
C H A P T E R 1
Network Considerations
NFS is an acronym for “Network File System,” so it should come as no surprise that
NFS performance is heavily affected by the latency and bandwidth of the underlying network.
Before embarking on a detailed investigation into a specific area of NFS, it is a good idea to first
verify that the underlying network is performing as expected.

This chapter focuses on three main areas: analyzing the physical layout of the network that
separates your NFS clients and servers, measuring the throughput capabilities of the network,
and network troubleshooting concepts.

This chapter describes a recommended methodology and set of tools available for under-
standing the physical layout of your network, measuring its throughput, and performing routine
network troubleshooting tasks. This chapter does not discuss the myriad of networking topolo-
gies and interface cards that are currently available for HP-UX systems. NFS runs on most any
networking link supporting Internet Protocol (IP), and it typically performs better on faster
links.1

1.1 Analyze Network Layout

An important early step in troubleshooting any NFS performance issue is to learn as much
as possible about the physical layout of the underlying network topology. Some of the questions
you should be trying to answer at this stage are:

1. There is a wealth of information about the latest and greatest networking technologies, such as Gigabit Ethernet,
Auto Port Aggregation (APA), etc., available from HP’s IT Resource Center web site: http://itrc.hp.com, and
HP’s online documentation repository: http://docs.hp.com.
1

Prentice Hall PTR
This is a sample chapter of Optimizing NFS Performance: Tuning and Troubleshooting NFS on HP-UX SystemsISBN: 0-13-042816-7For the full text, visit http://www.phptr.com©2002 Pearson Education. All Rights Reserved.

2 Chapter 1 • Network Considerations
• How many network hops (i.e. bridges, hubs, routers, switches, etc.) do network packets
traverse between the client and the server systems?

• What is the speed of each link separating these systems?

• Does your network equipment use auto-negotiation to set speed and duplex settings?

• Are your network interfaces configured for half-duplex or full-duplex mode?

• Do your switch port settings match the speed and duplex settings of your host interfaces?

• What is the maximum transmission unit (MTU) size of the links between these systems?

• If the links are using different MTU sizes, how are the packets being translated? For
example, if the NFS client resides in an FDDI ring and uses an MTU size of 4352 and the
NFS server uses a 100BT interface with an MTU size of 1500, how are the 4352 byte
packets from the client being fragmented into 1500 byte packets for the server?

• Do packets sent from the client to the server take the same route through the network as
the packets sent from the server to the client?

• Are your NFS client and server members of a simple Local Area Network (LAN), such as
the example shown in Figure 1.1, where the systems are connected to the same switch?

Figure 1.1 NFS Clients and Servers on Same Physical LAN

Analyze Network Layout 3
• Are the systems geographically separated by a Wide Area Network (WAN) such as the
example shown in Figure 1.2, where NFS requests and replies must traverse many
network switches, routers, and firewalls?

While network administrators should be the best source of knowledge about the layout
and capabilities of the underlying network, even they are not always up-to-date on the current
state of the network. In many large corporate environments, the physical network is constantly
evolving as new equipment replaces old, new backbone technologies replace antiquated technol-
ogies, new systems are added to existing networks, new subnets are created, etc. Whenever there
is any uncertainty as to the physical layout of the network separating the NFS clients and serv-
ers, a network layout analysis should be performed.

Among the best tools available for analyzing network capabilities is the HP OpenView
suite of products, such as Network Node Manager.2 Even without using a full-blown network

Figure 1.2 NFS Clients and Servers Separated by a WAN

2. For more information about the OpenView product family, visit http://openview.hp.com.

4 Chapter 1 • Network Considerations
management tool such as OpenView, you can still collect a good deal of information about your
network topology using tools that ship with HP-UX.

1.1.1 traceroute(1M)

The traceroute(1M) tool provides a simple means of determining the path through the
network taken by packets sent from one system to another. HP’s version of traceroute is
based on the source code originally developed by Van Jacobson. Since traceroute is consid-
ered “contributed” software, it resides in the /usr/contrib/bin directory.

Figure 1.3 shows a sample screen shot of traceroute output displaying the physical
path taken between a system located in Roseville, CA and a system located in Cupertino, CA. In
this example, and the sample shown in Figure 1.4, traceroute is run with the “-n” option,
instructing traceroute to display IP address information for each network hop without per-
forming address-to-hostname translation.3

Figure 1.4 reveals the network path taken by traceroute packets sent from the
Cupertino system to the Roseville system.

Figure 1.3 traceroute Output from Roseville to Cupertino

3. For more information about available traceroute command-line options, refer to the traceroute(1M) man page.

Figure 1.4 traceroute Output from Cupertino to Roseville

Analyze Network Layout 5
In this example there are six network links separating these two systems (the last line in
the traceroute output is the actual destination system). The output shows the cumulative
latency experienced as the packets transition through the various network links on their way to
the final destination. By comparing these two traceroute outputs you can see the number of
network hops taken in both directions is the same, but the physical path through the network is
different in each direction. For example, going to Cupertino the packets went through
“10.4.32.143” while on the way to Roseville the packets went through “10.75.208.10.” The
latencies experienced in both directions appear comparable.

1.1.2 ping(1M)

Another tool shipping with HP-UX that can simplify the process of collecting network
topology information is ping(1M). Michael Muuss originally developed the ping program at
the US Army Ballistics Research Lab (BRL) in the early 1980’s. It has since become one of the
most widely used UNIX networking commands. Most every UNIX administrator has used ping
at one time or another to quickly verify connectivity between two network nodes. When used
with the “-o” option, ping inserts an IP Record Route4 option into its outgoing packets, allow-
ing ping to track and display the physical network path taken between two nodes.

Figure 1.5 shows the “ping -o” command displaying the network path taken by packets
sent between the same systems used in the earlier traceroute example. The “-n 1” option
was also used to instruct ping to only send a single packet to the remote system.5

4. Many network hardware vendors allow the IP Record Route feature to be disabled, effectively making these hops
invisible to the “ping -o” command.

Figure 1.5 ping -o between Roseville and Cupertino Systems

5. For more information about available ping command-line options, refer to the ping(1M) man page.

6 Chapter 1 • Network Considerations
Comparing this output against the traceroute screen shot in Figure 1.3, you can see
that the ping packet took the same number of hops to get from Roseville to Cupertino as the
traceroute packet. However, the ping traffic took a different route through the HP network
than the traceroute traffic. These differences in the network path are most likely the result of
dynamic routing tables kept in the routers and bridges used in corporate network backbone.

Unlike traceroute, ping does not report the individual latencies experienced at each
location in the topology. While this information may not be as useful as the traceroute out-
put, it provides an easy way of determining the network topology separating two systems.

Once you’ve determined the physical layout of the network separating your NFS clients
and servers, there are several other questions to ask yourself:

• Does the layout make sense to you? In other words, is the network laid out as you
expected or were you surprised by what traceroute and ping revealed?

• Did the physical layout change recently? If so, why?
• Are packets taking the most efficient path through the network? If not, can you force them

to take the most efficient path?
• Can any of the network hops separating the clients and servers be eliminated?

If there is any way to optimize the physical layout of the network (i.e. minimize the num-
ber of network hops and use the most efficient route between the systems) it can help NFS
performance tremendously.

1.2 Measure Network Throughput Capabilities

Once the layout of the physical network is understood, the next step in validating your
network is to measure the throughput of the connection separating the client and server. Gener-
ally speaking, the faster your network throughput, the better your NFS performance will be.

When testing the performance of the network for NFS purposes, it is essential to eliminate
the NFS layer from consideration by simply testing the network transport layer using non-NFS
protocols. If a network throughput problem exists between an NFS client and server, the prob-
lem would likely affect any network-based application, not just NFS.6 It is also important to
measure the throughput going in both directions (i.e. client to server, server to client) to make
sure the performance is comparable. Similarly, when attempting to characterize network
throughput, it is important to eliminate any influence of the local filesystems. It is therefore nec-
essary to select measurement tools that are not dependent upon NFS or filesystem resources.

Several tools exist to help system and network administrators measure the throughput of
their network connections. Two of the more prominent tools are ttcp(1) and netperf.

6. A minor packet loss problem may not affect TCP/IP applications such as FTP or NFS/TCP filesystems, but may
cause problems for NFS/UDP filesystems. For a detailed explanation of how packet loss affects NFS/UDP and
NFS/TCP filesystems differently, refer to Section 10.3 “Managing Retransmissions and Timeouts.”

Measure Network Throughput Capabilities 7
1.2.1 ttcp(1)

ttcp(1) is a simple, lightweight program that measures the throughput of any network
connection without relying on the filesystem layer. It can generate either UDP or TCP traffic and
the packet size is adjustable, allowing it to simulate the behavior of different applications.

Mike Muuss (the author of the ping command) and Terry Slattery, of the US Army Bal-
listics Research Lab (BRL), developed the ttcp (Test TCP Connection) program in the early
1980’s. The program now resides in the public domain and is freely available to download from
http://ftp.arl.mil/ftp/pub/ttcp. The ttcp man page is also available from this site, which docu-
ments the many available command-line arguments.

A sample ttcp session is shown in Figure 1.6.

In this example, ttcp is run on the NFS client system and sends TCP/IP traffic to the NFS
server’s discard port (9) across a Gigabit Ethernet connection. This output shows the client can
send over 72MB/sec. on this link. Figure 1.7 shows the server using ttcp to send TCP/IP traffic
back to the client across the same link and getting roughly the same throughput.

The system or network administrator now has a fairly good idea what the capabilities are
of the network link between these two systems. Of course, this does not imply that the NFS
throughput should be 72-73MB/sec. across this link, since the NFS protocol relies much more
on CPU, filesystem, and memory resources than ttcp does.

Figure 1.6 ttcp Sending TCP Traffic from Client to Server

Figure 1.7 ttcp Sending TCP Traffic from Server to Client

8 Chapter 1 • Network Considerations
1.2.2 netperf

netperf is a benchmark utility that can measure the performance of many different types of
networks. It provides tests for both unidirectional throughput and end-to-end latency. Like
ttcp, netperf measures throughput without relying on any filesystem resources. However, it is a
far more sophisticated network-measuring tool, compared to ttcp.

Rick Jones, of HP’s Infrastructure Solutions and Partners group, developed netperf in
1991 and he has continued to add new features and capabilities to the program as new network-
ing technologies became available. The best source of information is the official netperf web
site: http://netperf.org. The latest version of the source code is available at the following loca-
tion: ftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf.

