Chapter 13

Porting eCos

Getting your application running on your new target hardware platform is typically the main goal in embedded software development. This typically includes porting eCos to the target hardware as well. eCos was designed for portability by using a layered approach to the different software system components. When porting eCos, moving the HAL to the new target hardware is the first step, which enables the higher layer components, such as the kernel, to also run on the target hardware. Additional functionality, such as display drivers and Ethernet drivers, can then be incorporated to meet the requirements of the system and get the system fully operational.

Because of the unique nature of each new target hardware system, it is impossible to cover every possible detail for each target system. Instead, in this chapter, we look at a platform porting example to get an overall understanding of the eCos porting process. Using one of the supported evaluation platforms as a baseline, we can add a new target platform to the eCos framework and see how to get this new platform up and running using the eCos tools. We can then go through some of the details that might need to be addressed in other porting procedures.

The PowerPC GNU cross-development tools are included on the CD-ROM in case you want to build this porting example, although this is not necessary for understanding the porting process. These tools are located under the gnu\ppctools directory.

13.1
Overview of Porting

Now that we have an understanding of the components in the eCos system, how to use the tools, and how to write an application using eCos, we can focus on the main task involved with using any RTOS: getting the software running on our own hardware. This is typically the main goal when using an RTOS. Porting to a new hardware platform can be a painful and slow process because it is typically occurring at the same time that the hardware itself is being debugged.

The layered architecture of eCos, as described in Chapter 1, An Introduction to the eCos World and shown in Figure 1.1, makes the porting process a bit easier. To move to a new hardware platform we start by porting the HAL and ensure that it functions properly on the new hardware. Since the higher application layers sit on top of the HAL, they are not dependent on a specific piece of hardware. Options can then be configured to meet the needs of the new hardware platform.

Since every piece of hardware is unique in its own way, the porting process described in this chapter should be used as a general guide. Your hardware might require its own specific code such as serial and display drivers to get the system operating properly. There will be implementation decisions that you need to make for your hardware in order to port eCos.

The porting of the eCos HAL can be broken down into three different types: Platform, Variant, and Architecture porting. Platform porting consists of using the HAL of a current platform supported by eCos, which is similar to the new hardware platform, as a baseline and then making modifications for the new platform, including the new memory layout and any specific initialization needed. New drivers might need to be developed to accommodate additional hardware resources. Of the three porting types, platform porting usually requires the least amount of effort if an existing HAL can be used as a baseline.

Variant porting also uses a closely related existing HAL as a baseline. As described in Chapter 2, The Hardware Abstraction Layer, a variant HAL supports differences of a specific processor from the generic processor architecture. A variant port might consist of redefining interrupts, cache, or other features that override the default implementation of the architecture HAL. A variant port requires an existing architecture HAL port. The amount of effort necessary for a variant port directly corresponds to the similarity of the existing variants for the specific processor.

Finally is architecture porting. This consists of using an existing architecture HAL as a baseline. The reason why an architecture port can be a daunting task is that compiler support must be present before beginning the porting process. eCos is closely coupled to the GNU C/C++ Compiler. Although the GNU C/C++ Compiler supports numerous different architectures, if it does not support your new architecture then the task of porting the GNU compiler needs to be completed as well. After the architecture HAL port is complete, a platform port must be done in order to support the new hardware.

Before setting out on a new variant or architecture port it is a good idea to search the eCos discussion mailing list archives to see if anyone else in the development community is currently undertaking the same port. You can then see if the developer intends to contribute the port back for use by others. The eCos discussion mailing list archives can be searched online at:

http://sources.redhat.com/ml/ecos-discuss

If no one else is performing the same port, you can post your intentions to the list using the address ecos-discuss@sources.redhat.com. You might receive a reply giving you some additional tips or resources to use to help you out.

13.2
A Platform Porting Example

In order to get a better understanding of the platform porting procedure, we are going to go through the process of creating a new hardware platform for our imaginary piece of hardware. In this example, we use the Motorola MBX860 platform HAL as our baseline. The Motorola MBX860 HAL is located under the hal\powerpc\mbx subdirectory.

During the software development process, choosing an off-the-shelf evaluation board allows us to do parallel software development while the hardware is being designed. Although the specific platform implementation details might differ among various HALs, this example should be used as a general guideline that can be applied to all platform ports.

For this porting example, we use RedBoot as the template. Additional information about RedBoot can be found in Chapter 9, The RedBoot ROM Monitor. Since RedBoot is essentially a thin command-line interface sitting on top of the HAL with GDB stub functionality included, we can leverage off the RedBoot development to put us steps ahead in the porting process.

