Chapter 10

The eCos Toolset

This chapter begins by looking at the structure of packages in the eCos repository, including a brief description of the CDL used for package script files. We then look at the graphical Configuration Tool used to customize and build the eCos library, and then build and run tests on your target platform.

Finally, we look into the other eCos tools and additional open-source tools to aid in our embedded software development. These additional open source tools allow us to set up a complete software embedded development environment at no cost. This chapter prepares us for building the eCos library with the tools provided in the eCos development kit. Using this information, we can then build an example application, which is covered in the next chapter, and run it on our target hardware platform.

11.1
Packages

To get a better understanding of the eCos toolset, we need to take a closer look at the modules that the tools operate on: packages. As described in Chapter 1, An Introduction to the eCos World, a package is a software component incorporating all necessary source and configuration files for distribution. A package can be for a single hardware device or for an entire networking stack. Packages can be configured, using the different eCos tools, to operate in a mode specific to your application. We see how to manipulate packages with the eCos configuration tools in the Package Control section of this chapter.

In order for the eCos component framework to make use of packages, the package must follow rules imposed by the framework. A CDL script file is included with each package, which describes the package to the component framework. Included in the CDL script files are dependencies for using the package, configuration options and their associated value ranges, and details on how to build the package.

11.1.1
Package Directory Structure

All packages in the eCos repository are located under the packages subdirectory under the root eCos development kit install directory; in our case, D:\ecos. A packages directory snapshot is shown in Figure 1.3 in Chapter 1. Because the eCos source code repository is constantly evolving to accommodate new features and hardware platforms, the latest eCos repository might differ from the one shown in Figure 1.3.

As we see in Figure 1.3, the different packages are arranged based on the functionality provided by the package. For example, all device drivers are contained in the devs subdirectory, while all compatibility layer support, such as POSIX and ITRON, is contained under the compat subdirectory. The depth of the subdirectory structure is different for each package. It is a good idea to familiarize yourself with the overall directory structure by browsing through your eCos development kit installation.

Under the packages directory is the package database file ecos.db. This file uses the CDL and contains a high-level description for all packages in the component framework. Additional details about the eCos database file are included later in The Configuration Tool section of this chapter.

Although the depth of the different subdirectory structures varies for each package, each of these packages is comprised of a number of common subdirectories that separate the functionality supplied in the different files. The common directory structure for an example package is shown in Figure 11.1. Not all packages contain all of the common package subdirectories shown in Figure 11.1; some packages contain more, some less.

	N O T E 
Our local eCos source code repository, installed in Chapter 10, The Host Development Platform, also contains CVS directories at different levels of our directory tree. These directories are used by the CVS program—in our case, WinCVS—to keep track of information about our local eCos repository and the online eCos repository. We can ignore these directories at this point since they do not contain any source code files for eCos.


It is also important to note that not all of the packages strictly follow the rules for the location of files, making the possibility of the file organization slightly different from package to package. In this section, we look at the general structure of typical packages.

	Figure 11.1
Typical package directory structure example.


As we see in Figure 11.1, the root of the typical package directory is the version. The actual name of this subdirectory depends on the repository version installed. From our installation completed in Chapter 10, we have a version directory called current.

Having multiple versions for each package allows you to experiment with new versions while maintaining a working version for a particular package. If the new, experimental version of the package does not work in your application, you can always revert to a previous version. Selection of versions for packages is accomplished using the configuration tools, which we get into in the Package Control section of this chapter.

Each package contains a file under the version subdirectory called ChangeLog. The eCos source code repository maintainers use these files to track the changes for each of the different files within a package. These files are useful to get an overview of changes made to the package to determine if you want to update to a current version to make use of particular bug fixes or enhancements. An example of two change log entries is shown in Code Listing 11.1.


1

2001-09-27  Jonathan Larmour  <jifl@ecoscentric.com>


2




3

   * src/plf_misc.c (hal_platform_init):


4

     If not RAM startup, install exception VSRs.


5




6

2000-04-21  Bart Veer <bartv@ecoscentric.com>


7




8

   * pkgconf/rules.mak:


9

     Fix header file dependencies for testcases.

Code Listing 11.1
Example ChangeLog entries.

In Code Listing 11.1, lines 1 and 6 contain the date the changes were made, the developers who made the changes, and the developers’ email addresses. Each change is designated with an asterisk (*) as shown on lines 3 and 8. After the asterisks are the files that were altered and their directory location within the package. Sometimes the routine modified is also entered as we see on line 3, in which case the routine hal_platform_init was modified. Lines 4 and 9 describe the changes made.

Under the version root is the cdl subdirectory. This subdirectory must be included within a package. This contains at least one CDL script file that defines the package. Some packages, such as the kernel, might break up the functionality of the CDL script in multiple CDL files. Additional details about CDL script files are contained in The Component Definition Language Overview section of this chapter.

Next is the include subdirectory, which contains public header files for the package. During the eCos library build process, which we go through in Chapter 12, An Example Application Using eCos, some of the header files for packages that are used are copied into the eCos library working directories. This allows an application to include header files needed for a particular package from the working directory rather than using the repository directories.