Figure 1.8 shows the screen output of netperf sending TCP and UDP data from system
“atc03.cup.hp.com” (Cupertino, CA) to three different network destinations:

• Gigabit Ethernet connection to “atc01.cup.hp.com” (Cupertino, CA)

• 100Mb Ethernet connection to “atc01.cup.hp.com” (Cupertino, CA)

• WAN connection to “ros87252.rose.hp.com” (Roseville, CA)

Figure 1.8 netperf Throughput from Different Network Connections

Network Troubleshooting Tools 9
In this example, the UDP traffic sent over a Gigabit Ethernet connection to a neighbor
system in Cupertino yielded a throughput of over 74 MB/sec. Sending TCP traffic to the same
Cupertino-based system over a 100BT link yielded over 11MB/sec. Finally, sending TCP traffic
across HP’s network from Cupertino to Roseville (via the six hops identified earlier with ping
and traceroute) yielded just under 2 MB/sec.

Also evident from this example is the fact that netperf has a myriad of command-line
options, both for the netperf command itself and for the specific type of test you are performing.
Be sure to read the netperf manual, available at ftp://ftp.cup.hp.com/dist/networking/bench-
marks/netperf, very carefully to understand which options are available and their proper usage,
as the throughput numbers can vary greatly depending upon how the tests are run.

Just as with the ttcp example earlier, netperf numbers do not directly translate into the
expected NFS throughput values. However, they do provide a good means of estimating the
upper bounds of a given network connection’s bandwidth.

1.3 Network Troubleshooting Tools
At this point, you should be very familiar with the network topology separating the NFS

client and server, and have verified that IP packets are taking the appropriate route through the
network in both directions. If you have not yet performed these critical steps, refer to the earlier
Section 1.1 “Analyze Network Layout” for instructions on how to collect this information. After
running network throughput tests using the tools described in Section 1.2 “Measure Network
Throughput Capabilities,” if you believe your network is experiencing a performance through-
put issue then it is time to troubleshoot the network itself.

K E Y I D E A — C o m m o n C a u s e s o f D r o p p e d
N e t w o r k P a c k e t s

In many cases, network throughput problems are caused by packets being dropped some-
where on the network, either by the NFS client or server system itself or at some intermedi-
ate point in the network separating the two systems. Some of the more common reasons
network packets are dropped include:

• Defective hardware (i.e. network interface cards, cables, switch ports, etc.)
• Mismatching configuration settings between interface cards and switch equipment. The

most common configuration issue is where one side of a connection is set to half-duplex
and the other side to full-duplex, causing “late” collisions to be logged on the half-duplex
side and FCS or CRC errors logged on the full-duplex side.a

• Network interconnect device buffer memory exhaustion (described in Section 10.4)

• UDP socket overflows occurring on the NFS server, indicating that not enough daemons
are running to handle the inbound requests for a specific port

a. The lanadmin(1M) tool, described in Section 1.3.5, displays duplex settings and reports any link-level errors.

10 Chapter 1 • Network Considerations
The goal of this phase of the investigation is to determine if the network throughput prob-
lem is affecting all IP traffic or only NFS. In some cases, the only tools that can detect these
types of problems are external analyzers and reporting tools specific to your network hardware.
HP does provide a number of software-based tools to help detect and analyze network problems.
Two frequently used network troubleshooting tools are netstat(1) and lanadmin(1M).

1.3.1 netstat -s

The netstat(1) command can be used to display statistics for network interfaces and
protocols, it can list active network connections, print routing tables, etc. When executed with
the “-s” option, netstat returns a complete list of all network transport statistics (TCP, UDP,
IP, ICMP, and IGMP) arranged by protocol.

A portion of “netstat -s” output is shown in Figure 1.9 and Figure 1.10. These two
screen shots illustrate how this single command returns an enormous amount of information
about the underlying network protocols, including the number of TCP packets sent and received,
the number of UDP socket overflows and checksum failures that occurred, etc. Also readily
available are statistics such as the total number of IP packets received, the ICMP port unreach-
able and source quench messages generated, etc. All of this information can be extremely useful
when troubleshooting a network or protocol layer problem.

Using netstat and diff to troubleshoot a network problem Listed below is
an example of how to use the “netstat -s” command to help determine if packets are being
lost somewhere in your network The underlined steps are the commands you type.

1. Initialize the “before” file with the current date and time.
date > netstat.before

2. Collect a baseline set of netstat -s statistics on both the NFS client and server and
append the output to the “before” file created in step 1.
netstat -s >> netstat.before

3. Perform a test that exhibits the performance problem using the TCP protocol (such as
ttcp or netperf).
ttcp -stp9 -n 100000 server

4. Initialize the “after” file with the current date and time.
date > netstat.after

5. Collect a second set of netstat -s statistics on both the NFS client and server and
append the output to the “after” file created in step 4.
netstat -s >> netstat.after

6. Locate any differences between the “before” and “after” netstat outputs to identify
which statistics were incrementing during the test.
diff netstat.before netstat.after

Network Troubleshooting Tools 11
An example of the type of output returned by diff(1) from such an exercise is shown in
Figure 1.11. Some of the TCP statistics to monitor are “data packets retransmitted,” “completely
duplicate packets,” and “segments discarded for bad checksum.” If these statistics are steadily
increasing over time it would indicate that packet loss is occurring somewhere in the network or
that a possible network hardware problem is causing TCP checksum failures.

Also of concern would be an increasing number of UDP “bad checksums,” as this could
indicate that an IP level device in the network (perhaps a router performing IP fragmentation) is
not correctly fragmenting UDP datagrams as it forwards them. These datagrams would be

Figure 1.9 netstat -s Output Showing TCP Statistics

12 Chapter 1 • Network Considerations
discarded by the receiving system, forcing the sending system to re-send this data. UDP “socket
overflows” usually indicates that an application, such as NFS, is receiving requests on a particu-
lar UDP socket faster than it can process them, and consequently discarding requests.7

Of the IP statistics reported, “fragments dropped” and “fragments dropped after timeout”
would indicate packet loss is occurring in the network.

Figure 1.10 netstat -s Output Including UDP and IP Statistics

7. The effect of UDP socket overflows on NFS performance is discussed in greater detail in Chapter 4.

Figure 1.11 Comparing “before” and “after” netstat Outputs

Network Troubleshooting Tools 13
Using netstat and beforeafter to troubleshoot a network problem
Although the diff(1) procedure does work for locating differences in netstat outputs,
interpreting diff output can be a bit cumbersome. Not only do you have to manually subtract
the “after” numbers from the “before” numbers, since the diff output removes the subsystem
header information lines, you need to carefully confirm which statistics you are interpreting. For
example, netstat returns “# packets received” under the TCP heading and “# total packets
received” under the IP heading. Confusing these two values could lead to incorrect conclusions
about the health of your network.

To simplify this procedure of interpreting multiple sets of netstat output, HP developed
a tool called beforeafter. This program takes two netstat -s output files and compares
them against each other. The output from beforeafter looks identical to netstat -s out-
put except that the statistics represent only the differences between the “before” and “after”
files. The tool is available at: ftp://ftp.cup.hp.com/dist/networking/tools/beforeafter.tar.gz.

The procedure for using the beforeafter tool is the same as the diff method outlined
earlier, with the exception of step 6. Instead of using the diff command to compare the files,
the beforeafter tool should be used as follows:

beforeafter netstat.before netstat.after

Figure 1.12 contains an example of the beforeafter output. Notice the output looks
identical to that of “netstat -s”; however the statistics reported are not cumulative totals but
instead represent the differences between the “before” and “after” files.

Figure 1.12 beforeafter Comparing netstat -s Statistics

14 Chapter 1 • Network Considerations
The beforeafter tool even calculates the difference in wall-clock times between the
date contained in the “before” and “after” files. Looking at the date line in Figure 1.12 you can
see that the “after” file was collected 2 minutes and 28 seconds after the “before” file. The test
caused this system to send 600503 packets containing 819239972 bytes of data, and receive
57535 packets containing acknowledgement packets for 819239975 bytes.

Although the diff output and the beforeafter output reveal the same information,
locating and quantifying the key statistics is much easier using the beforeafter tool.

1.3.2 netstat -p <protocol>

Once you have identified a subset of the netstat -s output that is of particular interest,
you can limit the statistical output to a single protocol by using the “-p <protocol>” syntax.
An example is shown in Figure 1.13. Confining the output to a single protocol can greatly sim-
plify the process of identifying specific protocol-related problems compared to analyzing
screens full of “netstat -s” output.

1.3.3 netstat -r

As discussed earlier in the “Analyze Network Layout” section, it is critical to understand
the path NFS packets take through the network as they move between the client and server. We
saw how utilities such as traceroute and “ping -o” display the various hops taken by pack-
ets going between two network nodes. If the traceroute or “ping -o” output reveals that
packets are not taking the route you expect them to, you should verify the routing tables on both
the client and server to make sure they are correct. Ensuring the accuracy of the routing tables is
especially important on systems with multiple network interfaces, where outbound packets
potentially have several paths to their final destination.

On HP systems, the “netstat -r” command is used to display the routing tables.
Figure 1.14 shows an example of this. In this example, the “-n” (do not resolve IP addresses to
hostnames) and “-v” (verbose) options were used. Included in the output is the interface name
associated with each IP address, as well as the PMTU (Path Maximum Transmission Unit) size
for each interface. The MTU information can be very useful in environments where the NFS
client and server are on different physical networks and packet fragmentation or translation
needs to occur (for example FDDI to Ethernet).

Figure 1.13 netstat -p Output

Network Troubleshooting Tools 15
1.3.4 netstat -i

In large customer environments, particularly those where HP’s MC/ServiceGuard8 prod-
uct is used, it is not uncommon for NFS client and server systems to have multiple network
paths to each other for redundancy reasons. In some cases the primary and backup interfaces are
not equivalent in terms of their bandwidth capabilities. For example, the systems might use a
Gigabit Ethernet interface as their primary connection and have a 100BT interface available as a
backup connection. In these environments, sufficient care must be taken when configuring the
NFS mount points to ensure that the traffic flows across the faster interface whenever possible.
However, even with careful preparation, there is always a possibility that NFS traffic sent
between the clients and servers will mistakenly use the slower interface.

