

The first 90% of the job
takes 90% of the time.
The remaining 10%
of the job requires
another 90% of the time.

— Unknown (but oh so true)

Promises were made, and promises should be kept.
Remember that closet full of concepts that burst open and spilled out all

over the floor? Well, we have managed to clean up a good deal of the mess,
but there are still a few things that we said we would put away — and we will.
We can provide a brief explanation of each of these as we shove them back into
the closet, just so you are not surprised when you stumble across them in the
literature.

Opportunistic Locks (OpLocks)17.1

OpLocks are a caching mechanism.
A client may request an OpLock from an SMB server when it opens a

file. If the server grants the request, then the client knows that it can safely
cache large chunks of the file and not tell the server what it is doing with those
cached chunks until it is finished. That saves a lot of network I/O round-trip
time and is a very big boost to performance.

The problem, of course, is that other clients may want to access the same
file at the same time. As long as everyone is just reading the file things are okay,

323

17

The Remaining Oddities

but if even one client makes a change then all of the cached copies held by the
other clients will be out of sync. That’s why OpLock handling is a bit tricky.

There are two types of OpLocks that a client may request:

Exclusive, or

Batch.

We came across these two when digging into the SMB_HEADER.FLAGS
field way back in Section 12.2 on page 202. In olden times, the client would
request an OpLock by setting the SMB_FLAGS_REQUEST_OPLOCK bit and,
optionally, the SMB_FLAGS_REQUEST_BATCH_OPLOCK bit in the FLAGS
field when opening a file. Now-a-days the FLAGS bits are (supposedly) ignored
and fields within newer-style SMBs are used instead.

Anyway, an Exclusive OpLock can be granted if no other client or appli-
cation is accessing the file at all. The client may then read, write, lock, and
unlock the cached portions of the file without informing the server. As long
as the client holds the Exclusive OpLock, it knows that it won’t cause any
conflicts. It’s sort of like a kid sitting in a corner of the kitchen with a spoon
and a big ol’ carton of ice cream. As long as no one else is looking, that kid’s
world is just the spoon and the ice cream.

Batch OpLocks are similar to Exclusive OpLocks except that they cause
the client to delay sending a CLOSE SMB to the server. This is done specifically
to bypass a weirdity in the way DOS handles batch files (batch files are the
DOS equivalent of shell scripts). The problem is that DOS executes these
scripts in the following way:

1. Set offset to zero (0).

2. Open the batch file.

3. Seek to the stored offset.

4. If EOF, then exit.

5. Read one line.

6. Store the current offset.

7. Close the batch file.

8. Execute the line.

9. Go back to step 2.

Part II SMB: The Server Message Block Protocol324

Yes, you’ve read that correctly. The batch file is opened and closed for
every line. It’s ugly, but that’s what DOS reportedly does and that’s why there
are Batch OpLocks.

To make Batch OpLocks effective, the client’s SMB layer simply delays
sending the CLOSE message. If the file is opened again, the CLOSE and OPEN
simply cancel each other out and nothing needs to be sent over the wire at all.
That also means that the client can keep hold of the cached copy of the batch
file so that it doesn’t have to re-read it for every line of the script.

There is also a third type of OpLock, known as a Level II OpLock, which
the client cannot request but the server may grant. Level II OpLocks are, essen-
tially, “read-only” OpLocks. They permit the client to cache data for reading
only. All operations which would change the file or meta-data must still be
sent to the server.

Level II OpLocks may be granted when the server cannot grant an Exclu-
sive or Batch OpLock. They allow multiple clients to cache the same file at the
same time so, unlike the other two, Level II OpLocks are not exclusive. As long
as all of the clients are just reading their cached copies there is no chance of
conflict. If one client makes a change, however, then all of the other clients
need to be notified that their cached copies are no longer valid. That’s called
an OpLock Break.

OpLock Breaks17.1.1

It’s called an “OpLock Break” because it involves breaking an existing OpLock.
The more formal term is “revocation,” but no one actually says that when they
get together after hours to sit around, drink tea, and whine about CIFS.

OpLock Breaks are sent from the server to the client. This is unusual,
because SMB request/response pairs are always initiated by the client. The
OpLock Break is sent out-of-band by the server, which is against the rules...
but this is CIFS we’re talking about. Who needs rules?

The OpLock Break is sent in the form of a SMB_COM_LOCKING_ANDX
message. The server may send this to reduce an Exclusive or Batch OpLock to
a Level II OpLock, or to revoke an existing OpLock entirely. In either case,
the client’s immediate responsibility is to flush its cache to comply with the
new OpLock status. If the client held an Exclusive or Batch OpLock, it must
send all writes to the server and request any byte-range locks that it needs in

32517 The Remaining Oddities

order to continue processing. If the OpLock has been reduced to a Level II
OpLock, the client may keep its local cache for read-only purposes.

