
247

Chapter

17
 17 DESIGN MODEL: USE-CASE

REALIZATIONS WITH
GRASP PATTERNS

To invent, you need a good imagination and a pile of junk.

—Thomas Edison

Introduction

This chapter explores how to create a design of collaborating objects with
responsibilities. Particular attention is given to the application of the GRASP
patterns to develop a well-designed solution. Please note that the GRASP pat-
terns as such or by name are not the important thing; they are just a learning
aid to help talk about and methodically do fundamental object design.

This chapter communicates the principles, using the NextGen POS example, by
which an object-oriented designer assigns responsibilities and establishes object
interactions—a core skill in object-oriented development.

Objectives

� Design use-case realizations.

� Apply the GRASP patterns to assign responsibilities to classes.

� Use the UML interaction diagram notation to illustrate the design of
objects.

����������		
���
���������
�������
��
���������
���������������� �

Prentice Hall PTR
This is a sample chapter of Applying Uml And Patterns: An Introduction To Object-Oriented Analysis And Design, And The Unified Process, 2/e
ISBN: 0-13-092569-1

For the full text, visit http://www.phptr.com

©2001 Pearson Education. All Rights Reserved.

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

248

Note:

The material is intentionally detailed; it attempts to exhaustively illustrate that
there is no “magic” or unjustifiable decisions in object design—assignment of
responsibilities and the choice of object interactions can be rationally explained
and learned.

17.1 Use-Case Realizations

To quote, “A use-case realization describes how a particular use case is realized
within the design model, in terms of collaborating objects” [RUP]. More pre-
cisely, a designer can describe the design of one or more scenarios of a use case;
each of these is called a use-case realization. Use-case realization is a UP term
or concept used to remind us of the connection between the requirements
expressed as use cases, and the object design that satisfies the requirements.

UML interaction diagrams are a common language to illustrate use-case real-
izations. And as was explored in the prior chapter, there are principles and pat-
terns of object design, such as Information Expert and Low Coupling, that can
be applied during this design work.

To review, Figure 17.20 (near the end of this chapter) illustrates the relationship
between some UP artifacts:

� The use case suggests the system events that are explicitly shown in system
sequence diagrams.

� Details of the effect of the system events in terms of changes to domain
objects may optionally be described in system operation contracts.

� The system events represent messages that initiate interaction diagrams,
which illustrate how objects interact to fulfill the required tasks—the use
case realization.

� The interaction diagrams involve message interaction between software
objects whose names are sometimes inspired by the names of conceptual
classes in the Domain Model, plus other classes of objects.

The assignment of responsibilities and design of collaborations are very
important and creative steps during design, either while diagraming or while
programming.

����������		
���
���������
�������
��
���������
���������������� �

249

ARTIFACT COMMENTS

17.2 Artifact Comments

Interaction Diagrams and Use-Case Realizations

In the current iteration we are considering various scenarios and system events
such as:

� Process Sale: makeNewSale, enterItem, endSale, makePayment

If collaboration diagrams are used to illustrate the use-case realizations, a dif-
ferent collaboration diagram will be required to show the handling of each sys-
tem event message. For example (Figure 17.1):

Figure 17.1 Collaboration diagrams and system event message handling.

On the other hand, if sequence diagrams are used, it may be possible to fit all
system event messages on the same diagram, as in Figure 17.2.

Figure 17.2 One sequence diagram and system event message handling.

:RegisterenterItem()

:RegisterendSale()

:RegistermakePayment()

1: ???()

1: ???()

1: ???()

:RegistermakeNewSale() 1: ???()

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

endSale()
. . .

makePayment(...)
. . .

����������		
���
���������
�������
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

250

However, it is often the case that the sequence diagram is then too complex or
long. It is legal, as with interaction diagrams, to use a sequence diagram for
each system event message, as in Figure 17.3.

Figure 17.3 Multiple sequence diagrams and system event message handling.

Contracts and Use-Case Realizations

To reiterate, it may be possible to design use-case realizations directly from the
use case text. In addition, for some system operations, contracts may have been
written that add greater detail or specificity. For example:

Contract CO2: enterItem

In conjunction with contemplating the use case text, for each contract, we work
through the postcondition state changes and design message interactions to sat-
isfy the requirements. For example, given this partial enterItem system opera-

: Register

: Sale

makeNewSale()
create()

: Register
enterItem

(itemID, quantity)

: ProductCatalog

spec := getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

Operation: enterItem(itemID : ItemID, quantity : integer)
Cross References: Use Cases: Process Sale
Preconditions: There is a sale underway.

Postconditions: – A SalesLineItem instance sli was created (instance cre-
ation).

– ...

����������		
���
���������
��!����
��
���������
���������������� �

251

ARTIFACT COMMENTS

tion, a partial interaction diagram is shown in Figure 17.4 that satisfies the
state change of SalesLineItem instance creation.

Figure 17.4 Partial interaction diagram.

Caution: The Requirements Are Not Perfect

It is useful to bear in mind that previously written use cases and contracts are
only a guess of what must be achieved. The history of software development is
one of invariably discovering that the requirements are not perfect, or have
changed. This is not an excuse to ignore trying to do a good requirements job,
but a recognition of the need to continuously engage customers and subject mat-
ter experts in review and feedback on the growing system’s behavior.

An advantage of iterative development is that it naturally supports the discov-
ery of new analysis and design results during design and implementation work.
The spirit of iterative development is to capture a “reasonable” degree of infor-
mation during requirements analysis, filling in details during design and imple-
mentation.