Once the HAL is ported to the new hardware, RedBoot gives us the ability to load and debug code on our new target platform. Initially, we want to strip out any unnecessary functionality included in the RedBoot template so that we have a “bare bones” build of the RedBoot image. As we progress with the port to our new hardware, we can add back the functionality we need to produce a full-featured RedBoot image.

It is important to establish some baseline hardware functionality prior to setting out on the eCos port. We should wring out any basic hardware problems, such as memory reading or writing errors, before proceeding. This baseline functionality can be established using some basic RAM read/write tests and ROM, if a flash ROM device is used, read/write tests. Having the proper tools during the early stages of bringing up hardware is crucial. Most processors have some type of In-circuit Emulator (ICE) or Background Debug Mode (BDM) tools available. A good article about ICE technology can be found online at:

www.embedded.com/1999/9910/9910sr.htm

Having one of these tools can give you the ability to load code onto the target hardware without going through the process of burning EPROMs whenever you need to test code changes. Easing the testing of new code changes is essential during the eCos porting process.

Other equipment that is good to have when bringing up a new piece of hardware is a logic analyzer and oscilloscope. These pieces of equipment can guarantee that the hardware is meeting their associated timing specifications.

An evaluation board is a great piece of hardware to have during the initial phases of a project. Using the evaluation board, you can begin writing the application software for your system long before your own hardware is ready. Then, when your new hardware comes online you can go through the platform porting procedure, as described later in this section, to get eCos up and running on your new platform. The evaluation board also gives you a baseline of functionality that you can use to check your software as the project progresses. If something is not working correctly on your new hardware, you can always test it out on the evaluation platform to see how it works in a more stable environment. A list of the evaluation boards supported by eCos can be found in Appendix A, Supported Processors and Evaluation Platforms. The latest additions to this list can also be found online at:

http://sources.redhat.com/ecos/hardware.html

Figure 13.1 is an overview flowchart of the platform porting example we go through in this chapter.

	Figure 13.1
eCos porting process flowchart.

As we see in Figure 13.1, we begin by basing our new platform on an existing evaluation board HAL package. This allows us to quickly set up the files we need to get our new platform package noticed by the eCos framework. Then we modify the package to make it specific for our new hardware platform.

Next, we add the new platform package to the eCos database so that we can use the configuration tools to build our new platform image. At this point, we do a test build, which we run on our evaluation board, to ensure that the package is built properly.

Now we customize the software for our new target platform, including changing clock configuration, memory layout, and adding or modifying device drivers to match the new hardware. Then we are able to build a RedBoot image for our new platform. Once this RedBoot image is up and running, we are able to extend the functionality for our new platform by incorporating any additional features required.

For our example, we are performing the platform port to our new hardware that we code name “Martini”. The example code for our new Martini HAL package is located on the CD-ROM under the examples\martini directory. The Martini package is contained under the examples\martini\package directory and the install tree, MLT directory, and eCos configuration file are located under the examples\martini\build directory. The modified eCos database file ecos.db, which shows the modifications necessary to get our new Martini platform noticed in the eCos framework, is also included on the CD-ROM.

	N O T E
One of the steps in this example porting procedure entails building a RedBoot image for the new PowerPC-based target platform. The PowerPC GNU cross-development tools binary files are included on the CD-ROM if you would like to build the Martini example image.

To set up the PowerPC GNU cross-development tools follow these steps.

Step 1:

Open a bash command shell. Change to the root Cygwin directory by entering the command:

$ cd /

Step 2:

Unzip the PowerPC GNU cross-development tools with the command:

$ tar xjvf /cygdrive/e/gnu/ppctools/ppcgnutools.tar.bz2

After executing this command, the PowerPC GNU cross-development tools are located under the D:\cygwin\toolsppc directory. The binary executables are under the D:\cygwin\ toolsppc\H-i686-pc-cygwin\bin directory.

Step 3:

Next, we set the path for our new GNU cross-development tools. The bash shell command for this is:

$ PATH=/toolsppc/H-i686-pc-cygwin/bin:$PATH ; export PATH

Building the Martini image using the PowerPC GNU cross-development tools is not necessary in order to understand the eCos porting procedure.

13.2.1
PowerPC HAL Directory and File Structure

Let’s take a closer look at the PowerPC HAL directory structure focusing on the Motorola MBX860 platform. We need to know the location of the files and subdirectories that contain the functionality for the MBX platform. Figure 13.2 shows the relevant HAL directories for the Motorola MBX860 platform. The version subdirectories are left out in Figure 13.2; we are using the current version in our example. Other HAL platforms have similar directory structures.

The subdirectory common contains the package configuration files general to all HAL architectures, including files for general interrupt configuration, virtual vector layout, and HAL debugging control. Function wrappers are contained in this subdirectory to create the commonality found among all HAL implementations.