The src subdirectory contains the source files for the package. This subdirectory must be included within a package. The source files might include .c C language files, .cxx C++ language files, and .S assembly language files. Private header files (with a .h extension), accessible only to the package source code, might also be contained in this directory. The src subdirectory can be broken down further into additional subdirectories to aid with the organization of the source code. For example, see the kernel\current\src and net\tcpip\current\src subdirectories.

Finally is the tests subdirectory. This subdirectory contains any test files relevant for the package. We look at building and running tests in Chapter 12.

Other subdirectories that are often included under certain packages are doc, which contains documentation for the package, and misc, which contains other files specific to the package such as RedBoot configuration import files for various startup types.

Let’s look at the actual directory structure for one of the packages in the eCos source code repository. Figure 11.2 is a snapshot of the i386 PC HAL package directory structure. From this figure, we can see where the common subdirectories are located for this particular package.

	Figure 11.2
Current version directory snapshot of the i386 PC 
HAL package.


As mentioned before, the packages subdirectory is located under the root eCos development kit install directory D:\ecos. Since this is a HAL package, it is located under the hal subdirectory. The HAL packages are organized by architecture; in this case, it is the i386 architecture.

The architecture, in this package, is further divided by platform support. The platform component is located under the pc subdirectory. The version subdirectory is called current. Finally, we have the common package directory structure comprised of the subdirectories cdl, doc, include (along with pkgconf), misc, and src.

We can see that the i386 package differs slightly from the common package directory structure shown in Figure 11.1. The additional directories for this package are:


•
doc—contains documentation and release notes for the package.


•
pkgconf—includes RAM, ROM, and floppy disk memory configuration files.


•
misc—contains exported floppy disk and ROM RedBoot configuration files for use with the configuration tools.

11.1.2
The Component Definition Language Overview

We now take a brief look at the CDL. This section gives us a basic understanding of the CDL and how script files are used with packages in the component repository. Using the information in this section, we can then proceed to explore the eCos configuration tools and how the package CDL script files are interpreted in The Configuration Tool section of this chapter. An in-depth look into the CDL is provided online in the eCos Component Writer’s Guide:

http://sources.redhat.com/ecos/docs.html

Details about the CDL command and keyword syntax are in the CDL Language Specification section of the eCos Component Writer’s Guide.

CDL is not a new language, it is an extension of the existing Tool Command Language (Tcl) scripting language. The CDL syntax uses Tcl syntax. The CDL is a key part of the eCos component framework that is used in script files (with the extension .cdl) to describe the package to the framework. These CDL script files contain information on all of the configuration options within a package, as well as details on how to build the package.

11.1.2.1
CDL Script Files

Each package has a single top-level CDL script file, typically located in the cdl subdirectory, as shown in Figure 11.1. The first command in the top-level script should be cdl_package, which is used in the package database file ecos.db. There should only be one cdl_package command per package.

The CDL syntax implements a command hierarchy. This allows options to be controlled as a group; therefore, disabling a single component disables all options within the component as well. The hierarchy also enables a simpler representation in the Configuration Tool for navigation and modification of options, as we see in The Configuration Tool section of this chapter.

There are four CDL commands used in script files:


•
cdl_package—The unit of distribution, which might contain option, component, or interface commands within its body. Typically, this is the top level of the CDL script file. The package command body can make use of most option properties as well as additional properties or commands that apply to the entire package.


•
cdl_component—A configuration option that might contain additional options or subcomponents within its body. The body of a component command might also contain the same properties as the option command.


•
cdl_option—The basic unit of configurability that generally contains a single choice. The body of the option command contains properties that describe and define the characteristics of the option. There might also be information to aid in your decision, such as a text description of the option.


•
cdl_interface—A calculated configuration option that provides an abstraction mechanism. The body of the interface command might contain a subset of the option properties.

Every command must have a command name. All command names must be unique within a configuration. If two names exist within two different packages, it is not possible to load both packages in a configuration.

	N O T E 
You might notice that some packages use the same CDL command names. For example, all HAL packages define the CDL component name CYG_HAL_STARTUP. Even though all command names must be unique within a configuration, this is fine because only one HAL package can be loaded at a time; therefore, the name CYG_HAL_STARTUP only exists once within a configuration.


Typically, the component framework outputs a #define for every active and enabled option, using the command name as the symbol being defined. For example, enabling the option command named:

CYGIMP_KERNEL_INTERRUPTS_DSRS

which is located within the eCos Kernel package, in the Kernel Interrupt Handling component causes

#define CYGIMP_KERNEL_INTERRUPTS_DSRS   1

to be placed in the designated kernel package header file. Some options are set to values in which case the configured value is used when setting the #define statement.

Command names in the eCos component repository follow a naming convention to avoid name clashes with other packages. An example of a package name is CYGPKG_HAL_I386_PC. The first three characters of the name identify the organization that produced the package; in this case, CYG is for Cygnus Solutions. The next three characters indicate the nature of the option; in this case, PKG is used to indicate this is a package. A complete list of command tags is given in The eCos Component Writer’s Guide. The HAL portion of the name indicates the location of the option within the overall hierarchy; in this case, we see that this is a HAL package. The last part, I386_PC, indicates the option itself. This is for the i386 architecture PC platform package.

