
CHAPTER 1

Digital signal processing has never been more prevalent or easier to perform.
It wasn’t that long ago when the fast Fourier transform (FFT), a topic we’ll
discuss in Chapter 4, was a mysterious mathematical process used only in in-
dustrial research centers and universities. Now, amazingly, the FFT is readily
available to us all. It’s even a built-in function provided by inexpensive
spreadsheet software for home computers. The availability of more sophisti-
cated commercial signal processing software now allows us to analyze and
develop complicated signal processing applications rapidly and reliably. We
can perform spectral analysis, design digital filters, develop voice recogni-
tion, data communication, and image compression processes using software
that’s interactive both in the way algorithms are defined and how the result-
ing data are graphically displayed. Since the mid-1980s the same integrated
circuit technology that led to affordable home computers has produced pow-
erful and inexpensive hardware development systems on which to imple-
ment our digital signal processing designs.† Regardless, though, of the ease
with which these new digital signal processing development systems and
software can be applied, we still need a solid foundation in understanding
the basics of digital signal processing. The purpose of this book is to build
that foundation. 

In this chapter we’ll set the stage for the topics we’ll study throughout the re-
mainder of this book by defining the terminology used in digital signal process-
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† During a television interview in the early 1990s, a leading computer scientist stated that had
automobile technology made the same strides as the computer industry, we’d all have a car that
would go a half million miles per hour and get a half million miles per gallon. The cost of that
car would be so low that it would be cheaper to throw it away than pay for one day’s parking in
San Francisco.
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ing, illustrating the various ways of graphically representing discrete signals, es-
tablishing the notation used to describe sequences of data values, presenting the
symbols used to depict signal processing operations, and briefly introducing the
concept of a linear discrete system.

1.1 DISCRETE SEQUENCES AND THEIR NOTATION 

In general, the term signal processing refers to the science of analyzing time-
varying physical processes. As such, signal processing is divided into two cat-
egories, analog signal processing and digital signal processing. The term
analog is used to describe a waveform that’s continuous in time and can take
on a continuous range of amplitude values. An example of an analog signal is
some voltage that can be applied to an oscilloscope, resulting in a continuous
display as a function of time. Analog signals can also be applied to a conven-
tional spectrum analyzer to determine their frequency content. The term ana-
log appears to have stemmed from the analog computers used prior to 1980.
These computers solved linear differential equations by means of connecting
physical (electronic) differentiators and integrators using old-style telephone
operator patch cords. That way, a continuous voltage or current in the actual
circuit was analogous to some variable in a differential equation, such as
speed, temperature, air pressure, etc. (Although the flexibility and speed of
modern-day digital computers have since made analog computers obsolete, a
good description of the short-lived utility of analog computers can be found
in reference [1].) Because present-day signal processing of continuous radio-
type signals using resistors, capacitors, operational amplifiers, etc., has noth-
ing to do with analogies, the term analog is actually a misnomer. The more
correct term is continuous signal processing for what is today so commonly
called analog signal processing. As such, in this book we’ll minimize the use
of the term analog signals and substitute the phrase continuous signals when-
ever appropriate.

The term discrete-time signal is used to describe a signal whose indepen-
dent time variable is quantized so that we know only the value of the signal
at discrete instants in time. Thus a discrete-time signal is not represented by a
continuous waveform but, instead, a sequence of values. In addition to quan-
tizing time, a discrete-time signal quantizes the signal amplitude. We can il-
lustrate this concept with an example. Think of a continuous sinewave with a
peak amplitude of 1 at a frequency fo described by the equation

x(t) = sin(2πfot) . (1–1)

The frequency fo is measured in hertz (Hz). (In physical systems, we usually
measure frequency in units of hertz. One Hz is a single oscillation, or cycle,
per second. One kilohertz (kHz) is a thousand Hz, and a megahertz (MHz) is
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one million Hz.†) With t in Eq. 1–1 representing time in seconds, the fot factor
has dimensions of cycles, and the complete 2πfot term is an angle measured in
radians.

Plotting Eq. (1–1), we get the venerable continuous sinewave curve
shown in Figure 1–1(a). If our continuous sinewave represents a physical volt-
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† The dimension for frequency used to be cycles/second; that’s why the tuning dials of old radios
indicate frequency as kilocycles/second (kcps) or megacycles/second (Mcps). In 1960 the scien-
tific community adopted hertz as the unit of measure for frequency in honor of the German
physicist, Heinrich Hertz, who first demonstrated radio wave transmission and reception in
1887.