The Domain Model and Use-Case Realizations

Some of the software objects that interact via messages in the interaction dia-
grams are inspired from the Domain Model, such as a Sale conceptual class and
Sale design class. The choice of appropriate responsibility placement using the
GRASP patterns relies, in part, upon information in the Domain Model. As men-
tioned, the existing Domain Model is not likely to be perfect; errors and omis-
sions are to be expected. You will discover new concepts that were previously
missed, ignore concepts that were previously identified, and do likewise with
associations and attributes.

Conceptual vs. Design Classes

Recall that the UP Domain Model does not illustrate software classes, but may
be used to inspire the presence and names of some software classes in the

1: makeLineItem(...)enterItem(id, qty)

1.1: create(...)

:Register :Sale

:SalesLineItem

����������		
���
���������
��!����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

252

Design Model. During interaction diagramming or programming, the developers
may look to the Domain Model to name some design classes, thus creating a
design with lower representational gap between the software design and our
concepts of the real domain to which the software is related (see Figure 17.5).

Figure 17.5 Lowering representational gap with design classes named from
conceptual classes.

Must the design classes in the Design Model be limited to classes with names
inspired from the Domain Model? Not at all; it is appropriate to discover new
conceptual classes during this design work that were missed during earlier
domain analysis, and also to make up software classes whose names and pur-
pose is completely unrelated to the Domain Model.

17.3 Use-Case Realizations for the NextGen Iteration

The following sections explore the choices and decisions made while designing a
use-case realization with objects based on the GRASP patterns. The explana-
tions are intentionally detailed, in an attempt to illustrate that there does not
have be any “hand waving” in the creation of well-designed interaction dia-
grams; their construction is based on justifiable principles.

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model

The object developer has taken inspiration from the real-world domain in
creating software classes. Therefore, the representational gap between how
stakeholders conceive the domain, and its representation in software, has been
lowered.

1 1

1 1

inspires
objects

and
names in

conceptual
classes

design
classes

����������		
���
���������
��!����
��
���������
���������������� �

253

OBJECT DESIGN: MAKENEWSALE

Notationally, the design of objects for each system event message will be shown
in a separate diagram, to focus on the design issues of each. However, they could
have been grouped together on one sequence diagram.

17.4 Object Design: makeNewSale

The makeNewSale system operation occurs when a cashier requests to start a
new sale, after a customer has arrived with things to buy. The use case may
have been sufficient to decide what was necessary, but for this case study we
wrote contracts for all the system events, for explanation and completeness.

Contract CO1: makeNewSale

Choosing the Controller Class

Our first design choice involves choosing the controller for the system operation
message enterItem. By the Controller pattern, here are some choices:

Choosing a facade controller like Register is satisfactory if there are only a few
system operations and the facade controller is not taking on too many responsi-
bilities (in other words, if it is becoming incohesive). Choosing a use-case con-
troller is suitable when there are many system operations and we wish to
distribute responsibilities in order to keep each controller class lightweight and
focused (in other words, cohesive). In this case, Register will suffice, since there
are only a few system operations.

Operation: makeNewSale()
Cross References: Use Cases: Process Sale
Preconditions: none

Postconditions: – A Sale instance s was created (instance creation).
– s was associated with the Register (association formed).
– Attributes of s were initialized.

represents the overall “system,” device,
or subsystem

Register, POSSystem

represents a receiver or handler of all
system events of a use case scenario.

ProcessSaleHandler,
ProcessSaleSession

This Register is a software object in the Design Model. It is not a real physical
register but a software abstraction whose name was chosen to lower the rep-
resentational gap between our concept of the domain and the software.

����������		
���
���������
��!����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

254

Thus, the interaction diagram shown in Figure 17.6 begins by sending the
makeNewSale message to a Register software object.

Figure 17.6 Applying the GRASP Controller pattern.

Creating a New Sale

A software Sale object must be created, and the GRASP Creator pattern sug-
gests assigning the responsibility for creation to a class that aggregates, con-
tains, or records the object to be created.

Figure 17.7 Sale and multiobject creation.

:Register

makeNewSale()

by Controller

:Register

makeNewSale()

:Salecreate()

Register creates a
Sale by Creator

create() :Sales
LineItem

by Creator, Sale
creates an empty
multiobject (such as
a List) which will
eventually hold
SalesLineItem
instances

CAUTION:
This is not a SalesLineItem instance. This is
a collection object (such as a List) that can
hold SalesLineitem objects.

by Creator
and
Controller

this activation is implied to be within the
constructor of the Sale instance

����������		
���
���������
��!����
��
���������
���������������� �

255

OBJECT DESIGN: ENTERITEM

Analyzing the Domain Model reveals that a Register may be thought of as
recording a Sale; indeed, the word “register” in business has for many years
meant the thing that recorded (or registered) account transactions, such as
sales.

Thus, Register is a reasonable candidate for creating a Sale. And by having the
Register create the Sale, the Register can easily be associated with it over time,
so that during future operations within the session, the Register will have a ref-
erence to the current Sale instance.

In addition to the above, when the Sale is created, it must create an empty col-
lection (container, such as a Java List) to record all the future SalesLineItem
instances that will be added. This collection will be contained within and main-
tained by the Sale instance, which implies by Creator that the Sale is a good
candidate for creating it.

Therefore, the Register creates the Sale, and the Sale creates an empty collec-
tion, represented by a multiobject in the interaction diagram.

Hence, the interaction diagram in Figure 17.7 illustrates the design.

Conclusion

The design was not difficult, but the point of its careful explanation in terms of
Controller and Creator was to illustrate that the details of a design can be
rationally and methodically decided and explained in terms of principles and
patterns, such as GRASP.

17.5 Object Design: enterItem

The enterItem system operation occurs when a cashier enters the itemID and
(optionally) the quantity of something to be purchased. Here is the complete
contract:

Contract CO2: enterItem

Operation: enterItem(itemID : ItemID, quantity : integer)
Cross References: Use Cases: Process Sale
Preconditions: There is an underway sale.