The arch subdirectory is located under the powerpc architecture HAL directory and includes files for generic support for the PowerPC processor architecture. Functionality included in this generic support consists of exception vector initialization, ROM and RAM startup configuration, common interrupt and exception handling, thread context switch handling, a generic linker script file, and common debugging functions.

The mbx subdirectory contains the Motorola MBX860 platform source files. The description, in CDL script format, of the MBX package is in the file hal_powerpc_mbx.cdl located in the cdl subdirectory.

The include subdirectory contains all header files for the MBX platform. Under the include subdirectory is the pkgconf subdirectory, which is where the memory layout files are located.

	Figure 13.2
Motorola MBX860 Platform HAL directory structure.

The misc subdirectory includes RedBoot minimum configuration files that can be imported into the Configuration Tool to establish a baseline of configured options and packages.

The subdirectory src contains the main source assembly file, mbx.S, for the MBX platform. This file contains the hardware setup code in the routine hal_hardware_init, which configures all necessary processor registers, and initializes the chip select configuration for the MBX platform. The tests subdirectory contains tests for the MBX platform.

The mpc8xx and quicc subdirectories are shown because they are variants of the MPC860 architecture used by the MBX platform. We need to be aware of the variants used by the platform we are using as a baseline in case we need to modify or extend the support offered in the variant packages.

As we proceed with the platform port, we are going to also need to be aware of the driver packages that are included in the MBX platform package. These might also need to be modified to support the new hardware.

STEP 1　Getting the New Platform Noticed

The first step in the platform porting process is to get our new hardware platform noticed by the Configuration Tool, which allows us to build the software for our new hardware platform.

We first create a martini directory under the PowerPC HAL directory because our hardware uses the PowerPC MPC860T processor.

Since we are using the MBX platform as our baseline, we copy the subdirectory hal\powerpc\mbx\current into our new hardware subdirectory hal\powerpc\ martini\current.

	N O T E
If the files under our new hardware platform are read-only, it is easier to make these files read/write so we can make proper modifications. When using the Martini example from the CD-ROM, the files are marked as read-only. When you copy them to your working directory, be sure to mark them read/write as necessary.

Next, we need to change the filenames from the MBX platform to represent our Martini platform. Table 13.1 shows an example of the filename changes needed for our Martini package, which are made to the files in our new subdirectory hal\powerpc\martini\current. The subdirectory location of the files is given in Table 13.1 as well.
	Table 13.1
HAL Platform Porting Filename Changes

	MBX Platform Filename
	Martini Platform Filename

	Subdirectory cdl
	

	hal_powerpc_mbx.cdl
	hal_powerpc_martini.cdl

	Subdirectory include\pkgconf
	

	mlt_powerpc_mbx_ram.h
	mlt_powerpc_martini_ram.h

	mlt_powerpc_mbx_ram.ldi
	mlt_powerpc_martini_ram.ldi

	mlt_powerpc_mbx_ram.mlt
	mlt_powerpc_martini_ram.mlt

	mlt_powerpc_mbx_rom.h
	mlt_powerpc_martini_rom.h

	mlt_powerpc_mbx_rom.ldi
	mlt_powerpc_martini_rom.ldi

	mlt_powerpc_mbx_ram.mlt
	mlt_powerpc_martini_rom.mlt

	Subdirectory src
	

	mbx.S

	martini.Sa

Now we need to modify our new CDL script file, hal_powerpc_martini.cdl located in the hal\powerpc\martini\current\cdl subdirectory, to reflect our Martini hardware platform. The modifications necessary for the Martini hardware platform consist of changing references to the MBX board to our new Martini platform, which can be done by a search and replace.

Code Listing 13.1 shows an example of the changes made for the new Martini package. The modified file for the Martini platform, hal_powerpc_martini.cdl, is located on the CD-ROM in the examples\martini\package\current\cdl subdirectory.

1

cdl_package CYGPKG_HAL_POWERPC_MARTINI {

2

 display "Martini PowerPC board"

3

 parent CYGPKG_HAL_POWERPC

4

 requires CYGPKG_HAL_POWERPC_MPC8xx

5

 define_header hal_powerpc_martini.h

6

 include_dir cyg/hal

7

 description "

8

 The MARTINI HAL package provides the support

9

 needed to run eCos on a Martini board

10

 equipped with a PowerPC processor."

11

12

 compile hal_diag.c hal_aux.c martini.S

13

14

 implements CYGINT_HAL_DEBUG_GDB_STUBS

15

 implements CYGINT_HAL_DEBUG_GDB_STUBS_BREAK

16

 implements CYGINT_HAL_VIRTUAL_VECTOR_SUPPORT

17

 .

18

 .

19

 .

20

}

Code Listing 13.1
Example CDL script file changes, in the file hal_powerpc_martini.cdl, for the new Martini platform.

