm operations struct used for shared
regions.

628 Releases the descriptor.

630 down_write(&current->mm->mmap_sem);
631 if (addr && !(shmflg & SHM_REMAP)) {
632 user_addr = ERR_PTR(-EINVAL);
633 if (find_vma_intersection(current->mm, addr, addr + size))
634 goto invalid;
635 /*
636 * If shm segment goes below stack, make sure there is some
637 * space left for the stack to grow (at least 4 pages).
638 */
639 if (addr < current->mm->start_stack &&
640 addr > current->mm->start_stack - size - PAGE_SIZE * 5)
641 goto invalid;
642 }
643
644 user_addr = (void*) do_mmap (file, addr, size, prot, flags, 0);

This block is where do mmap() will be called to attach the region to the calling
process.

630 Acquires the semaphore protecting the mm struct.

632-634 If an address was specified, calls find vma intersection()
(See Section D.3.1.3) to ensure no VMA overlaps the region we are trying
to use.

639-641 Makes sure there is at least a four-page gap between the end of the shared
region and the stack.

644 Calls do mmap()(See Section D.2.1.1), which will allocate the VMA and map
it into the process address space.
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646 invalid:
647 up_write(&current->mm->mmap_sem);
648
649 down (&shm_ids.sem);
650 if(!(shp = shm_lock(shmid)))
651 BUG();
652 shp->shm_nattch--;
653 if(shp->shm_nattch == 0 &&
654 shp->shm_flags & SHM_DEST)
655 shm_destroy (shp);
656 else
657 shm_unlock(shmid);
658 up (&shm_ids.sem);
659
660 *raddr = (unsigned long) user_addr;
661 err = 0;
662 if (IS_ERR(user_addr))
663 err = PTR_ERR(user_addr);
664 return err;
665
666 }

647 Releases the mm struct semaphore.

649 Releases the region IDs semaphore.

650-651 Locks the segment descriptor.

652 Decrements the temporary shm nattch counter. This will have been properly
incremented by the vm ops→open callback.

653-655 If the users reach 0 and the SHM DEST flag has been specified, the region
is destroyed because it is no longer required.

657 Otherwise, this just unlocks the segment.

660 Sets the address to return to the caller.

661-663 If an error occured, this sets the error to return to the caller.

664 Returns.
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M.1 Determining Available Memory

Contents
M.1 Determining Available Memory 698

M.1.1 Function: vm enough memory() 698

M.1.1 Function: vm enough memory() (mm/mmap.c)

53 int vm_enough_memory(long pages)
54 {
65 unsigned long free;
66
67 /* Sometimes we want to use more memory than we have. */
68 if (sysctl_overcommit_memory)
69 return 1;
70
71 /* The page cache contains buffer pages these days.. */
72 free = atomic_read(&page_cache_size);
73 free += nr_free_pages();
74 free += nr_swap_pages;
75
76 /*
77 * This double-counts: the nrpages are both in the page-cache
78 * and in the swapper space. At the same time, this compensates
79 * for the swap-space over-allocation (ie "nr_swap_pages" being
80 * too small.
81 */
82 free += swapper_space.nrpages;
83
84 /*
85 * The code below doesn’t account for free space in the inode
86 * and dentry slab cache, slab cache fragmentation, inodes and
87 * dentries which will become freeable under VM load, etc.
88 * Lets just hope all these (complex) factors balance out...
89 */
90 free += (dentry_stat.nr_unused * sizeof(struct dentry)) >> PAGE_SHIFT;
91 free += (inodes_stat.nr_unused * sizeof(struct inode)) >> PAGE_SHIFT;
92
93 return free > pages;
94 }

68-69 If the system administrator has specified through the proc interface that
overcommit is allowed, this returns immediately saying that the memory is
available.

72 Starts the free pages count with the size of the pagecache because these pages
may be easily reclaimed.
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73 Adds the total number of free pages in the system.

74 Adds the total number of available swap slots.

82 Adds the number of pages managed by swapper space. This double-counts
free slots in swaps, but is balanced by the fact that some slots are reserved
for pages, but are not being currently used.

90 Adds the number of unused pages in the dentry cache.

91 Adds the number of unused pages in the inode cache.

93 Returns if more free pages are available than the request.
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M.2 Detecting and Recovering From OOM
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M.2.1 Function: out of memory() (mm/oom kill.c)

202 void out_of_memory(void)
203 {
204 static unsigned long first, last, count, lastkill;
205 unsigned long now, since;
206
210 if (nr_swap_pages > 0)
211 return;
212
213 now = jiffies;
214 since = now - last;
215 last = now;
216
221 last = now;
222 if (since > 5*HZ)
223 goto reset;
224
229 since = now - first;
230 if (since < HZ)
231 return;
232
237 if (++count < 10)
238 return;
239
245 since = now - lastkill;
246 if (since < HZ*5)
247 return;
248
252 lastkill = now;
253 oom_kill();
254
255 reset:
256 first = now;
257 count = 0;
258 }
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210-211 If there are available swap slots, the system has no OOM.

213-215 Records what time it is now in jiffies and determines how long it has been
since this function was last called.

222-223 If it has been more than 5 seconds since this function was last called,
this resets the timer and exits the function.

229-231 If it has been longer than a second since this function was last called, this
exits the function. It is possible that I/O is in progress, which will complete
soon.

237-238 If the function has not been called 10 times within the last short interval,
the system is not yet OOM.

245-247 If a process has been killed within the last 5 seconds, this exits the
function because the dying process is likely to free memory.

253 Ok, the system really is OOM, so it calls oom kill() (See Section M.2.2) to
select a process to kill.

M.2.2 Function: oom kill() (mm/oom kill.c)
This function first calls select bad process() to find a suitable process to kill.

Once found, the task list is traversed, and the oom kill task() is called for the
selected process and all its threads.

172 static void oom_kill(void)
173 {
174 struct task_struct *p, *q;
175
176 read_lock(&tasklist_lock);
177 p = select_bad_process();
178
179 /* Found nothing?!?! Either we hang forever, or we panic. */
180 if (p == NULL)
181 panic("Out of memory and no killable processes...\n");
182
183 /* kill all processes that share the ->mm (i.e. all threads) */
184 for_each_task(q) {
185 if (q->mm == p->mm)
186 oom_kill_task(q);
187 }
188 read_unlock(&tasklist_lock);
189
190 /*
191 * Make kswapd go out of the way, so "p" has a good chance of
192 * killing itself before someone else gets the chance to ask
193 * for more memory.
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194 */
195 yield();
196 return;
197 }

176 Acquires the read-only semaphore to the task list.

177 Calls select bad process()(See Section M.2.3) to find a suitable process to
kill.

180-181 If one could not be found, this panics the system because otherwise the
system will deadlock. In this case, it is better to deadlock and have a developer
solve the bug than have a mysterious hang.

184-187 Cycles through the task list and calls oom kill task()
(See Section M.2.5) for the selected process and all its threads. Remember
that threads will all share the same mm struct.

188 Releases the semaphore.

195 Calls yield() to allow the signals to be delivered and the processes to die.
The comments indicate that kswapd will be the sleeper, but it is possible
that a process in the direct-reclaim path will be executing this function, too.

M.2.3 Function: select bad process() (mm/oom kill.c)
This function is responsible for cycling through the entire task list and returning

the process that scored highest with the badness() function.

121 static struct task_struct * select_bad_process(void)
122 {
123 int maxpoints = 0;
124 struct task_struct *p = NULL;
125 struct task_struct *chosen = NULL;
126
127 for_each_task(p) {
128 if (p->pid) {
129 int points = badness(p);
130 if (points > maxpoints) {
131 chosen = p;
132 maxpoints = points;
133 }
134 }
135 }
136 return chosen;
137 }

127 Cycles through all tasks in the task list.

128 If the process is the system idle task, this skips over it.
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129 Calls badness()(See Section M.2.4) to score the process.

130-133 If this is the highest score so far, this records it.

136 Returns the task struct, which scored highest with badness().

M.2.4 Function: badness() (mm/oom kill.c)
This calculates a score that determines how suitable the process is for killing.

The scoring mechanism is explained in detail in Chapter 13.