Postconditions: – A SalesLineItem instance sli was created (instance cre-
ation).

– sli was associated with the current Sale (association
formed).

– sli.quantity became quantity (attribute modification).
– sli was associated with a ProductSpecification, based on

itemID match (association formed).

����������		
���
���������
��!!���
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

256

An interaction diagram will be constructed to satisfy the postconditions of enter-
Item, using the GRASP patterns to help with the design decisions.

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message enterItem. Based on the Controller pattern, as for makeNewSale, we
will continue to use Register as a controller.

Display Item Description and Price?

Because of a design principle called Model-View Separation, it is not the
responsibility of non-GUI objects (such as a Register or Sale) to get involved in
output tasks. Therefore, although the use case states that the description and
price are displayed after this operation, the design will be ignored at this time.

All that is required with respect to responsibilities for the display of information
is that the information is known, which it is in this case.

Creating a New SalesLineItem

The enterItem contract postconditions indicate the creation, initialization, and
association of a SalesLineItem. Analyzing the Domain Model reveals that a Sale
contains SalesLineItem objects. Taking inspiration from the domain, a software
Sale may similarly contain software SalesLineItem. Hence, by Creator, a soft-
ware Sale is an appropriate candidate to create a SalesLineItem.

The Sale can be associated with the newly created SalesLineItem by storing the
new instance in its collection of line items. The postconditions indicate that the
new SalesLineItem needs a quantity, when created; therefore, the Register must
pass it along to the Sale, which must pass it along as a parameter in the create
message (in Java, that would be implemented as a constructor call with a
parameter).

Therefore, by Creator, a makeLineItem message is sent to a Sale for it to create a
SalesLineItem. The Sale creates a SalesLineItem, and then stores the new
instance in its permanent collection.

The parameters to the makeLineItem message include the quantity, so that the
SalesLineItem can record it, and likewise the ProductSpecification which
matches the itemID.

����������		
���
���������
��!"���
��
���������
���������������� �

257

OBJECT DESIGN: ENTERITEM

Finding a ProductSpecification

The SalesLineItem needs to be associated with the ProductSpecification that
matches the incoming itemID. This implies it is necessary to retrieve a Product-
Specification, based on an itemID match.

Before considering how to achieve the lookup, it is useful to consider who should
be responsible for it. Thus, a first step is:

To restate the problem:

Who should be responsible for knowing a ProductSpecification,
based on an itemID match?

This is neither a creation problem nor one of choosing a controller for a system
event. Now we see our first application of Information Expert in the design.

In many cases, the Expert pattern is the principal one to apply. Information
Expert suggests that the object that has the information required to fulfill the
responsibility should do it. Who knows about all the ProductSpecification
objects?

Analyzing the Domain Model reveals that the ProductCatalog logically contains
all the ProductSpecifications. Once again, taking inspiration from the domain,
we design software classes with similar organization: a software ProductCatalog
will contain software ProductSpecifications.

With that decided, then by Information Expert ProductCatalog is a good candi-
date for this lookup responsibility since it knows all the ProductSpecification
objects.

This may be implemented, for example, with a method called getSpecification.1

Visibility to a ProductCatalog

Who should send the getSpecification message to the ProductCatalog to ask for
a ProductSpecification?

It is reasonable to assume that a Register and ProductCatalog instance were
created during the initial Start Up use case, and that there is a permanent con-
nection from the Register object to the ProductCatalog object. With that assump-

Start assigning responsibilities by clearly stating the responsibility.

1. The naming of accessing methods is of course idiomatic to each language. Java always
uses the object.getFoo() form, C++ tends to use object.foo(), and C# uses object.Foo,
which hides (like Eiffel and Ada) if it is a method call or direct access of a public
attribute. The Java style is used in the examples.

����������		
���
���������
��!����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

258

tion (which we might record on a task list of things to ensure in the design when
we get to designing the initialization), then it is possible for the Register to send
the getSpecification message to the ProductCatalog.

This implies another concept in object design: visibility. Visibility is the ability
of one object to “see” or have a reference to another object.

Since we will assume that the Register has a permanent connection—or refer-
ence—to the ProductCatalog, it has visibility to it, and hence can send it mes-
sages such as getSpecification.

The following chapter will explore the question of visibility more closely.

Figure 17.8 The enterItem interaction diagram.

For an object to send a message to another object it must have visibility to it.

2: makeLineItem(spec, qty)enterItem(id, qty)

1: spec := getSpecification(id) 2.1: create(spec, qty)

1.1: spec := find(id)

:Register :Sale

:Product
Catalog

sl: SalesLineItem

SalesLineItem
:SalesLineItem:Product

Specification

2.2: add(sl)

by Expert

by Controller

This find message is to the
Map object (the multiobject),
not to a ProductSpecification.

CAUTION:
This is a multiobject collection (such as a Map), not a
ProductSpecification. It may contain many
ProductSpecifications.

CAUTION:
This is a multiobject collection (such as a List), not a
SalesLineItem. It may contain many SalesLineItems.

by Creator

add the newly created
SalesLineItem instance to the
multiobject (e.g., List)

����������		
���
���������
��!����
��
���������
���������������� �

259

OBJECT DESIGN: ENTERITEM

Retrieving ProductSpecifications from a Database

In the final version of the NextGen POS application, it is unlikely that all the
ProductSpecifications will actually be in memory. They will most likely be stored
in a relational or object database and retrieved on demand; some may be cached
in the client process for performance or fault-tolerance reasons. However, the
issues surrounding retrieval from a database will be deferred for now in the
interest of simplicity. It will be assumed that all the ProductSpecifications are in
memory.