As we see in line 1, we change the cdl_package command name from CYGPKG_HAL_POWERPC_MBX to CYGPKG_HAL_POWERPC_MARTINI. We also change the CDL command display description on line 2. You can choose whatever descriptive name you wish for the display and description CDL commands.

Lines 3 and 4 are left unchanged at this point in the porting process. We will revisit these values later in the porting process. Line 5 needs to reflect our new header file hal_powerpc_ martini.h. Lines 7 through 10 contain the new description for our Martini platform. On line 12, for the CDL command compile we change the file mbx.S to martini.S. We might need to add files to this statement later if necessary. The remaining lines 13 through 16 remain the same as those in the MBX CDL script file.

There are locations in two source files that we need to change for our new Martini platform. The first is located in the file plf_stub.h under the include subdirectory. We need to change the line:

#include <pkgconf/hal_powerpc_mbx.h>

to

#include <pkgconf/hal_powerpc_martini.h>

We need to perform this same modification to the file martini.S under the src subdirectory. It can be useful to use the grep utility, to find the mbx string, during this modification step.

	N O T E
You might find that additional modifications are needed to various source files for your new hardware if a different HAL platform is used as a baseline.

Next, we need to get our Martini platform noticed by the Configuration Tool. To do this, we add our new platform package to the ecos.db file located under the D:\ecos\packages subdirectory.

	N O T E
It is a good idea to make a backup copy of the original ecos.db file before editing the file, just in case you need to refer to it or restore the original file.

As we know from Chapter 11, The eCos Toolset, the ecos.db file uses the CDL and contains the high-level descriptions for all packages in the component framework. Code Listing 13.2 shows the CDL description additions to the ecos.db file in order to get the Configuration Tool to recognize our Martini platform.

1

package CYGPKG_HAL_POWERPC_MARTINI {

2

 alias { "Martini board" hal_powerpc_martini powerpc_martini_hal }

3

 directory hal/powerpc/martini

4

 script hal_powerpc_martini.cdl

5

 hardware

6

 description "

7

 The MARTINI HAL package provides the support

8

 needed to run eCos on a Martini board equipped

9

 with a PowerPC processor."

10

}

11

.

12

.

13

.

14

target martini {

15

 alias { "Martini board" martini860 }

16

 packages { CYGPKG_HAL_POWERPC

17

 CYGPKG_HAL_POWERPC_MPC8xx

18

 CYGPKG_HAL_POWERPC_MARTINI

19

 CYGPKG_HAL_QUICC

20

 CYGPKG_IO_SERIAL_POWERPC_QUICC_SMC

21

 CYGPKG_DEVS_ETH_POWERPC_QUICC

22

 CYGPKG_DEVS_FLASH_MBX

23

 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX

24

 }

25

 description "

26

 The martini target provides the packages needed

27

 to run eCos on a Martini board."

28

}

Code Listing 13.2
eCos repository database file, ecos.db, changes for the Martini platform.

The easiest way to add the proper package and template descriptions to the ecos.db file is to copy the package and template descriptions from the HAL platform we are using as a baseline. In our case, this is the MBX package and MBX template. We then change the MBX names to our new Martini platform name.

The package description and template description are in different locations in the ecos.db file. We want to maintain this structure by copying the package and template descriptions in the same area as the MBX platform we are using as a baseline. For additional information about how the ecos.db file descriptions are reflected in the Configuration Tool user interface, see Chapter 11.

On line 1, we change the package CDL command from CYGPKG_HAL_ POWERPC_MBX to CYGPKG_HAL_POWERPC_MARTINI. As we can see, this is the same package name used in the Martini CDL script file shown in Code Listing 13.1.

We also change the MBX references made on lines 2 through 4 Martini. Line 4 informs the Configuration Tool where to find the CDL script file to describe our new Martini package—in our case, the filename is hal_powerpc_martini.cdl—which we previously added and edited. The description CDL command is changed to depict the Martini package.

Lines 11 through 13 are there to remind us that the package CDL command and the target CDL command are in different locations in the ecos.db file.

Finally, we change the CDL command target for our new platform. Line 14 shows our new target name martini. The alias CDL command is also changed for the Martini platform. The CDL command packages, shown on lines 16 through 24, is used by the Configuration Tool to determine which packages to load for our Martini platform. At this point, we only want to change the package name CYGPKG_HAL_POWERPC_MBX to CYGPKG_HAL_ POWERPC_MARTINI on line 18. At this point, we do not change the CYGPKG_DEVS_ FLASH_MBX package on line 22; we modify the packages needed to build our new platform later in the porting process. Finally, change the description CDL command to give an explanation our new Martini platform.