A quick and easy way to verify which interface the majority of network traffic is using is
to issue the “netstat -i” command and examine the inbound and outbound packet counts for
all configured interfaces. Figure 1.15 provides an example of this output.

By monitoring the inbound and outbound packet rates of the interfaces, you can quickly
determine if an unusually high amount of network traffic is using what should be an “idle” or
“backup” interface. If this appears to be happening, a network trace can be taken to determine
the hostnames of the remote systems that are sending requests to the slower interface.

Figure 1.14 netstat -r Displaying Network Routing Tables

8. For more information about HP’s MC/ServiceGuard product or configuring your servers for Highly Available
NFS access, visit the HP-UX High Availability web site: http://hp.com/go/ha.

Figure 1.15 netstat -in Output

16 Chapter 1 • Network Considerations
1.3.5 lanadmin(1M)

As stated earlier, dropped packets on the network can occur if there are problems with the
network interface cards, cables, or connectors. While many hardware-based problems can only
be detected and identified with external analyzers, HP-UX provides several software-based tools
to help monitor the health of the interfaces. The commands available for checking the state of
any specific interface card will vary based on interface type (i.e. FDDI, Gigabit Ethernet, etc.).
However, the lanadmin(1M) utility applies to all network links and it should be queried first.

The lanadmin command allows a system administrator to display many useful statistics
kept by the LAN driver subsystem, regardless of the interface type. Figure 1.16 shows a sample
screen output returned by lanadmin.

Figure 1.16 lanadmin Output

Network Troubleshooting Tools 17
By reviewing this information you can learn a great deal about how the queried interface
is configured and whether it has been logging any errors at the driver layer. For example, the
output shown in Figure 1.16 indicates that this interface card is a 10/100BT card known to the
system as device “lan0,” the card is enabled and active, it is running at a speed of 100 Mbits/sec-
ond with an MTU size of 1500, and it is currently configured to run in full-duplex mode. In
some cases, this information alone can be enough to determine the cause of a network
performance problem (i.e. in the case where LAN interfaces and network switch configurations
don’t match with regards to speed and duplex settings).

Also available in the lanadmin output are various error counts, collision rates, total
inbound and outbound packet counts, etc. By monitoring these counters you can, with the assis-
tance of an HP support representative, try to make a qualified determination as to whether a
hardware problem exists somewhere in your network. When software-based analysis tools fail
to identify the problem, external tools can be used to provide the definitive view of the traffic
patterns on the network and to isolate a device that is losing packets.

K E Y I D E A — T h e I m p o r t a n c e o f P a t c h i n g L A N ,
Tr a n s p o r t , a n d N e t w o r k D r i v e r s

HP continually strives to improve the quality of HP-UX by distributing software patches con-
taining both defect fixes and functionality enhancements. Many of these fixes and
enhancements can significantly improve the performance and behavior of critical system
components, such as LAN Common, the Network Transports (TCP, UDP, IP), and the vari-
ous Network Link Driver subsystems (100BT, 1000BT, FDDI, Token Ring, etc.).

Since NFS relies heavily upon the stability and performance of the network, it is strongly
recommended that the latest LAN, Transport, and network link driver patches be installed
on every HP-UX system in order to take advantage of these improvements. Contact HP
support to obtain a current set of patches for your specific operating system. You can also
generate a current patch list using the tools available at HP’s IT Resource Center:
http://itrc.hp.com.

For a detailed discussion on the importance of keeping your HP-UX NFS client and server
systems patched with current code, refer to Appendix B “Patching Considerations.”

	Optimizing NFS Performance
	Dave Olker

	To my loving wife Kimberly and my sons Daniel and Matthew — without your support and patience thi...
	Contents
	List of Figures xiii
	List of Tables xix
	List of Key Ideas and NFS Performance Examples xxi
	List of NFS Differences Between HP�UX 11.0 and 11i xxv
	Acknowledgements xxvii
	Introduction xxix
	Chapter�1

	Network Considerations 1
	1.1 Analyze Network Layout 1
	1.2 Measure Network Throughput Capabilities 6
	1.3 Network Troubleshooting Tools 9
	Chapter�2
	Local Filesystem Considerations 19

	2.1 Analyze Filesystem Layout 19
	2.2 Measure Filesystem Throughput Capabilities 23
	2.3 Local Filesystem Recommendations 28
	Chapter�3
	biod Daemons 45

	3.1 How Do the biods Work? 45
	3.2 Why Not Just Launch Hundreds of biods? 54
	3.3 When Might an NFS Client Not Benefit from biods? 54
	3.4 How Many biods Should Your NFS Client Run? 57
	3.5 Troubleshooting the biod Daemons 58
	Chapter�4
	nfsd Daemons and Threads 77

	4.1 What Are the Various “nfsd” Daemons and Threads? 78
	4.2 NFS Server UDP Daemon Management 81
	4.3 NFS Server TCP Thread Management 87
	4.4 How Many nfsds Should Your NFS Server Run? 91
	4.5 Troubleshooting the nfsd Daemons and Threads 93
	Chapter�5
	rpc.mountd 119

	5.1 What Services Does rpc.mountd Provide? 120
	5.2 What Factors Influence rpc.mountd Performance? 123
	5.3 Troubleshooting rpc.mountd 130
	Chapter�6
	rpc.lockd and rpc.statd 139

	6.1 How Do rpc.lockd and rpc.statd Handle NFS Lock Requests? 140
	6.2 How Do rpc.lockd and rpc.statd Perform Lock Recovery? 142
	6.3 Examining NFS File Locks 145
	6.4 Avoiding NFS File Lock Hangs in Your Environment 149
	6.5 Why Would Restarting the Daemons Clear a Lock Hang? 154
	6.6 Ensuring Optimal NFS File Locking Performance 156
	6.7 Troubleshooting rpc.lockd and rpc.statd 156
	Chapter�7
	Automount and AutoFS 163

	7.1 Performance Differences between Automount and AutoFS 164
	7.2 Automounter Performance Considerations 178
	7.3 Should You Use Automount or AutoFS? 183
	7.4 Troubleshooting Automount and AutoFS 184
	Chapter�8
	CacheFS 187

	8.1 CacheFS Overview 188
	8.2 Using CacheFS 192
	8.3 CacheFS Internals 196
	8.4 HP CacheFS Enhancement — the rpages Mount Option 202
	8.5 Measuring the Effectiveness of CacheFS 208
	Chapter�9
	NFS Protocol Version 2 vs. NFS Protocol Version 3 217

	9.1 Differences between NFS PV2 and NFS PV3 218
	9.2 Will a PV3 Installation Always Outperform PV2? 233
	9.3 Should You Use NFS PV2 or PV3 in Your Environment? 237
	Chapter�10
	NFS/UDP vs. NFS/TCP 239

	10.1 Overview of UDP and TCP 241
	10.2 Connection Management 242
	10.3 Managing Retransmissions and Timeouts 246
	10.4 Network Interconnect Device Buffering Considerations 254
	10.5 Should You Use NFS/UDP or NFS/TCP in Your Environment? 255
	Chapter�11
	Buffer Cache 257

	11.1 What Is the Buffer Cache? 258
	11.2 Why Not Allocate Lots of Memory for Buffer Cache? 259
	11.3 How Do Dynamic and Static Buffer Cache Mechanisms Differ? 262
	11.4 Should You Configure a Dynamic or Static Buffer Cache? 264
	11.5 Interaction with the syncer(1M) Daemon 266
	11.6 Automounter’s Influence on Client Caching 268
	11.7 How Much Buffer Cache Memory Should You Configure? 269
	11.8 Measuring Buffer Cache Effectiveness 270
	Chapter�12
	Kernel Parameters 273

	12.1 Tunable Kernel Parameter List 278
	12.2 Inspecting Kernel Parameter Settings 295
	12.3 Monitoring Kernel Parameter Values via GlancePlus 298
	Appendix�A
	Appendix�B
	Bibliography 319
	Index 321

	List of Figures
	List of Tables
	List of Key Ideas and NFS Performance Examples
	List of NFS Differences Between HP�UX 11.0 and 11i
	Acknowledgements
	Introduction
	Why another book about NFS?
	Who is the intended audience for this book?
	NFS performance tuning methodology used in this book
	Organization of this book

	1

	Network Considerations
	1.1 Analyze Network Layout
	Figure�1.1 NFS Clients and Servers on Same Physical LAN
	Figure�1.2 NFS Clients and Servers Separated by a WAN
	1.1.1 traceroute(1M)
	Figure�1.3 traceroute Output from Roseville to Cupertino
	Figure�1.4 traceroute Output from Cupertino to Roseville

	1.1.2 ping(1M)
	Figure�1.5 ping -o between Roseville and Cupertino Systems

	1.2 Measure Network Throughput Capabilities
	1.2.1 ttcp(1)
	Figure�1.6 ttcp Sending TCP Traffic from Client to Server
	Figure�1.7 ttcp Sending TCP Traffic from Server to Client

	1.2.2 netperf
	Figure�1.8 netperf Throughput from Different Network Connections

	1.3 Network Troubleshooting Tools
	1.3.1 netstat -s
	Using netstat and diff to troubleshoot a network problem
	1. Initialize the “before” file with the current date and time.
	2. Collect a baseline set of netstat -s statistics on both the NFS client and server and append t...
	3. Perform a test that exhibits the performance problem using the TCP protocol (such as ttcp or n...
	4. Initialize the “after” file with the current date and time.
	5. Collect a second set of netstat -s statistics on both the NFS client and server and append the...
	6. Locate any differences between the “before” and “after” netstat outputs to identify which stat...
	Figure�1.9 netstat -s Output Showing TCP Statistics
	Figure�1.10 netstat -s Output Including UDP and IP Statistics
	Figure�1.11 Comparing “before” and “after” netstat Outputs
	Using netstat and beforeafter to troubleshoot a network problem
	Figure�1.12 beforeafter Comparing netstat -s Statistics

	1.3.2 netstat -p <protocol>
	Figure�1.13 netstat -p Output

	1.3.3 netstat -r
	Figure�1.14 netstat -r Displaying Network Routing Tables

	1.3.4 netstat -i
	Figure�1.15 netstat -in Output

	1.3.5 lanadmin(1M)
	Figure�1.16 lanadmin Output

	2

	Local Filesystem Considerations
	2.1 Analyze Filesystem Layout
	2.1.1 Number of Files in the Directory
	Figure�2.1 Sample Application “Open File” Menu
	Reading Directories via NFS
	Large Directory Example