Chapter 34 explores the topic of database access of persistent objects, which is a
large topic usually influenced by the choice of technologies, such as J2EE, .NET,
and so forth.

The enterItem Object Design

Given the above discussion, the interaction diagram in Figure 17.8 reflects the
decisions regarding the assignment of responsibilities and how objects should
interact. Observe that considerable reflection was done to arrive at this design,
based on the GRASP patterns; the design of object interactions and responsibil-
ity assignment require some deliberation.

Messages to Multiobjects

Notice that the interpretation of a message sent to a multiobject in the UML is
that it is a message to the collection object itself, rather than an implicit broad-
cast to the collection’s members. This is especially obvious for generic collection
operations such as find and add.

For example, in the enterItem interaction diagram:

� The find message sent to the ProductSpecification multiobject is a message
being sent once to the collection data structure represented by the multiob-
ject (such as a Java Map).

� The language-independent and generic find message will, during
programming, be translated for a specific language and library.
Perhaps it will actually be Map.get in Java. The message get could
have been used in the diagram; find was used to make the point
that design diagrams may require some mapping to different lan-
guages and libraries.

� The add message sent to the SalesLineItem multiobject is to add an element
to the collection data structure represented by the multiobject (such as a
Java List).

����������		
���
���������
��!����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

260

17.6 Object Design: endSale

The endSale system operation occurs when a cashier presses a button indicating
the end of a sale. Here is the contract:

Contract CO3: endSale

Choosing the Controller Class

Our first choice involves handling the responsibility for the system operation
message endSale. Based on the Controller GRASP pattern, as for enterItem, we
will continue to use Register as a controller.

Setting the Sale.isComplete Attribute

The contract postconditions state:

� Sale.isComplete became true (attribute modification).

As always, Expert should be the first pattern considered unless it is a controller
or creation problem (which it is not).

Who should be responsible for setting the isComplete attribute of the Sale to
true?

By Expert, it should be the Sale itself, since it owns and maintains the isCom-
plete attribute. Thus the Register will send a becomeComplete message to the
Sale to set it to true.

Figure 17.9 Completion of item entry.

Operation: endSale()
Cross References: Use Cases: Process Sale
Preconditions: There is an underway sale.

Postconditions: Sale.isComplete became true (attribute modification).

:RegisterendSale() s :Sale1: becomeComplete()

by Expertby Controller

����������		
���
���������
��"����
��
���������
���������������� �

261

OBJECT DESIGN: ENDSALE

UML Notation to Show Constraints, Notes, and Algorithms

Figure 17.9 shows the becomeComplete message, but does not communicate the
details of what happens in the becomeComplete method (although it is admit-
tedly trivial in this case). Sometimes in the UML we wish to use text to describe
the algorithm of a method, or specify some constraint.

For these needs, the UML provides both constraints and notes. A UML con-
straint is some semantically meaningfully information attached to a model ele-
ment. UML constraints are text enclosed in { } braces; for example, { x > 20 }.
Any informal or formal language can be used for the constraint, and the UML
especially includes the OCL (object constraint language) [WK99] if one desires
to use that.

A UML note is a comment that has no semantic impact, such as date of creation
or author.

A note is always shown in a note box (a dog-eared text box).

A constraint may be shown as simple text with braces, which is suitable for
short statements. However, long constraints may be also placed within a “note
box,” in which case the so-called note box actually holds a constraint rather than
a note. The text in the box is within braces, to indicate it is a constraint.

In Figure 17.10 both styles are used. Note that the simple constraint style (in
braces but not in a box) just shows a statement which must hold true (the classic
meaning of a constraint in logic). On the other hand, the “constraint” in the note
box shows a Java method implementation of the constraint. Both styles are legal
in the UML for a constraint.

Figure 17.10 Constraints and notes.

:RegisterendSale() s : Sale1: becomeComplete()

{
public void becomeComplete()
{
 isComplete = true;
}
} { s.isComplete = true }

a constraint implementation in a note box

observe the outer braces around the method
signifying a constraint within a note box

a constraint that doesn't define the
algorithm, but specifies what must hold as true

// a note
created by Craig

����������		
���
���������
��"����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

262

Calculating the Sale Total

Consider this fragment of the Process Sale use case:

In step 5, a total is presented (or displayed). Because of the Model-View Separa-
tion principle, we should not concern ourselves with the design of how the sale
total will be displayed, but it is necessary to ensure that the total is known. Note
that no design class currently knows the sale total, so we need to create a design
of object interactions that satisfies this requirement.

As always, Information Expert should be a pattern to consider unless it is a con-
troller or creation problem (which it is not).

It is probably obvious the Sale itself should be responsible for knowing its total,
but just to make the reasoning process to find an Expert crystal clear—with a
simple example—please consider the following analysis.

1. State the responsibility:

� Who should be responsible for knowing the sale total?

2. Summarize the information required:

� The sale total is the sum of the subtotals of all the sales line-items.

� sales line-item subtotal := line-item quantity * product description
price

3. List the information required to fulfill this responsibility and the classes
that know this information.

Main Success Scenario:
1. Customer arrives ...
2. Cashier tells System to create a new sale.
3. Cashier enters item identifier.
4. System records sale line item and ...
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.

Information Required for
Sale Total Information Expert

ProductSpecification.price ProductSpecification

SalesLineItem.quantity SalesLineItem

all the SalesLineItems in the cur-
rent Sale

Sale

����������		
���
���������
��"����
��
���������
���������������� �

263

OBJECT DESIGN: ENDSALE

A detailed analysis follows:

� Who should be responsible for calculating the Sale total? By Expert, it
should be the Sale itself, since it knows about all the SalesLineItem
instances whose subtotals must be summed to calculate the sale total.
Therefore, Sale will have the responsibility of knowing its total, imple-
mented as a getTotal method.