STEP 2　Test Build of the New Platform

What we have now in our example port is a new platform named Martini that contains all of the functionality to operate the Motorola MBX860 evaluation board. This next step verifies the changes we made to the CDL script files and allows us to build a RedBoot image with the Martini name that has the functionality to operate the MBX evaluation board. This allows us to verify the build process using our new hardware package.

To verify that our new Martini package is present, first we need to launch the Configuration Tool. In the Configuration Tool, we can select our new Martini package using the Templates dialog box. The Templates dialog box is displayed by selecting Build –> Templates from the menu. Figure 13.3 shows our new Martini template selected from the hardware platform drop-down list.

	Figure 13.3
Templates dialog box showing our new Martini
platform package.

As we see in Figure 13.3, the modified description we made to the ecos.db file is displayed under the Martini Board hardware platform selection. We also want to select redboot from the Packages drop-down list. Click the OK button to load our new Martini package.

	N O T E
The Resolve Conflicts dialog box might pop up after selecting the new template. This occurs because we are changing from the default configuration loaded when the Configuration Tool loads to our new Martini platform configuration. If the Resolve Conflicts dialog box is displayed, click the Continue button to proceed with resolving all conflicts.

Figure 13.4 shows our new Martini loaded into the Configuration Tool. The Configuration window shows our new Martini PowerPC Board package selected. The Properties window displays the information from the CDL script file, hal_powerpc_martini.cdl, that we modified in step 1. The Short Description window also shows our description of the new Martini package.

	Figure 13.4
The Configuration Tool interface showing our new Martini package.

Now that we have our new Martini platform loaded with the functionality to run the MBX board, we can test the build process. The output of this build generates a RedBoot image that we can load onto our MBX board to verify the build process. Being able to verify the image we build on an evaluation board is a good reason to have a stable hardware platform to use during the porting process.

Before building the RedBoot image, we want to make sure that all configuration options are set properly for the evaluation board. In our case, since we are using the MBX development board, we want to select ROM for the Startup Type configuration option under the Martini PowerPC Board package. We also need to verify that the other HAL options, such as Development Board Clock Speed, are configured for the MBX evaluation board.

	N O T E
If you installed the PowerPC GNU cross-development tools in order to build the Martini porting example image, you will need to change the location of the build tools that the Configuration Tool uses. Select Tools –> Paths –> Build Tools from the menu. Next, browse to the D:\cygwin\ppctools\H-i686-pc-cygwin\bin directory and click the OK button.

After the necessary changes have been made, we can save our configuration changes for our new Martini platform using the File –> Save As menu bar item. We use our working directory, workdir\martini, to store the porting project for our new Martini platform and use the filename martini.ecc. The martini.ecc file used in this example, along with the install tree and MLT directory, are included on the CD-ROM for reference under the examples\ martini\build directory.

Now we can select Build –> Library from the menu bar to start the build process. It might be helpful to refer to Chapter 12, An Example Application Using eCos, for additional information on the build process.

	N O T E
You might find that additional modifications are needed to various source files for your new hardware if a different HAL platform is used as a baseline. Error messages that occur during the RedBoot image build process are displayed in the Configuration Tool output window.

When the build completes successfully, the final RedBoot image is located in the subdirectory martini_install\bin. We can then use the appropriate file format to load our new RedBoot image onto the evaluation board to verify that it operates properly, as shown in Chapter 12. It might be necessary to use the GNU Binary utility objcopy to convert the file format.

If RedBoot runs normally (basically, if we see the RedBoot prompt), we know that we have successfully added the new Martini platform to our local eCos repository. We can now move on with the porting procedure.

STEP 3　Customize the New Platform Package

The next step is to customize the packages and configuration options for our new hardware target. This consists of going through each of the CDL commands in the CDL script files associated with our new hardware platform to make modifications and additions that match the new hardware.

There might be additional CDL script files that we need to modify other than the ones we edited in step 1. The extent of the changes necessary depends on the HAL package used for a baseline and the differences between the baseline HAL and the new hardware platform HAL. In general, we need to check the real-time clock/counter configurations and the device driver packages included, specifically for serial ports and flash memory devices.

	N O T E
It is best to eliminate as many of the packages as possible and establish a minimal set of functionality for the new target platform. Having too many packages increases the amount of code in the initial image, as well as the possibility of encountering problems. After the minimal set of functionality is operating properly on our new platform, packages can be added back to the new platform to extend the feature set.

Packages can be removed from the new target platform configuration using the Package Control dialog box, which is launched by selecting Build –> Packages from the menu. This dialog box is shown in Figure 11.15. Additional information about adding and removing packages is covered in Chapter 11.

For our example, we start by editing hal_powerpc_martini.cdl and the eCos repository file ecos.db. An example of the modifications necessary to the file hal_ powerpc_martini.cdl for the new Martini platform is shown in Code Listing 13.3.