	2.1.2 The Use of Symbolic Links in the Directory
	Symbolic links referencing Automounter-managed filesystems

	2.2 Measure Filesystem Throughput Capabilities
	2.2.1 iozone
	Figure�2.2 iozone Test Output
	Figure�2.3 Excel Chart of iozone VxFS Write Throughput Results

	2.2.2 dd(1)
	Figure�2.4 dd Measuring Local Filesystem Write Performance
	Figure�2.5 dd Measuring Local Filesystem Read Performance

	2.3 Local Filesystem Recommendations
	Table�2.1 VxFS Filesystem Advantages over HFS
	2.3.1 Use a Block Size of 8KB
	What block size are my existing filesystems using?
	Figure�2.6 mkfs Displaying the Current Filesystem Block Size

	2.3.2 Use VxFS Version 3.3
	2.3.3 Use vxtunefs(1M) to Tune VxFS 3.3 Filesystems
	Table�2.2 Default Values for VxFS 3.3 Tunable Parameters
	Figure�2.7 vxtunefs Displaying Tunable Parameter Values
	Recommendations for vxtunefs(1M) Parameter Settings
	vxtunefs Example — Reading a 1GB File
	Figure�2.8 vxtunefs Tuning Example

	CAE-specific Recommendations
	SPEC SFS97 Recommendations

	Table�2.3 SPEC SFS vxtunefs Values

	2.3.4 Configure the Maximum Sized Intent Log Possible
	How big is the intent log on the existing filesystems?

	2.3.5 Use delaylog and tmplog Options when Appropriate
	Figure�2.9 mkfs Displaying the bsize and logsize Values

	2.3.6 Monitor Fragmentation and Defragment Filesystems
	Figure�2.10 fsadm Performing an Extent Defragmentation

	2.3.7 Monitor Filesystem Utilization via bdf(1M) and df(1M)
	Figure�2.11 bdf Reporting Disk Space and Inode Utilization
	Figure�2.12 df -P Output

	3
	biod Daemons
	3.1 How Do the biods Work?
	3.1.1 What Types of NFS Requests Do the biods Handle?
	Figure�3.1 GlancePlus Thread List Screen
	Figure�3.2 nettl Trace of ls Issued on an NFS Client

	Only asynchronous I/O requests are off-loaded by the biods
	3.1.2 How Many biods Are Activated when Requests Arrive?
	3.1.3 How Do biods Work in the WRITE Case?

	Will a writing process send its own NFS requests if the biods are busy?
	Figure�3.3 Why Writing Processes Block when biods Are Busy
	3.1.4 How Do biods Work in the READ Case?
	Figure�3.4 nettl Trace of an NFS READ Handled by a biod
	Figure�3.5 GlancePlus Thread List Displaying Running biods

	Will a reading process send its own NFS requests if the biods are busy?
	3.2 Why Not Just Launch Hundreds of biods?
	3.3 When Might an NFS Client Not Benefit from biods?
	3.3.1 Applications Performing Synchronous I/O
	3.3.2 Reading or Writing to a Very Busy or Down NFS Server
	3.3.3 Applications Reading Data Non-sequentially
	3.3.4 Applications Writing to Locked NFS-Mounted Files
	3.3.5 Many Processes Simultaneously Reading or Writing

	3.4 How Many biods Should Your NFS Client Run?
	3.5 Troubleshooting the biod Daemons
	3.5.1 NFS Client System Panic
	1. Log into the system as root and cd into the directory where the memory dump resides:
	2. Prepare the kernel found in the dump directory with the q4pxdb command:
	3. Launch q4:
	4. Obtain the stack trace from the process that generated the panic:

	3.5.2 NFS Client Application Hangs

	Look for biod requests in a network trace
	1. Use a tool such as GlancePlus to determine the TID (Thread ID) numbers for the running biod da...
	Figure�3.6 GlancePlus Thread List Displaying biod Threads
	2. Start a nettl trace, collecting only outbound traffic as it passes through the IP layer. Log t...
	3. Attempt to generate some NFS traffic on the same NFS-mounted filesystem the application is usi...
	4. Stop the trace:
	5. Format the trace via netfmt(1M) re-directing the output to a file called “biods.out.”
	6. Search the formatted trace for any outbound NFS write calls whose thread ids match those of th...
	Figure�3.7 nettl Trace of an Outbound NFS WRITE from a biod

	Monitor nfsstat(1M) output to see if NFS client requests are occurring
	Figure�3.8 Sample Initial nfsstat Output
	Figure�3.9 Sample Secondary nfsstat Output

	Examining the biod daemons on the live system
	1. Log into the system and make a backup copy of the running kernel:
	2. Prepare the backup kernel with the q4pxdb command:
	3. Launch q4 specifying the backup kernel and /dev/mem
	4. Load the list of system processes. The command used to perform this task differs slightly betw...
	5. Find the list of biods by printing the process ID and the ASCII string label of all processes....
	6. Keep only the biod processes:
	7. Print out the stack traces of all of the biod daemons:

	3.5.3 Poor NFS Application Performance

	Look for delays or retransmissions in a network trace
	1. Timestamps — used for calculating delays occurring between outbound requests and inbound repli...
	2. Inbound vs. Outbound — whether the packet is being sent or received by the system
	3. Call vs. Reply — indicates whether the client is sending a Call or receiving a Reply
	4. Procedure Type — the type of NFS operation in the packet (i.e. READ, WRITE, etc.)
	5. Transaction ID — unique identifier for the specific NFS request and its associated reply
	6. Procedure Status — indicates if an error occurred while the server processed the request (cont...
	Figure�3.10 nettl Trace of an Outbound NFS READ Call
	Figure�3.11 nettl Trace of an Inbound NFS READ Reply

	1. Delays occurring between the time the client receives a reply to an existing request and the t...
	2. Delays occurring between an outbound request and the inbound reply from the server.
	3. Replies from the server taking too long to arrive, causing the client to re-send the request.
	4. Outbound requests that receive no reply from the server.
	5. NFS replies indicating that an error condition occurred on the server while processing the req...

	Monitor nfsstat(1M) output for potential performance problems
	Figure�3.12 nfsstat Displaying Client-side RPC Statistics
	Table�3.1 Definitions for nfsstat Client-side RPC Statistics
	Scenario 1

	1. The client sends a request with a unique transaction ID and waits a calculated period of time ...
	2. The client does not receive a reply in the calculated time period and it retransmits the reque...
	3. The server receives both the original request and the retransmitted request and replies to bot...
	4. The client receives both replies from the server. The first reply satisfies the client’s outst...
	Scenario 2

	Use tusc(1) to look for delays during system call
	Figure�3.13 tusc Output Collected from the ls Command

	Use kernel profiling utilities to interrogate the client’s kernel behavior
	Figure�3.14 kgmon Output Collected on HP�UX 11.0 NFS Client
	4

	nfsd Daemons and Threads
	4.1 What Are the Various “nfsd” Daemons and Threads?
	Figure�4.1 GlancePlus Thread List Displaying NFS Server Threads
	4.1.1 nfsd
	How can I tell which nfsd is managing NFS/TCP connections?
	Figure�4.2 Identifying the nfsd Managing TCP Connections

	4.1.2 nfsktcpd
	Figure�4.3 nfsktcpd Threads Used to Service NFS/TCP Requests

	4.1.3 nfskd

	4.2 NFS Server UDP Daemon Management
	4.2.1 Influences of a Streams-based Network Transport
	Decreased likelihood of UDP socket overflows
	Each CPU has a separate stream head (stream “cloning”)
	Figure�4.4 Streams Cloned on a per-CPU Basis

	Streams receive buffer size is calculated by the number of nfsds running
	Figure�4.5 Sample syslog.log File Showing nfsd Startup

	1. The maximum stream head buffer size is calculated (in this example the size is 65536).
	2. The number of CPUs in the system is determined (in this example there are 2 CPUs).
	3. The nfsds register support for NFS Version 2 and Version 3 with rpcbind(1M).
	4. The total number of nfsds is increased, if needed, to allocate an equal number of daemons to e...
	5. The stream head is replicated once for each CPU in the system.
	6. As the nfsds are launched, each daemon is assigned to a per-CPU pool (see Section 4.2.2).

	4.2.2 nfsds Are Allocated to per-CPU Pools and Can “Task Steal”
	The nfsds can “steal” tasks from other CPU queues
	How does the server decide which queue to use for an inbound request?
	1. The IP address of the NFS client that sent the request
	2. The port number the NFS client used when sending the request
	3. The number of CPUs in the NFS server system
	Each pool is allocated an equal number of nfsds

	4.2.3 How Many nfsds Are Activated when Requests Arrive?

	4.3 NFS Server TCP Thread Management
	4.3.1 Benefits of Adopting a Kernel Thread Model for NFS/TCP
	NFS/TCP threads are launched and killed dynamically
	Threads are associated with a specific TCP connection
	Threads consume fewer resources than processes
	Brings HP’s NFS offering closer to other NFS vendors’ implementations

	4.3.2 Default Values Used for NFS/TCP Thread Allocation
	The server allocates 10 threads to each NFS/TCP connection
	NFS clients open a single TCP connection to each server they mount from
	Potential performance issue using the default NFS/TCP values

	4.3.3 Changing Client TCP Behavior via clnt_max_conns
	4.3.4 Changing Server TCP Thread Pool Size via maxthreads
	4.3.5 The Relationship between clnt_max_conns and maxthreads

	4.4 How Many nfsds Should Your NFS Server Run?
	UDP nfsd Recommendation
	TCP nfsktcpd Recommendation

	4.5 Troubleshooting the nfsd Daemons and Threads
	4.5.1 NFS Server System Panic
	1. Log into the system as root and cd into the directory where the memory dump resides:
	2. Prepare the kernel found in the dump directory with the q4pxdb command:
	3. Launch q4:
	4. Obtain the stack trace from the process that generated the panic:

	4.5.2 NFS Application Hangs
	Use the rpcinfo(1M) command to “ping” the nfsds
	Figure�4.6 rpcinfo “pinging” the UDP nfsds
	Figure�4.7 rpcinfo “pinging” NFS/TCP Threads
	Figure�4.8 rpcinfo Returning an Error During nfsd “ping” Test