� For a Sale to calculate its total, it needs the subtotal for each SalesLineItem.
Who should be responsible for calculating the SalesLineItem subtotal? By
Expert, it should be the SalesLineItem itself, since it knows the quantity
and the ProductSpecification it is associated with. Therefore, SalesLineItem
will have the responsibility of knowing its subtotal, implemented as a get-
Subtotal method.

� For the SalesLineItem to calculate its subtotal, it needs the price of the
ProductSpecification. Who should be responsible for providing the Product-
Specification price? By Expert, it should be the ProductSpecification itself,
since it encapsulates the price as an attribute. Therefore, Product-
Specification will have the responsibility of knowing its price, implemented
as a getPrice operation.

The Sale--getTotal Design

Given the above discussion, it is now desirable to construct an interaction dia-
gram that illustrates what happens when a Sale is sent a getTotal message. The
first message in this diagram is getTotal, but observe that the getTotal message
is not a system event.

This leads to the following observation:

The interaction diagram is shown in Figure 17.11. First, the getTotal message is
sent to a Sale instance. The Sale will then send a getSubtotal message to each
related SalesLineItem instance. The SalesLineItem will in turn send a getPrice
message to its associated ProductSpecifications.

Although the above analysis is trivial in this case, and the degree of excruci-
ating elaboration presented is uncalled for in actual design practice, the same
reasoning strategy to find an Expert can and should be applied in more diffi-
cult situations. You will find that once you learn these principles you can
quickly perform this kind of reasoning mentally.

Not every interaction diagram starts with a system event message; they can
start with any message for which the designer wishes to show interactions.

����������		
���
���������
��"����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

264

Figure 17.11 Sale--getTotal interaction diagram.

Since arithmetic is not (usually) illustrated via messages, the details of the cal-
culations can be illustrated by attaching algorithms or constraints to the dia-
gram that defines the calculations.

Who will send the getTotal message to the Sale? Most likely, it will be an object
in the UI layer, such as a Java JFrame.

Observe in Figure 17.12 the use of algorithm notes and constraints, to communi-
cate details of getTotal and getSubtotal.

17.7 Object Design: makePayment

The makePayment system operation occurs when a cashier enters the amount of
cash tendered for payment. Here is the complete contract:

Contract CO4: makePayment

A design will be constructed to satisfy the postconditions of makePayment.

:Saletot := getTotal() 1 *: st := getSubtotal()

:ProductSpecification

1.1: pr := getPrice()

: SalesLineItem
*

by Expert by Expert

recall this special notation to
indicate iteration over the
elements of a collection

Operation: makePayment(amount: Money)
Cross References: Use Cases: Process Sale
Preconditions: There is an underway sale.

Postconditions: – A Payment instance p was created (instance creation).
– p.amountTendered became amount (attribute modification).
– p was associated with the current Sale (association

formed).
– The current Sale was associated with the Store (associa-

tion formed); (to add it to the historical log of completed
sales).

����������		
���
���������
��"����
��
���������
���������������� �

265

OBJECT DESIGN: MAKEPAYMENT

Figure 17.12 Algorithm notes and constraints.

Creating the Payment

One of the contract postconditions states:

� A Payment instance p was created (instance creation).

This is a creation responsibility, so the Creator GRASP pattern should be
applied.

Who records, aggregates, most closely uses, or contains a Payment? There is
some appeal in stating that a Register logically records a Payment, because in
the real domain a “register” records account information, so it is a candidate by
the goal of reducing the representational gap in the software design. Addition-
ally, it is reasonable to expect that a Sale software will closely use a Payment;
thus, it may be a candidate.

Another way to find a creator is to use the Expert pattern in terms of who is the
Information Expert with respect to initializing data—the amount tendered in
this case. The Register is the controller which receives the system operation
makePayment message, so it will initially have the amount tendered. Conse-
quently the Register is again a candidate.

:Saletot := getTotal() 1 *: st := getSubtotal()

:ProductSpecification

1.1: pr := getPrice()

: SalesLineItem
*

{ st = aSLI.quantity * aSLI.prodSpec.price }

// observe the seudo code style here
{
public void getTotal()
{
 int tot = 0;
 for each SalesLineItem, sli
 tot = tot + sli.getSubtotal();
 return tot
}
}

Note the semi-formal style of the constraint. "aSLI" is not
formally defined, but most developers will reasonably
understand this to mean an instance of SalesLineItem.
Likewise with the expression aSLI.prodSpec.price.

The point is that the constraint language can be informal,
to support quick and easy writing, if desired.

����������		
���
���������
��"!���
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

266

In summary, there are two candidates:

� Register

� Sale

Now, this leads a key design idea:

Consider some of the implications of these choices in terms of the High Cohesion
and Low Coupling GRASP patterns. If the Sale is chosen to create the Payment,
the work (or responsibilities) of the Register is lighter—leading to a simpler
Register definition. Also, the Register does not need to know about the existence
of a Payment instance because it can be recorded indirectly via the Sale—lead-
ing to lower coupling in the Register. This leads to the design shown in Figure
17.13.

Figure 17.13 Register--makePayment interaction diagram.

This interaction diagram satisfies the postconditions of the contract: the Pay-
ment has been created, associated with the Sale, and its amountTendered has
been set.

Logging a Sale

Once complete, the requirements state that the sale should be placed in an his-
torical log. As always, Information Expert should be an early pattern considered
unless it is a controller or creation problem (which it is not), and the responsibil-
ity should be stated:

Who is responsible for knowing all the logged sales, and doing
the logging?