Note that there is a big difference between OpLocks and the more tradi-
tional types of locks. With a traditional file or byte-range lock, the client is in
charge once it has obtained a lock. It can maintain it as long as needed, relin-
quishing it only when it is finished using it. In contrast, an OpLock is like
borrowing your neighbor’s lawnmower. You have to give it back when your
neighbor asks for it.

Support for OpLocks is optional on both the client and the server side,
but implementing them provides a hefty performance boost. More information
on OpLocks may be found in the Paul Leach/Dan Perry article CIFS: A Com-
mon Internet File System (listed in the References), as well as the usual sources.

Distributed File System (DFS)17.2

The CIFS Distributed File System (DFS) is not nearly as fancy as it sounds. It
is simply a way to collect separate shares into a single, virtual tree structure. It
also has some limited ability to provide fileserver redundancy and
load balancing.

The key feature of DFS is that it can create links from within a shared
tree on one server to shares and directories on another, thus providing a single
point of entry to a virtual SMB tree. From the user’s perspective, the whole
thing looks like a single share, even though the resources are scattered across
separate SMB servers.

Clear as mud? Perhaps an illustration will help...
In Figure 17.1, the client is shown attempting to access a file on server

PETSERVER. Well, that’s where the client thinks the file resides. On the server
side, the name CORGIS in the DOGS directory is actually a link to another
UNC pathname, \\DATADOG\CORGIS. Following that link leads us to a
different share on a different server.

The server offering the DFS share (PETSERVER, in our example) does
not act as a proxy for the client. That is, it won’t follow the DFS links itself.
Instead, the server sends an error code to the client indicating that there is some
additional work to be done. The error code is either a DOS code of
ERRSRV/ERRbadtype (0x02/0x0003), or an NT_STATUS code of
STATUS_DFS_PATH_NOT_COVERED (0xC0000257).

Part II SMB: The Server Message Block Protocol326

ubi

smb://petnet/dfsroot/dogs/corgis/bran.png

\\datadog\corgis\bran.png

PETNETDFS Client

\\petnet\dfsroot\dogs\corgis

\\datadog\corgis

ux

ubiqx

DATADOG

Figure 17.1: Distributed File System

The client is using an SMB URL to access an image of a Pembrokeshire Welsh Corgi playing
in the snow. The URL is translated into UNC format for use with the SMB protocol. The
server traverses the UNC path until it reaches corgis, which is a link to a share on a
different server.

CORGIS ==> \\DATADOG\CORGIS

The client is redirected to the new server, where it finally finds the file it wanted.

The client’s task, at this point, is to query the server to resolve the link.
The client sends a TRANS2_GET_DFS_REFERRAL which is passed to the
server via the Trans2 transaction mechanism, briefly described earlier. The
client will use the information provided in the query response to create a new
UNC path. It must then establish an SMB session with the new server. This
whole mess is known as a “DFS referral.”

It was mentioned above that DFS can provide a certain amount of redun-
dancy. This is possible because the links in the DFS tree may contain multiple
references. If the client fails to connect to the first server listed in the referral
it can try the second, and so on. DFS can also provide a simple form of load
balancing by reshuffling the order in which the list of links is presented each
time it is queried. Of course, load balancing and redundancy are only workable
if all of the linked copies are in sync.

A quick search on the web will turn up a lot of articles and papers that
do a better job of describing the behavior of DFS that the blurb provided here.

32717 The Remaining Oddities

If you are planning on implementing DFS, it is worthwhile to read up on the
subject a bit, just to get a complete sense of how it is supposed to work from
the user or network administrator’s perspective. The SNIA doc provides enough
information to get you started building a working client implementation. The
server side is more complex because doing it right involves implementing a set
of management functions as well.

DOS Attributes, Extended File Attributes, Long
Filenames, and Suchlike

17.3

These all present the same problem.
The CIFS protocol suite is designed, in its heart and soul, to work with

DOS, OS/2, and Windows systems. As a result, the protocols that make up
the CIFS suite have a tendency to reflect the behavior of those
operating systems.

DOS, of course, is the oldest and simplest of the IBM/Microsoft family
of PC OSes. The filesystem used with DOS is the venerable File Allocation
Table (FAT) filesystem which, according to legend, was originally coded up by
Bill Gates himself. The characteristics of the FAT filesystem should be familiar
to anyone who has spent any time working with DOS. Consider, for example,
the following FAT features:

Case-insensitive filenames
Case is ignored, though file and directory names are stored in uppercase.

8.3 filename format
A name is a maximum of eight bytes in length, optionally followed by a
dot (‘.’) and an extension of at most three bytes. For example:
FILENAME.EXT.

No users or groups
FAT does not understand ownership of files.

Six attribute bits
FAT supports six attribute bits, stored in a single byte. The best known
are the Archive, Hidden, Read-only, and System bits but there are two

Part II SMB: The Server Message Block Protocol328

more: Volume Label and Directory. These are used to identify the type
and handling of a FAT table entry.

It’s a fairly spartan system.
There are improvements and extensions that have appeared over the years.