Each CDL command contains a body that might include properties or commands that describe to the component framework how to handle each option. Properties can be descriptions of the command or values set by you that are used when the package is built. Commands within the CDL command body can define header files generated for the package, list source files to build for the package, or identify constraints that must be met if the package is active. The basic CDL command structure is shown in Code Listing 11.2.


1

cdl_package PACKAGE_NAME {


2

   <package properties and commands>


3

   cdl_component COMPONENT_NAME {


4

      <component properties and commands>


5

   }


6

   cdl_option OPTION_NAME {


7

      <option properties and commands>


8

   }


9

}

Code Listing 11.2
Basic CDL command structure example.

As we see in Code Listing 11.2, a basic structure for CDL commands contains the command followed by the command name, as shown on line 1. In this case, the package command name is PACKAGE_NAME. Every command body is encapsulated in curly brackets ({}). The # character is used for comments within the CDL script file. Line 2 is the beginning of the package command body and the package command ends on line 9. Package commands and properties are located within the package body. There can be any number of package commands, properties, options, or components in the package body.

Next is a component command on line 3, named COMPONENT_NAME. Within the component command body, shown on line 4, there might be a number of different properties, commands, options, or subcomponents present.

Finally, there is an option command named OPTION_NAME on line 6. The body of the option command is on line 7 and might contain any number of properties and commands to describe and define the option.

Code Listing 11.3 shows an excerpt from the i386 PC HAL package. The script file for this listing is hal_i386_pc.cdl located under the hal\i386\pc\current\cdl directory. However, some of the script commands and properties have been cut out to reduce the size of the listing and isolate the commands we want to examine.

	N O T E 
The CDL script fragment in Code Listing 11.3 does not show all of the possible commands or properties available. This fragment is intended to familiarize us with some of the basic language of the CDL and the structure of script files. In the Graphical Representation of CDL Script Files section of this chapter we see how the component framework and configuration tools use packages and their CDL script files. For a comprehensive look at the CDL, read The eCos Component Writer’s Guide. This document is very useful if you need to develop your own packages for distribution.



1

cdl_package CYGPKG_HAL_I386_PC {


2

   display       "i386 PC Target"


3

   parent        CYGPKG_HAL_I386


4

   define_header hal_i386_pc.h


5

   include_dir   cyg/hal


6

   description   "


7

      The i386 PC Target HAL package provides


8

      the support needed to run eCos binaries


9

      on an i386 PC."


10




11

    compile       hal_diag.c plf_misc.c plf_stub.c


12




13

    implements    CYGINT_HAL_DEBUG_GDB_STUBS


14

    implements    CYGINT_HAL_DEBUG_GDB_STUBS_BREAK


15

    implements    CYGINT_HAL_VIRTUAL_VECTOR_SUPPORT


16




17

    cdl_component CYG_HAL_STARTUP {


18

       display       "Startup type"


19

       flavor        data


20

       legal_values  {"RAM" "FLOPPY" "ROM"}


21

       default_value {"RAM"}


22

       no_define


23

       define        -file system.h CYG_HAL_STARTUP


24

       description   "


25

          It is possible to configure eCos


26

          for the PC target to build for RAM


27

          startup (generally when being run


28

          under an existing monitor program


29

          like RedBoot), FLOPPY startup (for


30

          writing to a floppy disk, which can


31

          then be used for booting on PCs with


32

          a standard BIOS), or ROM startup


33

          (for writing straight to a boot


34

          ROM/Flash). ROM startup is experimental


35

          at this time."


36

    }


37




38

    cdl_option CYGSEM_HAL_I386_PC_DIAG_SCREEN {


39

       display       "Output to PC screen"


40

       flavor        bool


41

       default_value 1


42

       implements    CYGINT_HAL_I386_PCMB_SCREEN_SUPPORT


43

       description   "


44

          This option enables use of the PC screen


45

          and keyboard as a third virtual serial


46

          device."


47

     }


48

}

Code Listing 11.3
Example CDL script file from i386 PC HAL package.

Let’s take a closer look at the CDL script file excerpt shown in Code Listing 11.3. On line 1, which is the first CDL command in the hal_i386_pc.cdl script file, is the CDL package command with the name CYGPKG_HAL_I386_PC. From this name, we can see that this is the i386 architecture PC platform HAL package. The display name of the package is given on line 2 with the display command.

Next, line 3 contains the parent command, which allows this package to be nested under the i386 architecture defined by the name CYGPKG_HAL_I386. The define_header command on line 4 identifies the header file, hal_i386_pc.h, which is generated for this package, and include_dir on line 5 is the location where this header file is placed in the local configuration workspace. We look at the local configuration workspace in Chapter 12 when we build the eCos library.

Line 6 contains the description command, which is used by the Configuration Tool to give a text description of the package contents. The compile command on line 11 lists the files that should be built for this package. The implements commands on lines 13, 14, and 15 describe the general interfaces that are included by selecting the i386 PC package.

