
I never metaphor I couldn’t mix.

— Common pun

We have spent a lot of time and effort preparing for this expedition, and we
are finally ready to venture into SMB territory. It can be a treacherous journey,
though, so before we push ahead we should re-check our equipment.

 Test Server
If you are going to start testing, you have to have something at which to
fling packets. When choosing a test server, keep in mind that SMB has
grown and changed and evolved and adapted and mutated over the years.
You want a server that can be configured to meet your testing needs.
Samba, of course, is highly configurable. If you know your way around
the Windows Registry, you may have luck with those systems as well. In
particular, you probably want to avoid strong password encryption during
the initial stages. Handling authentication is a big chunk of work, and it
is best to try and reduce the number of simultaneous problems to a
manageable few.

Repetitive Terminology Redundancy Notification Alert
The SMB server software running on a file server node is known as the “File
Server Service,” or just “Server Service.”

177

11

SMB in Its Natural
Habitat

When running on top of NBT, the Server Service always registers a NetBIOS
name composed of the Machine Name and, of course, a suffix value of 0x20.
The Machine Name is typically — but not necessarily — the same as the DNS
host name.

 Test Client
The next thing you will want is a packet flinger — that is, a working
client. You need this for testing and to compare behavior when debugging
your own client. Samba offers the smbclient utility, and jCIFS comes
with a variety of example programs. Windows systems all have SMB
support built-in. That’s quite a selection from which to choose.

 Sniffer
Always your best friend. A good packet analyzer — one with a lot of built-
in knowledge of SMB — will be your trusted guide through the
SMB jungle.

 Documentation
When exploring NBT we relied upon RFC 1001 and RFC 1002 as if
they were ancient maps, drawn on cracked and drying parchment, handed
down to us by those who had gone before. In the wilds of SMB territory,
we will count on the SNIA CIFS Technical Reference as our primary re-
source. The old X/Open SMB specification and the SMB/CIFS documen-
tation available from Microsoft’s FTP server will also come in handy. For
the sake of efficiency, from here on out we will be a bit less formal and
refer to the SNIA doc as “the SNIA doc,” and the X/Open doc as “the
X/Open doc.”

Yet Another Tasty Terminology Treat Alert
As we have explained, “SMB” is the Server Message Block protocol. It is also true that
“an SMB” is a message. In order to implement SMB, one must learn to send and
receive SMBs.

Got that?

Keep in mind that the goal of our first trip into the wilds of SMB-land
is to become familiar with the terrain and to study SMBs in their natural
habitat, so we can learn about their anatomy and behavior. We are not ready
yet for a detailed study of SMB innards. That will come later.

Part II SMB: The Server Message Block Protocol178

Our Very First Live SMBs11.1

We need to capture a few SMBs to see what they look like up close. That means
it’s time to take a look at the wire and see what’s there to be seen. Fire up your
protocol analyzer, and then your SMB client. If you can configure your test
server to allow anonymous connections (no username, no password) it will
simplify things at this stage. If you can’t, then things won’t run quite as they
are shown below. Don’t worry, it will be close enough.

For this example, we will use the Exists.java program that comes
with jCIFS. It is a very simple utility that does nothing more than verify the
existence of the object specified by the given SMB URL string, like so:

shell

$ java Exists smb://smedley/home
smb://smedley/home exists
$

The above shows that we were able to access the HOME share on node
SMEDLEY. A similar test can be performed using Samba’s smbclient, or
with the NET USE command under Windows:1

DOS prompt

C:\> net use \\smedley\home
The command was completed successfully.

C:\> net use /d \\smedley\home
The command was completed successfully.

C:\>

These simple commands will generate the packets we want to capture
and study. Stop your sniffer and take a look at the trace. You should see a chain
of events similar to the following:

1. When working with the NET USE command, it is important to remember to close the
connection to the server using the /d command-line option. Type NET HELP at the DOS
prompt for more information.

