
Integration
of Functions

The task of finding the area enclosed by a given curve is an old problem. The an-
cient Egyptians, for example, tried to find the area of a circular field by relating
it to the area of a square field. The search for a solution to the area problem
gave rise to the field of integral calculus, where the integral of a function be-
tween two limits is equal to the area under that function. In modern science and
engineering, integral equations are widely used to model physical phenomena
including things such as aerodynamic analysis and radiation computations.

Integral equations can be divided into two types—proper and improper.
A proper integral is one with finite integration limits and whose function can
be evaluated at every point along the range of integration. An improper integral
is one that has a singularity at some point in the range of integration and/or has
one or both integration limits equal to positive or negative infinity. In some
cases you can recast an improper integral into a proper one by using a change
of variables.

In this chapter we will discuss numerical techniques to solve both proper
and improper integrals. In either case the algorithms involve deriving a polyno-
mial expression that, when evaluated, approximates the integral value. The so-
lution process involves dividing the integration range into subelements.
Generally speaking, the more subelements used the greater the precision of the
final result. Many of the numerical techniques are iterative, beginning with an
initial division of the integration range and then refining the solution by in-

307

21

5568ch21.qxd_jd 3/17/03 3:22 PM Page 307

creasing the number of subelements until the change in the solution is less than
a specified error tolerance.

At the end of the chapter we will briefly discuss the more general fami-
lies of integrals known as Fredholm and Volterra integrals. We will then use
one of the solution methods developed earlier in the chapter to determine the
lift and moment coefficient of a NACA 2412 airfoil according to thin airfoil
theory. The specific topics we will discuss in this chapter are—

• Trapezoidal algorithms
• Simpson’s rule
• Solving improper integrals
• Gaussian quadrature formulas
• General integral types
• Example: thin airfoil theory

General Comments

The general form of a simple integral equation is shown in Eq. (21.1).

(21.1)

Eq. (21.1) is an example of a larger class of integrals known as Fredholm
integrals of the first kind. Fredholm integrals are discussed in more detail at the
end of this chapter, but for the time being let’s consider the simple integral
shown in Eq. (21.1). The evaluation of the integral equation computes the area
under the curve f(x) from x � a to x � b.

If the integration limits a and b are finite numbers and the function f(x) is
nonsingular over the integration range, the integral is termed a proper integral.
Proper integrals are usually solved using closed techniques, those that evaluate
the function at the endpoints, f(a) and f(b). If either integration limit is � or
��, or if there is a singularity in the function f(x) anywhere in the integration
range, the integral is improper. An improper integral that evaluates to a finite
value is convergent. Convergent improper integrals can be solved using what
are known as open techniques that only evaluate f(x) between x � a and x � b.
An improper integral that is infinite is a divergent integral. Obviously, diver-
gent integrals cannot be solved because their values diverge.

Some integrals have precise, closed-form solutions. For those that do not,
numerical methods have been developed to approximate the integral value. The
numerical methods we will discuss in this chapter approximate the integral

y = L
b

a

f1x2dx

308 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 308

value by developing a polynomial expression based on values of the function
being integrated at discrete locations along the range of integration. We will
start by examining trapezoidal algorithms.

Trapezoidal Algorithms

Trapezoidal algorithms are a general class of solution methods used to estimate
the area under the curve f(x) from x � a to x � b. The algorithms we will dis-
cuss in this section will be for proper integrals whose function f(x) can be eval-
uated at all points between a and b. A typical curve is shown in Figure 21.1.

The simplest way to approximate the area under f(x) is to draw a line be-
tween f(a) and f(b) and compute the area under the resulting trapezoidal figure.

(21.2)

The �x term in Eq. (21.2) is the width of the trapezoid and for the two-
point trapezoid method is given by the expression �x � b � a. Of course for
most curves, Eq. (21.2) is not a very good approximation. Looking at the
curves in Figure 21.1, we are missing the area between the actual curve and the

y = L
b

a

f1x2dx = ¢xB 1

2
 f1a2 +

1

2
 f1b2R

Trapezoidal Algorithms 309

y=f(x

y

x

x=a x=b

f(a)

f(b

FIGURE 21.1 Two-point trapezoidal method

5568ch21.qxd_jd 3/17/03 3:22 PM Page 309

straight line. To improve the accuracy of the solution, we can divide the range
of integration into two sections at the midpoint x location between x � b and
x � a. In this case, we have to compute the area of two trapezoids, and the ap-
proximate value of the integral becomes the following.

(21.3)

In Eq. (21.3), the width of each of the two trapezoids is half as large as
when only one trapezoid was considered so �x � (b � a)/2. You can easily see
that Eq. (21.3) can be extended to a general form with an arbitrary number of
divisions of �x.

(21.4)

In Eq. (21.4) �x � (b � a)/(N � 1) where N is the number of trapezoids
considered between x � a and x � b. Eq. (21.4) is called the trapezoidal
method. It is a second-order method because its error is proportional to 1/N2.
One thing to note about the trapezoidal method is that the �x increments are
uniform over the entire integration range.