	Look for NFS reply packets in a network trace
	1. Start a nettl trace, collecting only outbound traffic as it passes through the IP layer. Log t...
	2. On the client, attempt to generate some NFS traffic on the same filesystem the application is ...
	3. Stop the trace:
	4. Format the trace via the netfmt(1M) command. In this example we assume an HP�UX 11.0 client is...
	5. Search the formatted trace for any outbound NFS packets using a port number of 2049 (or “nfsd”...
	Figure�4.9 nettl Trace of an Outbound NFS READ Reply
	Monitor nfsstat(1M) output to see if the server is processing requests
	Figure�4.10 Sample Initial nfsstat Output
	Figure�4.11 Sample Secondary nfsstat Output

	Examine the nfsd daemons and threads on a live system

	1. Log into the system and make a backup copy of the running kernel:
	2. Prepare the backup kernel with the q4pxdb command:
	3. Launch q4 specifying the backup kernel and /dev/mem:
	4. Load the list of system processes. The command used to perform this task differs slightly betw...
	5. Find the list of nfsd processes by printing the process ID, the parent process ID, and the ASC...
	6. Initially examine the NFS/UDP nfsd processes by selecting process 1813 and any processes whose...
	7. Print out the stack traces of all of the NFS/UDP nfsd daemons:
	8. We need to reload the list of system processes again so that we can examine the NFS/TCP thread...
	9. This time we keep only the NFS/TCP processes we identified earlier — 1809 and 18274:
	10. Print out the stack traces of all of the TCP nfsd threads:

	4.5.3 Poor NFS Application Performance
	Look for delays or retransmissions in a network trace
	1. Timestamps — used for calculating delays occurring between outbound requests and inbound repli...
	2. Inbound vs. Outbound — whether the packet is being sent or received by the system
	3. Call vs. Reply — indicates whether the client is sending a Call or receiving a Reply
	4. Procedure Type — the type of NFS operation in the packet (i.e. READ, WRITE, etc.)
	5. Transaction ID — unique identifier for the specific NFS request and its associated reply
	6. Procedure Status — indicates if an error occurred while the server processed the request (cont...
	Figure�4.12 nettl Trace of an Outbound NFS READ Call

	1. Delays occurring between the time the client receives a reply to an existing request and the t...
	2. Delays occurring between an outbound request and the inbound reply from the server.
	3. Replies from the server taking too long to arrive, causing the client to re-send the request.
	4. Outbound requests that receive no reply from the server.
	5. NFS replies indicating that an error condition occurred on the server while processing the req...
	Figure�4.13 nettl Trace of an Inbound NFS READ Reply
	Monitor nfsstat output for potential performance problems
	Figure�4.14 nfsstat Displaying Server-side RPC Statistics

	Table�4.1 Definitions for nfsstat Server-side RPC Statistics
	The Duplicate Request Cache
	Why is a duplicate request cache needed?
	What could happen if the server did not use a duplicate request cache?
	Figure�4.15 Why NFS Servers Need a Duplicate Request Cache

	1. The NFS client sends a CREATE request to create a new file called “file1.” This request uses a...
	2. For whatever reason (i.e. network latency, busy NFS server, etc.), the client does not receive...
	3. The NFS server receives the initial CREATE request and it creates an empty file called “file1....
	4. The client receives the server’s reply to the original CREATE request. It sends a WRITE reques...
	5. The server receives the WRITE request and posts the data to the file. It sends a WRITE reply u...
	6. The server receives the retransmitted CREATE call sent by the client in step 2. It executes th...
	Look for socket overflows on UDP port 2049
	Figure�4.16 netstat -p Displaying UDP Socket Overflows
	Figure�4.17 ndd Displaying Open UDP Sockets and Overflows
	Figure�4.18 Search /etc/services for Well-known Ports
	Figure�4.19 rpcinfo Displaying Ports Used by RPC Programs
	Figure�4.20 lsof Output Filtered to Show Active UDP Sockets

	Look for errors associated with NFS/TCP thread exhaustion
	Use kernel-profiling utilities to interrogate the server’s kernel behavior
	Figure�4.21 kgmon Output Collected while Mounting a Filesystem

	5

	rpc.mountd
	5.1 What Services Does rpc.mountd Provide?
	5.1.1 Process MOUNT Requests
	1. Confirm the identity of the NFS client sending the request by resolving the IP address in the ...
	2. Extract the pathname of the desired filesystem from the MOUNT request.
	3. Examine the /etc/xtab file to see if the requested filesystem is exported for access.
	4. Compare the hostname returned from the hostname resolution server against any access lists con...
	5. If the client is allowed to mount the filesystem, rpc.mountd adds an entry to the /etc/rmtab f...
	6. If the client is denied access to the requested filesystem, then return an error to the client.

	5.1.2 Process UMOUNT Requests
	1. Confirm the identity of the NFS client sending the request by resolving the IP address in the ...
	2. Extract the pathname of the desired filesystem from the UMOUNT request.
	3. Search the /etc/rmtab file for an entry matching the hostname of the client and the exported f...
	What is the /etc/rmtab file used for?
	Figure�5.1 /etc/rmtab Contents Displayed by showmount

	5.1.3 Report which NFS Clients Have Filesystems Mounted
	5.1.4 Provides a List of Exported Filesystems
	showmount(1M)
	Figure�5.2 Sample showmount -e Output

	automount

	5.2 What Factors Influence rpc.mountd Performance?
	5.2.1 Hostname Resolution
	Familiarize yourself with the resolution methods used by your server
	Figure�5.3 Default nsswitch.conf Settings on HP�UX 11i

	5.2.2 The Size of the /etc/rmtab File
	5.2.3 Access List Syntax Used when Exporting Filesystems
	Figure�5.4 /etc/exports Displaying Access List Formats
	Client Hostname
	Netgroups
	DNS Domain Name
	Subnet Address
	Empty

	5.3 Troubleshooting rpc.mountd
	5.3.1 Use rpcinfo(1M) to “ping” rpc.mountd
	Figure�5.5 rpcinfo “pinging” rpc.mountd via UDP
	Figure�5.6 rpcinfo -p Output
	Figure�5.7 rpcinfo “pinging” rpc.mountd via TCP

	5.3.2 Verify that Hostname Servers Respond Quickly
	nslookup(1)
	Figure�5.8 nslookup Measuring the Responsiveness of DNS

	nsquery(1)
	Figure�5.9 nsquery Used to Query LDAP Repository
	Figure�5.10 nsquery Measuring Name Server Responsiveness

	5.3.3 Verify the Accuracy of Hostname Resolution Data
	Figure�5.11 netstat Displaying Local IP Addresses

	5.3.4 Collect a Debug-level rpc.mountd Log File
	1. Determine the process ID used by rpc.mountd via the ps command:
	2. Toggle debug logging ON by sending rpc.mountd a SIGUSR2 via the kill command:
	3. Reproduce the undesirable behavior.
	4. Toggle debug logging OFF by sending the daemon another SIGUSR2 signal:
	Figure�5.12 Debug rpc.mountd Log Entries During a MOUNT Request

	1. Debug logging was enabled on June 12th at 1:16:22 PM.
	2. The rpc.mountd received a MOUNT request at 1:16:31 PM.
	3. The UID of the user on the NFS client requesting the MOUNT is 65534.
	4. The NFS client sending the request is “ros82252.rose.hp.com.”
	5. The filesystem requested by the client is “/home/dolker.”

	5.3.5 Collect a Network Trace of the Mounting Problem
	1. Start a nettl(1M) trace on the server. The trace will collect both inbound and outbound traffi...
	2. Reproduce the NFS filesystem mounting issue on the NFS client.
	3. Stop the nettl(1M) trace:
	4. Format the trace via the netfmt(1M) command. In this example we assume HP�UX 11.0 systems are ...
	5. Search the formatted traces for any NFS mount requests.
	Figure�5.13 nettl Trace of MOUNT Request and Reply Packets

	6

	rpc.lockd and rpc.statd
	6.1 How Do rpc.lockd and rpc.statd Handle NFS Lock Requests?
	6.1.1 Communication Flow for the Initial NFS Lock Request
	1. An application on the client uses either the lockf(2) or fcntl(2) system call requesting to lo...
	2. The kernel examines the pathname of the file to be locked and resolves to an NFS rnode, indica...
	3. Since this is the first time this client is performing an NFS file lock, the client’s rpc.lock...
	4. The client rpc.statd replies to the local rpc.lockd that it has successfully added the client ...
	5. The client’s rpc.lockd sends a request to the NFS server’s rpcbind daemon to obtain the port n...
	6. The server rpcbind daemon replies to the client rpc.lockd, telling it on which port the server...
	7. The client rpc.lockd sends the lock request to the server rpc.lockd.
	Figure�6.1 rpc.lockd and rpc.statd Flow During Initial Lock Request

	8. Since this is the first time this NFS server has received a lock request from this client, the...
	9. The server’s rpc.statd replies to its local rpc.lockd that it has added the NFS client to its ...
	10. The server’s rpc.lockd forwards the lock request to the server’s kernel.
	11. The kernel on the server performs the lock request and replies to the server’s rpc.lockd with...
	12. The server’s rpc.lockd sends a request to the client’s rpcbind daemon requesting the port num...
	13. The client’s rpcbind daemon replies to the server’s rpc.lockd with the port number on which t...
	14. The server’s rpc.lockd sends the results of the lock request to the client’s rpc.lockd.
	15. The client’s rpc.lockd forwards these results back to the client’s kernel.
	16. The client’s kernel forwards the lock results back to the requesting application.

	6.1.2 Communication Flow for Subsequent NFS Lock Requests

	6.2 How Do rpc.lockd and rpc.statd Perform Lock Recovery?
	Figure�6.2 rpc.lockd and rpc.statd Flow During Lock Recovery
	6.2.1 How Does the rpc.statd Notification Process Work?
	1. rpc.statd moves all of the files residing in the /var/statmon/sm directory into the backup dir...
	2. One by one, the local rpc.statd opens each /var/statmon/sm.bak file and attempts to contact th...
	3. If rpc.statd is successful in contacting the remote rpc.statd, the file is removed from the sm...
	4. In either case, the receiving system knows that it must discard any UDP and TCP port informati...
	5. If rpc.statd is unable to notify the remote rpc.statd (because the remote system is down, the ...
	6. Once the entire list of /var/statmon/sm.bak files has been processed, any remaining files in t...