1

cdl_option CYGHWR_HAL_POWERPC_BOARD_SPEED {

2

 display "Development board clock speed (MHz)"

3

 flavor data

4

 legal_values 50

5

 default_value 50

6

 description "

7

 MARTINI boards have various system clock speeds

8

 depending on the processor fitted. Select the

9

 clock speed appropriate for your board so that

10

 the system can set the serial baud rate

11

 correctly, amongst other things."

12

}

13

.

14

.

15

.

16

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {

17

 display "Number of communication channels on the board"

18

 flavor data

19

 calculated 2

20

}

Code Listing 13.3
Example CDL script file changes in the file hal_powerpc_martini.cdl for the new Martini platform.

In Code Listing 13.3, we see an example of two of the changes to the CDL script file to match the hardware for the Martini platform. The first change is under the CDL command cdl_option CYGHWR_HAL_POWERPC_BOARD_SPEED shown on line 1. In our example, the MBX board offers the ability to run the processor clock at two different speeds, 40 and 50 MHz. On the Martini hardware, we only have a single processor speed 50 MHz; therefore, we change line 4, legal_values, to only accept 50 for the processor speed.

The other example of a change is for the CDL command cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS. The MBX board only has one serial channel to use for communications; however, the new Martini hardware offers two. Therefore, on line 19, calculated, we change the value from 1 to 2.

Other CDL commands that need to be verified are the options CYGNUM_HAL_ RTC_NUMERATOR, CYGNUM_HAL_RTC_DENOMINATOR, and CYGNUM_HAL_RTC_PERIOD, which are located under the component CYGNUM_HAL_RTC_CONSTANTS. These options set the real-time clock constant according to the hardware clock settings.

Options might also need to be removed completely from the CDL script file since they do not apply to the new hardware platform. An example of this is the option CYGPKG_HAL_POWERPC_MBX_TESTS, since there are no tests we want to build for the Martini platform.

Now we need to verify that the proper packages are loaded for our new Martini platform. This is accomplished by editing the martini target we added to the ecos.db file in step 1. The reason we did not make these modifications in step 1 was so we could verify the build procedure and run the RedBoot image on the evaluation board.

We want to remove as many of the packages as possible to establish a basic level of functionality. After this basic functionality is operating properly on our new hardware platform, we can add back the packages we need to enhance the functionality of our platform. Code Listing 13.4 shows the packages command within the martini target.

1

 packages { CYGPKG_HAL_POWERPC

2

 CYGPKG_HAL_POWERPC_MPC8xx

3

 CYGPKG_HAL_POWERPC_MARTINI

4

 CYGPKG_HAL_QUICC

5

 CYGPKG_IO_SERIAL_POWERPC_QUICC_SMC

6

 CYGPKG_DEVS_ETH_POWERPC_QUICC

7

 CYGPKG_DEVS_FLASH_MBX

8

 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX

9

 }

Code Listing 13.4
Example package changes to the file ecos.db for the new Martini platform.

In Code Listing 13.4, we see all the packages that will be loaded when the Martini board target is selected from the Templates dialog box. Some of these packages might need to be removed all together because the hardware functionality might not be included on the new hardware platform. In other cases, we might need to change a package that is loaded.

For example, if the new Martini platform used the PowerPC 60x variant instead of the 8xx variant, we would need to change line 2 from CYGPKG_HAL_POWERPC_MPC8xx to CYGPKG_HAL_POWERPC_PPC60x. This ensures that the PPC60x variant package is loaded for the Martini template.

We leave the packages CYGPKG_HAL_QUICC and CYGPKG_IO_SERIAL_POWERPC_ QUICC_SMC on lines 4 and 5 because these provide the serial port communication code for our new platform. In the next step, we verify that the code configures and operates the serial port as required by our new hardware.

Since we are initially using serial communication on our new hardware platform, we want to remove line 6 so the CYGPKG_DEVS_ETH_POWERPC_QUICC package is not loaded. After a baseline of functionality is established on our new platform, we can add Ethernet support back.

If additional hardware is present on the new platform that is not present on the baseline HAL platform, a new package might need to be added. For example, if a different flash device is used on the Martini platform, we would remove line 8 CYGPKG_DEVS_FLASH_AMD_AM29XXXXX and substitute the flash device present on the new hardware platform.

	N O T E
In some platform porting cases it might be necessary to write your own device driver package if there is not support for your hardware device in the eCos repository. If you need to write your own device driver package, you can model the new package after one of the existing driver packages. The steps to do this are the same as described in this platform porting procedure.

STEP 4　Adjust the Memory Layout for the New Platform

The memory layout files are located in the include\pkgconf subdirectory in our new Martini package. We need to edit the .h and .ldi files to match the memory on the new hardware platform. Editing the .mlt file is not necessary. The .mlt files are used by the Configuration Tool to store the graphical information for the memory layout. There are two sets of memory layout files, one for RAM startup and one for ROM startup.