But how do you know how many times to divide up the integration range
for a given integral equation? You keep adding points until the computed inte-
gral value changes less than a specified convergence tolerance. If you are
clever about how you add points, you can reuse the values from the previous
approximation. For example, consider an integration range between x � 0 and
x � 1. If three points are used the expression to evaluate is the following.

(21.5)

Keep in mind when looking at Eq. (21.5) that �x � (b � a)/2 � (1 � 0)/2 � 1/2.
If you add two additional points for the next approximation, the expression be-
comes Eq. (21.6).

(21.6)

Adding four additional points for the next approximation yields Eq. (21.7).

(21.7) =

1

2
 y2 +

1

8
 Bfa1

8
b + fa3

8
b + fa5

8
b + fa7

8
b R

 y3 =

1

8
 B 1

2
 f102 + fa1

8
b + fa1

4
b + fa3

8
b + fa1

2
b + fa5

8
b + fa3

4
b + fa7

8
b +

1

2
 f112R

y2 =

1

4
 B 1

2
 f102 + fa1

4
b + fa1

2
b + fa3

4
b +

1

2
 f112R =

1

2
 y1 +

1

4
 Bfa1

4
+ fa3

4
b R

y1 =

1

2
 B 1

2
 f102 + fa1

2
b +

1

2
 f112R

y = L
b

a

f1x2dx = ¢xB1

2
 f1 + f2 + f3 + ... + fN - 1 +

1

2
 fNR

y = L
b

a

f1x2dx = ¢xB1

2
 f1a2 + faa + b

2
b +

1

2
 f1b2R

310 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 310

You can see that a pattern is developing. If you start by adding one point
to the two-point trapezoidal approximation and then double the number of ad-
ditional points with each iteration, the next approximation to the integral is one
half the previous approximation plus the factors due to the additional points.
An equation for a general update to an integral approximation is shown in Eq.
(21.8).

(21.8)

where

(21.9)

Now let’s write a method to implement the trapezoidal method. As we
did with our system of equation and differential equation solvers, the trape-
zoidal method will be defined as a public, static method and its name
will be trapezoidal(). The method will be defined in a class named In-
tegrator. This is a mathematical routine so the Integrator class will be
placed in the TechJava.MathLib package.

The trapezoidal() method takes four arguments. The first is a
Function object that represents the mathematical function being integrated.
We’ll discuss the Function class in more detail later in this section. The sec-
ond and third arguments define the range of integration. The fourth argument
defines the convergence criteria for the iteration that will be performed.

After defining some variables, the trapezoidal() method computes
an approximation to the integral using the two-point trapezoidal algorithm
shown in Eq. (21.2). Subsequent (and better) approximations are produced by
successively adding points to the integration range according to Eq. (21.8).
When the change in the computed value of the integral is less than the specified
convergence tolerance, the method returns. If the iteration does not converge,
the value 12345.6 is returned.

The trapezoidal() method source code is—

package TechJava.MathLib;

public class Integrator
{

public static double trapezoidal(Function function,
double start, double end, double tolerance) {

double dx = end - start;
double value, oldValue, sum, scale;
int maxIter = 20;

¢x =

b - a

2n

yn =

1

2
 yn - 1 + ¢xa

2n - 1

j = 1
fa2j - 1

2n b

Trapezoidal Algorithms 311

5568ch21.qxd_jd 3/17/03 3:22 PM Page 311

// Compute an initial value for the integral using
// the two-point trapezoidal rule.

value = 0.5*dx*(function.getValue(start) +
function.getValue(end));

// Subdivide the integration range by adding more
// points, first 1 point, then two more, then four
// more and so on. Recompute the integral value
// each time. If the solution converges, return the
// value.

for(int i=0; i<maxIter; ++i) {
sum = 0.0;
scale = Math.pow(0.5,i+1);
for(int j=0; j<Math.pow(2,i); ++j) {
sum += function.getValue(

start + scale*(2*j + 1.0)*dx);
}

oldValue = value;
value = 0.5*value + scale*dx*sum;

if (Math.abs(value-oldValue) <=
tolerance*Math.abs(oldValue)) {

return value;
}

}

// Solution did not converge

return 12345.6;
}

}

The trapezoidal() method makes use of a reference to a Func-
tion object. The Function class is defined to be the abstract parent class of
classes that represent mathematical functions. The class declares one method
named getValue() that simply returns the value of the function evaluated at
a given independent variable value. The Function class listing is—

package TechJava.MathLib;

public abstract class Function
{

abstract double getValue(double u);
}

Let’s test the trapezoidal() method by having it integrate two
mathematical functions. Both functions have an exact, closed-form solution, so
an exact value of the integral can be computed. The two functions, their inte-

312 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 312

gral solutions, and the numerical values of their solutions are shown in Eq.
(21.10) and Eq. (2.11). In Eq. (21.11), if a � 2, y � 7.797853348.