	6.3 Examining NFS File Locks
	6.3.1 Which Systems Have Been Locking NFS Files?
	Figure�6.3 Sample Contents of /var/statmon/sm Directory

	6.3.2 Which NFS Files Are Currently Locked?
	Figure�6.4 Sample rpc.lockd.log Data Showing Lock Queues
	What is a filehandle?

	6.3.3 Which NFS Clients Are Locking Files on the Server?
	Figure�6.5 NFS File Lock Entry Showing Client and Owner Handle

	6.3.4 Which Client-side Process Is Holding the Lock?

	6.4 Avoiding NFS File Lock Hangs in Your Environment
	6.4.1 Make Sure Hostname Resolution Data Is Accurate
	6.4.2 DNS Name Space Considerations
	Use unique hostnames for NFS clients and servers
	Configure the NFS server to resolve the client’s portion of the name space
	Configure the client’s hostname using its FQDN
	Figure�6.6 hostname Output vs. Fully-Qualified Domain Name

	6.4.3 Remove Corrupted /var/statmon/sm.bak Files
	Figure�6.7 Verifying /var/statmon/sm.bak Directory Entries

	6.4.4 Do Not Remove /var/statmon/sm Entries
	6.4.5 Use the “-C” Option in Heterogeneous Environments

	6.5 Why Would Restarting the Daemons Clear a Lock Hang?
	6.5.1 Hostname Resolution Policy Has Changed
	6.5.2 Kernel nflocks Resource Is Exhausted
	6.5.3 Obsolete UDP and TCP Port Information Is Cached

	6.6 Ensuring Optimal NFS File Locking Performance
	6.6.1 Ensure Hostname Resolution Is Performing Correctly
	6.6.2 Remove Obsolete /var/statmon/sm.bak Files

	6.7 Troubleshooting rpc.lockd and rpc.statd
	6.7.1 Use rpcinfo(1M) to “ping” rpc.lockd and rpc.statd
	Figure�6.8 rpcinfo “pinging” rpc.lockd and rpc.statd via UDP

	6.7.2 Collect Debug-level rpc.lockd and rpc.statd Log Files
	1. Determine the process IDs used by rpc.lockd and rpc.statd via the ps(1) command. In this examp...
	2. Toggle debug logging ON by sending the rpc.lockd and rpc.statd daemons a SIGUSR2 signal via th...
	3. Reproduce the undesirable behavior.
	4. Toggle debug logging OFF by sending the daemons another SIGUSR2 signal:
	Figure�6.9 Sample Debug rpc.lockd Log File Contents

	1. Debug logging was enabled on March 6th at 12:53:49 PM.
	2. At the time logging was started, the rpc.lockd daemon had a single lock in its granted queue, ...
	3. The NFS client holding the lock is “ros87252.”
	4. The NFS server holding the lock is “emonster.”
	5. The process ID of the application on the client holding the lock is 11286.
	6. At 12:53:53 PM, process 11286 on client “ros87252” sent an UNLOCK request to server “emonster”...
	7. The UNLOCK request was sent successfully to the server.
	Figure�6.10 Sample Debug rpc.statd Log File Contents

	1. Debug logging was enabled on March 6th at 12:53:05 PM.
	2. At 12:53:35 PM, rpc.statd received a request to monitor the remote system “emonster.”
	3. As of 12:53:35 PM, system “emonster” was successfully added to rpc.statd’s MONITOR QUEUE, indi...

	6.7.3 Collect a Network Trace of the File Locking Problem
	1. Start a nettl(1M) trace on both the client and the server. On the client, log the output of th...
	2. Reproduce the file locking issue on the NFS client.
	3. Stop the nettl(1M) traces on both systems:
	4. Format the traces via the netfmt(1M) command. In this example we assume HP�UX 11.0 systems are...
	5. Search the formatted traces for any NFS lock requests.
	Figure�6.11 nettl Trace of NFS Lock Request and Reply Packets

	7

	Automount and AutoFS
	7.1 Performance Differences between Automount and AutoFS
	Table�7.1 Performance Differences between Automount and AutoFS
	7.1.1 Supported Filesystem Types
	Automount
	AutoFS

	7.1.2 Multi-Thread Support
	Automount
	AutoFS

	7.1.3 Detecting Busy Filesystems
	Automount
	AutoFS

	7.1.4 Mounting Filesystems via an Alternate IP Address
	Automount
	Figure�7.1 Automount Creating a Symlink to a Local Filesystem

	1. The server’s hostname is “atc03.”
	2. There are 2 LAN interfaces in the system.
	3. The local IP address 192.65.6.43 maps to the hostname “atc03-ge2.”
	4. The /etc/auto_direct map contains an entry requesting the “/nfs_mount” pathname be managed by ...
	5. When a user process on system “atc03” references the /nfs_mount path, automounter does not rec...
	Figure�7.2 Automount Creating a Loopback NFS Mount
	Figure�7.3 Loopback NFS Write Performance Example
	AutoFS

	1. Make sure AutoFS is running on the NFS server before HA/NFS is started. This will allow AutoFS...
	2. Run the legacy automounter on HA/NFS server systems. The legacy automounter does not have this...
	3. Configure the HA/NFS server as a dedicated NFS server. This would involve migrating all user a...
	Figure�7.4 LOFS Write Performance Example

	7.1.5 Mounted Filesystem Location
	Automount
	Figure�7.5 Automount Mounting and Creating a Symbolic Link
	Figure�7.6 How Various Shells Deal with Automount Symlinks
	Figure�7.7 Example of Automounter Symbolic Link Overhead
	Figure�7.8 Debug Automount Log Entries of READLINK Requests

	AutoFS

	7.1.6 Automount Pseudo-NFS Server vs. AutoFS Filesystem
	Automount
	Figure�7.9 /etc/mnttab File Showing an Automount Entry

	AutoFS

	7.1.7 Forcibly Stopping the Automounter
	Automount
	AutoFS

	7.1.8 Modifying Map Contents
	Automount
	AutoFS

	7.2 Automounter Performance Considerations
	7.2.1 Replicated Servers in Maps
	7.2.2 Environment Variables Referenced in Maps
	7.2.3 Hierarchical Mount Points in Maps
	Figure�7.10 Debug AutoFS Log File Showing Hierarchical Unmounts
	1. AutoFS received five simultaneous unmount requests from the kernel, which is expected since th...
	2. AutoFS was able to successfully unmount “/net/emonster/stand,” “/net/emonster/home,” and “/net...
	3. When AutoFS tried to unmount “/net/emonster/opt” the unmount attempt failed, which is expected...
	4. AutoFS must now re-mount the three filesystems it just finished unmounting.
	5. AutoFS returns an error of EBUSY (status=16) to the kernel indicating it was not able to unmou...

	7.2.4 Default Unmount Timer and Its Effect on Client Caching
	7.2.5 NFS Mount Options Used in the Master Map

	7.3 Should You Use Automount or AutoFS?
	7.4 Troubleshooting Automount and AutoFS
	7.4.1 Collect a Debug-level Automounter Log File
	1. Determine which automounter is running by issuing the ps(1) command listed below. In this exam...
	2. Toggle debug logging ON by sending the running daemon a SIGUSR2 signal via the kill(1) command:
	3. Reproduce the undesirable behavior.
	4. Toggle debug logging OFF by sending the running automountd daemon another SIGUSR2 signal:
	Figure�7.11 Sample Debug AutoFS Log File

	1. Debug logging was enabled on March 5th at 3:26:41 PM.
	2. AutoFS received a MOUNT request at 3:27:16 PM.
	3. The mount request was for server “emonster” and filesystem “/tmp.” AutoFS is attempting to mou...
	4. The MOUNT request completed successfully.
	5. Approximately 5 minutes later at 3:32:29 PM, AutoFS launched thread number 4 to attempt to UNM...
	6. The filesystem was successfully unmounted.
	7. Debug logging was disabled at 3:34:28 PM.

	8

	CacheFS
	8.1 CacheFS Overview
	8.1.1 CacheFS Terminology
	8.1.2 CacheFS Features
	“Layered” filesystem
	Data remains cached after unmount or client reboot
	All file types are cached
	Contents are cached when referenced
	Cache contents are managed transparently
	Cache consistency checking
	Existing HFS filesystems can be used to hold a cache
	Cache sharing

	8.1.3 Cache Hits and Misses
	Figure�8.1 CacheFS “Cache Hit”
	Figure�8.2 CacheFS “Cache Miss”
	1. An application issues a read request for data residing in a cached NFS filesystem. The kernel ...
	2. In this case the data is not found in the front filesystem, indicating that the data has not y...
	3. The kernel issues an NFS read request to retrieve the data from the back filesystem.
	4. The data is retrieved from the server’s local exported filesystem and sent to the client.
	5. The client kernel places a copy of the data in the front filesystem to satisfy any future requ...

	8.1.4 CacheFS Limitations
	Only read performance is improved
	CacheFS effectiveness depends on client’s disk subsystem
	Loose synchronization with “back” filesystem

	8.2 Using CacheFS
	8.2.1 Creating a Cache
	Table�8.1 cfsadmin(1M) Parameter Descriptions and Defaults
	Figure�8.3 Creating a Cache via cfsadmin

	8.2.2 Mounting an NFS Filesystem Using CacheFS
	Figure�8.4 Sample CacheFS Mount Command

	8.3 CacheFS Internals
	8.3.1 cachefsd Daemon and Kernel Thread Pools
	Figure�8.5 GlancePlus Thread List Displaying cachefsd Threads

	8.3.2 The 32-Slot Allocation Map
	Figure�8.6 32-slot Allocation Map for “file1”
	Intelligent slot length adjustment and slot coalescing
	Figure�8.7 CacheFS Allocation Map Slot Coalescing

	8.3.3 The maxcnodes Kernel Parameter
	Configuring the maxcnodes Parameter

	8.4 HP CacheFS Enhancement — the rpages Mount Option
	8.4.1 The Application Caching Dilemma
	8.4.2 The Influence of Demand Paging
	Figure�8.8 The Effects of Demand Paging on CacheFS

	8.4.3 The cat(1) Solution
	8.4.4 Sun’s Solution — the cachefspack(1M) Command
	8.4.5 HP’s Solution — the rpages Mount Option
	Only files that are executed are automatically fully populated
	Initial application load times vs. subsequent load times
	Table�8.2 Influence of the rpages Option on Application Loading
	Which CacheFS filesystems are mounted with rpages?
	Figure�8.9 Identifying CacheFS Filesystems Mounted with rpages