17911 SMB in Its Natural Habitat

No. Source Destination Protocol Info
--- ------- --------------- -------- -----------------------------
 1 Marika 255.255.255.255 NBNS Name query
 2 Smedley Marika NBNS Name query response
 3 Marika Smedley TCP 34102 > netbios-ssn [SYN]
 4 Smedley Marika TCP netbios-ssn > 34102 [SYN, ACK]
 5 Marika Smedley TCP 34102 > netbios-ssn [ACK]
 6 Marika Smedley NBSS Session request
 7 Smedley Marika NBSS Positive session response
 8 Marika Smedley TCP 34102 > netbios-ssn [ACK]
 9 Marika Smedley SMB Negotiate Protocol Request
 10 Smedley Marika SMB Negotiate Protocol Response
 11 Marika Smedley SMB Session Setup AndX Request
 12 Smedley Marika SMB Session Setup AndX Response
 13 Marika Smedley TCP 34102 > netbios-ssn [FIN, ACK]
 14 Smedley Marika TCP netbios-ssn > 34102 [FIN, ACK]
 15 Marika Smedley TCP 34102 > netbios-ssn [ACK]

The above is edited output from an Ethereal capture.2 The packets were
generated using the jCIFS Exists utility, as described above. In this case
jCIFS was talking to an old Windows 95 system, but any SMB server should
produce the same or similar results.

The trace is reasonably simple. The first thing that node MARIKA does
is send a broadcast NBT Name query to find node SMEDLEY, and SMEDLEY
responds. Packets 3, 4, and 5 show the TCP session being created. (Note that
netbios-ssn is the descriptive name given to port 139.) Packets 6 and 7
are the NBT SESSION REQUEST/SESSION RESPONSE exchange, and
packet 8 is an ACK message, which is just TCP taking care of its business.

Packets 9 and 10 are what we want. These are our first SMBs.

SMB Message Structure11.2

Figure 11.1 provides an overview of SMB gross anatomy. It shows that SMBs
are composed of three basic parts:

the Header,

the Parameter Block, and

2. The original was much more detailed and interesting. It had to be edited so that it would
fit on the page, and because all those details can be distracting.

Part II SMB: The Server Message Block Protocol180

the Data Block.

Either or both of the latter two segments may be vestigial (size == 0) in
some specimens.

Header

Thorax

Abdomen

(PARAMETERS)

(DATA)SMBug

Figure 11.1: SMB gross anatomy

SMB messages are composed of three basic parts: the header, the parameters, and the data.

SMB Message Header11.2.1

Starting at the top, the SMB header is arranged like so:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

'B''M''S'0xff

STATUS...COMMAND

FLAGS2FLAGS...STATUS

EXTRA
...
...

PIDTID

MIDUID

We can also dissect the header using the simple syntax presented
previously:

18111 SMB in Its Natural Habitat

SMB_HEADER
 {
 PROTOCOL = "\xffSMB"
 COMMAND = <SMB Command code (one byte)>
 STATUS = <Status code>
 FLAGS = <Old flags>
 FLAGS2 = <New flags>
 EXTRA = <Sometimes used for additional data>
 TID = <Tree ID>
 PID = <Process ID>
 UID = <User ID>
 MID = <Multiplex ID>
 }

We now have a pair of perspectives on the header structure. Time for
some good, old-fashioned descriptive text.

The PROTOCOL and COMMAND fields
The SMB header starts off easily enough. The first four bytes are the
protocol identifier string, which always has the same value, “\xffSMB”.
It’s not particularly clear3 why this is included in the SMBs but there it
is, and it’s in all of them.

The next byte is the COMMAND field, which tells us what kind of
SMB we are looking at. In the NEGOTIATE PROTOCOL messages cap-
tured above, the COMMAND field has a value of 0x72 (aka
SMB_COM_NEGOTIATE). The SNIA doc has a list of the available com-
mand codes. That list is probably complete, but this is SMB we are talking
about, so you never know...

The STATUS field
Now things start to get surreally interesting.

DOS and OS/2 use 16-bit error codes, grouped into classes. To ac-
commodate these codes, the STATUS field is subdivided like so:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

ErrorCode<reserved>ErrorClass

3. ...to me.

Part II SMB: The Server Message Block Protocol182

Windows NT introduced a new set of 32-bit error codes, known as
NT_STATUS codes. These use the entire status field to hold the
NT_Status value:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

NT_Status

With two error code formats from which to choose, the client and
server must confer to decide which set will be used. How that is done will
be explained later on. Error code handling is a large-sized topic with extra
sauce.

FLAGS and FLAGS2
Look around the Web for a copy of a document called COREP.TXT.4

This is probably the earliest SMB documentation that is also easy to find.
In COREP.TXT, you can see that the original SMB header layout reserved
fifteen bytes following the error code field. Those 15 bytes have, over
time, been carved up for a variety of uses.

The first formerly-reserved byte is now known as the FLAGS field.
The bits of the FLAGS field are used to modify the interpretation of the
SMB. For example, the highest-order bit is used to indicate whether the
SMB is a request (0) or a response (1).

Following the FLAGS field is the two-byte FLAGS2 field. This set
of bits is used to indicate the use of newer features, such as the 32-bit
NT_STATUS error codes.

The EXTRA field
The EXTRA field takes up most of the remaining formerly-reserved bytes.
It contains two subfields, as shown below:

4. The first place to look is Microsoft’s CIFS FTP site: ftp://ftp.microsoft.com/
developr/drg/CIFS/. The COREP.TXT file is formatted for printing on an old-style
dot-matrix printer, which makes it look a little goofy in places (e.g. bold font is accomplished
by typing a character, then backspacing, then re-typing the same character). The same content
is available in an alternate format in the file SMB-CORE.PS. See the References section.

18311 SMB in Its Natural Habitat

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

Signature...PidHigh

...Signature...

<unused>...Signature

The PidHigh subfield is used to accommodate systems that have
32-bit Process IDs. The original SMB header format only had room for
16-bit PIDs (in the PID field, described further on).

The 8-byte Signature subfield is for SMB message signing, which
uses cryptography to protect against a variety of attacks that might be
tried by badguys hoping to gain unauthorized access to SMB shares.

When not in use, these fields must be filled with zeros.

TID, PID, UID, and MID
TID

The “Tree ID.” In SMB, a share name typically represents a directory
or subdirectory tree on the server. The SMB used to open a share is
called a “Tree Connect” because it allows the client to connect to
the shared [sub]directory tree. That’s where the name comes from.
The TID field is used to identify connections to shares once they
have been established.

PID

The “Process ID.” This value is set by the client, and is intended as
an identifier for the process sending the SMB request. The most
important thing to note regarding the PID is that file locking and
access modes are maintained relative to the value in this field.

The PID is 16 bits wide, but it can be extended to 32 bits using
the EXTRA.PidHigh field described earlier.

UID

The “User ID.” This is also known as a VUID (Virtual User ID). It
is assigned by the server after the user has authenticated and is valid
until the user logs off. It does not need to be the user’s actual User
ID on the server system. Think of it as a session token assigned to
a successful logon.

Part II SMB: The Server Message Block Protocol184

MID

The “Multiplex ID.” This is used by the client to keep track of
multiple outstanding requests. The server must echo back the MID
and the PID provided in the client request. The client can use those
values to make sure that the reply is matched up to the
correct request.

The TID and [V]UID are assigned and managed by the server, while
the PID and MID are assigned by the client. It is important to note that
the values in these fields do not necessarily have any meaning outside of
the SMB connection. The PID, for example, does not need to be the ac-
tual ID of the client process. The client and server assign values to these
fields in order to keep track of context, and that’s all.

SMB Message Parameters11.2.2

In the middle of the SMB message are two fields labeled WordCount and
Words[]. For our purposes, we will identify these two fields as being the
SMB_PARAMETERS block, which looks like this:

...2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

Words...WordCount

SMB_PARAMETERS
 {
 WordCount = <Number of words in the Words array>
 Words[WordCount] = <SMB parameters; varies with SMB command>
 }

The Words field is simply a block of data that is 2 × WordCount bytes
in length. Perhaps at one time the intention was that it would contain only
two-byte values (a quick look at COREP.TXT suggests that this is the case). In
practice, all sorts of stuff is thrown in there.

Each SMB message type (species?) has a different record structure that is
carried in the Words block. Think of that structure as representing the param-
eters passed to a function (the function identified by the SMB command code
listed in the header).

18511 SMB in Its Natural Habitat

SMB Message Data11.2.3

Following the SMB_PARAMETERS is another block of data, the content of
which also varies in structure on a per-SMB basis:

...2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

Bytes...ByteCount

SMB_DATA
 {
 ByteCount = <Number of bytes in the Bytes field>
 Bytes[ByteCount] = <Contents varies with SMB command>
 }

The Bytes field holds the data to be manipulated. For example, it may
contain the data retrieved in response to a READ operation, or the data to be
written by a WRITE operation. In many cases, though, the SMB_DATA block
is just another record structure with several subfields. Through time, SMB has
evolved lazily and any functional distinction that may have separated the Pa-
rameter and Data blocks has been blurred.

Note that the SMB_DATA.ByteCount field is an unsigned short, while
the SMB_PARAMETERS.WordCount field is an unsigned byte. That means
that the SMB_PARAMETERS.Words block is limited in length to 510 bytes
(2 × 255), while SMB_DATA.Bytes may be as much as 65535 bytes in length.
If you add all that up, and then add in the SMB_PARAMETERS.WordCount
field, the SMB_DATA.ByteCount field, and the size of the header, you will
find that the whole thing fits easily into the 217 – 1 bytes made available in the
NBT SESSION MESSAGE header.

Case in Point: NEGOTIATE PROTOCOL11.3

Now that we have an overview of the structure of SMB messages, we can take
a closer look at our live specimen. Remember packets 9 and 10 from the capture
we made earlier? They show a NEGOTIATE PROTOCOL exchange. Let’s get
out the tweezers, the pocket knife, and dad’s hammer and see what’s inside.

Part II SMB: The Server Message Block Protocol186

NEGOTIATE_PROTOCOL_REQUEST
 {
 SMB_HEADER
 {
 PROTOCOL = "\xffSMB"
 COMMAND = SMB_COM_NEGOTIATE (0x72)
 STATUS
 {
 ErrorClass = 0x00 (Success)
 ErrorCode = 0x0000 (No Error)
 }
 FLAGS = 0x18 (Pathnames are case-insensitive)
 FLAGS2 = 0x8001 (Unicode and long filename support)
 EXTRA
 {
 PidHigh = 0x0000
 Signature = 0 (all bytes zero filled)
 }
 TID = 0 (Not yet known)
 PID = <Client Process ID>
 UID = 0 (Not yet known)
 MID = 2 (often 0 or 1, but varies per OS)
 }
 SMB_PARAMETERS
 {
 WordCount = 0
 Words = <empty>
 }
 SMB_DATA
 {
 ByteCount = 12
 Bytes
 {
 BufferFormat = 0x02 (Dialect)
 Name = "NT LM 0.12" (nul terminated)
 }
 }
 }

The breakdown of packet 9 shows the SMB NEGOTIATE PROTOCOL
REQUEST as sent by the jCIFS Exists utility. Other clients will use slightly
different values, but they are all variations on the same theme. Some features
worth noting:

The COMMAND field has a value of 0x72 (SMB_COM_NEGOTIATE).
That’s how we know that this is a NEGOTIATE PROTOCOL message.

18711 SMB in Its Natural Habitat

We also know that it is a REQUEST rather than a RESPONSE because
the highest-order bit in the FLAGS field has a value of zero (0).

The STATUS field is all zeros at this point because we haven’t yet done
anything to cause an error. Also, the error messages are presented in the
older DOS format. This is because jCIFS is indicating, via a bit in the
FLAGS2 field, that it is using the DOS format. We’ll dig into those bits
later on.

Several fields (the EXTRA.Signature, the TID, and the UID, to name
a few) contain zeros. The content of these fields has not yet been deter-
mined, and they may or may not be filled in later on. It all depends upon
the types of SMB requests that are issued. Stay tuned.

In this particular SMB the Parameter block is empty and all of the useful
information is being carried in the Data block. In contrast, the response
packet from the server (packet 10) makes use of both the Parameter and
Data blocks (assuming that there are no errors). See for yourself by looking
at the NEGOTIATE PROTOCOL RESPONSE in your capture.

The Data block in the request contains the list of protocols that the
client is able to speak. jCIFS only knows one dialect, so only one name
is listed in the message above. As you can see, jCIFS implements the
“NT LM 0.12” dialect (the most recent and widely supported as of this
writing). Other clients, such as Samba’s smbclient, support a longer
list of dialects.

The AndX Mutation11.4

In the trace given above, Ethereal has identified packets 11 and 12 as being a
SESSION SETUP ANDX exchange.5 The term “ANDX” at the end of the
names indicates that these messages belong to a curious class of creatures known
as “AndX messages.” SMB AndX messages are actually several SMBs
combined into a single symbiotic packet as shown in Figure 11.2. It is an
efficient mutation.

5. Ethereal version 0.9.3 will report the name of the last AndX Command in the chain, rather
than the first. This was fixed somewhere between 0.9.3 and 0.9.6. The trick with Ethereal is
to update early and often.

Part II SMB: The Server Message Block Protocol188

Header

Body[0]

Body[1]

Body[n]

Figure 11.2: AndX SMBs

AndX SMBs combine several SMB messages into one. Only one header is used, but each
parameter block contains information identifying the next AndX body segment.

AndX messages work something like a linked list. Each Parameter block
in an AndX message begins with the following structure:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9876543210

AndXOffset<reserved>AndXCommand

The AndXCommand field provides the SMB command code for the next
AndX block in the list (not the current one). The AndXOffset contains the
byte index, relative to the start of the SMB header, of that next AndX block —
think of it as a pointer. Since the AndXOffset value is independent of the
SMB_PARAMETERS.WordCount and SMB_DATA.ByteCount values, it

18911 SMB in Its Natural Habitat

is possible to provide padding between the AndX blocks as shown
in Figure 11.3.

Header Parameters Data Parameters Data

AndXOffset
Zero

<padding>

Figure 11.3: AndX SMB chaining

The AndXOffset value in each AndX parameter block gives the offset (relative to the
start of the SMB) of the next AndX block. The AndXOffset of the last AndX block has
a value of zero (0).

Now that we have a general idea of what an SMB AndX message looks
like we are ready to dissect packet 11. It looks like this:

SESSION_SETUP_ANDX_REQUEST
 {
 SMB_HEADER
 {
 PROTOCOL = "\xffSMB"
 COMMAND = SMB_COM_SESSION_SETUP_ANDX (0x73)
 STATUS
 {
 ErrorClass = 0x00 (Success)
 ErrorCode = 0x0000 (No Error)
 }
 FLAGS = 0x18 (Pathnames are case-insensitive)
 FLAGS2 = 0x0001 (Long filename support)
 EXTRA
 {
 PidHigh = 0x0000
 Signature = 0 (all bytes zero filled)
 }
 TID = 0 (Not yet known)
 PID = <Client Process ID>
 UID = 0 (Not yet known)
 MID = 2 (often 0 or 1, but varies per OS)
 }
 ANDX_BLOCK[0] (Session Setup AndX Request)
 {
 SMB_PARAMETERS

Part II SMB: The Server Message Block Protocol190

 {
 WordCount = 13
 AndXCommand = SMB_COM_TREE_CONNECT_ANDX (0x75)
 AndXOffset = 79
 MaxBufferSize = 1300
 MaxMpxCount = 2
 VcNumber = 1
 SessionKey = 0
 CaseInsensitivePasswordLength = 0
 CaseSensitivePasswordLength = 0
 Capabilities = 0x00000014
 }
 SMB_DATA
 {
 ByteCount = 20
 AccountName = "GUEST"
 PrimaryDomain = "?"
 NativeOS = "Linux"
 NativeLanMan = "jCIFS"
 }
 }
 ANDX_BLOCK[1] (Tree Connect AndX Request)
 {
 SMB_PARAMETERS
 {
 WordCount = 4
 AndXCommand = SMB_COM_NONE (0xFF)
 AndXOffset = 0
 Flags = 0x0000
 PasswordLength = 1
 }
 SMB_DATA
 {
 ByteCount = 22
 Password = ""
 Path = "\\SMEDLEY\HOME"
 Service = "?????" (yes, really)
 }
 }
 }

There is a lot of information in that message, but we are not yet ready to
dig into the details. There is just too much to cover all of it at once. Our goals
right now are simply to highlight the workings of the AndX blocks, and to
provide a glimpse inside the SESSION SETUP ANDX and TREE CONNECT
ANDX sub-messages so that we will have something to talk about later on.

19111 SMB in Its Natural Habitat

The block labeled ANDX_BLOCK[0] is the body of the SESSION
SETUP REQUEST, and ANDX_BLOCK[1] contains the TREE CONNECT
REQUEST. Note that the AndXCommand field in the final AndX block is given
a value of 0xFF. This, in addition to the zero offset in the AndXOffset field,
indicates the end of the AndX list.

The Flow of Conversation11.5

SMB conversations start after the session has been established via the transport
layer. As a rule, the client always speaks first. Clients send requests, servers re-
spond, and that’s the way SMB is supposed to work. This is a hard-and-fast
rule which means, of course, that there is an exception. Fortunately, we can
(and will) put off talking about that exception until we talk about Opportunistic
Locks (OpLocks).

The NEGOTIATE PROTOCOL REQUEST/RESPONSE is always the first
SMB exchange in the conversation. The client and server need to know what
language to speak before they can say anything else. This is also a hard-and-
fast rule, but there are no exceptions (which is an exception to the rule that all
hard-and-fast rules have exceptions).

Once the dialect has been selected, the next formality is to establish an
SMB session using the SMB SESSION SETUP REQUEST message. We keep
running into terminology twists, and here we have yet another. The SMB
SESSION SETUP exchange sets up an SMB session within the NBT or naked
TCP session.

Huh?
Well, yes, that’s confusing. The problem is that we are talking about two

different kinds of sessions here.

There is the network session built at layer 5 of the OSI model, on top of
the transport layer.

There is the user logon session.

Ah, there’s a clue! The SESSION SETUP is used to perform authentica-
tion and establish a user session with the server.6 A quick look at the SESSION

6. We are dealing with a vague definition here. According to the SNIA doc, the SESSION
SETUP is meant to “set up” the session created by the NEGOTIATE PROTOCOL, which also

Part II SMB: The Server Message Block Protocol192

SETUP ANDX REQUEST block in the packet above shows that the Exists
utility did in fact send a username — the name “GUEST”, passed via the
AccountName field — to the server.

Once the user session is established, the client may try to connect to a
share using a TREE CONNECT SMB. It is a hard-and-fast rule that TREE
CONNECT SMBs must follow the SESSION SETUP. There is an exception
to this as well, which we will cover when we get to share-mode vs.
user-mode authentication.

Figure 11.4 shows the right way to start an SMB conversation. Combining
the SESSION SETUP ANDX and TREE CONNECT ANDX SMBs into a
single AndX message is optional (jCIFS’ Exists does, but Samba’s
smbclient doesn’t). Once the conversation has been initiated using the
above sequence, the client is free to improvise.

A Little More Code11.6

There is another small detail you may have noticed while studying the captured
SMB packets — or perhaps you remember this from one of the Alert boxes in
the NBT section: SMBs are written using little-endian byte order. If your target
platform is big-endian, or if you want your code to be portable to big-endian
systems, you will need to be able to handle the conversion between host and
SMB byte order.