Initially we can hand edit these files. After the code is up and running on our new platform, it is best to use the Configuration Tool Memory Layout window, as described in Chapter 11 for changes to the memory structure. The memory layout editor is currently only present in version 1.3.net of the Configuration Tool. Version 2 of the Configuration Tool does not have the capability to edit memory configurations.

It is helpful to have the GNU Linker documentation present when editing these files. The documentation describes all of the linker script commands that are defined in the memory layout files. The online site for the GNU Linker (ld) is:

www.gnu.org/manual/manual.html

For our example platform port, the two files we need to edit are mlt_powerpc_ martini_rom.h and mlt_powerpc_martini_rom.ldi. Code Listing 13.5 shows part of the ROM memory layout file mlt_powerpc_martini_rom.h for the new Martini platform.

1
#define CYGMEM_REGION_ram (0)

2
#define CYGMEM_REGION_ram_SIZE (0x400000)

3
#define CYGMEM_REGION_ram_ATTR (CYGMEM_REGION_ATTR_R |
 CYGMEM_REGION_ATTR_W)

4
#define CYGMEM_REGION_rom (0xfe000000)

5
#define CYGMEM_REGION_rom_SIZE (0x800000)

6
#define CYGMEM_REGION_rom_ATTR (CYGMEM_REGION_ATTR_R)

Code Listing 13.5
Example memory layout file, mlt_powerpc_martini_rom.h, for the new Martini platform.

As we see in Code Listing 13.5, the RAM and ROM memory regions are defined. We need to adjust the size and start addresses of the RAM and ROM regions to match our new hardware platform. Line 1 contains the start address, set to 0, for the RAM memory region. The size of the RAM region is defined on line 2, which is set to 0x0040_0000 (4 Mbytes). Line 3 defines the properties of the RAM region as read and write. The ROM start address is defined on line 4 at 0xFE00_0000. The size of the ROM memory, set on line 5, is 0x0080_0000 (8 Mbytes). Finally, the attributes for the ROM region are set on line 6 to read-only.

We also need to modify the .ldi linker script file to match the new hardware platform. In Code Listing 13.6, we see part of the mlt_powerpc_martini_rom.ldi file.

1

MEMORY

2

{

3

 ram : ORIGIN = 0, LENGTH = 0x400000

4

 rom : ORIGIN = 0xfe000000, LENGTH = 0x800000

5

}

6

7

SECTIONS

8

{

9

 SECTIONS_BEGIN

10

 SECTION_vectors (rom, 0xfe000000, LMA_EQ_VMA)

11

 SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)

12

 SECTION_fini (rom, ALIGN (0x4), LMA_EQ_VMA)

13

 SECTION_rodata1 (rom, ALIGN (0x8), LMA_EQ_VMA)

14

 SECTION_rodata (rom, ALIGN (0x8), LMA_EQ_VMA)

15

 SECTION_fixup (rom, ALIGN (0x4), LMA_EQ_VMA)

16

 SECTION_gcc_except_table (rom, ALIGN (0x1),LMA_EQ_VMA)

17

.

18

.

19

.

20

 SECTION_bss (ram, ALIGN (0x10), LMA_EQ_VMA)

21

 CYG_LABEL_DEFN(__heap1) = ALIGN (0x8);

22

 SECTIONS_END

23

}

Code Listing 13.6
Example linker script file, mlt_powerpc_martini_rom.ldi, for the new Martini platform.

The MEMORY linker command is on lines 1 through 5. This command describes the location and size of the regions of memory for the hardware platform. As we can see on lines 3 and 4, the ram and rom regions are defined to match the size and start addresses in the mlt_powerpc_martini_rom.h file.

A portion of the SECTIONS command is defined on lines 7 through 23, which tells the linker how to map input section into output sections and where the output sections are located in memory. We want to verify that all memory sections are located in the appropriate place for the new hardware platform. The macros, such as SECTION_vectors, are defined in the PowerPC linker script file powerpc.ld located under the hal\powerpc\arch\current\src subdirectory. All platforms have an architecture linker script file. Additional information about the linker script files can be found in Chapter 11.

STEP 5　Modify the Code for the New Platform

The next step is to modify the HAL initialization code for the new hardware platform. The main platform initialization code can be found in the assembly (.S) file located under the src subdirectory. In our example, this is the file martini.S.
 The routine hal_hardware_init contains the platform-specific code. The modifications necessary are dependent on the platform used as the baseline and the additional functionality needed by the new platform hardware.

We also need to verify the initialization code in the other files such as hal_aux.c and hal_diag.c, also located in the src subdirectory. Other HAL packages might have additional source files that need to be verified. Additional information about the HAL startup process can be found in Chapter 2.