When there are alternative design choices, take a closer look at the cohesion
and coupling implications of the alternatives, and possibly at the future evo-
lution pressures on the alternatives. Choose an alternative with good cohe-
sion, coupling, and stability in the presence of likely future changes.

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register :Sale

:Payment

makePayment(cashTendered)

by Controller by Creator and Low Coupling

����������		
���
���������
��""���
��
���������
���������������� �

267

OBJECT DESIGN: MAKEPAYMENT

By the goal of low representational gap in the software design (in relation to our
concepts of the domain) it is reasonable for a Store to know all the logged sales,
since they are strongly related to its finances. Other alternatives include classic
accounting concepts, such as a SalesLedger. Using a SalesLedger object makes
sense as the design grows and the Store becomes incohesive (see Figure 17.14).

Figure 17.14 Who should be responsible for knowing the completed sales?

Note also that the postconditions of the contract indicate relating the Sale to the
Store. This is an example where the postconditions may not be what we want to
actually achieve in the design. Perhaps we didn’t think of a SalesLedger earlier,
but now that we have, we choose to use it instead of a Store. If this were the
case, SalesLedger would ideally be added to the Domain Model as well, as it is a
name of a concept in the real-world domain. This kind of discovery and change
during design work is to be expected.

In this case, we will stick with the original plan of using the Store (see Figure
17.15).

Store

...

addSale(s : Sale)
...

SalesLedger

...

addSale(s : Sale)
...

Store is responsible for
knowing and adding
completed Sales.

Acceptable in early
development cycles if the
Store has few
responsibilities.

SalesLedger is responsible
for knowing and adding
completed Sales.

Suitable when the design
grows and the Store
becomes uncohesive.

Sale

...

...

Sale

...

...

Logs-completed� Logs-completed�

* *

1 1

����������		
���
���������
��"����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

268

Figure 17.15 Logging a completed sale.

Calculating the Balance

The Process Sale use case implies that the balance due from a payment be
printed on a receipt and displayed somehow.

Because of the Model-View Separation principle, we should not concern our-
selves with how the balance will be displayed or printed, but it is necessary to
ensure that it is known. Note that no class currently knows the balance, so we
need to create a design of object interactions that satisfies this requirement.

As always, Information Expert should be considered unless it is a controller or
creation problem (which it is not), and the responsibility should be stated:

Who is responsible for knowing the balance?

To calculate the balance, the sale total and payment cash tendered are required.
Therefore, Sale and Payment are partial Experts on solving this problem.

If the Payment is primarily responsible for knowing the balance, it would need
visibility to the Sale, in order to ask the Sale for its total. Since it does not cur-
rently know about the Sale, this approach would increase the overall coupling in
the design—it would not support the Low Coupling pattern.

In contrast, if the Sale is primarily responsible for knowing the balance, it needs
visibility to the Payment, in order to ask it for its cash tendered. Since the Sale

1: makePayment(cashTendered)

1.1: create(cashTendered)

:Register s :Sale

:Payment

makePayment(cashTendered)

:Store

2: addSale(s)

completedSales: Sale
completedSales: Sale

2.1: add(s)

by Expert

note that the Sale instance is named
's' so that it can be referenced as a
parameter in messages 2 and 2.1

����������		
���
���������
��"����
��
���������
���������������� �

269

OBJECT DESIGN: STARTUP

already has visibility to the Payment—as its creator—this approach does not
increase the overall coupling, and is therefore a preferable design.

Consequently, the interaction diagram in Figure 17.16 provides a solution for
knowing the balance.

Figure 17.16 Sale--getBalance interaction diagram.

17.8 Object Design: startUp

When to Create the startUp Design?

Most, if not all, systems have a Start Up use case, and some initial system oper-
ation related to the starting up of the application. Although this startUp system
operation is the earliest one to execute, delay the development of an interaction
diagram for it until after all other system operations have been considered. This
ensures that information has been discovered concerning the initialization
activities required to support the later system operation interaction diagrams.

:Sale pmt: Payment1: amt := getAmount()bal := getBalance()

2: t := getTotal()

{ bal = pmt.amount - self.total }

Note the use of "self" in the constraint. The formal OCL uses the special variable "self"
for "this" (in Java and C++). "self" in this constraint implies the instance of the Sale.

Although official OCL is not being used, this style is borrowing from it.

A constraint can be in any formal or informal language.

Do the initialization design last.

����������		
���
���������
��"����
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

270

How Applications Start Up

The startUp operation abstractly represents the initialization phase of execu-
tion when an application is launched. To understand how to design an interac-
tion diagram for this operation, it is helpful to understand the contexts in which
initialization can occur. How an application starts and initializes is dependent
on the programming language and operating system.

In all cases, a common design idiom is to ultimately create an initial domain
object, which is the first software “domain” object created.

A note on terminology: As will be explored, applications are organized into logi-
cal layers that separate the major concerns of the application. These include a
UI layer (for UI concerns) and a “domain” layer (for domain logic concerns). The
domain layer of the Design Model is composed of software classes whose names
are inspired from the domain vocabulary, and which contain application logic.
Virtually all the design objects we have considered, such as Sale and Register,
are domain objects in the domain layer of the Design Model.

The initial domain object, once created, is responsible for the creation of its
direct child domain objects. For example, if a Store is chosen as the initial
domain object, it may be responsible for the creation of a Register object.

The place where this initial domain object is created is dependent on the object
technology chosen. For example, in a Java application, the main method may
create it, or delegate the work to a factory object that creates it.

public class Main
{

public static void main(String[] args)
{

// Store is the initial domain object.
// The Store creates some other domain objects.

Store store = new Store();

Register register = store.getRegister();

ProcessSaleJFrame frame = new ProcessSaleJFrame(register);
...