Next, is a CDL component command on line 17 named CYG_HAL_STARTUP. On line 19 is the flavor command, which specifies the nature of the component; in this case, data. By designating the flavor as data, when the #define is generated for this component the value is set to one of the legal_values, as shown on line 20. The values that this component can be set to are RAM, FLOPPY, or ROM. If no change is made to the CYG_HAL_STARTUP component, the default_value RAM is used from line 21. The command no_define on line 22 suppresses the normal generation of preprocessor #define symbols in the configuration header file. Additional #define symbols that go into the configuration header file are specified by the define command on line 23.

The final CDL option command on line 38 is named CYGSEM_HAL_I386_PC_ DIAG_SCREEN. This option is of type bool as we can see from the flavor command on line 40, which means that the option is either enabled or disabled. The default for this command is enabled, as shown on line 41 with the default_value of 1.

11.2
The Configuration Tool

There are two tools you can use to configure the eCos repository according to your specific requirements. As mentioned in Chapter 1, the configuration tools give you the ability to customize the eCos library to meet your specific application needs through source-level configuration. You can use the command-line tool or the graphical Configuration Tool.

The command-line tool does not offer the ability to resolve conflicts interactively. The Configuration Tool provides interactive conflict resolution, as well as an easy-to-use interface for configuration setup and management, the facility to build the eCos RTOS library, and the capability to build and run tests on a target platform. We are going to focus on the use of the Configuration Tool for manipulating our configurations throughout this book. If you would like to become more familiar with the command-line tool, additional information can be found online in the eCos User’s Guide:

http://sources.redhat.com/ecos/docs.html

The eCos development tools are located in the D:\ecos\bin directory from our installation complete in Chapter 10. The source code for all of the eCos development tools is located under the D:\ecos\host directory.

There are two different versions of the Configuration Tool we installed, 1.3.net and 2.11. The version 1.3.net of the Configuration Tool only supports host development environments running the Windows operating system. Version 2.11 of the Configuration Tool can run on Windows and Linux host development systems.

The major difference between the two versions is that the 1.3.net version includes a graphical window called the Memory Layout Tool (MLT) for manipulating memory configurations. Since the MLT functionality is expected to move into a separate application (at sometime in the future), it is not included in the version 2.11 release of the Configuration Tool.

In this book, we use version 2.11 of the Configuration Tool for configuring the eCos framework and building eCos images. We also cover using the MLT, in version 1.3.net of the Configuration Tool, later in this chapter. Both versions of the Configuration Tool were installed in Chapter 10.

We also get a basic understanding of the relationship between the Configuration Tool and the component repository in this chapter. CDL script files are included with all packages, which allow the Configuration Tool to interpret and display the proper information about a given package.

The Configuration Tool can be invoked by either using the desktop icon, if created during the installation procedure, or through the Start –> Programs –> eCos Configuration Tool menu.

11.2.1
Screen Layout

The first step to understanding the Configuration Tool is to become familiar with the screen layout. Figure 11.3 is a screen snapshot of the Configuration Tool with all window views enabled. All of the windows in the Configuration Tool can be sized according to your needs by adjusting the splitter bars for a given window. 

	Figure 11.3
Configuration Tool screen layout.


The title bar of the Configuration Tool application displays the configuration file name—in this case, ecosi386net.ecc—along with the application name, eCos Configuration Tool. When a modification has been made to the configuration, an asterisk (*) appears after the configuration filename. This indicates that the modifications made to the configuration have not been saved.

Under the title bar we see the menu bar, which is standard on Windows applications. This contains the menus File, Edit, View, Build, Tools, and Help. The File menu contains the options to save, open, start a new configuration, and import or export a configuration.

The Edit menu includes the cut, copy, and paste options as well as a find option that allows you to search through certain windows for specific words.

The View menu includes options for configuring the settings of the Configuration Tool, control over which windows are displayed, and control over which tool bars are enabled.

The Build menu contains options to build the eCos library and tests, clean the build tree working directory, stop a build in progress, display compiler and linker flags, select the root repository, and enable templates and packages for a particular configuration.

The Tools menu allows you to set up the paths for the build and user tools, display the available platforms, and resolve conflicts.

Finally, the Help menu includes the help documentation for the Configuration Tool and eCos, as well as information about the release of the Configuration Tool. Context-sensitive help topics are displayed for any control within a dialog box by either pressing F1 or clicking the question mark icon in the dialog caption bar and then clicking the control. Some dialog boxes contain a help button as well.

You might want to customize the Configuration Tool settings according to your needs. To do this, select View –> Settings from the menu bar. This brings up the Configuration Tool settings dialog box. The configuration settings in this dialog box are separated into three different tabs.

The first tab is Display. Under this tab, the Configuration Pane settings allow you to Use Macro Names or Use Descriptive Names for the Labels. Typically, it is easier to use the descriptive names for a better explanation of the different labels in the Configuration window and refer to the macro name in the Properties window. You can also set whether you want Integer Items displayed in Decimal or Hexadecimal. The Font can also be set for the different windows in the Configuration Tool. Finally, the splash screen can be enabled or disabled using the Show Initial Splash Screen check box.