The FAT32 filesystem, for example, is a modified version of FAT that uses
disk space more efficiently and also supports much larger disk sizes than the
original FAT. There is also VFAT, which keeps track of both 8.3 format file-
names and longer secondary filenames that may contain a wider variety of
characters than the 8.3 format allows. VFAT long filenames are case-preserving
(but not case sensitive) so, overall, VFAT allows a lot more creativity with file
and directory names.1

Even with these extensions, the semantics of the FAT filesystem are not
sufficient to meet the needs of more powerful OSes such as OS/2 and Windows
NT. These OSes have newer, more complex filesystems which they support in
addition to FAT. Specifically, OS/2 has HPFS (High Performance File System),
and Windows NT and W2K can make use of NTFS (New Technology File
System). These newer filesystems have lots and lots of features which, in turn,
have to be supported by CIFS.

Problems arise when the server semantics (made available via CIFS) do
not match those expected by the client. Consider, for instance, Samba running
on a Unix system. Unix filesystems typically have these general characteristics:

Case-sensitive filenames
Case is significant in most Unix filesystems. File and directory names are
stored with case preserved.

Longer, more complex filenames
Unix filesystems allow for a great deal of creativity in naming files and
directories.

Users and groups
Unix filesystems assign user and group ownership to each directory entry.

1. Digging through the documentation, it appears that the FAT family consists of FAT12,
FAT16, FAT32, and VFAT. There is documentation on the web that provides implementation
details, if you are so inclined.

32917 The Remaining Oddities

More, and different, attribute bits
There are three sets of three bits each used for basic file access (read, write,
and execute permissions for user, group, and world). There are additional
bits defined for more esoteric purposes.

Now consider a Windows application that requires the old 8.3 name
format. (Such applications do exist. They make calls to older, 16-bit OS
functions that assume 8.3 format.) Unlike VFAT, Unix filesystems do not
normally keep track of both long and short names. That causes a problem, and
Samba has to compensate by generating 8.3 format names on the fly. The
process is called “Name Mangling.”

There are other gotchas too. Indeed, name mangling is just the tip of the
proverbial iceberg.

One solution that some CIFS vendors have been able to implement is to
develop a whole new filesystem for their server platform, one that maintains
all of the required attributes and maps between them as necessary. This is a
pain, but it works in situations in which the server vendor has control over the
deployment of their product. One such filesystem is Microsoft’s NTFS, which
can handle a very wide variety of attributes and map them to the semantics
required by Apple Macintosh clients, Unix clients, DOS clients, OS/2 clients...

You’ve got the basic idea. Let’s run through some of the trouble spots to
give you a sense of what you’re up against.

Long filenames
Long filenames can be much more descriptive than the old 8.3 names.
The problem, of course, is that CIFS must support both long and short
(8.3) names to be fully compatible with all of the potential clients out
there. Even if a server supports only the NT LM 0.12 dialect, there will
still be instances when the 8.3 format is required. Sigh.

DOS attributes
These are the six attribute bits that are supported by the FAT filesystem.
These do not map well to the file protections offered by other filesystems.
Compare these, for example, against the attribute bits offered by Unix
systems.

The timestamps stored in the FAT filesystem may also be different
from those used by other systems.

Part II SMB: The Server Message Block Protocol330

Extended File Attributes
These are an extended set of attribute bits and flags available on systems
using the NTFS filesystem. They are a 32-bit superset of the set offered
by the FAT system. Extended File Attributes are described in Section
3.13 of the SNIA doc.

The term “Extended File Attributes” is also sometimes misused when
discussing NTFS permissions. Permissions are different; they are associated
with Access Control Entries (ACEs), and ACEs are gathered together
into Access Control Lists. There’s a whole bigbunch of stuff there that
could be explored — and would be, if this were a book about
implementing NTFS.

Extended Attributes
These should get special mention because, it seems, CIFS is sufficiently
complex that terminology has to be recycled. Extended Attributes (EAs)
are not the same as Extended File Attributes.

EAs are a feature of HPFS and, therefore, are supported by NTFS.
Basically, they are a separate data space associated with a file into which
applications may store additional data or metadata specific to the applica-
tion (things like author name or a file comment).2

CIFS offers facilities to support all of these features and more. That’s
good news if you are writing client code, because you can pick and choose the
sets of attributes you want to support. It’s bad for server systems, which may
need to offer various levels of compatibility in order to contend with
client expectations.

2. NTFS is a complex filesystem based on some simple concepts. One such concept is that
each “file” is actually a set of “attributes” (records). Many of these attributes are predefined to
contain such things as the short name, the long name, file creation and access times, etc. The
actual content of the file is stored in a specific, predefined “stream,” where a stream is a partic-
ular kind of attribute. NTFS supports OS/2-style Extended Attributes in another type of
NTFS attribute... and it just gets more confusing from there. There is a lot of documentation
on the web about the workings of NTFS, and there is a project aimed at implementing NTFS
for Linux.

33117 The Remaining Oddities