58 static int badness(struct task_struct *p)
59 {
60 int points, cpu_time, run_time;
61
62 if (!p->mm)
63 return 0;
64
65 if (p->flags & PF_MEMDIE)
66 return 0;
67
71 points = p->mm->total_vm;
72
79 cpu_time = (p->times.tms_utime + p->times.tms_stime)

>> (SHIFT_HZ + 3);
80 run_time = (jiffies - p->start_time) >> (SHIFT_HZ + 10);
81
82 points /= int_sqrt(cpu_time);
83 points /= int_sqrt(int_sqrt(run_time));
84
89 if (p->nice > 0)
90 points *= 2;
91
96 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
97 p->uid == 0 || p->euid == 0)
98 points /= 4;
99
106 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
107 points /= 4;
108 #ifdef DEBUG
109 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
110 p->pid, p->comm, points);
111 #endif
112 return points;
113 }

62-63 If there is no mm, this returns 0 because this is a kernel thread.
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65-66 If the process has already been marked by the OOM killer as exiting, this
returns 0 because there is no point trying to kill it multiple times.

71 The total VM used by the process is the base starting point.

79-80 cpu time is calculated as the total runtime of the process in seconds.
run time is the total runtime of the process in minutes. Comments indicate
that there is no basis for this other than it works well in practice.

82 Divides the points by the integer square root of cpu time.

83 Divides the points by the cube root of run time.

89-90 If the process has been niced to be of lower priority, double its points because
it is likely to be an unimportant process.

96-98 On the other hand, if the process has superuser privileges or has the
CAP SYS ADMIN capability, it is likely to be a system process, so it divides
the points by 4.

106-107 If the process has direct access to hardware, then this divides the process
by 4. Killing these processes forcibly could potentially leave hardware in an
inconsistent state. For example, forcibly killing X is never a good idea.

112 Returns the score.

M.2.5 Function: oom kill task() (mm/oom kill.c)
This function is responsible for sending the appropriate kill signals to the selected

task.

144 void oom_kill_task(struct task_struct *p)
145 {
146 printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n",

p->pid, p->comm);
147
148 /*
149 * We give our sacrificial lamb high priority and access to
150 * all the memory it needs. That way it should be able to
151 * exit() and clear out its resources quickly...
152 */
153 p->counter = 5 * HZ;
154 p->flags |= PF_MEMALLOC | PF_MEMDIE;
155
156 /* This process has hardware access, be more careful. */
157 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) {
158 force_sig(SIGTERM, p);
159 } else {
160 force_sig(SIGKILL, p);
161 }
162 }
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146 Prints an informational message on the process being killed.

153 This gives the dying process lots of time on the CPU so that it can kill itself
off quickly.

154 These flags will tell the allocator to give favorable treatment to the process if
it requires more pages before cleaning itself up.

157-158 If the process can directly access hardware, this sends it the SIGTERM
signal to give it a chance to exit cleanly.

160 Otherwise, sends it the SIGKILL signal to force the process to be killed.
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alloc bootmem(), 99

alloc bounce bh(), 158
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arch get unmapped area(), 69
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bootmem data, 96
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bounce end io write(), 157
bounce end io(), 159
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ClearPageLaunder(), 28
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CPU cache management, 44
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end, 22

Exception handling, 79
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Initializing objects, 144
Initializing page hash table, 167
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kmem tune cpucache(), 149
km type, 156
KM TYPE NR, 156
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OOM management, 209
OOM prevention, 209
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PKMap address space, 153
PKMAP BASE, 55, 153
pkmap count, 154
pkmap map wait, 155
pkmap page table, 154
pmap, 24
PMD, 33
pmd alloc one fast(), 40
pmd alloc one(), 40
pmd alloc(), 39
pmd free(), 39
pmd offset(), 37

pmd page(), 39
pmd quicklist, 39
PMD SHIFT, 35
pmd t, 34
pmd val(), 36
pmd(), 36

Process address space, 53
Process descriptor allocation, 60
Process flags, 111
Process killing, 211
Process pageout, 173
Process space descriptor, 57
PTE allocation, 39
PTE chains, 31, 48
PTE freeing, 39
PTE instantiation, 39
PTE macros, 37
PTE protection bits, 36
PTE to swap entry mapping, 183
ptep get and clear(), 39
PTEs in high memory, 50
pte alloc one fast(), 40
pte alloc one(), 40
pte alloc(), 39
pte clear(), 39
pte dirty(), 38
pte exec(), 38
pte exprotect(), 38
pte free(), 39
pte mkclean(), 38
pte mkdirty(), 38
pte mkexec(), 38
pte mkread(), 38
pte mkwrite(), 38
pte mkyoung(), 38
pte modify(), 38
pte offset map(), 51
pte offset(), 37
pte old(), 38
pte page(), 39
pte quicklist, 39
pte rdprotect(), 38
pte read(), 38
pte t, 34
pte to swp entry(), 183
pte val(), 36
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pte write(), 38
pte wrprotect(), 38
pte young(), 38
pte(), 36