Some general areas of code to modify or comment out during this phase of the porting process are common across most platforms. These general modifications include configuring the processor registers such as the real-time clock, chip select, and interrupt control, which is accomplished in the routine hal_hardware_init.

Another modification is to disable instruction and data caches, as well as the MMU if possible, since speed is not a concern at this point. In our example, we can prevent the caches from being enabled by undefining the macro CYGPRI_ENABLE_CACHES found in the file plf_cache.h under the include subdirectory.

We also need to make sure that the serial port code initializes the port appropriately for our new hardware platform. Initially it is a good idea to use a polling mode driver, rather than an interrupt driven driver. By using RedBoot, which only uses polling mode for serial communications, we have the proper communication functionality we need at this point in the porting process.

In addition, the serial communication channel needs to be hooked into the communication interface table and virtual vector table properly. Detailed information about the communication interface table and virtual vector table can be found in Chapter 4, Virtual Vectors. The platform used as a baseline might already hook the necessary serial communication functions into the tables, in which case we need to verify the serial port is initialized properly.

In our example, the new Martini platform has two serial ports whereas the MBX platform only has one. We want to initially get one serial port up and running and then add the second serial port code, which we can model after the functioning port. As we extend the functionality of our new platform by adding packages we need to verify that the code operates as intended for our hardware.

STEP 6　Build the RedBoot Image for the New Platform

Now we are ready to build the RedBoot image for our new Martini platform. The new platform is built by selecting Build –> Library from the menu in the Configuration Tool. The method and tools needed to load the image onto the new hardware platform are unique to the platform.

It might be necessary to use the GNU Binary utility objcopy to convert the file to a format that is required by the device programming tools. Additional information about the objcopy utility can be found under binutils online at:

www.gnu.org/manual/manual.html

After the RedBoot image is installed onto the new target platform, the board is reset to boot the new software. If RedBoot initializes and runs successfully, the initialization message is output on the serial port, similar to the message shown in Code Listing 9.1 in Chapter 9. If this message is not received, it is necessary to verify the changes made for the new target platform.

At this point, your embedded debugging skills come into play. Toggling an I/O port pin (possibly connected to an LED) to track the progress through the code is great for low-level debugging through assembly files.

STEP 7　Additional Functionality

Once the RedBoot image is up and running on the new hardware, additional functionality can be added to the configuration. Some of these additional features Might include adding a reset, which can be implemented in software or using a hardware watchdog.

Testing to make sure the single-step support, which should already be present in the HAL, is operating properly can be useful when using GDB to step through code. Enabling the cache on the processor, if present, is another feature to add that can enhance program speed.

13.2.2
Porting Hints

Here are some hints that can come in handy when performing your own eCos port:

•
Start with the smallest amount of code possible to get a minimal RedBoot image running on your new platform. Having too many packages increases the amount of code in the initial image, as well as the possibility of encountering problems. Functionality can be added after the hardware has some basic features up and running.

•
Stay up to date with the eCos source code. Tracking the changes made to the platform you use as your baseline for the port is crucial because bug fixes might be incorporated that you need to take advantage of. The ChangeLog files are a great source for understanding what changes are occurring with a particular platform.

•
Various hardware tools, such as an ICE or BDM, can speed up the porting process by giving you better visibility into the processor’s operation.

•
As mentioned previously, when low-level assembly debugging is necessary, toggling an I/O port pin to track the progress through the software can be very helpful.

•
A trace buffer, or trace messages output to a serial port, is useful in tracking a variable’s value or other information during execution of the software.

•
Assertions can be used to expose bugs or missing features in the software. Assertions are disabled by default in eCos configurations.

•
Using the test applications contained in the eCos framework can divulge problems with your target platform.

13.3
Summary

In this chapter, we went through the procedure for porting eCos to a new platform. We started with getting eCos noticed by the Configuration Tool so that we could build our new hardware platform image. We then looked at some of the modifications that might be necessary to get eCos running on new hardware.

Although the exact steps necessary for bringing up eCos on a new hardware platform are unique to that particular hardware, this porting example gives us a basic understanding of the procedure. Finally, we finished the chapter with some hints that can be used to aid in porting eCos.

Reference

Ganssle, Jack. “ICE Technology Unplugged.” Embedded Systems Programming (October 1999): 103.

�In this case, it is important that the extension of the assembly file is an uppercase “S” rather than a lowercase “s”. The uppercase “S” allows the GNU C compiler driver to perform preprocessing on the assembly file.

� This is just another reminder about the file extension for the assembly file. In this case, it is important that the extension of the assembly file is an uppercase “S” rather than a lowercase “s”. The uppercase “S” allows the GNU C compiler driver to perform preprocessing on the assembly file.