Next is the Viewers tab. This allows you to set the program to use for viewing header files, which can be set to use the Associated Viewer (wordpad.exe) or a program you select as This Viewer. The program to use for viewing documentation can also be configured to the Built-in Viewer, Associated Browser (iexplore.exe), or a program you select as This Viewer.

 The Conflict Resolution tab is next. This allows you to set the methods the Configuration Tool uses to check for conflicts in your configuration. The available options are After Any Item Changed, Before Saving Configuration and Automatically Suggest Fixes.

Finally is the Run Tests tab. The Configuration Tool automates the downloading and running of tests on the target hardware. This tab allows you to configure the timeout associated with the test download and the connection method to the target, which can either be via serial or Ethernet port. Additional information about running tests using the Configuration Tool is covered in Chapter 12.

The Configuration Tool offers a search tool located under the Edit –> Find menu, or the Find icon on the standard tool bar can be used. The Find tool allows you to search for a text string within a configuration item. The Find dialog box allows you to search in macro names, item names, short descriptions, current values, or default values. This tool is very useful when you need to locate a specific configuration item nested deep within the component repository.

Beneath the menu bar is the tool bar. The tool bar shown in Figure 11.3 is the Standard tool bar. This is enabled by selecting Toolbar under the View menu. The tool bar allows faster execution of different menu options by clicking on the different icons. Hovering over the tool bar icons with the mouse causes a tip to pop up that describes the operation of that particular icon.

At the bottom of the Configuration Tool we see the status bar. In Figure 11.3, the status bar shows Ready and No Conflicts. During manipulation of the configuration, the status bar gives feedback of the operation being performed and any problems that might arise. Additionally, when building the eCos library the status bar gives a progress meter and numerical percentage of the build progress.

During our installation procedure, we selected the build and user tools. However, there might be a circumstance that requires selecting a different location for these tools. In that case, select Tools –> Paths –> Build Tools to set the location of the cross-development tools, such as i386-elf-gcc. To set the user tools, select Tools –> Paths –> User Tools to set the location of the Cygwin tools.

In certain circumstances, such as trying out a new snapshot of the eCos source code, it might be necessary to have the Configuration Tool use a different local source code repository. The repository the Configuration Tool uses is changed by selecting Build –> Repository and then browsing to the location of the local eCos source code. The Configuration Tool then searches for the ecos.db file.

11.2.1.1
Saving Configurations

As mentioned earlier in this section, the Configuration Tool uses the title bar to notify you that the configuration currently loaded has been modified but not yet saved. It does this by displaying an asterisk (*) next to the configuration filename on the title bar.

A configuration can be saved either by using the Save icon on the toolbar or through File –> Save or File –> Save As on the menu bar. Configuration files have a .ecc extension, which stands for eCos Configuration. The saved configuration file contains all of the packages loaded, template used, option settings, and description information, which the Configuration Tool uses to generate the proper eCos image. The configuration files can be viewed using any text editor. A good understanding of configuration files is necessary before attempting to hand edit these files. The Configuration Tool inserts comments into the configuration file to separate different sections of the file.

After saving the configuration file, build and install tree directory structures are created. This is a working directory that the Configuration Tool uses to store files during the build procedure. The working directory structure created after the configuration file is saved is explained in Chapter 12. Code Listing 11.4 shows a portion of a saved configuration file for the i386 PC target using the Net template.


1

cdl_configuration eCos {


2

   description "" ;


3




4

   # These fields should not be modified.


5

   hardware    pc ;


6

   template    net ;


7

   package -hardware CYGPKG_HAL_I386 current ;


8

   package -hardware CYGPKG_HAL_I386_GENERIC current ;


9

   package -hardware CYGPKG_HAL_I386_PC current ;


10

   package -hardware CYGPKG_HAL_I386_PCMB current ;


11

.


12

.


13

.


14

   package -template CYGPKG_HAL current ;


15

   package -template CYGPKG_IO current ;


16

   package -template CYGPKG_IO_SERIAL current ;


17

   package -template CYGPKG_INFRA current ;


18

   package -template CYGPKG_ISOINFRA current ;


19

   package -template CYGPKG_KERNEL current ;


20

   package -template CYGPKG_ERROR current ;


21

   package -template CYGPKG_IO_FILEIO current ;


22

   package -template CYGPKG_NET current ;


23

   package -template CYGPKG_IO_ETH_DRIVERS current ;


24

};


25

.


26

.


27

.


28

cdl_option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE {


29

   # Flavor: data


30

   user_value 4096


31

   # value_source user


32

   # Default value:  CYGPKG_KERNEL ? 4096 : 32768 


33

   #    CYGPKG_KERNEL (unknown) == 0


34

   #    --> 32768


35

   # Legal values: 1024 to 1048576


36

};

Code Listing 11.4
Example of a saved .ecc configuration file for i386 target.

As we see in Code Listing 11.4, the saved configuration file uses the CDL. The main CDL command configuration is shown on line 1. This command lists all information about the hardware, template, and packages used for this configuration.

Line 5 shows the pc hardware target, and line 6 shows the template used for this configuration, net. Lines 7 through 23 list the different packages that are included in this configuration.