PTRS PER PGD, 36
PTRS PER PMD, 36
PTRS PER PTE, 36
put user(), 89

Quicklists, 39

RAM-based filesystem, 195
read swap cache async(), 189
REAP SCANLEN, 135
Refilling inactive list, 169
refill inactive(), 164, 169
remap file pages(), 93
remove exclusive swap page(), 189
remove inode page(), 166
remove page from hash queue(),

166
remove page from inode queue(),

166
reserve bootmem node(), 97
reserve bootmem(), 96
Retiring boot memory, 101
Reverse Mapping (rmap), 48
Reverse Mapping (RMAP), 87
Reverse mapping objects, 49
Reverse mapping pages, 48
rss, 59
rw swap page base(), 192
rw swap page(), 189, 192

scan swap map(), 185
search exception table(), 79
security operations, 212
security ops, 212
security vm enough memory(), 212
Set associative mapping, 45
SetPageActive(), 28
SetPageChecked(), 28
SetPageDirty(), 28
SetPageError(), 28
SetPageLaunder(), 28
SetPageReferenced(), 28
SetPageReserved(), 28

SetPageUptodate(), 26, 28
setup arch(), 98
setup arg flags(), 63
setup memory(), 98
SET PAGE CACHE(), 138
SET PAGE SLAB(), 138
set page zone(), 29
set pte(), 39
set shrinker(), 152
Shared regions, 204
shm, 195
shmat(), 204
Shmem file creation, 199
Shmem functions, 197
shmem commit write(), 197
shmem dir inode operations, 198
shmem file operations, 198
shmem getpage(), 199
shmem inodes, 195
shmem inode cache, 207
shmem inode info, 196
shmem inode operations, 198
SHMEM I(), 196
SHMEM MAX INDEX, 202
shmem prepare write(), 197
shmem readpage(), 197
shmem symlink inline operations,

198
shmem symlink inode operations,

198
shmem writepage(), 197
shmget(), 204
SHM DEST, 207
SHM HUGETLB, 52
SHM LOCK, 197
SHM UNLOCK, 197
shm vm ops, 204
shrink caches(), 173
shrink cache(), 170
Size-N cache, 146
Size-N (DMA) cache, 146
Slab allocator, 123
Slab cache allocation flags, 131
Slab cache chain, 123
Slab cache coloring, 132
Slab cache creation, 133
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Slab cache deletion, 136
Slab cache dynamic flags, 131
Slab cache reap, 133
Slab cache shrinking, 135
Slab cache static flags, 130
Slab cache, 123
Slab caches, per-CPU, 148
Slab creation, 139
Slab debugging, 125
Slab deletion, 143
Slab descriptors, 138
Slab free object tracking, 141
Slab initialization, 150
Slab object allocation, 144
Slab objects, 144
slabinfo, 125
Slabs, 123, 137
Slabs, buddy interaction, 151
Slabs, finding free objects, 142
Slabs, number of objects, 143
slabs free, 127
slabs full, 127
slabs partial, 127
SLAB ATOMIC, 132
slab bufctl(), 141
SLAB CACHE DMA, 131
SLAB CTOR ATOMIC, 132
SLAB CTOR CONSTRUCTOR, 132
SLAB CTOR VERIFY, 132
SLAB DEBUG FREE, 131
SLAB DEBUG INITIAL, 131
SLAB DMA, 132
SLAB HWCACHE ALIGN, 131
SLAB KERNEL, 132
SLAB MUST HWCACHE ALIGN, 131
SLAB NFS, 132
SLAB NOFS, 132
SLAB NOHIGHIO, 132
SLAB NOIO, 132
SLAB NO REAP, 131
SLAB POISON, 131
SLAB RED ZONE, 131
SLAB USER, 132
Small allocation caches, 123, 146
Sourceforge.net, 3
SPEC, 11