}

}

Interpretation of the startUp System Operation

The preceding discussion illustrates that the startUp system operation is a lan-
guage-independent abstraction. During design, there is variation in where the
initial object is created, and whether or not it takes control of the process. The
initial domain object does not usually take control if there is a GUI; otherwise, it
often does.

����������		
���
���������
�������
��
���������
���������������� �

271

OBJECT DESIGN: STARTUP

The interaction diagrams for the startUp operation represent what happens
when the initial problem domain object is created, and optionally what happens
if it takes control. They do not include any prior or subsequent activity in the
GUI layer of objects, if one exists.

The POS Application startUp Operation

The startUp system operation occurs when a manager powers on the POS sys-
tem and the software loads. Assume that the initial domain object is not respon-
sible for taking control of the process; control will remain in the UI layer (such
as a Java JFrame) after the initial domain object is created. Therefore, the inter-
action diagram for the startUp operation may be reinterpreted solely as a cre-
ate() message sent to create the initial object.

Choosing the Initial Domain Object

What should the class of the initial domain object be?

Choosing between these alternatives may be influenced by High Cohesion and
Low Coupling considerations. In this application, the Store is chosen as the ini-
tial object.

Persistent Objects: ProductSpecification

The ProductSpecification instances will reside in a persistent storage medium,
such as relational or object database. During the startUp operation, if there are
only a few of these objects, they may all be loaded into the computer’s direct
memory. However, if there are many, loading them all would consume too much

Hence, the startUp operation may be reinterpreted as:

1. In one interaction diagram, send a create() message to create the initial
domain object.

2. (optional) If the initial object is taking control of the process, in a second
interaction diagram, send a run message (or something equivalent) to the
initial object.

Choose as an initial domain object a class at or near the root of the contain-
ment or aggregation hierarchy of domain objects. This may be a facade con-
troller, such as Register, or some other object considered to contain all or most
other objects, such as a Store.

����������		
���
���������
�������
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

272

memory or time. Alternately—and more likely—individual instances will be
loaded on demand into memory as they are required.

The design of how to dynamically on-demand load objects from a database into
memory is simple if an object database is used, but difficult for a relational data-
base. This problem is deferred for now and makes a simplifying assumption that
all the ProductSpecification instances can be “magically” created in memory by
the ProductCatalog object.

Chapter 34 explores the question of persistent objects and one way to load them
into memory.

Store--create() Design

The tasks of creation and initialization derive from the needs of the prior design
work, such as the design for handling enterItem and so on. By reflecting on the
prior interaction designs, the following initialization work can be identified:

� A Store, Register, ProductCatalog and ProductSpecifications need to be
created.

� The ProductCatalog needs to be associated with ProductSpecifications.

� Store needs to be associated with ProductCatalog.

� Store needs to be associated with Register.

� Register needs to be associated with ProductCatalog.

Figure 17.17 shows a design. The Store was chosen to create the ProductCatalog
and Register by the Creator pattern. ProductCatalog was likewise chosen to cre-
ate the ProductSpecifications. Recall that this approach to creating the specifi-
cations is temporary. In the final design, they will be materialized from a
database, as needed.

UML notation: Observe that the creation of all the ProductSpecification
instances and their addition to a container happens in a repeating section, indi-
cated by the “*” following the sequence numbers.

An interesting deviation between modeling the real-world domain and the
design is illustrated in the fact that the software Store object only creates one
Register object. A real store may house many real registers or POS terminals.
However, we are considering a software design, not real life. In our current
requirements, our software Store only needs to create a single instance of a soft-
ware Register.

Multiplicity between classes of objects in the Domain Model and Design
Model may not be the same.

����������		
���
���������
�������
��
���������
���������������� �

273

CONNECTING THE UI LAYER TO THE DOMAIN LAYER

Figure 17.17 Creation of the initial domain object and subsequent objects.

17.9 Connecting the UI Layer to the Domain Layer

As has been briefly discussed, applications are organized into logical layers that
separate the major concerns of the application, such as the UI layer (for UI con-
cerns) and a “domain” layer (for domain logic concerns).

Common designs by which objects in the UI layer obtain visibility to objects in
the domain layer include the following:

� An initializing routine (for example, a Java main method) creates both a UI
and a domain object, and passes the domain object to the UI.

� A UI object retrieves the domain object from a well-known source, such as a
factory object that is responsible for creating domain objects.

The sample code shown before is an example of the first approach:

public class Main
{

:Store :Register

pc:
ProductCatalog

create() 2: create(pc)

1: create()

1.2: loadProdSpecs()

:Product
Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(id, price, description)

ps:
ProductSpecification

the * in sequence number
indicates the message occurs in
a repeating section

pass a reference to the
ProductCatalog to the
Register, so that it has
permanent visibility to it

by Creator
create an empty multiobject (e.g., a
Map), not a ProductSpecification

����������		
���
���������
�������
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

274

public static void main(String[] args)
{

Store store = new Store();
Register register = store.getRegister();
ProcessSaleJFrame frame = new ProcessSaleJFrame(register);
...

}

}

Once the UI object has a connection to the Register instance (the facade control-
ler in this design), it can forward system event messages to it, such as the enter-
Item and endSale message (see Figure 17.18).

Figure 17.18 Connecting the UI and domain layers.

In the case of the enterItem message, the window needs to show the running
total after each entry. There are several design solutions:

� Add a getTotal method to the Register. The UI sends the getTotal message to
the Register, which forwards it to the Sale. This has the possible advantage
of maintaining lower coupling from the UI to the domain layer—the UI only
knows of the Register object. But it starts to expand the interface of the
Register object, making it less cohesive.