On line 28, a different part of the configuration file is shown. Here the CDL command option is shown for the CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE. The # character is used for comments in CDL files. In this case, the comment lines, similar to line 29, give extra information about the CDL command setting. We see on line 30 that the user_value parameter is set to 4096. The Configuration Tool uses this value setting during the build procedure.

Configuration files allow you to store the packages and option settings for a specific configuration used to build an eCos image. You are then able to open this configuration file and edit the settings, by changing options or adding packages, to build a new eCos image.

11.2.1.2
Importing and Exporting Configurations

The import and export features of the Configuration Tool are useful in saving and restoring partial configurations. The import feature, located under File –> Import, is used to restore the exact configuration from a saved configuration file. An eCos Minimal Configuration, with a .ecm ending, includes packages and configuration option value settings for a specific configuration. We use this feature in Chapter 12 to import a RedBoot configuration.

The export feature, located under File –> Export, saves a configuration to a .ecm file. This is useful if you need to replicate the exact configuration settings on another host system. Code Listing 11.5 shows a portion of an exported .ecm file. Exported minimal configuration files can also be viewed with a text editor.


1

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD {


2

user_value 57600


3

};


4




5

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL {


6

   user_value 1


7

};

Code Listing 11.5
Example of an exported .ecm file.

Exported minimal configuration files, which also use the CDL, are similar to the saved configuration files. However, the Configuration Tool does not insert comment lines as it does in the saved configuration files. The exported minimal configuration file contains only the differences from the standard configuration settings.

	N O T E 
To get all packages and configuration option settings accurately recreated, it is better to use the eCos configuration file (.ecc). eCos configuration files contain all information for a particular configuration, whereas the minimal configuration files contain only a subset of the information.


For the example shown in Code Listing 11.5, two configuration options were modified. The first option changed was the baud rate for the console channel (CYGNUM_HAL_VIRTUAL_ VECTOR_CONSOLE_CHANNEL_BAUD) from the default of 38400 to 57600. This command is stored in the file as shown on lines 1 through 3. The second option changed was the debug channel used (CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL) from 0 to 1. This command is stored as shown on lines 5 through 7.

11.2.1.3
Configuration Window

The main window of the Configuration Tool is the Configuration window. As we see in Figure 11.3, this window contains a tree-based representation of the configuration items (packages, components, and options) currently loaded into the configuration on the left side of the splitter bar. Each of these configuration items is enclosed in a cell. To the right of the splitter bar is the version of the package—in this case, the version is current—or the current option value setting.

Clicking on a particular cell activates that configuration item. Clicking on the right side of the splitter bar allows you to modify a particular option. To end editing of a particular cell, you can either click elsewhere in the Configuration window or press Enter. To discard modifications made and revert to the previous value, press the Escape key.

The plus and minus sign icons next to each node allow you to expand or contract the packages, components, or options located within that node. Each node contains an icon before the text to assist you in determining the type of module the node represents. The different icons are shown in Table 11.1. 
	Table 11.1
Configuration Tool Module Icons



	Icon
	Description

	
	Represents a package. Typically located at the highest level and contain components and options for configuration. In Figure 11.3, the packages shown include the eCos HAL, i386 Architecture, and the eCos Kernel.


	
	Indicates a component. Contain subcomponents or options for configuration. Figure 11.3 includes the HAL Interrupt Handling and ROM Monitor Support components within the eCos HAL package.


	
	Denotes a Boolean flavor option. This icon represents options that can be either enabled or disabled. Figure 11.3 contains the Boolean flavor options Enable I386 FPU Support and Enable Pentium Class CPU Features.


	
	Indicates data flavor options of integer type. Options of this type can be set to particular values within their specified ranges.


	
	Denotes data flavor options of string type. Options of this type can be set to various value strings.


	
	Represents data flavor options of enumeration type. Options of this type have predefined values that can be set. The different configuration values are represented in a drop-down menu.


Icons for particular options are grayed if they are disabled or unable to be modified using the Configuration Tool. Along with the icon being grayed, the option value is also grayed.

Right-clicking on items in the Configuration window brings up a pop-up menu containing:


•
What’s This?—pops up a description of the selected item. This description can also be found in the Short Description window.


•
Properties—displays a dialog box of the properties for the item. The properties are also found in the Properties window.


•
Restore Defaults—sets the value of the item to the default value.


•
Visit Documentation—displays the documentation for the item.


•
View Header File—opens the header file containing the item. This can also be accomplished by double-clicking the File property in the Properties window. The header file is only displayed if the configuration has been saved.


•
Unload Package—available only when right-clicking on packages. This unloads the selected package from the configuration.

11.2.1.4
Conflicts Window

The Conflicts window, shown in Figure 11.3, displays any problems that arise during modification, installation, or removal of configuration items. A conflict occurs when requirements are not met between configuration items that are defined in the CDL.

The Conflicts window is split into three different columns: Item, Conflict, and Property. The Item column displays the macro name of the first item involved in the conflict. The Conflict column shows a description of the conflict type, such as Unsatisfied or Illegal. The Property column contains a description of the configuration item property that caused the conflict. The Conflicts window can be enabled or disabled by selecting View –> Conflicts from the menu bar or using the hot-key combination Alt+5.