Stack algorithm, 165
Stack expansion, 82
startup 32(), 40
strlen user(), 89
strncpy from user(), 89
struct kmem cache s, 127
Swap area, 179
Swap area, describing, 180
Swap area deactivating, 193
Swap area initializing, 192
Swap cache, 163, 185
Swap entries, 183
Swap management, 179
Swap reading, 189, 192
Swap writing, 189
SWAPFILE , 185
swapin readahead(), 80, 87
swapper pg dir, 40
Swapping, 179
SWAP CLUSTER MAX, 173
swap duplicate(), 186, 188
swap free(), 186
swap header, 182
swap info, 180, 183
swap info struct, 180
swap list, 181
SWAP MAP BAD, 181
SWAP MAP MAX, 181
swap mm, 173
swap ops, 186
swap out mm(), 173
swap out vma(), 175
swap out(), 163, 173
swp entry t, 183
swp entry to pte(), 183
SWP ENTRY(), 183
SWP OFFSET(), 183
SWP TYPE(), 183
SWP USED, 180
SWP WRITEOK, 180
System V IPC, 204
sys mmap2(), 67
sys mprotect(), 72
sys mremap(), 72
sys munlockall(), 76
sys munlock(), 76
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sys swapoff(), 193
sys swapon(), 192

TestClearPageLRU(), 28
TestSetPageLRU(), 28
Thread identification, 57
Thundering herd, 22
TLB API, 44
TLB flushing, 57
TLB, 33, 43
tmpfs, 195
total vm, 59
tq disk, 177
Translation Lookaside Buffer (TLB),

33, 43
Trivial Patch Monkey, 12
try to free buffers(), 111
try to swap out(), 175
try to unuse(), 193

Understanding the Linux Kernel, 1
Unified diffs, 4
UnlockPage(), 22, 28
unmap fixup(), 79
update mmu cache(), 45
UseNet, 3
Userspace accessing, 87

va(), 42
vfree(), 120
Virtual Memory Area, 61
virt to page(), 43
VM Regress, 12
VMA creation, 67
VMA deletion, 79
VMA insertion, 70
VMA locking, 75
VMA merging, 72
VMA operations, 64
VMA remapping, 72
VMA searching, 69
VMA unlocking, 76
VMA, 61
vmalloc address space, 118
vmalloc areas, 117
vmalloc 32(), 118, 119

vmalloc dma(), 118, 119
VMALLOC END, 117
VMALLOC OFFSET, 55
VMALLOC RESERVE, 55
VMALLOC START, 117
vmalloc(), 112, 117, 119
vmap(), 121
vma link(), 71

vma link(), 72
vma merge(), 70, 72
vmlist lock, 118
vmspace, 55
VM ACCOUNT, 92, 211
vm acct memory(), 211
VM ALLOC, 118
vm area struct, 56, 61
VM DENYWRITE, 63
vm enough memory(), 209
VM EXECUTABLE, 63
VM GROWSDOWN, 63
VM GROWSUP, 63
VM IO, 63
VM IOREMAP, 118
VM LOCKED, 63
VM MAYEXEC, 63
VM MAYREAD, 63
VM MAYSHARE, 63
VM MAYWRITE, 63
vm operations struct, 64
VM RAND READ, 63
VM RESERVED, 63
VM SEQ READ, 63
VM SHM, 63
VM STACK FLAGS, 63
vm struct, 117
vm unacct memory(), 212
vsyscall page, 90

Waiting on pages, 22
wait on page(), 22
wait table size(), 22
Working set, 164

Zero page, 53
Zone balance, 20
Zone dimensions, 15
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Zone fallbacks, 17
Zone initialization, 23
Zone modifiers, 110
Zone pressure, 19
Zone size calculation, 20
Zone structure, 18
Zone watermarks, 19
Zones, 15
zones sizes, 24
ZONE DMA, 15

ZONE HIGHMEM, 15
zone holes, 24
ZONE NORMAL, 15
ZONE NORMAL at 896MiB, 55
ZONE PADDING(), 31
zone sizes init(), 41
zone start paddr, 24
zone struct, 15, 18
zone t, 15
zone table, 29
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