(21.10)

(21.11)

To use the trapezoidal() method on these functions, we will have
to create two Function subclasses to represent the functions. The Log-
Function class encapsulates Eq. (21.10). Its code listing is shown here.

package TechJava.MathLib;

// This class represents the function
// y = u*ln(u)

public class LogFunction extends Function
{

public double getValue(double u) {
return u*Math.log(u);

}
}

The SqrtFunction class represents the expression shown in Eq. (21.11)
and here is its source code.

package TechJava.MathLib;

// This class represents the function
// y = sqrt(u^2 + a^2)

public class SqrtFunction extends Function
{

private double a;

public SqrtFunction(double a) {
this.a = a;

}

public double getValue(double u) {
return Math.sqrt(u*u + a*a);

}
}

All that remains is to write a driver program that will send the appropriate
input to the trapezoidal() method and display the results. The Test-
Trap class performs this function. It simply creates a Function subclass ob-
ject and sends a reference to the object to the trapezoidal() method. The

 y = L
3

x = 0
2x2

+ a2 dx = x
2x2

+ a2

2
+

a2

2
 ln1x + 2x2

+ a22 ` 3
0

 y = L
4

x = 2
xln1x2dx =

x2

2
 a ln1x2 -

1

2
b ` 4

2

= 6.704060528

Trapezoidal Algorithms 313

5568ch21.qxd_jd 3/17/03 3:22 PM Page 313

computed integral value is then printed to standard output. The TestTrap
class source code is shown next.

import TechJava.MathLib.*;

public class TestTrap
{
public static void main(String args[]) {

double value;

// Integrate the function y = x*ln(x) from
// x=2 to x=4 with an error tolerance of 1.0e-4

LogFunction function = new LogFunction();
value = Integrator.trapezoidal(

function,2.0,4.0,1.0e-4);
System.out.println("value = "+value);

// Integrate the function y = sqrt(x^2 + 2^2) from
// x=0 to x=3 with an error tolerance of 1.0e-4

SqrtFunction function2 = new SqrtFunction(2.0);
value = Integrator.trapezoidal(

function2,0.0,3.0,1.0e-4);
System.out.println("value = "+value);

}
}

Output—

value = 6.704116936052852
value = 7.798005701125523

The results from the trapezoidal() method are the same as the exact
results to within four decimal places, which is the value to which the conver-
gence tolerance was set.

Simpson’s Rule

The trapezoidal algorithm is a second-order function integration technique.
There are many other integration schemes with the same general form as Eq.
(21.4). A commonly used example is the fourth-order technique known as
Simpson’s rule.

(21.12)y = L
b

a

f1x2dx = ¢xB1

3
 f1 +

4

3
 f2 +

2

3
 f3 + ... +

4

3
 fN - 1 +

1

3
 fNR

314 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 314

In Eq. (21.12), the 4/3 and 2/3 factors alternate for the interior points and
�x � (b � a)/(N � 1). The number of divisions, N, must be odd since Simp-
son’s rule uses parabolas rather than lines to approximate the intervals.

Simpson’s rule shares a common characteristic with the trapezoidal algo-
rithm in that one approximation can be used as a building block toward a more
accurate approximation. In the case of Simpson’s rule, this feature is accom-
plished by adding three times the points that were added in the previous
approximation. Another interesting feature of Simpson’s rule is that the expres-
sion for any given level of approximation is related to the corresponding trape-
zoidal rule expressions. For example, consider an integration range between x
� 0 and x � 1. If you multiply 4/3 times Eq. (21.6) and subtract 1/3 times Eq.
(21.5) you obtain the following expression.

(21.13)

Eq. (21.13) is the five-point version of Simpson’s rule. Indeed, the Simp-
son’s rule value at any given level of refinement can always be expressed in
terms of the corresponding trapezoidal expressions.

(21.14)

The S term in Eq. (21.14) is Simpson’s rule’s evaluation of the integral
and the y terms are the trapezoidal approximations.

Using Eq. (21.14) it is very easy to implement Simpson’s rule with only
slight modifications to the trapezoidal() method. We will call our Simp-
son’s rule method simpsonsRule() and place it inside the Integrator
class. The method computes successive approximations to the integral function
with the trapezoidal rule and uses the trapezoidal results to compute Simpson’s
rule approximations according to Eq. (21.14).

The method takes the same input arguments as the trapezoidal()
method. After declaring some variables, the method computes initial values of
the trapezoidal and Simpson’s rule approximations. The simpsonsRule()
method then goes through the same iteration sequence as the trape-
zoidal() method. Points are added to the integration domain, each iteration
adding twice as many points as the one before it. The Simpson’s rule approxi-
mation is computed from the current and previous trapezoidal values. When
the Simpson’s rule values converge to within a certain tolerance, the method
returns.

Sn =

4

3
 yn -

1

3
 yn - 1

4

3
 y2 -

1

3
 y1 =

1

4
 B1

3
 f102 +

4

3
 fa1

4
b +

2

3
 fa1

2
b +

4

3
 fa3

4
b +

1

3
 f112R

Simpson’s Rule 315

5568ch21.qxd_jd 3/17/03 3:22 PM Page 315

The simpsonsRule() method source code is—

public static double simpsonsRule(Function function,
double start, double end, double tolerance) {

double dx = end - start;
double value, oldValue, sum, scale;
double valueSimpson, oldValueSimpson;
int maxIter = 20;

// Set initial values for the trapezoidal
// method (value) and Simpson's rule (valueSimpson)

value = 0.5*dx*(function.getValue(start) +
function.getValue(end));

valueSimpson = 1.0e+6;

// Subdivide the integration range by adding more
// points, first one point, then two more, then
// four more, and so on. Recompute the extended
// trapezoidal value and the Simpson's rule value.
// If the Simpson's rule value converges, return
// the value.

for(int i=0; i<maxIter; ++i) {
sum = 0.0;
scale = Math.pow(0.5,i+1);
for(int j=0; j<Math.pow(2,i); ++j) {
sum += function.getValue(

start + scale*(2*j + 1.0)*dx);
}

oldValue = value;
value = 0.5*value + scale*dx*sum;
oldValueSimpson = valueSimpson;
valueSimpson = (4.0*value - oldValue)/3.0;

if (Math.abs(valueSimpson-oldValueSimpson) <=
tolerance*Math.abs(oldValueSimpson)) {

return valueSimpson;
}

}

// Solution did not converge

return 12345.6;
}

Let’s apply the simpsonRule() method to the same two problems
as were solved by the trapezoidal() method. The driver to do this
computation is called TestSimpson.java and its source code is shown
here.

316 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 316

import TechJava.MathLib.*;

public class TestSimpson
{
public static void main(String args[]) {

double value;

// Integrate the function y = x*ln(x) from
// x=2 to x=4 with an error tolerance of 1.0e-4

LogFunction function = new LogFunction();
value = Integrator.simpsonsRule(

function,2.0,4.0,1.0e-4);
System.out.println("value = " + value);

// Integrate the function y = sqrt(x^2 + 2^2) from
// x=0 to x=3 with an error tolerance of 1.0e-4

SqrtFunction function2 = new SqrtFunction(2.0);
value = Integrator.simpsonsRule(

function2,0.0,3.0,1.0e-4);
System.out.println("value = " + value);

}
}

Output—

value = 6.704064541919408
value = 7.7978469366358025

The simpsonsRule() method provides better accuracy than the
trapezoidal() method with fewer iterations and function evaluations re-
quired to achieve a converged solution. The simpsonsRule() method re-
sults match the exact results to eight and five decimal places respectively. The
simpsonsRule() method converged in three iterations requiring nine func-
tion evaluations. The trapezoidal() method, on the other hand, required
five iterations and 65 function evaluations to achieve convergence.

Solving Improper Integrals

So far in this chapter, we have been exploring methods to solve proper inte-
grals, expressions where the function can be evaluated across the entire inte-
gration range and where the limits of integration are finite numbers. Now we
turn to the issue of solving improper integrals. If you recall, an improper inte-
gral is one that either has an infinite integration limit or one or more singulari-
ties in the range of integration.

Solving Improper Integrals 317

5568ch21.qxd_jd 3/17/03 3:22 PM Page 317

In some cases, you can turn an improper integral into a proper one and
then apply the trapezoidal or Simpson’s rule methods. If one or both of the in-
tegration limits is positive or negative infinity you can sometimes perform a
change of variables to eliminate the infinite limit. For example, the transforma-
tion in Eq. (21.15) could be performed on an integral with an upper integration
limit of � to convert the integral from improper to proper.

(21.15)

Eq. (21.15) would require that the function f(x) decrease faster than 1/x2

as x → �. A similar transformation could be achieved for an integration limit
of ��. If both limits are infinity or if one is infinity and the other 0, the best
thing to do is to split the integration into pieces and apply the change of vari-
ables to one or both.

Now let’s look at the case where the integration limits are finite but there
is a singularity at one of the limits. We can’t use the trapezoidal or Simpson’s
rule methods because they evaluate the function at the integration limits. Fortu-
nately, there is a family of what are called open formulas that approximate an
integral using only points interior to the integration limits. The algorithm we
will implement in this chapter is called the midpoint rule and is given by the
expression in Eq. (21.16).

(21.16)

The midpoint method is second-order accurate similar to the trapezoidal
algorithm. It is called a midpoint method because the function evaluations are
performed midway between the �x intervals. For example, consider an integra-
tion domain between x � 0 and x � 1. A three-point trapezoidal algorithm
would evaluate the function at x � 0, x � 1/2, and x � 1. To model that same
situation with the midpoint rule, you would evaluate the equation at x � 1/4
and x � 3/4.

(21.17)

As with the trapezoid and Simpson’s rule methods, a more accurate mid-
point solution can be obtained by adding more evaluation points. Once again, if
you increase the number of points wisely you can reuse previous evaluations of
f(x). For example, let’s say you start with the two-point midpoint formula
shown in Eq. (21.17). If you want to reuse the two function evaluations, the next

y1 = L
b

a

f1x2dx =

1

2
 Bfa1

4
b + fa3

4
b R

y = L
b

a

f1x2dx = ¢xBf 3
2

+ f 5
2

+ f 7
2

+ ... + fN -

1
2
R

y = L
q

a

f1x2dx = L
1
a

0

1

t2 fa1

t
bdt

318 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 318

level in the approximation uses six points (adds four to the two existing points).
The six-point midpoint method is defined by the expression in Eq. (21.18).

(21.18)

To reuse the function evaluations from the six-point level, the next level
in the approximation would add 12 points to the existing six for an 18-point
midpoint algorithm.

(21.19)

Once again, we can see a pattern developing. Each level in the midpoint
approximation adds three times the number of points that were added at the
previous level. The value at each new level of approximation is equal to one-
third the value at the previous approximation added to the contributions of the
additional points added at the current level.

The midpoint method can evaluate an integral with a singularity at one or
both of the integration limits, but what happens if a singularity occurs in the
middle of the range of integration. The answer is to split the range of integra-
tion into two pieces at the singular point. The singularity now occurs at one of
the integration limits and the midpoint methodology can be applied.

We will implement the midpoint technique in a method named mid-
point() that will be defined in the Integrator class. The method will
take the same four input arguments as the trapezoidal() and simpsons-
Rule() methods. The first argument is a reference to a Function object
that is used to evaluate the function being integrated. The second and third ar-
guments are the integration limits. The fourth argument is the convergence tol-
erance.

After declaring some variables, the method computes a two-point mid-
point approximation to the integral equation. It then refines the integral value
with successive approximations adding points to the integration domain with
each approximation. The first iteration adds four points, the second adds 12

 + ... + fa29

36
b + fa31

36
b + fa35

36
b R

 y3 =

1

3
 y2 +

1

18
 Bfa 1

36
b + fa 5

36
b + fa 7

36
b + fa11

36
b + fa13

36
b

 y3 =

1

18
 Bfa 1

36
b + fa 3

36
b + fa 5

36
b + ... + fa33

36
b + fa35

36
b R

 =

1

3
 y1 +

1

6
 Bfa 1

12
b + fa 5

12
b + fa 7

12
b + fa11

12
b R

 y2 =

1

6
 Bfa 1

12
b + fa1

4
b + fa 5

12
b + fa 7

12
b + fa3

4
b + fa11

12
b R

Solving Improper Integrals 319

5568ch21.qxd_jd 3/17/03 3:22 PM Page 319

points, the third adds 36 points, and so on. If the integration value converges,
the method returns the value.

Here is the midpoint() method source code.

public static double midpoint(Function function,
double start, double end, double tolerance) {

double dx = end - start;
double value, oldValue, sum, temp;
double scale = 1.0/3.0;
int numPoints, numPairs;
int maxIter = 20;

// Start with a two-point midpoint
// evaluation.

value = 0.5*dx*(
function.getValue(start + 0.25*dx) +
function.getValue(end - 0.25*dx));

// Refine the solution by adding points to the
// integration domain. Each iteration adds three
// times as many points as the previous iteration.
// When the solution converges, return the result.

for(int i=0; i<maxIter; ++i) {

numPoints = 4*(int)Math.pow(3,i);
numPairs = (numPoints - 2)/2;
temp = 1.0/(3.0*numPoints);

// Add the two endpoint values to the sum

sum = function.getValue(start + temp*dx) +
function.getValue(end - temp*dx);

// Add in each pair to the sum

for(int j=0; j<numPairs; ++j) {
sum = sum +
function.getValue(start + (6*j + 5)*temp*dx) +
function.getValue(start + (6*j + 7)*temp*dx);

}

oldValue = value;
value = value/3.0 +

0.5*Math.pow(scale,i+1)*dx*sum;

if (Math.abs(value-oldValue) <=
tolerance*Math.abs(oldValue)) {

return value;
}

}

320 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 320

// Solution did not converge

return 12345.6;
}

Let’s test the midpoint() method by applying it to solve two integral
equations. Midpoint methods can also be applied to proper integrals, so the
first equation to be solved will be the logarithmic integral in Eq. (21.10). The
midpoint() method will then be applied to the following improper integral.

(21.20)

The integral shown in Eq. (21.20) has a singularity at x � 2, but is
convergent and has a value of y � 2. To represent this function, we will define
another Function subclass called the SqrtFunction2 class. Its code
listing is—

package TechJava.MathLib;

// This class represents the function
// y = 1/sqrt(x-2)

public class SqrtFunction2 extends Function
{

public double getValue(double u) {
return 1.0/Math.sqrt(u-2.0);

}
}

Next we’ll create a driver program similar to the ones developed in the
previous sections. The code will simply create the proper Function subclass
object, call the midpoint() method, and display the result. The class is
called TestMidpoint and its source code is—

import TechJava.MathLib.*;

public class TestMidpoint
{
public static void main(String args[]) {

double value;

// Integrate the function y = x*ln(x) from
// x=2 to x=4 with an error tolerance of 1.0e-4

LogFunction function = new LogFunction();
value = Integrator.midpoint(

function,2.0,4.0,1.0e-4);
System.out.println("value = " + value);

y = L
3

2

dx2x - 2

Solving Improper Integrals 321

5568ch21.qxd_jd 3/17/03 3:22 PM Page 321

// Integrate the function y = 1/sqrt(x-2) from
// x=2 to x=3 with an error tolerance of 1.0e-4

SqrtFunction2 function2 = new SqrtFunction2();
value = Integrator.midpoint(

function2,2.0,3.0,1.0e-4);
System.out.println("value = " + value);

}
}

Output—

value = 6.7040209108022335
value = 1.9998044225262488

The midpoint()method successfully evaluated the integrals to four-
decimal place precision. Improper integrals are tougher to compute and gener-
ally take significantly more iterations to achieve convergence. In this example,
three iterations were required for the proper logarithmic integral but 14 were
necessary to converge the improper integral computation.

Gaussian Quadrature Methods

The three techniques to solve integral equations that we have implemented so
far in this chapter divide the integration domain into constant-sized increments
of �x. This is acceptable for smoothly varying functions but may be inefficient
or even inaccurate for functions with widely varying slopes. In this case, you
would want to use a variable step size with small �x increments in regions of
high gradients and larger �x increments in smoothly varying regions.

The trapezoidal, Simpson’s rule, and midpoint methods are really spe-
cialized cases of a more general class of integration techniques called Gaussian
quadrature formulas. Gaussian quadrature formulas assume that an integral
equation can be approximated by a summation of weights multiplied by func-
tion evaluations at various x locations along the integration domain, as shown
in Eq. (21.21).

(21.21)

The x locations at which the function is evaluated are called the abscissas.
The coefficients in front of the function evaluations are called the weights. The
determination of the weights depends on the choice for the W(x) function. There
are a number of classical forms for W(x), each designed to be used for a certain

y = L
b

a

W1x2f1x2dx = a
N

j = 1
wjf1xj2

322 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 322

type of integral equation. In this section, we will work with a commonly used
form called the Gauss-Legendre formula, which assumes that W(x) � 1.

The implementation of the Gauss-Legendre formula requires two meth-
ods, one to compute the weights and abscissas and a second to integrate a spec-
ified function. You could alternately use a hard-coded array of weight and
abscissa data, but evaluating this data directly gives you more flexibility in
choosing the number of points to be considered in the integration domain.

Without going into all of the details, the computeGaussWeights()
method uses Newton’s method to determine the roots of the orthogonal poly-
nomial equation associated with the Gauss-Legendre formula. The weights and
abscissas are computed from the polynomial roots and are normalized for an
integration ranging from x � 0 to x � 1. The weights and abscissas can be ap-
plied to any integration domain by multiplying the resulting integral value by
b � a, where a and b are the limits of integration.

The computeGaussWeights() method source code follows.

public static void computeGaussWeights(
double x[], double w[], int numPoints) {

int i,j,m;
double z, zOld, root, p3, p2, p1;
double EPS = 1.0e-10;

// The weights and abscissa values are normalized
// for an integration range between 0 and 1. The
// values are symmetric about x=0.5 so you only
// have to compute half of them.

m = (numPoints + 1)/2;

// Compute the Legendre polynomial, p1, at point
// z using Newton's method.

for(i=0; i<m; ++i) {
z = Math.cos(Math.PI*(i+0.75)/(numPoints+0.5));
do {
p1 = 1.0;
p2 = 0.0;
for(j=0; j<numPoints; ++j) {
p3 = p2;
p2 = p1;
p1 = ((2.0*(j+1) - 1.0)*z*p2 - j*p3)/

(j+1.0);
}
root = numPoints*(z*p1 - p2)/(z*z - 1.0);
zOld = z;
z = zOld - p1/root;

} while (Math.abs(z-zOld) > EPS);

Gaussian Quadrature Methods 323

5568ch21.qxd_jd 3/17/03 3:22 PM Page 323

// Compute the weights and abscissas. The values
// are symmetric about the point z=0.5

x[i] = 0.5*(1.0 - z);
x[numPoints-1-i] = 0.5*(1.0 + z);
w[i] = 1.0/((1.0- z*z)*root*root);
w[numPoints-1-i] = w[i];

}
}

Once we have the weight and abscissa data, the rest of the implementa-
tion is simple. The gaussLegendre() method integrates a function using
the Gauss-Legendre weighting coefficients and abscissa data. The method
takes the same four input arguments as the trapezoidal(), simpsons-
Rule(), and midpoint() methods.

After declaring some variables, the method enters an iteration loop. Starting
with 10 points in the integration domain, the computeGaussWeights()
method is called to obtain the 10-point Gauss-Legendre weights and abscissas.
The integral value is then obtained by summing up the weights and function eval-
uations at the abscissas. The number of abscissa points is then doubled, the process
is repeated, and the current solution is compared against the previous solution. If
the two results are within the convergence tolerance, the value is returned. Other-
wise, the number of points is again doubled and the process repeats itself.

The gaussLegendre() method source code is—

public static double gaussLegendre(Function function,
double start, double end, double tolerance) {

double dx = end - start;
double value = 1.0e+10;
double oldValue;
int numPoints = 10;
int maxPoints = 100000;
double x[] = new double[maxPoints];
double w[] = new double[maxPoints];

// Compute the integral value adding points
// until the solution converges or maxPoints
// is reached.

while(true) {

// Calculate the Gauss-Legendre weights and
// abscissas

computeGaussWeights(x, w, numPoints);

// Compute the integral value by summing up the
// weights times the function value at each
// abscissa

324 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 324

oldValue = value;

value = 0.0;
for(int i=0; i<numPoints; ++i) {
value += w[i]*function.getValue(start + x[i]*dx);
}
value *= dx;

// If the solution is converged, return the
// value. Otherwise, double the points in the
// integration domain and try again.

if (Math.abs(value-oldValue) <=
tolerance*Math.abs(oldValue)) {

return value;
}

numPoints *= 2;
if (numPoints >= maxPoints) break;

}

// Solution did not converge

return 12345.6;
}

The Gaussian quadrature technique can be applied to both proper and im-
proper integrals so we use the gaussLegendre()method to solve Eq.
(21.10) and Eq. (21.20). The driver class is called TestGauss and its source
code is:

import TechJava.MathLib.*;

public class TestGauss
{
public static void main(String args[]) {

double value;

// Integrate the function y = x*ln(x) from
// x=2 to x=4 using 10 points in the integration

LogFunction function = new LogFunction();
value =

Integrator.gaussLegendre(function,2.0,4.0,1.0e-4);
System.out.println("value = " + value);

// Integrate the function y = 1/sqrt(x-2) from
// x=2 to x=3 using 10 points in the integration

SqrtFunction2 function2 = new SqrtFunction2();
value =

Integrator.gaussLegendre(function2,2.0,3.0,1.0e-4);

Gaussian Quadrature Methods 325

5568ch21.qxd_jd 3/17/03 3:22 PM Page 325

System.out.println("value = " + value);
}

}

Output—

value = 6.70406052759485
value = 1.9998289705958587

The gaussLegendre() method successfully reproduced the exact so-
lutions to within four decimal places for both the proper and improper inte-
grals. The logarithmic integral converged on the first iteration. The improper
integral took longer—10 iterations—but this was somewhat more efficient than
the midpoint method that required 14 iterations to converge.

General Integral Types

The integral equations that we have been working with in this chapter are part
of a larger class of equations known as Fredholm integrals. There are Fredholm
integrals of the first and second kind that take the general form of Eq. (21.22)
and Eq. (21.23).

(21.22)

(21.23)

The quantity K(t,s) is known as the kernel. The equations used in the exam-
ples in this chapter have been Fredholm integrals of the first kind with K(t,s) � 1.
Another important type of integral is a Volterra integral that is similar to a
Fredholm integral of the first kind except the upper integration limit is t. We
won’t implement methods to solve general Fredholm or Volterra integrals, but
they are typically solved using Gaussian quadrature methods described in the
previous section.

Example: Thin Airfoil Theory

As a practical application of the tools we developed in this chapter, let’s use
the simpsonsRule() method to solve for the lift and moment coefficients
of an airfoil using thin airfoil theory. Once again, when reading through this

 f1t2 = lL
b

a

K1t,s2f1s2ds + g1t2

 g1t2 = L
b

a

K1t,s2f1s2ds

326 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 326

section concentrate on the process. Even if you never need to compute the
aerodynamic characteristics of a thin airfoil, you can apply the same solution
process to your own integral problems.

Before we discuss what thin airfoil theory is, let’s define some terminol-
ogy about an airfoil. Consider the airfoil shown in Figure 21.2. A straight line
drawn from the wing leading edge to trailing edge is called the chord line. The
length of the chord line is the chord of the wing. The mean camber line is the
line from the leading to trailing edge such that there is an equal airfoil thick-
ness above and below the line. The difference between the mean camber and
chord lines is the camber of the wing. A symmetrical airfoil would be one that
has zero camber. The angle that an airfoil’s chord line makes with the airfoil’s
direction of travel is called the angle of attack.

Now let’s move on to thin airfoil theory. The German aerodynamicist
Ludwig Prandtl developed this theory in the early 1900s. It starts by modeling
an airfoil as a thin plate that follows the mean camber line. Because you can’t
have air flow through the solid surface of the airfoil, the normal velocity at the
airfoil surface is balanced by the induced normal velocity of a sheet of vortices
distributed along the airfoil. This assumption results in the following integral
equation.

(21.24)

In Eq. (21.24), U� is the freestream velocity, c is the chord length, � is
the angle of attack, and z � z(x) is the equation that describes the mean camber
line. The quantity g is the unknown vorticity distribution function that we need
to compute. It turns out that the vorticity distribution can be approximated
using a Fourier series.

(21.25)g1u2 = 2Uq BA0cota u
2
b + a

q

n = 1
Ansin1nu2R

1

2pUqL
c

0

g1x¿2
x - x¿

 dx¿ = a -

0z

0x

Example: Thin Airfoil Theory 327

upper surface

lower surface

mean camber line

chord lineleading edge
trailing
edge

FIGURE 21.2 Generic airfoil configuration

5568ch21.qxd_jd 3/17/03 3:22 PM Page 327

Eq. (21.25) uses a change of variables from x to u with the relation in Eq.
(21.26).

(21.26)

The u quantity varies from 0 to p. After performing some trigonometric
manipulations, we arrive at the expressions in Eq. (21.27) for A0 and An.

(21.27)

Once the A coefficients are known, the lift and leading edge moment co-
efficients can be computed from the relations shown in Eq. (21.28) and Eq.
(21.29). The terms r� and U� are the freestream density and velocity, L is the
lifting force on the airfoil, and M is the moment about the leading edge.

(21.28)

(21.29)

We will now write a program to compute the A coefficients for an arbi-
trarily cambered wing using Simpson’s rule integration method we developed
earlier in this chapter. Once the A coefficients have been found, the program
will calculate the lift and leading edge moment coefficients for the airfoil.

We will apply our program to compute the aerodynamic coefficients for a
NACA 2412 airfoil traveling at an angle of attack of 5 degrees. The NACA
2412 is an airfoil with a maximum thickness of 0.12*chord and has a 2 percent
maximum camber at 40 percent chord. The equation for its camber line is de-
fined in two pieces.

(21.30)

Taking the derivatives of Eq. (21.30) and converting x to u, we obtain ex-
pressions (Eq. 21.31) for ≠z /≠x that we need to compute the A coefficients.

 z1x2 = 0.055510.2c + 0.8x - x22
x
c

7 0.4

 z1x2 = 0.12510.8x - x22
x
c

… 0.4

 CMLE
=

M

1

2
rqU2

q l

= -
p

2
 aA0 + A1 -

A2

2
b

 Cl =

L

1

2
rqU2

q

= p12A0 + A12

A0 = a -

1
pL

p

u= 0

0z

0x
 du An =

2
pL

p

u= 0

0z

0x
 cos1nu2du

x =

c

2
 11 - cos1u22

328 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 328

(21.31)

The first code to write is a Function subclass that will return the func-
tion ≠z /≠x cos(nu). This function is needed to evaluate the A integrals. The
class is named CamberFunction and its source code is shown next. The
power to be applied to the cosine term is passed to the CamberFunction
constructor.

package TechJava.MathLib;

// This class represents the camber
// function for a NACA 2412 airfoil

public class CamberFunction extends Function
{
private int n;

public CamberFunction(int n) {
this.n = n;

}

// getValue() returns the height of the camber
// line for a given theta where
// cos(theta) = 1.0 – 2x/c

public double getValue(double theta) {
if (theta < 1.36944) {
return (0.125*Math.cos(theta) - 0.025)*

Math.cos (theta*n);
} else {
return (0.0555*Math.cos(theta) - 0.0111)*

Math.cos (theta*n);
}

}
}

Now we can write our thin airfoil analysis code, which we will call Thi-
nAirfoil.java. In this case, the program computes the aerodynamic coef-
ficients for a 5 degree angle of attack. With a little extra effort, you could
modify the code to take the angle of attack as an input argument. After declar-
ing some variables, the code calculates the A0, A1, and A2 coefficients. It does
this by creating a CamberFunction object and then integrating the associ-
ated function using the simpsonsRule() method. Once the A coefficients
are in hand, the lift and moment coefficients are computed and the results are
printed to the console.

0z

0x
= 0.0555cos1u2 - 0.0111

x
c

7 0.4

0z

0x
= 0125cos1u2 - 0.025

x
c

… 0.4

Example: Thin Airfoil Theory 329

5568ch21.qxd_jd 3/17/03 3:22 PM Page 329

Here is the ThinAirFoil class source code—

import TechJava.MathLib.*;

public class ThinAirfoil
{
public static void main(String args[]) {

double alpha, Cl, Cm;
double A[] = new double[3];
CamberFunction naca2412;

// Compute the conditions for a 5 degree
// angle of attack.

alpha = 5.0*Math.PI/180.0;

// Calculate the A0, A1, and A2 coefficients

double temp = 1.0/Math.PI;

naca2412 = new CamberFunction(0);
A[0] = alpha – temp*Integrator.simpsonsRule(

naca2412,0.0,Math.PI,1.0e-4);

for(int i=1; i<3; ++i) {
naca2412 = new CamberFunction(i);
A[i] = 2.0*temp*Integrator.simpsonsRule(

naca2412,0.0,Math.PI,1.0e-4);
}

// Compute Cl and Cm(leading edge)

Cl = Math.PI*(2.0*A[0] + A[1]);
Cm = -0.5*Math.PI*(A[0] + A[1] - 0.5*A[2]);

// Print out the results

for(int i=0; i<3; ++i) {
System.out.println("A["+i+"] = "+A[i]);

}
System.out.println("\nCl = "+Cl);
System.out.println("Cm = "+Cm);

}
}

Output—

A[0] = 0.08274980955387196
A[1] = 0.08146092605250739
A[2] = 0.01387204625538765

Cl = 0.7758494344019757
Cm = -0.02470465406592427

330 Chapter 21 Integration of Functions

5568ch21.qxd_jd 3/17/03 3:22 PM Page 330

The compute lift coefficient value is within 3.5 percent of the experimen-
tally obtained value1 of 0.75.

References

1. University of Tennessee Aerodynamic Database, www.engr.ut.edu/~rbond/
airfoil.html.

References 331

5568ch21.qxd_jd 3/17/03 3:22 PM Page 331