Figure 1–1 A time-domain sinewave: (a) continuous waveform representa-
tion; (b) discrete sample representation; (c) discrete samples with
connecting lines.
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age, we could sample it once every ts seconds using an analog-to-digital con-
verter and represent the sinewave as a sequence of discrete values. Plotting
those individual values as dots would give us the discrete waveform in Fig-
ure 1–1(b). We say that Figure 1–1(b) is the “discrete-time” version of the con-
tinuous signal in Figure 1–1(a). The independent variable t in Eq. (1–1) and
Figure 1–1(a) is continuous. The independent index variable n in Figure 1–1(b)
is discrete and can have only integer values. That is, index n is used to iden-
tify the individual elements of the discrete sequence in Figure 1–1(b).

Do not be tempted to draw lines between the dots in Figure 1–1(b). For
some reason, people (particularly those engineers experienced in working
with continuous signals) want to connect the dots with straight lines, or the
stairstep lines shown in Figure 1–1(c). Don’t fall into this innocent-looking
trap. Connecting the dots can mislead the beginner into forgetting that the
x(n) sequence is nothing more than a list of numbers. Remember, x(n) is a
discrete-time sequence of individual values, and each value in that sequence
plots as a single dot. It’s not that we’re ignorant of what lies between the dots
of x(n); there is nothing between those dots.

We can reinforce this discrete-time sequence concept by listing those Fig-
ure 1–1(b) sampled values as follows:

x(0) = 0 (1st sequence value, index n = 0)
x(1) = 0.31 (2nd sequence value, index n = 1)
x(2) = 0.59 (3rd sequence value, index n = 2)
x(3) = 0.81 (4th sequence value, index n = 3)

. . . . . .
and so on, (1–2)

where n represents the time index integer sequence 0, 1, 2, 3, etc., and ts is
some constant time period. Those sample values can be represented collec-
tively, and concisely, by the discrete-time expression

x(n) = sin(2πfonts) . (1–3)

(Here again, the 2πfonts term is an angle measured in radians.) Notice that the
index n in Eq. (1–2) started with a value of 0, instead of 1. There’s nothing sa-
cred about this; the first value of n could just as well have been 1, but we start
the index n at zero out of habit because doing so allows us to describe the
sinewave starting at time zero. The variable x(n) in Eq. (1–3) is read as “the se-
quence x of n.” Equations (1–1) and (1–3) describe what are also referred to as
time-domain signals because the independent variables, the continuous time t
in Eq. (1–1), and the discrete-time nts values used in Eq. (1–3) are measures of
time.

With this notion of a discrete-time signal in mind, let’s say that a discrete
system is a collection of hardware components, or software routines, that op-
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erate on a discrete-time signal sequence. For example, a discrete system could
be a process that gives us a discrete output sequence y(0), y(1), y(2), etc., when
a discrete input sequence of x(0), x(1), x(2), etc., is applied to the system input
as shown in Figure 1–2(a). Again, to keep the notation concise and still keep
track of individual elements of the input and output sequences, an abbrevi-
ated notation is used as shown in Figure 1–2(b) where n represents the integer
sequence 0, 1, 2, 3, etc. Thus, x(n) and y(n) are general variables that represent
two separate sequences of numbers. Figure 1–2(b) allows us to describe a sys-
tem’s output with a simple expression such as

y(n) = 2x(n) – 1 . (1–4)

Illustrating Eq. (1–4), if x(n) is the five-element sequence: x(0) = 1, x(1) = 3,
x(2) = 5, x(3) = 7, and x(4) = 9, then y(n) is the five-element sequence y(0) = 1,
y(1) = 5, y(2) = 9, y(3) = 13, and y(4) = 17.