� A UI asks for a reference to the current Sale object, and then when it needs
the total (or any other information related to the sale), it directly sends mes-
sages to the Sale. This design increases the coupling from the UI to the
domain layer. However, as was explored in the Low Coupling GRASP pat-
tern discussion, higher coupling in and of itself is not a problem; rather, it is
especially coupling to unstable things that is a problem. Assume we decide

:Register

Cashier

:ProcessSale
JFrame

actionPerformed(actionEvent)

1: enterItem(id, qty) system event

UI
Layer

Domain
Layer

presses button

����������		
���
���������
�������
��
���������
���������������� �

275

CONNECTING THE UI LAYER TO THE DOMAIN LAYER

the Sale is a stable object that will be an integral part of the design—which
is very reasonable. Then, coupling to the Sale is not a problem.

As illustrated in Figure 17.19, this design follows the second approach.

Notice in these diagrams that the Java window (ProcessSaleJFrame), which is
part of the UI layer, is not responsible for handling the logic of the application. It
forwards requests for work (the system operations) to the domain layer, via the
Register. This leads to the following design principle:

Figure 17.19 Connecting the UI and domain layers.

Interface and Domain Layer Responsibilities

The UI layer should not have any domain logic responsibilities. It should only
be responsible for user interface tasks, such as updating widgets.

The UI layer should forward requests for all domain-oriented tasks on to the
domain layer, which is responsible for handling them.

:Register

Cashier

:ProcessSale
JFrame

actionPerformed(actionEvent)

1: enterItem(id, qty)

2 [no sale] : s := getSale() : Sale

UI
Layer

Domain
Layer

s : Sale

3: t := getTotal()

presses button

note the UML notation for a conditional message

����������		
���
���������
���!���
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

276

17.10 Use-Case Realizations Within the UP

Use-case realizations are part of the UP Design Model. This chapter has empha-
sized drawing interaction diagrams, but it is common and recommended to draw
class diagrams in parallel. Class diagrams are examined in Chapter 19.

Table 17.1 Sample UP artifacts and timing. s - start; r - refine

Phases

Inception—The Design Model and use-case realizations will not usually be
started until elaboration because it involves detailed design decisions which are
premature during inception.

Elaboration—During this phase, use-case realizations may be created for the
most architecturally significant or risky scenarios of the design. However, UML
diagramming will not be done for every scenario, and not necessarily in com-
plete and fine-grained detail. The idea is to do interaction diagrams for the key
use-case realizations that benefit from some forethought and exploration of
alternatives, focusing on the major design decisions.

Construction—Use-case realizations are created for remaining design
problems.

Discipline Artifact Incep. Elab. Const. Trans.
Iteration� I1 E1..En C1..Cn T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model (SSDs) s r

Vision s r
Supplementary Specification s r
Glossary s r

Design Design Model s r
SW Architecture Document s
Data Model s r

Implementation Implementation Model s r r
Project Management SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

����������		
���
���������
���"���
��
���������
���������������� �

277

USE-CASE REALIZATIONS WITHIN THE UP

UP Artifacts and Process Context

Figure 17.20 Sample UP artifact influence.

: System

enterItem
(id, quantity)

endSale()

makePayment
(amount)

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. Cashier
enters item
identifier.
4....

Use Cases System Sequence Diagrams

Operation: enterItem

Post-conditions:
- A SalesLineItem instance
sli was created
- . . .

Operation: makeNewSale

Post-conditions:
- . . .

Contracts

make
NewSale()

: Cashier

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

domain objects

system
events

system
operations

the domain objects, attributes, and
associations that undergo state changes

Domain Model

Use-Case Model

some ideas and inspiration for the post-
conditions derive from the use cases

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

addLineItem(spec, quantity)

: Sale

. . .

in addition to the use
cases, requirements that
must be satisfied by the
design of the software

use-case
realization

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

makeNewSale()
create()

endSale()
.

Sample UP Artifact Relationships for Use-Case Realization

����������		
���
���������
�������
��
���������
���������������� �

17 – DESIGN MODEL: USE-CASE REALIZATIONS WITH GRASP PATTERNS

278

In the UP, use-case realization work is a design activity. Figure 17.21 offers sug-
gestions on the time and space for doing this work.

Figure 17.21 Sample process and setting context.

17.11 Summary

Designing object interactions and assigning responsibilities is at the heart of
object design. These choices have can have a profound impact on the extensibil-
ity, clarity, and maintainability of an object software system, plus on the degree
and quality of reusable components. There are principles by which the choices of
responsibility assignment can be made; the GRASP patterns summarize some of
the most general and common used by object-oriented designers.

January February

When
Near the beginning of each iteration, for a
"short" period before programming.

Where
In a project room with lots of support
for drawing and viewing drawings.

Who
Perhaps developers will do some design work in
pairs. The software architect will collaborate, mentor,
and visit with different design groups.

How: Tools
Software: A UML CASE tool that can also reverse engineer
diagrams from code.

Hardware:
- Use two projectors attached to dual video cards.
- For whiteboard drawings, perhaps a digital camera.
- To print noteworthy diagrams for the entire team, a plotter
 for large-scale drawings to hang on walls.

Developer
Developer

Software
Architect

Two adjacent projections.

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

. . .

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec := getSpecification(itemID)

addLineItem(spec, quantity)

: Sale

. . .

makeNewSale()
create()

. . .

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

getSpecification()

ProductSpecification

description : Text
price : Money
itemID: ItemID

Store

address : Address
name : Text

addSale()

Payment

amount : Money

1..*

1..*

Register

endSale()
enterItem()
makeNewSale()
makePayment()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
getTotal()

1 1

1

1 1

1

1
1

1

1

1

1

1

*

*

1

whiteboards

����������		
���
���������
�������
��
���������
���������������� �

