
C H A P T E R 1
Network Considerations
NFS is an acronym for “Network File System,” so it should come as no surprise that
NFS performance is heavily affected by the latency and bandwidth of the underlying network.
Before embarking on a detailed investigation into a specific area of NFS, it is a good idea to first
verify that the underlying network is performing as expected.

This chapter focuses on three main areas: analyzing the physical layout of the network that
separates your NFS clients and servers, measuring the throughput capabilities of the network,
and network troubleshooting concepts.

This chapter describes a recommended methodology and set of tools available for under-
standing the physical layout of your network, measuring its throughput, and performing routine
network troubleshooting tasks. This chapter does not discuss the myriad of networking topolo-
gies and interface cards that are currently available for HP-UX systems. NFS runs on most any
networking link supporting Internet Protocol (IP), and it typically performs better on faster
links.1

1.1   Analyze Network Layout

An important early step in troubleshooting any NFS performance issue is to learn as much
as possible about the physical layout of the underlying network topology. Some of the questions
you should be trying to answer at this stage are:

1. There is a wealth of information about the latest and greatest networking technologies, such as Gigabit Ethernet, 
Auto Port Aggregation (APA), etc., available from HP’s IT Resource Center web site: http://itrc.hp.com, and 
HP’s online documentation repository: http://docs.hp.com.
1
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• How many network hops (i.e. bridges, hubs, routers, switches, etc.) do network packets 
traverse between the client and the server systems?

• What is the speed of each link separating these systems?

• Does your network equipment use auto-negotiation to set speed and duplex settings?

• Are your network interfaces configured for half-duplex or full-duplex mode?

• Do your switch port settings match the speed and duplex settings of your host interfaces?

• What is the maximum transmission unit (MTU) size of the links between these systems?

• If the links are using different MTU sizes, how are the packets being translated? For 
example, if the NFS client resides in an FDDI ring and uses an MTU size of 4352 and the 
NFS server uses a 100BT interface with an MTU size of 1500, how are the 4352 byte 
packets from the client being fragmented into 1500 byte packets for the server?

• Do packets sent from the client to the server take the same route through the network as 
the packets sent from the server to the client?

• Are your NFS client and server members of a simple Local Area Network (LAN), such as 
the example shown in Figure 1.1, where the systems are connected to the same switch?

Figure 1.1   NFS Clients and Servers on Same Physical LAN
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• Are the systems geographically separated by a Wide Area Network (WAN) such as the 
example shown in Figure 1.2, where NFS requests and replies must traverse many 
network switches, routers, and firewalls?

While network administrators should be the best source of knowledge about the layout
and capabilities of the underlying network, even they are not always up-to-date on the current
state of the network. In many large corporate environments, the physical network is constantly
evolving as new equipment replaces old, new backbone technologies replace antiquated technol-
ogies, new systems are added to existing networks, new subnets are created, etc. Whenever there
is any uncertainty as to the physical layout of the network separating the NFS clients and serv-
ers, a network layout analysis should be performed.

Among the best tools available for analyzing network capabilities is the HP OpenView
suite of products, such as Network Node Manager.2 Even without using a full-blown network

Figure 1.2   NFS Clients and Servers Separated by a WAN

2. For more information about the OpenView product family, visit http://openview.hp.com.
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management tool such as OpenView, you can still collect a good deal of information about your
network topology using tools that ship with HP-UX.

1.1.1   traceroute(1M)

The traceroute(1M) tool provides a simple means of determining the path through the
network taken by packets sent from one system to another. HP’s version of traceroute is
based on the source code originally developed by Van Jacobson. Since traceroute is consid-
ered “contributed” software, it resides in the /usr/contrib/bin directory.

Figure 1.3 shows a sample screen shot of traceroute output displaying the physical
path taken between a system located in Roseville, CA and a system located in Cupertino, CA. In
this example, and the sample shown in Figure 1.4, traceroute is run with the “-n” option,
instructing traceroute to display IP address information for each network hop without per-
forming address-to-hostname translation.3

Figure 1.4 reveals the network path taken by traceroute packets sent from the
Cupertino system to the Roseville system.

Figure 1.3   traceroute Output from Roseville to Cupertino

3. For more information about available traceroute command-line options, refer to the traceroute(1M) man page.

Figure 1.4   traceroute Output from Cupertino to Roseville
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In this example there are six network links separating these two systems (the last line in
the traceroute output is the actual destination system). The output shows the cumulative
latency experienced as the packets transition through the various network links on their way to
the final destination. By comparing these two traceroute outputs you can see the number of
network hops taken in both directions is the same, but the physical path through the network is
different in each direction. For example, going to Cupertino the packets went through
“10.4.32.143” while on the way to Roseville the packets went through “10.75.208.10.” The
latencies experienced in both directions appear comparable.

1.1.2   ping(1M)

Another tool shipping with HP-UX that can simplify the process of collecting network
topology information is ping(1M). Michael Muuss originally developed the ping program at
the US Army Ballistics Research Lab (BRL) in the early 1980’s. It has since become one of the
most widely used UNIX networking commands. Most every UNIX administrator has used ping
at one time or another to quickly verify connectivity between two network nodes. When used
with the “-o” option, ping inserts an IP Record Route4 option into its outgoing packets, allow-
ing ping to track and display the physical network path taken between two nodes.

Figure 1.5 shows the “ping -o” command displaying the network path taken by packets
sent between the same systems used in the earlier traceroute example. The “-n 1” option
was also used to instruct ping to only send a single packet to the remote system.5

4. Many network hardware vendors allow the IP Record Route feature to be disabled, effectively making these hops 
invisible to the “ping -o” command.

Figure 1.5   ping -o between Roseville and Cupertino Systems

5. For more information about available ping command-line options, refer to the ping(1M) man page.
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Comparing this output against the traceroute screen shot in Figure 1.3, you can see
that the ping packet took the same number of hops to get from Roseville to Cupertino as the
traceroute packet. However, the ping traffic took a different route through the HP network
than the traceroute traffic. These differences in the network path are most likely the result of
dynamic routing tables kept in the routers and bridges used in corporate network backbone.

Unlike traceroute, ping does not report the individual latencies experienced at each
location in the topology. While this information may not be as useful as the traceroute out-
put, it provides an easy way of determining the network topology separating two systems.

Once you’ve determined the physical layout of the network separating your NFS clients
and servers, there are several other questions to ask yourself:

• Does the layout make sense to you? In other words, is the network laid out as you 
expected or were you surprised by what traceroute and ping revealed?

• Did the physical layout change recently? If so, why?
• Are packets taking the most efficient path through the network? If not, can you force them 

to take the most efficient path?
• Can any of the network hops separating the clients and servers be eliminated?

If there is any way to optimize the physical layout of the network (i.e. minimize the num-
ber of network hops and use the most efficient route between the systems) it can help NFS
performance tremendously.

1.2   Measure Network Throughput Capabilities

Once the layout of the physical network is understood, the next step in validating your
network is to measure the throughput of the connection separating the client and server. Gener-
ally speaking, the faster your network throughput, the better your NFS performance will be.

When testing the performance of the network for NFS purposes, it is essential to eliminate
the NFS layer from consideration by simply testing the network transport layer using non-NFS
protocols. If a network throughput problem exists between an NFS client and server, the prob-
lem would likely affect any network-based application, not just NFS.6 It is also important to
measure the throughput going in both directions (i.e. client to server, server to client) to make
sure the performance is comparable. Similarly, when attempting to characterize network
throughput, it is important to eliminate any influence of the local filesystems. It is therefore nec-
essary to select measurement tools that are not dependent upon NFS or filesystem resources.

Several tools exist to help system and network administrators measure the throughput of
their network connections. Two of the more prominent tools are ttcp(1) and netperf.

6. A minor packet loss problem may not affect TCP/IP applications such as FTP or NFS/TCP filesystems, but may 
cause problems for NFS/UDP filesystems. For a detailed explanation of how packet loss affects NFS/UDP and 
NFS/TCP filesystems differently, refer to Section 10.3 “Managing Retransmissions and Timeouts.”
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1.2.1   ttcp(1)

ttcp(1) is a simple, lightweight program that measures the throughput of any network
connection without relying on the filesystem layer. It can generate either UDP or TCP traffic and
the packet size is adjustable, allowing it to simulate the behavior of different applications.

Mike Muuss (the author of the ping command) and Terry Slattery, of the US Army Bal-
listics Research Lab (BRL), developed the ttcp (Test TCP Connection) program in the early
1980’s. The program now resides in the public domain and is freely available to download from
http://ftp.arl.mil/ftp/pub/ttcp. The ttcp man page is also available from this site, which docu-
ments the many available command-line arguments.

A sample ttcp session is shown in Figure 1.6.

In this example, ttcp is run on the NFS client system and sends TCP/IP traffic to the NFS
server’s discard port (9) across a Gigabit Ethernet connection. This output shows the client can
send over 72MB/sec. on this link. Figure 1.7 shows the server using ttcp to send TCP/IP traffic
back to the client across the same link and getting roughly the same throughput.

The system or network administrator now has a fairly good idea what the capabilities are
of the network link between these two systems. Of course, this does not imply that the NFS
throughput should be 72-73MB/sec. across this link, since the NFS protocol relies much more
on CPU, filesystem, and memory resources than ttcp does.

Figure 1.6   ttcp Sending TCP Traffic from Client to Server

Figure 1.7   ttcp Sending TCP Traffic from Server to Client
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1.2.2   netperf

netperf is a benchmark utility that can measure the performance of many different types of
networks. It provides tests for both unidirectional throughput and end-to-end latency. Like
ttcp, netperf measures throughput without relying on any filesystem resources. However, it is a
far more sophisticated network-measuring tool, compared to ttcp.

Rick Jones, of HP’s Infrastructure Solutions and Partners group, developed netperf in
1991 and he has continued to add new features and capabilities to the program as new network-
ing technologies became available. The best source of information is the official netperf web
site: http://netperf.org. The latest version of the source code is available at the following loca-
tion: ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf.

Figure 1.8 shows the screen output of netperf sending TCP and UDP data from system
“atc03.cup.hp.com” (Cupertino, CA) to three different network destinations:

• Gigabit Ethernet connection to “atc01.cup.hp.com” (Cupertino, CA)

• 100Mb Ethernet connection to “atc01.cup.hp.com” (Cupertino, CA)

• WAN connection to “ros87252.rose.hp.com” (Roseville, CA)

Figure 1.8   netperf Throughput from Different Network Connections
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In this example, the UDP traffic sent over a Gigabit Ethernet connection to a neighbor
system in Cupertino yielded a throughput of over 74 MB/sec. Sending TCP traffic to the same
Cupertino-based system over a 100BT link yielded over 11MB/sec. Finally, sending TCP traffic
across HP’s network from Cupertino to Roseville (via the six hops identified earlier with ping
and traceroute) yielded just under 2 MB/sec.

Also evident from this example is the fact that netperf has a myriad of command-line
options, both for the netperf command itself and for the specific type of test you are performing.
Be sure to read the netperf manual, available at ftp://ftp.cup.hp.com/dist/networking/bench-
marks/netperf, very carefully to understand which options are available and their proper usage,
as the throughput numbers can vary greatly depending upon how the tests are run.

Just as with the ttcp example earlier, netperf numbers do not directly translate into the
expected NFS throughput values. However, they do provide a good means of estimating the
upper bounds of a given network connection’s bandwidth.

1.3   Network Troubleshooting Tools
At this point, you should be very familiar with the network topology separating the NFS

client and server, and have verified that IP packets are taking the appropriate route through the
network in both directions. If you have not yet performed these critical steps, refer to the earlier
Section 1.1 “Analyze Network Layout” for instructions on how to collect this information. After
running network throughput tests using the tools described in Section 1.2 “Measure Network
Throughput Capabilities,” if you believe your network is experiencing a performance through-
put issue then it is time to troubleshoot the network itself. 

K E Y  I D E A   —  C o m m o n  C a u s e s  o f  D r o p p e d  
N e t w o r k  P a c k e t s

In many cases, network throughput problems are caused by packets being dropped some-
where on the network, either by the NFS client or server system itself or at some intermedi-
ate point in the network separating the two systems. Some of the more common reasons
network packets are dropped include:

• Defective hardware (i.e. network interface cards, cables, switch ports, etc.)
• Mismatching configuration settings between interface cards and switch equipment. The 

most common configuration issue is where one side of a connection is set to half-duplex 
and the other side to full-duplex, causing “late” collisions to be logged on the half-duplex 
side and FCS or CRC errors logged on the full-duplex side.a

• Network interconnect device buffer memory exhaustion (described in Section 10.4)

• UDP socket overflows occurring on the NFS server, indicating that not enough daemons 
are running to handle the inbound requests for a specific port

a. The lanadmin(1M) tool, described in Section 1.3.5, displays duplex settings and reports any link-level errors.
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The goal of this phase of the investigation is to determine if the network throughput prob-
lem is affecting all IP traffic or only NFS. In some cases, the only tools that can detect these
types of problems are external analyzers and reporting tools specific to your network hardware.
HP does provide a number of software-based tools to help detect and analyze network problems.
Two frequently used network troubleshooting tools are netstat(1) and lanadmin(1M).

1.3.1   netstat -s

The netstat(1) command can be used to display statistics for network interfaces and
protocols, it can list active network connections, print routing tables, etc. When executed with
the “-s” option, netstat returns a complete list of all network transport statistics (TCP, UDP,
IP, ICMP, and IGMP) arranged by protocol.

A portion of “netstat -s” output is shown in Figure 1.9 and Figure 1.10. These two
screen shots illustrate how this single command returns an enormous amount of information
about the underlying network protocols, including the number of TCP packets sent and received,
the number of UDP socket overflows and checksum failures that occurred, etc. Also readily
available are statistics such as the total number of IP packets received, the ICMP port unreach-
able and source quench messages generated, etc. All of this information can be extremely useful
when troubleshooting a network or protocol layer problem.

Using netstat and diff to troubleshoot a network problem Listed below is
an example of how to use the “netstat -s” command to help determine if packets are being
lost somewhere in your network The underlined steps are the commands you type.

1. Initialize the “before” file with the current date and time.
# date > netstat.before

2. Collect a baseline set of netstat -s statistics on both the NFS client and server and 
append the output to the “before” file created in step 1.
# netstat -s >> netstat.before

3. Perform a test that exhibits the performance problem using the TCP protocol (such as 
ttcp or netperf).
# ttcp -stp9 -n 100000 server

4. Initialize the “after” file with the current date and time.
# date > netstat.after

5. Collect a second set of netstat -s statistics on both the NFS client and server and 
append the output to the “after” file created in step 4.
# netstat -s >> netstat.after

6. Locate any differences between the “before” and “after” netstat outputs to identify 
which statistics were incrementing during the test.
# diff netstat.before netstat.after
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An example of the type of output returned by diff(1) from such an exercise is shown in
Figure 1.11. Some of the TCP statistics to monitor are “data packets retransmitted,” “completely
duplicate packets,” and “segments discarded for bad checksum.” If these statistics are steadily
increasing over time it would indicate that packet loss is occurring somewhere in the network or
that a possible network hardware problem is causing TCP checksum failures.

Also of concern would be an increasing number of UDP “bad checksums,” as this could
indicate that an IP level device in the network (perhaps a router performing IP fragmentation) is
not correctly fragmenting UDP datagrams as it forwards them. These datagrams would be

Figure 1.9   netstat -s Output Showing TCP Statistics
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discarded by the receiving system, forcing the sending system to re-send this data. UDP “socket
overflows” usually indicates that an application, such as NFS, is receiving requests on a particu-
lar UDP socket faster than it can process them, and consequently discarding requests.7

Of the IP statistics reported, “fragments dropped” and “fragments dropped after timeout”
would indicate packet loss is occurring in the network.

Figure 1.10   netstat -s Output Including UDP and IP Statistics

7. The effect of UDP socket overflows on NFS performance is discussed in greater detail in Chapter 4.

Figure 1.11   Comparing “before” and “after” netstat Outputs
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Using netstat and beforeafter to troubleshoot a network problem
Although the diff(1) procedure does work for locating differences in netstat outputs,
interpreting diff output can be a bit cumbersome. Not only do you have to manually subtract
the “after” numbers from the “before” numbers, since the diff output removes the subsystem
header information lines, you need to carefully confirm which statistics you are interpreting. For
example, netstat returns “# packets received” under the TCP heading and “# total packets
received” under the IP heading. Confusing these two values could lead to incorrect conclusions
about the health of your network.

To simplify this procedure of interpreting multiple sets of netstat output, HP developed
a tool called beforeafter. This program takes two netstat -s output files and compares
them against each other. The output from beforeafter looks identical to netstat -s out-
put except that the statistics represent only the differences between the “before” and “after”
files. The tool is available at: ftp://ftp.cup.hp.com/dist/networking/tools/beforeafter.tar.gz.

The procedure for using the beforeafter tool is the same as the diff method outlined
earlier, with the exception of step 6. Instead of using the diff command to compare the files,
the beforeafter tool should be used as follows:

# beforeafter netstat.before netstat.after

Figure 1.12 contains an example of the beforeafter output. Notice the output looks
identical to that of “netstat -s”; however the statistics reported are not cumulative totals but
instead represent the differences between the “before” and “after” files.

Figure 1.12   beforeafter Comparing netstat -s Statistics
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The beforeafter tool even calculates the difference in wall-clock times between the
date contained in the “before” and “after” files. Looking at the date line in Figure 1.12 you can
see that the “after” file was collected 2 minutes and 28 seconds after the “before” file. The test
caused this system to send 600503 packets containing 819239972 bytes of data, and receive
57535 packets containing acknowledgement packets for 819239975 bytes.

Although the diff output and the beforeafter output reveal the same information,
locating and quantifying the key statistics is much easier using the beforeafter tool.

1.3.2   netstat -p <protocol>

Once you have identified a subset of the netstat -s output that is of particular interest,
you can limit the statistical output to a single protocol by using the “-p <protocol>” syntax.
An example is shown in Figure 1.13. Confining the output to a single protocol can greatly sim-
plify the process of identifying specific protocol-related problems compared to analyzing
screens full of “netstat -s” output.

1.3.3   netstat -r

As discussed earlier in the “Analyze Network Layout” section, it is critical to understand
the path NFS packets take through the network as they move between the client and server. We
saw how utilities such as traceroute and “ping -o” display the various hops taken by pack-
ets going between two network nodes. If the traceroute or “ping -o” output reveals that
packets are not taking the route you expect them to, you should verify the routing tables on both
the client and server to make sure they are correct. Ensuring the accuracy of the routing tables is
especially important on systems with multiple network interfaces, where outbound packets
potentially have several paths to their final destination.

On HP systems, the “netstat -r” command is used to display the routing tables.
Figure 1.14 shows an example of this. In this example, the “-n” (do not resolve IP addresses to
hostnames) and “-v” (verbose) options were used. Included in the output is the interface name
associated with each IP address, as well as the PMTU (Path Maximum Transmission Unit) size
for each interface. The MTU information can be very useful in environments where the NFS
client and server are on different physical networks and packet fragmentation or translation
needs to occur (for example FDDI to Ethernet).

Figure 1.13   netstat -p Output
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1.3.4   netstat -i

In large customer environments, particularly those where HP’s MC/ServiceGuard8 prod-
uct is used, it is not uncommon for NFS client and server systems to have multiple network
paths to each other for redundancy reasons. In some cases the primary and backup interfaces are
not equivalent in terms of their bandwidth capabilities. For example, the systems might use a
Gigabit Ethernet interface as their primary connection and have a 100BT interface available as a
backup connection. In these environments, sufficient care must be taken when configuring the
NFS mount points to ensure that the traffic flows across the faster interface whenever possible.
However, even with careful preparation, there is always a possibility that NFS traffic sent
between the clients and servers will mistakenly use the slower interface.

A quick and easy way to verify which interface the majority of network traffic is using is
to issue the “netstat -i” command and examine the inbound and outbound packet counts for
all configured interfaces. Figure 1.15 provides an example of this output.

By monitoring the inbound and outbound packet rates of the interfaces, you can quickly
determine if an unusually high amount of network traffic is using what should be an “idle” or
“backup” interface. If this appears to be happening, a network trace can be taken to determine
the hostnames of the remote systems that are sending requests to the slower interface.

Figure 1.14   netstat -r Displaying Network Routing Tables

8. For more information about HP’s MC/ServiceGuard product or configuring your servers for Highly Available 
NFS access, visit the HP-UX High Availability web site: http://hp.com/go/ha.

Figure 1.15   netstat -in Output
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1.3.5   lanadmin(1M)

As stated earlier, dropped packets on the network can occur if there are problems with the
network interface cards, cables, or connectors. While many hardware-based problems can only
be detected and identified with external analyzers, HP-UX provides several software-based tools
to help monitor the health of the interfaces. The commands available for checking the state of
any specific interface card will vary based on interface type (i.e. FDDI, Gigabit Ethernet, etc.).
However, the lanadmin(1M) utility applies to all network links and it should be queried first.

The lanadmin command allows a system administrator to display many useful statistics
kept by the LAN driver subsystem, regardless of the interface type. Figure 1.16 shows a sample
screen output returned by lanadmin.

Figure 1.16   lanadmin Output
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By reviewing this information you can learn a great deal about how the queried interface
is configured and whether it has been logging any errors at the driver layer. For example, the
output shown in Figure 1.16 indicates that this interface card is a 10/100BT card known to the
system as device “lan0,” the card is enabled and active, it is running at a speed of 100 Mbits/sec-
ond with an MTU size of 1500, and it is currently configured to run in full-duplex mode. In
some cases, this information alone can be enough to determine the cause of a network
performance problem (i.e. in the case where LAN interfaces and network switch configurations
don’t match with regards to speed and duplex settings).

Also available in the lanadmin output are various error counts, collision rates, total
inbound and outbound packet counts, etc. By monitoring these counters you can, with the assis-
tance of an HP support representative, try to make a qualified determination as to whether a
hardware problem exists somewhere in your network. When software-based analysis tools fail
to identify the problem, external tools can be used to provide the definitive view of the traffic
patterns on the network and to isolate a device that is losing packets.

K E Y  I D E A   —  T h e  I m p o r t a n c e  o f  P a t c h i n g  L A N ,  
Tr a n s p o r t ,  a n d  N e t w o r k  D r i v e r s

HP continually strives to improve the quality of HP-UX by distributing software patches con-
taining both defect fixes and functionality enhancements. Many of these fixes and
enhancements can significantly improve the performance and behavior of critical system
components, such as LAN Common, the Network Transports (TCP, UDP, IP), and the vari-
ous Network Link Driver subsystems (100BT, 1000BT, FDDI, Token Ring, etc.). 

Since NFS relies heavily upon the stability and performance of the network, it is strongly
recommended that the latest LAN, Transport, and network link driver patches be installed
on every HP-UX system in order to take advantage of these improvements. Contact HP
support to obtain a current set of patches for your specific operating system. You can also
generate a current patch list using the tools available at HP’s IT Resource Center:
http://itrc.hp.com.

For a detailed discussion on the importance of keeping your HP-UX NFS client and server
systems patched with current code, refer to Appendix B “Patching Considerations.”
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