The fundamental difference between the way time is represented in con-
tinuous and discrete systems leads to a very important difference in how we
characterize frequency in continuous and discrete systems. To illustrate, let’s
reconsider the continuous sinewave in Figure 1–1(a). If it represented a volt-
age at the end of a cable, we could measure its frequency by applying it to an
oscilloscope, a spectrum analyzer, or a frequency counter. We’d have a prob-
lem, however, if we were merely given the list of values from Eq. (1–2) and
asked to determine the frequency of the waveform they represent. We’d
graph those discrete values, and, sure enough, we’d recognize a single
sinewave as in Figure 1–1(b). We can say that the sinewave repeats every 20
samples, but there’s no way to determine the exact sinewave frequency from
the discrete sequence values alone. You can probably see the point we’re lead-
ing to here. If we knew the time between samples—the sample period ts—
we’d be able to determine the absolute frequency of the discrete sinewave.

Discrete Sequences and Their Notation 5

Figure 1–2 With an input applied, a discrete system provides an output: (a) the
input and output are sequences of individual values; (b) input and
output using the abbreviated notation of x(n) and y(n).
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Given that the ts sample period is, say, 0.05 milliseconds/sample, the period
of the sinewave is 

(1–5)

Because the frequency of a sinewave is the reciprocal of its period, we now know
that the sinewave’s absolute frequency is 1/(1 ms), or 1 kHz. On the other hand, if
we found that the sample period was, in fact, 2 milliseconds, the discrete samples
in Figure 1–1(b) would represent a sinewave whose period is 40 milliseconds and
whose frequency is 25 Hz. The point here is that, in discrete systems, absolute fre-
quency determination in Hz is dependent on the sample frequency fs = 1/ts. We’ll
be reminded of this dependence throughout the rest of this book.

In digital signal processing, we often find it necessary to characterize the
frequency content of discrete-time domain signals. When we do so, this fre-
quency representation takes place in what’s called the frequency domain. By
way of example, let’s say we have a discrete sinewave sequence x1(n) with an
arbitrary frequency fo Hz as shown on the left side of Figure 1–3(a). We can
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Figure 1–3 Time- and frequency-domain graphical representations: (a) sinewave
of frequency fo; (b) reduced amplitude sinewave of frequency 2fo;
(c) sum of the two sinewaves.
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also describe x1(n) as shown on the right side of Figure 1–3(a) by indicating
that it has a frequency of 1, measured in units of fo, and no other frequency
content. Although we won’t dwell on it just now, notice that the frequency-
domain representations in Figure 1–3 are themselves discrete.

To illustrate our time- and frequency-domain representations further,
Figure 1–3(b) shows another discrete sinewave x2(n), whose peak amplitude
is 0.4, with a frequency of 2fo. The discrete sample values of x2(n) are ex-
pressed by the equation

x2(n) = 0.4 ⋅ sin(2π2fonts) . (1–6)

When the two sinewaves, x1(n) and x2(n), are added to produce a new
waveform xsum(n), its time-domain equation is

xsum(n) = x1(n) + x2(n) = sin(2πfonts) + 0.4 ⋅ sin(2π2fonts) , (1–7)

and its time- and frequency-domain representations are those given in Figure
1–3(c). We interpret the Xsum(m) frequency-domain depiction, the spectrum, in
Figure 1–3(c) to indicate that Xsum(n) has a frequency component of fo Hz and
a reduced-amplitude frequency component of 2fo Hz.

Notice three things in Figure 1–3. First, time sequences use lowercase
variable names like the “x” in x1(n), and uppercase symbols for frequency-
domain variables such as the “X” in X1(m). The term X1(m) is read as “the spec-
tral sequence X sub one of m.” Second, because the X1(m) frequency-domain
representation of the x1(n) time sequence is itself a sequence (a list of num-
bers), we use the index “m” to keep track of individual elements in X1(m). We
can list frequency-domain sequences just as we did with the time sequence in
Eq. (1–2). For example Xsum(m) is listed as

Xsum(0) = 0 (1st Xsum (m) value, index m = 0)
Xsum(1) = 1.0 (2nd Xsum(m) value, index m = 1)
Xsum(2) = 0.4 (3rd Xsum (m) value, index m = 2)
Xsum(3) = 0 (4th Xsum (m) value, index m = 3)

. . . . . .
and so on,

where the frequency index m is the integer sequence 0, 1, 2, 3, etc. Third, be-
cause the x1(n) + x2(n) sinewaves have a phase shift of zero degrees relative to
each other, we didn’t really need to bother depicting this phase relationship
in Xsum(m) in Figure 1–3(c). In general, however, phase relationships in 
frequency-domain sequences are important, and we’ll cover that subject in
Chapters 3 and 5.