The htonl(), htons(), ntohl(), and ntohs() functions won’t
help us here. They convert between host and network byte order. We need to
be able to convert between host and SMB order (and SMB order is definitely
not the same as network order).

So, to solve the problem, we need a little bit of code, which is presented
here mostly to get it out of the way so that we won’t have to bother with it
when we are dealing with more complex issues. The functions in Listing 11.1
read short and long integer values directly from incoming message buffers and
write them directly to outgoing message buffers.

makes some sort of sense. Thing is, there may be multiple SESSION SETUP exchanges fol-
lowing the NEGOTIATE PROTOCOL, meaning multiple SMB user sessions per NBT or naked
TCP transport session. The waters are muddy.

19311 SMB in Its Natural Habitat

Client Server

Tree
Disconnect

Request

Tree
Disconnect
Response

[TCP Disconnect]

[Conversation]

Negotiate
Protocol
Request

Session
Setup

Request

Tree
Connect
Request

Negotiate
Protocol
Response

Session
Setup
Response

Tree
Connect
Response

Figure 11.4: A simple SMB conversation

The client makes requests (some of which may be batched in AndX messages) and the
server responds. The jCIFS Exists utility sends a NEGOTIATE PROTOCOL REQUEST
followed by batched SESSION SETUP plus TREE CONNECT AndX requests. The TREE
DISCONNECT exchange at the end is optional. When the client closes the session at the
transport layer, all resources are released.

Listing 11.1: Reading and writing integer values

ushort smb_GetShort(uchar *src, int offset)
 /* -- **
 * Read a short integer converting it to host byte
 * order from a byte array in SMB byte order.
 * -- **
 */
 {
 ushort tmp;

 /* Low order byte is first in the buffer. */
 tmp = (ushort)(src[offset]);

Part II SMB: The Server Message Block Protocol194

 /* High order byte is next in the buffer. */
 tmp |= ((ushort)(src[offset+1]) << 8);

 return(tmp);
 } /* smb_GetShort */

void smb_SetShort(uchar *dst, int offset, ushort val)
 /* -- **
 * Write a short integer in host byte order to the
 * buffer in SMB byte order.
 * -- **
 */
 {
 /* Low order byte first. */
 dst[offset] = (uchar)(val & 0xFF);

 /* High order byte next. */
 dst[offset+1] = (uchar)((val >> 8) & 0xFF);
 } /* smb_SetShort */

ulong smb_GetLong(uchar *src, int offset)
 /* -- **
 * Read a long integer converting it to host byte order
 * from a byte array in SMB byte order.
 * -- **
 */
 {
 ulong tmp;

 tmp = (ulong)(src[offset]);
 tmp |= ((ulong)(src[offset+1]) << 8);
 tmp |= ((ulong)(src[offset+2]) << 16);
 tmp |= ((ulong)(src[offset+3]) << 24);
 return(tmp);
 } /* smb_GetLong */

void smb_SetLong(uchar *dst, int offset, ulong val)
 /* -- **
 * Write a long integer in host byte order to the
 * buffer in SMB byte order.
 * -- **
 */
 {
 dst[offset] = (uchar)(val & 0xFF);
 dst[offset+1] = (uchar)((val >> 8) & 0xFF);
 dst[offset+2] = (uchar)((val >> 16) & 0xFF);
 dst[offset+3] = (uchar)((val >> 24) & 0xFF);
 } /* smb_SetLong */

19511 SMB in Its Natural Habitat

Take a Break11.7

Our field trip into SMB territory is now over. We have covered a lot of ground,
collected samples, and taken a look at SMBs in the wild. Our next step will be
doing the lab work — studying our specimens under a microscope. It is time
to take a break, relax, and reflect on what we have learned so far.

Time for a cup of tea.
In the next section we will go back over the SMB header in a lot more

detail with the goal of explaining some of the key concepts that we have only
touched on so far. You will probably want to be well rested and in a good mood
for that.

Part II SMB: The Server Message Block Protocol196