	8.5 Measuring the Effectiveness of CacheFS
	8.5.1 cachefsstat(1M)
	Figure�8.10 cachefsstat Output from Test 1 in Table�8.2
	Figure�8.11 cachefsstat Output from Test 2 in Table�8.2
	Figure�8.12 cachefsstat Output from Test 3 in Table�8.2
	Figure�8.13 cachefsstat Output from Test 4 in Table�8.2

	8.5.2 Compare Wall-Clock Times and NFS Read Calls
	timex(1)
	nfsstat(1M)

	8.5.3 Examine the Contents of the Cache Directory
	Locate the Cached Files
	Figure�8.14 Contents of /Cache/cachedir Directory
	Figure�8.15 Contents of /Cache/cachedir/00000180 Directory
	Figure�8.16 /Cache/cachedir/00000180/00000100 Contents
	Figure�8.17 du -k Output in Cached Directory

	Map cached files to their equivalent files in the back filesystem
	Figure�8.18 find Command Identifying File 000001dd

	Which files remain cached after the CacheFS filesystem is unmounted?
	Figure�8.19 Cache Contents Before and After CacheFS Unmount

	9

	NFS Protocol Version 2 vs. NFS Protocol Version 3
	9.1 Differences between NFS PV2 and NFS PV3
	9.1.1 Maximum Supported File and Filesystem Sizes
	PV2
	PV3
	HP�UX NFS Clients
	HP�UX NFS Servers
	Table�9.1 Maximum File and Filesystem Sizes Supported by HP�UX

	9.1.2 Safe Asynchronous Writing
	PV2 “unsafe” asynchronous writing
	PV3 “safe” asynchronous writing
	Figure�9.1 PV3 Asynchronous Writing to a Working NFS Server

	stable
	committed
	verf
	COMMIT
	Figure�9.2 PV3 Asynchronous Writing to a Rebooting NFS Server

	9.1.3 Increased READ and WRITE Request Sizes
	PV2
	PV3

	9.1.4 Improved Attribute Retrieval and Caching
	PV2
	PV3
	Figure�9.3 PV2 WRITE Reply Showing Post-operation Attributes

	Weak Cache Consistency
	Figure�9.4 PV3 WRITE Reply Showing Pre and Post Attributes

	9.1.5 The READDIRPLUS Procedure
	PV2
	PV3
	Figure�9.5 NFS PV2 nettl Trace of “ls -l” Command
	Figure�9.6 NFS PV3 nettl Trace of “ls -l” Command

	9.2 Will a PV3 Installation Always Outperform PV2?
	9.2.1 Asynchronous WRITE Performance
	Configuring PV3 to meet or exceed PV2 performance
	Table�9.2 Results of 1GB Asynchronous Write via PV2 and PV3

	9.2.2 32KB I/O Requests and UDP Retransmissions
	Configuring PV3 to meet or exceed PV2 performance

	9.2.3 Directory Retrieval where Attribute Data Is Not Needed
	Configuring PV3 to meet or exceed PV2 performance

	9.3 Should You Use NFS PV2 or PV3 in Your Environment?
	10

	NFS/UDP vs. NFS/TCP
	10.1 Overview of UDP and TCP
	TCP Protocol Overhead

	10.2 Connection Management
	10.2.1 UDP Unlimited Data Flows vs. TCP Single Connection
	NFS/TCP Single Connection Semantics

	10.2.2 Changing Client TCP Behavior via clnt_max_conns
	10.2.3 Changing Server TCP Thread Pool Size via maxthreads
	10.2.4 The Relationship between clnt_max_conns and maxthreads
	10.2.5 Idle TCP Connection Management — Client Side
	10.2.6 Idle TCP Connection Management — Server Side

	10.3 Managing Retransmissions and Timeouts
	Figure�10.1 nfsstat Displaying Timeouts and Retransmissions
	10.3.1 When Would an NFS Client Retransmit a Request?
	10.3.2 How Much NFS Data Is Retransmitted?
	UDP
	TCP

	10.3.3 How Do the hard and soft Mount Options Affect Timeouts?
	10.3.4 How Does the NFS/UDP Retransmission Mechanism Work?
	Table�10.1 UDP Timeout Values for Various NFS Call Types
	“Normal” case
	“Down Server” case
	“Heavily Loaded Server” case
	Figure�10.2 nfsstat -m Displaying Smooth Round Trip Timers

	10.3.5 How Does the NFS/TCP Retransmission Mechanism Work?
	10.3.6 How Does the timeo Mount Option Affect UDP and TCP?
	UDP
	TCP

	10.4 Network Interconnect Device Buffering Considerations
	10.5 Should You Use NFS/UDP or NFS/TCP in Your Environment?
	Table�10.2 Recommended NFS Network Transport Protocol
	10.5.1 NFS Environments that May Benefit from UDP over TCP
	LAN experiencing few NFS retransmissions

	10.5.2 NFS Environments that May Benefit from TCP over UDP
	WAN or High Latency Links
	LAN experiencing many NFS retransmissions
	Networks using network interconnect devices configured to favor TCP

	11

	Buffer Cache
	11.1 What Is the Buffer Cache?
	11.1.1 How Does Buffer Cache Differ from the Page Cache?
	Buffer Cache
	Page Cache

	11.2 Why Not Allocate Lots of Memory for Buffer Cache?
	11.2.1 A Large Cache Does Not Guarantee a High Cache Hit-Rate
	11.2.2 Wastes Memory that Could Be Better Used by the System
	11.2.3 11.0 Client Performance Suffers with a Large Cache
	When does the NFS client need to invalidate a file?

	11.3 How Do Dynamic and Static Buffer Cache Mechanisms Differ?
	11.3.1 Kernel Parameters Used to Configure the Cache
	Dynamic Cache
	Static Cache
	Table�11.1 Relationship between the bufpages and nbuf Parameters

	11.3.2 Behavior when the System Is Under Memory Pressure

	11.4 Should You Configure a Dynamic or Static Buffer Cache?
	11.4.1 Environments where a Dynamic Cache Is Recommended
	Memory pressure or small memory systems

	11.4.2 Environments where a Static Cache Is Recommended
	You have determined the optimal cache size and have sufficient memory
	You plan on adding or removing memory from your system
	Buffer Cache Fragmentation

	11.5 Interaction with the syncer(1M) Daemon
	11.6 Automounter’s Influence on Client Caching
	11.7 How Much Buffer Cache Memory Should You Configure?
	NFS Client Buffer Cache Sizing Recommendations
	NFS Server Buffer Cache Sizing Recommendations

	11.8 Measuring Buffer Cache Effectiveness
	Time the application
	Monitor cache hit rates with GlancePlus
	Figure�11.1 GlancePlus Disk Report Displaying Cache Hit Rates
	Figure�11.2 GlancePlus Reporting Buffer Cache Utilization

	12

	Kernel Parameters
	Table�12.1 Recommended Initial Values for NFS Kernel Parameters
	12.1 Tunable Kernel Parameter List
	12.1.1 bufcache_hash_locks
	12.1.2 bufpages
	Table�12.2 Relationship between the bufpages and nbuf Parameters

	12.1.3 create_fastlinks
	12.1.4 dbc_min_pct
	12.1.5 dbc_max_pct
	12.1.6 default_disk_ir
	12.1.7 dnlc_hash_locks
	12.1.8 fs_async
	12.1.9 ftable_hash_locks
	12.1.10 max_fcp_reqs
	12.1.11 max_thread_proc
	12.1.12 maxfiles
	12.1.13 maxfiles_lim
	12.1.14 maxswapchunks
	12.1.15 nbuf
	12.1.16 ncallout
	12.1.17 ncsize
	12.1.18 nfile
	12.1.19 nflocks
	12.1.20 ninode
	12.1.21 nkthread
	12.1.22 nproc
	12.1.23 scsi_max_qdepth
	12.1.24 vnode_hash_locks
	12.1.25 vnode_cd_hash_locks
	12.1.26 vx_fancyra_enable
	12.1.27 vx_ninode
	Table�12.3 VxFS Inode Table Sizing Based on Physical Memory

	12.2 Inspecting Kernel Parameter Settings
	12.2.1 sam(1M)
	Figure�12.1 sam Kernel Configuration Screen

	12.2.2 kmtune(1M)
	Figure�12.2 kmtune Output from an HP�UX 11i System

	12.2.3 sysdef(1M)
	Figure�12.3 sysdef Output

	12.2.4 The /stand/system File

	12.3 Monitoring Kernel Parameter Values via GlancePlus
	Figure�12.4 GlancePlus System Tables Report Screen
	Figure�12.5 GlancePlus Disk Report Displaying DNLC Hit Rates

	A

	Summary of Tuning Recommendations
	A.1 NFS Client and Server Daemons
	Table�A.1 Recommended Number of Client and Server NFS Daemons

	A.2 Supported NFS Kernel Parameters
	Table�A.2 Recommended Values for Supported Kernel Parameters

	A.3 Undocumented NFS Kernel Parameters
	Table�A.3 Undocumented Kernel Parameters in HP�UX 11.0 and 11i

	A.4 NFS Mount and Exportfs Options
	Table�A.4 Recommendations for NFS Mount and Export Options
	A.4.1 Verifying Mount Options for Mounted NFS Filesystems
	Figure�A.1 nfsstat -m Displaying NFS Mount Options

	A.4.2 Verifying Options for Exported Filesystems
	Figure�A.2 Sample exportfs Output

	B

	Patching Considerations
	B.1 Performance-Enhancing Defect Fixes
	Table�B.1 Performance-Enhancing Defects Fixed in Patches

	B.2 Performance-Enhancing New Functionality
	Table�B.2 Performance-Enhancing New Functionality in Patches

	B.3 Patching Dependent Subsystems
	Table�B.3 Sample HP�UX 11.0 NFS Dependent Patch List

	B.4 Verifying Current NFS Patch Level
	B.4.1 swlist(1M)
	Figure�B.1 Using swlist to Identify the Installed NFS Patch

	B.4.2 swremove(1M)
	Figure�B.2 Configuring swremove to Display by “Products”
	Figure�B.3 Using swremove to Identify the Installed NFS Patch

	Bibliography
	Index
	Symbols
	/dev/zero device file
	/etc.rc.config.d/nfsconf
	/etc/nsswitch.conf 124–126, 131–133
	/etc/rc.config.d/nfsconf
	/etc/rmtab 120–122
	/etc/xtab 119–120
	/var/statmon/sm directory
	/var/statmon/sm.bak directory
	A

	analyze filesystem layout 19–23
	analyze network layout 1–6
	automount and AutoFS 163–186
	B

	bdf(1M)
	beforeafter
	biod daemons 45–76
	buffer cache
	C

	CacheFS 187–216
	cfsadmin(1M)
	D

	dd(1)
	demand paging
	df(1M)
	directory name lookup cache (DNLC) 118, 275, 278, 281, 286–289, 299
	dropped network packets
	duplicate request cache 110–112
	E

	export options
	exportfs(1M)
	F

	file locking, See rpc.lockd and rpc.statd
	filehandles 146–148
	fsadm(1M)
	G

	GlancePlus
	H

	H/A NFS, See MC/ServiceGuard
	hostname resolution
	I

	iozone
	K

	kernel parameters
	kgmon
	L

	lanadmin(1M)
	local filesystem recommendations 28–43
	lockd, See rpc.lockd
	LOFS (Loopback Filesystem)
	M

	MC/ServiceGuard
	measure filesystem throughput 23–28
	measure network throughput 6–9
	mkfs(1M)
	mount options
	mountd, See rpc.mountd
	mounting NFS filesystems, See rpc.mountd
	N

	netperf
	netstat(1)
	nettl(1M)
	network interconnect memory exhaustion 9
	network interface settings
	network topology 1–6
	network tracing, See nettl(1M)
	network troubleshooting tools 9–17
	NFS differences between HP�UX 11.0 and 11i
	NFS protocol version 2 vs. version 3 217–237
	NFS/UDP vs. NFS/TCP 239–256
	nfsd daemons and threads 77–118
	nfskd, See nfsd daemons and threads
	nfsktcpd, See nfsd daemons and threads
	nfsstat(1M)
	nslookup(1)
	nsquery(1)
	P

	page cache
	patching considerations 311–318
	ping(1M)
	PV2, PV3, See NFS protocol version 2 vs. version 3
	Q

	q4
	R

	reading directories via NFS 20
	request retransmissions
	retransmitted requests 66–69
	rnode data structure
	rpc.lockd 139–162
	rpc.mountd 119–137
	rpc.statd 139–162
	rpcinfo(1M)
	S

	showmount(1M)
	SPEC SFS97 38–39, 241, 270, 294
	statd, See rpc.statd
	symbolic links
	syncer(1M)
	T

	TCP, See NFS/UDP vs. NFS/TCP
	traceroute(1M)
	ttcp(1)
	tusc(1)
	U

	UDP socket overflows 9, 12, 81, 112–116
	UDP, See NFS/UDP vs. NFS/TCP
	V

	VxFS filesystems
	vxtunefs(1M) 32–39
	W

	web sites of interest

	Table of Contents.pdf
	Contents
	List of Figures xvii
	List of Tables xxiii
	List of Key Ideas and NFS Performance Examples xxv
	List of NFS Differences Between HP�UX 11.0 and 11i xxix
	Acknowledgements xxxi
	Introduction xxxiii
	Chapter�1

	Network Considerations 1
	1.1 Analyze Network Layout 1
	1.2 Measure Network Throughput Capabilities 6
	1.3 Network Troubleshooting Tools 9
	Chapter�2
	Local Filesystem Considerations 19

	2.1 Analyze Filesystem Layout 19
	2.2 Measure Filesystem Throughput Capabilities 23
	2.3 Local Filesystem Recommendations 28
	Chapter�3
	biod Daemons 45

	3.1 How Do the biods Work? 45
	3.2 Why Not Just Launch Hundreds of biods? 54
	3.3 When Might an NFS Client Not Benefit from biods? 54
	3.4 How Many biods Should Your NFS Client Run? 57
	3.5 Troubleshooting the biod Daemons 58
	Chapter�4
	nfsd Daemons and Threads 77

	4.1 What Are the Various “nfsd” Daemons and Threads? 78
	4.2 NFS Server UDP Daemon Management 81
	4.3 NFS Server TCP Thread Management 87
	4.4 How Many nfsds Should Your NFS Server Run? 91
	4.5 Troubleshooting the nfsd Daemons and Threads 93
	Chapter�5
	rpc.mountd 119

	5.1 What Services Does rpc.mountd Provide? 120
	5.2 What Factors Influence rpc.mountd Performance? 123
	5.3 Troubleshooting rpc.mountd 130
	Chapter�6
	rpc.lockd and rpc.statd 139

	6.1 How Do rpc.lockd and rpc.statd Handle NFS Lock Requests? 140
	6.2 How Do rpc.lockd and rpc.statd Perform Lock Recovery? 142
	6.3 Examining NFS File Locks 145
	6.4 Avoiding NFS File Lock Hangs in Your Environment 149
	6.5 Why Would Restarting the Daemons Clear a Lock Hang? 154
	6.6 Ensuring Optimal NFS File Locking Performance 156
	6.7 Troubleshooting rpc.lockd and rpc.statd 156
	Chapter�7
	Automount and AutoFS 163

	7.1 Performance Differences between Automount and AutoFS 164
	7.2 Automounter Performance Considerations 178
	7.3 Should You Use Automount or AutoFS? 183
	7.4 Troubleshooting Automount and AutoFS 184
	Chapter�8
	CacheFS 187

	8.1 CacheFS Overview 188
	8.2 Using CacheFS 192
	8.3 CacheFS Internals 196
	8.4 HP CacheFS Enhancement — the rpages Mount Option 202
	8.5 Measuring the Effectiveness of CacheFS 208
	Chapter�9
	NFS Protocol Version 2 vs. NFS Protocol Version 3 217

	9.1 Differences between NFS PV2 and NFS PV3 218
	9.2 Will a PV3 Installation Always Outperform PV2? 233
	9.3 Should You Use NFS PV2 or PV3 in Your Environment? 237
	Chapter�10
	NFS/UDP vs. NFS/TCP 239

	10.1 Overview of UDP and TCP 241
	10.2 Connection Management 242
	10.3 Managing Retransmissions and Timeouts 246
	10.4 Network Interconnect Device Buffering Considerations 254
	10.5 Should You Use NFS/UDP or NFS/TCP in Your Environment? 255
	Chapter�11
	Buffer Cache 257

	11.1 What Is the Buffer Cache? 258
	11.2 Why Not Allocate Lots of Memory for Buffer Cache? 259
	11.3 How Do Dynamic and Static Buffer Cache Mechanisms Differ? 262
	11.4 Should You Configure a Dynamic or Static Buffer Cache? 264
	11.5 Interaction with the syncer(1M) Daemon 266
	11.6 Automounter’s Influence on Client Caching 268
	11.7 How Much Buffer Cache Memory Should You Configure? 269
	11.8 Measuring Buffer Cache Effectiveness 270
	Chapter�12
	Kernel Parameters 273

	12.1 Tunable Kernel Parameter List 278
	12.2 Inspecting Kernel Parameter Settings 295
	12.3 Monitoring Kernel Parameter Values via GlancePlus 298
	Appendix�A
	Appendix�B
	Bibliography 319
	Index 321

	List of Figures.pdf
	List of Figures

	List of Tables.pdf
	List of Tables

	List of Differences.pdf
	List of NFS Differences Between HP�UX 11.0 and 11i

	Acknowledgements.pdf
	Acknowledgements

	Intro.pdf
	Introduction
	Why another book about NFS?
	Who is the intended audience for this book?
	NFS performance tuning methodology used in this book
	Organization of this book

	Index.pdf
	Index
	Symbols
	/dev/zero device file
	/etc.rc.config.d/nfsconf
	/etc/nsswitch.conf 124–126, 131–133
	/etc/rc.config.d/nfsconf
	/etc/rmtab 120–122
	/etc/xtab 119–120
	/var/statmon/sm directory
	/var/statmon/sm.bak directory
	A

	analyze filesystem layout 19–23
	analyze network layout 1–6
	automount and AutoFS 163–186
	B

	bdf(1M)
	beforeafter
	biod daemons 45–76
	buffer cache
	C

	CacheFS 187–216
	cfsadmin(1M)
	D

	dd(1)
	demand paging
	df(1M)
	directory name lookup cache (DNLC) 118, 275, 278, 281, 286–289, 299
	dropped network packets
	duplicate request cache 110–112
	E

	export options
	exportfs(1M)
	F

	file locking, See rpc.lockd and rpc.statd
	filehandles 146–148
	fsadm(1M)
	G

	GlancePlus
	H

	H/A NFS, See MC/ServiceGuard
	hostname resolution
	I

	iozone
	K

	kernel parameters
	kgmon
	L

	lanadmin(1M)
	local filesystem recommendations 28–43
	lockd, See rpc.lockd
	LOFS (Loopback Filesystem)
	M

	MC/ServiceGuard
	measure filesystem throughput 23–28
	measure network throughput 6–9
	mkfs(1M)
	mount options
	mountd, See rpc.mountd
	mounting NFS filesystems, See rpc.mountd
	N

	netperf
	netstat(1)
	nettl(1M)
	network interconnect memory exhaustion 9
	network interface settings
	network topology 1–6
	network tracing, See nettl(1M)
	network troubleshooting tools 9–17
	NFS differences between HP�UX 11.0 and 11i
	NFS protocol version 2 vs. version 3 217–237
	NFS/UDP vs. NFS/TCP 239–256
	nfsd daemons and threads 77–118
	nfskd, See nfsd daemons and threads
	nfsktcpd, See nfsd daemons and threads
	nfsstat(1M)
	nslookup(1)
	nsquery(1)
	P

	page cache
	patching considerations 311–318
	ping(1M)
	PV2, PV3, See NFS protocol version 2 vs. version 3
	Q

	q4
	R

	reading directories via NFS 20
	request retransmissions
	retransmitted requests 66–69
	rnode data structure
	rpc.lockd 139–162
	rpc.mountd 119–137
	rpc.statd 139–162
	rpcinfo(1M)
	S

	showmount(1M)
	SPEC SFS97 38–39, 241, 270, 294
	statd, See rpc.statd
	symbolic links
	syncer(1M)
	T

	TCP, See NFS/UDP vs. NFS/TCP
	traceroute(1M)
	ttcp(1)
	tusc(1)
	U

	UDP socket overflows 9, 12, 81, 112–116
	UDP, See NFS/UDP vs. NFS/TCP
	V

	VxFS filesystems
	vxtunefs(1M) 32–39
	W

	web sites of interest