A key point to keep in mind here is that we now know three equivalent
ways to describe a discrete-time waveform. Mathematically, we can use a
time-domain equation like Eq. (1–6). We can also represent a time-domain
waveform graphically as we did on the left side of Figure 1–3, and we can de-

Discrete Sequences and Their Notation 7

5725ch01.qxd_sp  2/11/04  8:06 AM  Page 7



pict its corresponding, discrete, frequency-domain equivalent as that on the
right side of Figure 1–3.

As it turns out, the discrete-time domain signals we’re concerned with
are not only quantized in time; their amplitude values are also quantized. Be-
cause we represent all digital quantities with binary numbers, there’s a limit
to the resolution, or granularity, that we have in representing the values of
discrete numbers. Although signal amplitude quantization can be an impor-
tant consideration—we cover that particular topic in Chapter 12—we won’t
worry about it just now.

1.2 SIGNAL AMPLITUDE, MAGNITUDE, POWER

Let’s define two important terms that we’ll be using throughout this book:
amplitude and magnitude. It’s not surprising that, to the layman, these terms
are typically used interchangeably. When we check our thesaurus, we find
that they are synonymous.† In engineering, however, they mean two different
things, and we must keep that difference clear in our discussions. The ampli-
tude of a variable is the measure of how far, and in what direction, that vari-
able differs from zero. Thus, signal amplitudes can be either positive or
negative. The time-domain sequences in Figure 1–3 presented the sample
value amplitudes of three different waveforms. Notice how some of the indi-
vidual discrete amplitude values were positive and others were negative.

The magnitude of a variable, on the other hand, is the measure of how
far, regardless of direction, its quantity differs from zero. So magnitudes are
always positive values. Figure 1–4 illustrates how the magnitude of the x1(n)

8 Discrete Sequences and Systems

† Of course, laymen are “other people.” To the engineer, the brain surgeon is the layman. To the
brain surgeon, the engineer is the layman.

Figure 1–4 Magnitude samples, |x1(n)|, of the time waveform in Figure 1–3(a).
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time sequence in Figure 1–3(a) is equal to the amplitude, but with the sign al-
ways being positive for the magnitude. We use the modulus symbol (||) to
represent the magnitude of x1(n). Occasionally, in the literature of digital sig-
nal processing, we’ll find the term magnitude referred to as the absolute value.

When we examine signals in the frequency domain, we’ll often be inter-
ested in the power level of those signals. The power of a signal is proportional
to its amplitude (or magnitude) squared. If we assume that the proportional-
ity constant is one, we can express the power of a sequence in the time or fre-
quency domains as 

xpwr(n) = x(n)2 = |x(n)|2 , (1–8)

or 

Xpwr(m) = X(m)2 = |X(m)|2 . (1–8’)

Very often we’ll want to know the difference in power levels of two signals in
the frequency domain. Because of the squared nature of power, two signals
with moderately different amplitudes will have a much larger difference in
their relative powers. In Figure 1–3, for example, signal x1(n)’s amplitude is
2.5 times the amplitude of signal x2(n), but its power level is 6.25 that of
x2(n)’s power level. This is illustrated in Figure 1–5 where both the amplitude
and power of Xsum(m) are shown.

Because of their squared nature, plots of power values often involve
showing both very large and very small values on the same graph. To make
these plots easier to generate and evaluate, practitioners usually employ the
decibel scale as described in Appendix E.

1.3 SIGNAL PROCESSING OPERATIONAL SYMBOLS

We’ll be using block diagrams to graphically depict the way digital signal-
processing operations are implemented. Those block diagrams will comprise
an assortment of fundamental processing symbols, the most common of
which are illustrated and mathematically defined in Figure 1–6.

Signal Processing Operational Symbols 9

Figure 1–5 Frequency-domain amplitude and frequency-domain power of the
xsum(n) time waveform in Figure 1–3(c).
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Figure 1–6(a) shows the addition, element for element, of two discrete
sequences to provide a new sequence. If our sequence index n begins at 0, we
say that the first output sequence value is equal to the sum of the first element
of the b sequence and the first element of the c sequence, or a(0) = b(0) + c(0).
Likewise, the second output sequence value is equal to the sum of the second
element of the b sequence and the second element of the c sequence, or
a(1) = b(1) + c(1). Equation (1–7) is an example of adding two sequences. The

10 Discrete Sequences and Systems

Figure 1–6 Terminology and symbols used in digital signal processing block 
diagrams.
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subtraction process in Figure 1–6(b) generates an output sequence that’s the
element-for-element difference of the two input sequences. There are times
when we must calculate a sequence whose elements are the sum of more than
two values. This operation, illustrated in Figure 1–6(c), is called summation
and is very common in digital signal processing. Notice how the lower and
upper limits of the summation index k in the expression in Figure 1–6(c) tell
us exactly which elements of the b sequence to sum to obtain a given a(n)
value. Because we’ll encounter summation operations so often, let’s make
sure we understand their notation. If we repeat the summation equation from
Figure 1–6(c) here we have 

(1–9)

This means that 

when n = 0, index k goes from 0 to 3, so a(0) = b(0) + b(1) + b(2) + b(3)
when n = 1, index k goes from 1 to 4, so a(1) = b(1) + b(2) + b(3) + b(4)
when n = 2, index k goes from 2 to 5, so a(2) = b(2) + b(3) + b(4) + b(5)
when n = 3, index k goes from 3 to 6, so a(3) = b(3) + b(4) + b(5) + b(6)

. . . . . .
and so on. (1–10)

We’ll begin using summation operations in earnest when we discuss digital
filters in Chapter 5.

The multiplication of two sequences is symbolized in Figure 1–6(d).
Multiplication generates an output sequence that’s the element-for-element
product of two input sequences: a(0) = b(0)c(0), a(1) = b(1)c(1), and so on. The
last fundamental operation that we’ll be using is called the unit delay in Figure
1–6(e). While we don’t need to appreciate its importance at this point, we’ll
merely state that the unit delay symbol signifies an operation where the out-
put sequence a(n) is equal to a delayed version of the b(n) sequence. For ex-
ample, a(5) = b(4), a(6) = b(5), a(7) = b(6), etc. As we’ll see in Chapter 6, due to
the mathematical techniques used to analyze digital filters, the unit delay is
very often depicted using the term z–1.

The symbols in Figure 1–6 remind us of two important aspects of digital
signal processing. First, our processing operations are always performed on
sequences of individual discrete values, and second, the elementary opera-
tions themselves are very simple. It’s interesting that, regardless of how com-
plicated they appear to be, the vast majority of digital signal processing
algorithms can be performed using combinations of these simple operations.
If we think of a digital signal processing algorithm as a recipe, then the sym-
bols in Figure 1–6 are the ingredients.

a n b k
k n

n

( ) ( )=
=

+

∑  .
3
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1.4 INTRODUCTION TO DISCRETE LINEAR TIME-INVARIANT SYSTEMS

In keeping with tradition, we’ll introduce the subject of linear time-invariant
(LTI) systems at this early point in our text. Although an appreciation for LTI
systems is not essential in studying the next three chapters of this book, when
we begin exploring digital filters, we’ll build on the strict definitions of linear-
ity and time invariance. We need to recognize and understand the notions of
linearity and time invariance not just because the vast majority of discrete
systems used in practice are LTI systems, but because LTI systems are very ac-
commodating when it comes to their analysis. That’s good news for us be-
cause we can use straightforward methods to predict the performance of any
digital signal processing scheme as long as it’s linear and time invariant. Be-
cause linearity and time invariance are two important system characteristics
having very special properties, we’ll discuss them now.

1.5 DISCRETE LINEAR SYSTEMS

The term linear defines a special class of systems where the output is the su-
perposition, or sum, of the individual outputs had the individual inputs been
applied separately to the system. For example, we can say that the application
of an input x1(n) to a system results in an output y1(n). We symbolize this situ-
ation with the following expression:

(1–11)

Given a different input x2(n), the system has a y2(n) output as

(1–12)

For the system to be linear, when its input is the sum x1(n) + x2(n), its output
must be the sum of the individual outputs so that

(1–13)

One way to paraphrase expression (1–13) is to state that a linear system’s out-
put is the sum of the outputs of its parts. Also, part of this description of lin-
earity is a proportionality characteristic. This means that if the inputs are
scaled by constant factors c1 and c2 then the output sequence parts are also
scaled by those factors as

(1–14)

In the literature, this proportionality attribute of linear systems in expression
(1–14) is sometimes called the homogeneity property. With these thoughts in
mind, then, let’s demonstrate the concept of system linearity.

c x n c x n c y n c y n1 1 2 2 1 1 2 2( ) ( )   ( ) ( )  .+  → +results in

x n x n y n y n1 2 1 2( ) ( )   ( ) ( )  .+  → +results in

x n y n2 2( )   ( )  .results in →

x n y n1 1( )   ( )results in  . →
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1.5.1 Example of a Linear System

To illustrate system linearity, let’s say we have the discrete system shown in
Figure 1–7(a) whose output is defined as 

(1–15)

that is, the output sequence is equal to the negative of the input sequence
with the amplitude reduced by a factor of two. If we apply an x1(n) input se-
quence representing a 1-Hz sinewave sampled at a rate of 32 samples per
cycle, we’ll have a y1(n) output as shown in the center of Figure 1–7(b). The
frequency-domain spectral amplitude of the y1(n) output is the plot on the

y n
x n

( )
( )

 ,= −
2

Discrete Linear Systems 13

Figure 1–7 Linear system input-to-output relationships: (a) system block diagram
where y(n) = –x(n)/2; (b) system input and output with a 1-Hz
sinewave applied; (c) with a 3-Hz sinewave applied; (d) with the sum
of 1-Hz and 3-Hz sinewaves applied.
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right side of Figure 1–7(b), indicating that the output comprises a single tone
of peak amplitude equal to –0.5 whose frequency is 1 Hz. Next, applying an
x2(n) input sequence representing a 3-Hz sinewave, the system provides a
y2(n) output sequence, as shown in the center of Figure 1–7(c). The spectrum
of the y2(n) output, Y2(m), confirming a single 3-Hz sinewave output is shown
on the right side of Figure 1–7(c). Finally—here’s where the linearity comes
in—if we apply an x3(n) input sequence that’s the sum of a 1-Hz sinewave
and a 3-Hz sinewave, the y3(n) output is as shown in the center of Figure
1–7(d). Notice how y3(n) is the sample-for-sample sum of y1(n) and y2(n). Fig-
ure 1–7(d) also shows that the output spectrum Y3(m) is the sum of Y1(m) and
Y2(m). That’s linearity.

1.5.2 Example of a Nonlinear System

It’s easy to demonstrate how a nonlinear system yields an output that is not
equal to the sum of y1(n) and y2(n) when its input is x1(n) + x2(n). A simple ex-
ample of a nonlinear discrete system is that in Figure 1–8(a) where the output
is the square of the input described by 

y(n) = [x(n)]2 . (1–16)

We’ll use a well known trigonometric identity and a little algebra to predict
the output of this nonlinear system when the input comprises simple
sinewaves. Following the form of Eq. (1–3), let’s describe a sinusoidal se-
quence, whose frequency fo = 1 Hz, by

x1(n) = sin(2πfonts) = sin(2π ⋅ 1 ⋅ nts) . (1–17)

Equation (1–17) describes the x1(n) sequence on the left side of Figure 1–8(b).
Given this x1(n) input sequence, the y1(n) output of the nonlinear system is
the square of a 1-Hz sinewave, or

y1(n) = [x1(n)]2 = sin(2π ⋅ 1 ⋅ nts) ⋅ sin(2π ⋅ 1 ⋅ nts) . (1–18)

We can simplify our expression for y1(n) in Eq. (1–18) by using the following
trigonometric identity:

(1–19)

Using Eq. (1–19), we can express y1(n) as 

(1–20)
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which is shown as the all positive sequence in the center of Figure 1–8(b). Be-
cause Eq. (1–19) results in a frequency sum (α + β) and frequency difference
(α – β) effect when multiplying two sinusoids, the y1(n) output sequence will
be a cosine wave of 2 Hz and a peak amplitude of –0.5, added to a constant
value of 1/2. The constant value of 1/2 in Eq. (1–20) is interpreted as a zero
Hz frequency component, as shown in the Y1(m) spectrum in Figure 1–8(b).
We could go through the same algebraic exercise to determine that, when a 
3-Hz sinewave x2(n) sequence is applied to this nonlinear system, the output
y2(n) would contain a zero Hz component and a 6 Hz component, as shown
in Figure 1–8(c).

System nonlinearity is evident if we apply an x3(n) sequence comprising
the sum of a 1-Hz and a 3-Hz sinewave as shown in Figure 1–8(d). We can

Discrete Linear Systems 15

Figure 1–8 Nonlinear system input-to-output relationships: (a) system block dia-
gram where y(n) = [x(n)]2; (b) system input and output with a 1-Hz
sinewave applied; (c) with a 3-Hz sinewave applied; (d) with the sum
of 1-Hz and 3-Hz sinewaves applied.
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predict the frequency content of the y3(n) output sequence by using the alge-
braic relationship

(a+b)2 = a2+2ab+b2 , (1–21)

where a and b represent the 1-Hz and 3-Hz sinewaves, respectively. From Eq.
(1–19), the a2 term in Eq. (1–21) generates the zero-Hz and 2-Hz output sinu-
soids in Figure 1–8(b). Likewise, the b2 term produces in y3(n) another zero-
Hz and the 6-Hz sinusoid in Figure 1–8(c). However, the 2ab term yields
additional 2-Hz and 4-Hz sinusoids in y3(n). We can show this algebraically
by using Eq. (1–19) and expressing the 2ab term in Eq. (1–21) as

(1–22)

Equation (1–22) tells us that two additional sinusoidal components will be
present in y3(n) because of the system’s nonlinearity, a 2-Hz cosine wave
whose amplitude is +1 and a 4-Hz cosine wave having an amplitude of –1.
These spectral components are illustrated in Y3(m) on the right side of Figure
1–8(d).

Notice that, when the sum of the two sinewaves is applied to the nonlin-
ear system, the output contained sinusoids, Eq. (1–22), that were not present
in either of the outputs when the individual sinewaves alone were applied.
Those extra sinusoids were generated by an interaction of the two input sinu-
soids due to the squaring operation. That’s nonlinearity; expression (1–13)
was not satisfied. (Electrical engineers recognize this effect of internally gen-
erated sinusoids as intermodulation distortion.) Although nonlinear systems are
usually difficult to analyze, they are occasionally used in practice. References
[2], [3], and [4], for example, describe their application in nonlinear digital fil-
ters. Again, expressions (1–13) and (1–14) state that a linear system’s output
resulting from a sum of individual inputs, is the superposition (sum) of the
individual outputs. They also stipulate that the output sequence y1(n) de-
pends only on x1(n) combined with the system characteristics, and not on the
other input x2(n), i.e., there’s no interaction between inputs x1(n) and x2(n) at
the output of a linear system.
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† The first term in Eq. (1–22) is cos(2π ⋅ nts – 6π ⋅ nts) = cos(–4π ⋅ nts) = cos(–2π ⋅ 2 ⋅ nts). However, be-
cause the cosine function is even, cos(–α) = cos(α), we can express that first term as cos(2π ⋅ 2 ⋅nts).
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1.6 TIME-INVARIANT SYSTEMS

A time-invariant system is one where a time delay (or shift) in the input se-
quence causes a equivalent time delay in the system’s output sequence. Keep-
ing in mind that n is just an indexing variable we use to keep track of our
input and output samples, let’s say a system provides an output y(n) given an
input of x(n), or

(1–23)

For a system to be time invariant, with a shifted version of the original x(n)
input applied, x’(n), the following applies:

(1–24)

where k is some integer representing k sample period time delays. For a sys-
tem to be time invariant, expression (1–24) must hold true for any integer
value of k and any input sequence.

1.6.1 Example of a Time-Invariant System

Let’s look at a simple example of time invariance illustrated in Figure 1–9. As-
sume that our initial x(n) input is a unity-amplitude 1-Hz sinewave sequence
with a y(n) output, as shown in Figure 1–9(b). Consider a different input se-
quence x’(n), where 

x’(n) = x(n+4) . (1–25)

Equation (1–25) tells us that the input sequence x’(n) is equal to sequence x(n)
shifted four samples to the left, that is, x’(0) = x(4), x’(1) = x(5), x’(2) = x(6), and
so on, as shown on the left of Figure 1–9(c). The discrete system is time invari-
ant because the y’(n) output sequence is equal to the y(n) sequence shifted to
the left by four samples, or y’(n) = y(n+4). We can see that y’(0) = y(4),
y’(1) = y(5), y’(2) = y(6), and so on, as shown in Figure 1–9(c). For time-invari-
ant systems, the y time shift is equal to the x time shift.

Some authors succumb to the urge to define a time-invariant system as
one whose parameters do not change with time. That definition is incomplete
and can get us in trouble if we’re not careful. We’ll just stick with the formal
definition that a time-invariant system is one where a time shift in an input
sequence results in an equal time shift in the output sequence. By the way,
time-invariant systems in the literature are often called shift-invariant sys-
tems.†

x n x n k y n y n k' ( ) ( )   ' ( ) ( )  ,= +  → = +results in

x n y n( )   ( )  .results in →
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† An example of a discrete process that’s not time-invariant is the downsampling, or decimation,
process described in Chapter  10.
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1.7 THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS

Although we don’t substantiate this fact until we reach Section 6.8, it’s not too
early to realize that LTI systems have a useful commutative property by
which their sequential order can be rearranged with no change in their final
output. This situation is shown in Figure 1–10 where two different LTI

18 Discrete Sequences and Systems

Figure 1–9 Time-invariant system input-to-output relationships: (a) system block
diagram where y(n) = –x(n)/2; (b) system input and output with a 1-Hz
sinewave applied; (c) system input and output when a 1-Hz
sinewave, delayed by four samples, is applied. When x’(n) = x(n+4),
then, y’(n) = y(n+4).

(b)

(a) Input x(n) Output y(n) = –x(n)/2
Time-Invariant

Discrete
System

–1

–0.5

0

0.5

1

0 3 6 9 12 15

18 21 24 27 30
0

0.5

1

0 3 6 9 12 15

18 21 24 27 30

0

0.5

1

0 3 6 9

12 15 18 21 24 27

30

0

0.5

1

0 3 6 9

12 15 18 21 24 27

30

Time Time

TimeTime

x'(n) y'(n)

(c)

x(n) y(n)

–1

–0.5

–1

–0.5

–1

–0.5

Figure 1–10 Linear time-invariant (LTI) systems in series: (a) block diagram of two
LTI systems; (b) swapping the order of the two systems does not
change the resultant output y(n).
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systems are configured in series. Swapping the order of two cascaded systems
does not alter the final output. Although the intermediate data sequences f(n)
and g(n) will usually not be equal, the two pairs of LTI systems will have iden-
tical y(n) output sequences. This commutative characteristic comes in handy
for designers of digital filters, as we’ll see in Chapters 5 and 6.

1.8 ANALYZING LINEAR TIME-INVARIANT SYSTEMS

As previously stated, LTI systems can be analyzed to predict their perfor-
mance. Specifically, if we know the unit impulse response of an LTI system, we
can calculate everything there is to know about the system; that is, the sys-
tem’s unit impulse response completely characterizes the system. By unit im-
pulse response, we mean the system’s time-domain output sequence when
the input is a single unity-valued sample (unit impulse) preceded and fol-
lowed by zero-valued samples as shown in Figure 1–11(b).

Knowing the (unit) impulse response of an LTI system, we can deter-
mine the system’s output sequence for any input sequence because the out-
put is equal to the convolution of the input sequence and the system’s impulse
response. Moreover, given an LTI system’s time-domain impulse response,
we can find the system’s frequency response by taking the Fourier transform in
the form of a discrete Fourier transform of that impulse response[5]. 

Don’t be alarmed if you’re not exactly sure what is meant by convolu-
tion, frequency response, or the discrete Fourier transform. We’ll introduce
these subjects and define them slowly and carefully as we need them in later
chapters. The point to keep in mind here is that LTI systems can be designed
and analyzed using a number of straightforward and powerful analysis tech-

Analyzing Linear Time-Invariant Systems 19

Figure 1–11 LTI system unit impulse response sequences: (a) system block dia-
gram; (b) impulse input sequence x(n) and impulse response output
sequence y(n).
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niques. These techniques will become tools that we’ll add to our signal pro-
cessing toolboxes as we journey through the subject of digital signal process-
ing.
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