Right-clicking on a particular item in the Conflicts window pops up a menu with two options, Locate and Resolve. Locate causes the configuration item to be selected in the Configuration window. Resolve allows you to resolve the conflict prior to building the eCos library. Resolving conflicts is covered in the Using Templates section of this chapter.

11.2.1.5
Properties Window

The Properties window is located below the Conflicts window, as we see in Figure 11.3. This window displays the CDL properties found in the CDL script file for the currently selected configuration item. A detailed description of the relationship between the CDL script files and the Properties window can be found in the Graphical Representation of CDL Script Files section of this chapter. The Properties window can be enabled or disabled by selecting View –> Properties from the menu bar or using the hot-key combination Alt+1.

Two columns divide the Properties window, Property and Value. The Property column gives the property name found in the CDL script file. Each configuration item contains different properties in the command body. The Value column displays the available or current value settings from the CDL script file.

Double-clicking the URL property causes the referenced HTML page to be displayed. This is the same as right-clicking the configuration item, in the Configuration window, and selecting Visit Documentation. Double-clicking on the File property opens the file described in the Value column. This file contains the source code for the configuration option settings. The current configuration must be saved for this to work.

11.2.1.6
Short Description Window

The Short Description window displays a brief description, from the CDL script file, which contains information about the currently selected configuration item. The Short Description window is shown in Figure 11.3.

This window can be enabled or disabled by selecting View –> Short Description from the menu bar or using the hot-key combination Alt+3. The information displayed in the Short Description window is also displayed when right-clicking the configuration item, in the Configuration window, and selecting Visit Documentation.

11.2.1.7
Output Window

The Output window is located at the bottom of the Configuration Tool as shown in Figure 11.3. The Output window displays messages generated by the execution of external tools. For example, when building the eCos library, the Output window displays commands executed during the build process along with any warning or error messages that occur. The Output window can be enabled or disabled by selecting View –> Output from the menu bar or using the hot-key combination Alt+2.

Right-clicking in the Output window pops up a menu that allows you to copy text from the window, clear text from the window, select all text in the window, or save the output in the window to a log file.

11.2.1.8
Memory Layout Window

As previously mentioned, version 1.3.net of the Configuration Tool includes the Memory Layout Tool, which is not present in version 2.11. Version 1.3.net of the Configuration Tool is located under the D:\ecos\bin directory in the file Configtool13net.exe, which we installed in Chapter 10. Version 1.3.net is used to graphically manipulate memory configurations. The other alternative is to edit the memory configuration files by hand.

The mEmory Layout window is a graphical view of the memory configuration based on the currently selected hardware architecture, platform, and Startup Type configuration option. A horizontal bar that is divided into a number of blocks for each memory section represents the memory layout for a region. The name of the memory region is above the horizontal bar along with the address range covered by that region. For example, in Figure 11.4 we see the MLT’s graphical representation of the memory configuration for the Motorola PowerPC MBX860 platform with a ROM Startup Type.

The Memory Layout window can be enabled or disabled by selecting View –> Memory Layout from the menu bar or using the hot-key combination Alt+4. In version 1.3.net of the Configuration Tool, the memory layout tool bar can be used to modify memory configurations. This tool bar can be enabled or disabled by selecting View –> Toolbars –> Memory Layout from the menu bar. Right-clicking in the Memory Layout window allows you to view the properties of the selected region or section of memory.

11.2.1.9
Memory Layout Manipulation

There are default memory layouts provided for all supported platforms that do not need to be modified to begin developing using eCos. Modifying the memory layout is necessary when porting eCos to your own platform, which probably differs from any supported platform, or if memory is added to or removed from an evaluation board. Modifications can be made in the Memory Layout window or using the memory layout tool bar.

The memory layout files for each platform are found under the include\pkgconf subdirectory within the HAL platform directory structure. Typically, each platform includes RAM and ROM memory layout files that are used by the Configuration Tool based on the Startup Type configuration option selection. Some platforms also contain ROMRAM memory layout files for applications that start in ROM but are copied to RAM for execution. For each Startup Type supported by the platform, there are three different memory layout files.

The first type of memory layout file contains a .h extension, which contains C macro definitions of the memory region. The .ldi files are linker script files that define region and section locations. Finally, the .mlt files contain the description of the memory layout for use by the MLT. When editing the memory layout files by hand, only the .h and .ldi files need to be modified; the .mlt file is only used by the MLT.

Figure 11.4 shows the Memory Layout window for the Motorola PowerPC MBX860 platform with a ROM Startup Type configuration option selected. There are two region names in this memory layout, ram and rom. We can see that the ram region includes the address range 0x0000_0000 to 0x003F_FFFF, and the rom region includes the address range 0xFE00_0000 to 0xFE7F_FFFF.

The different memory sections, such as reserved_vectors in the ram region and text in the rom section, are shown in Figure 11.4. Within each memory section is a short description about that section, which might include the size, alignment, and whether the section is relocated. We can see in Figure 11.4 that the reserved_vectors section in the ram region has a size of 3000 bytes, while the text section in the rom region is aligned on a 4-byte boundary. The base addresses for the two memory regions start at the left with the lowest addresses for that region shown below the horizontal bar. Unused portions of memory are represented with hatching, as shown at the end of the rom region in Figure 11.4.

	Figure 11.4
Memory Layout window configuration for Motorola PowerPC MBX860 platform with ROM Startup Type.


Code Listing 11.6 contains a fragment of the linker script file, mlt_powerpc_ mbx_rom.ldi, for the Motorola PowerPC MBX860 platform with ROM Startup Type. This .ldi file is generated based on the memory layout configured in Figure 11.4. For additional information about linker scripts and linker commands, see the GNU ld documentation, which can be found online at:

www.gnu.org/manual/manual.html


1

MEMORY


2

{


3

   ram : ORIGIN = 0, LENGTH = 0x400000


4

   rom : ORIGIN = 0xfe000000, LENGTH = 0x800000


5

}


6




7

SECTIONS


8

{


9

   SECTIONS_BEGIN


10

   SECTION_vectors (rom, 0xfe000000, LMA_EQ_VMA)


11

   SECTION_text (rom, ALIGN (0x4), LMA_EQ_VMA)


12

   SECTION_fini (rom, ALIGN (0x4), LMA_EQ_VMA)


13

.


14

.    


15

.


16

   SECTIONS_END


17

}

Code Listing 11.6
Linker script fragment for Motorola PowerPC MBX860 platform with ROM Startup Type.

The first command, MEMORY, on line 1 defines the memory regions present in the layout. In Code Listing 11.6, we can see that the ram and rom region definitions are on lines 3 and 4, respectively. The ram region starts at address 0, denoted by the ORIGIN = 0 command on line 3, and has a length of 0x0040_0000, also shown on line 3. The rom region contains the same commands with different start address and length values as we can see on line 4. These correspond to the graphical representation for the ram and rom regions shown in Figure 11.4.

The SECTIONS command defines the different sections present in the memory layout. The macro SECTION_xxx, where xxx defines the section, takes the parameters region, VMA, and LMA. On line 10, for example, we see that the vectors section has a final location at the beginning of the rom region at absolute address 0xFE00_0000. The next section, text, is also located in the rom section and follows the vectors section, since the VMA address is specified as ALIGN (0x4). The symbol LMA_EQ_VMA, or LMA equals VMA, means that the section is not relocated. We can see the graphical representation of the vectors and text sections in the rom region in Figure 11.4.

Modifying or creating memory regions is accomplished using a property sheet. The Property Sheet dialog box for a memory region is displayed either by selecting the Properties icon on the memory layout tool bar, after the specific region is selected, or double-clicking the desired region. To select a memory region, you can click on the region name. The ram region Property Sheet dialog box is shown in Figure 11.5. New memory regions can be created using the New Region icon on the memory layout tool bar.

The General tab is displayed in Figure 11.5. The information in this dialog box ensures that initial and final locations of relocated memory sections are within the appropriate memory region. The Name chosen for a memory region is up to you; however, it should not contain spaces or punctuation characters. In Figure 11.5, the name of the region is ram. The Start Address and Size are specified in bytes and entered as hexadecimal numbers. We can see in Figure 11.5 that the Start Address for the ram region is 0x0000_0000 and the Size is 0x0040_0000, which corresponds to a size of 4 Mbytes (4,194,304 bytes). Therefore, the address range for the ram region, as we see in Figure 11.4, is from 0x0000_0000 to 0x003F_FFFF. In this case, the Read Only check box is not checked because this is a RAM region of memory. The Notes tab can be used to keep any information about the memory region.

	Figure 11.5
ram region property sheet dialog box.


Memory sections are also edited using a property sheet. The Property Sheet dialog box for a memory section is displayed either by selecting the Properties icon on the memory layout tool bar, after selecting a specific region, or double-clicking the desired section. New memory sections can be created using the New Section icon on the memory layout tool bar. Figure 11.6 shows the General tab of the reserved_vsr_table section from the Motorola PowerPC MBX860 platform memory layout.

A memory section is either Linker-defined or User-defined. In Figure 11.6, we see this section is User-defined with the name reserved_vsr_table. The same rules apply for naming memory sections as with memory regions—no spaces or punctuation characters. If the section is Linker-defined, a drop-down list containing the names currently not used are presented. The names in the list vary depending on the selected target architecture. When using a template as the baseline for your development, sections will be set up in the memory layout for you. It is then up to you to determine if they need to be relocated or moved into other memory addresses or if new sections need to be added.

If the Known Size check box is checked, then the size, in bytes, is entered as a hexadecimal number. In Figure 11.6, we see that the reserved_vsr_table has a size of 200, or 512 bytes. User-defined sections that do not contain a size are assumed to occupy all memory up to the next section or the end of memory in that region. The Final Location, or Virtual Memory Address (VMA), defines the final location of the section after relocation. Either an Absolute address can be entered or Following a specific section. In Figure 11.6, the reserved_vsr_table follows the reserved_vectors section, which was selected from a drop-down list. The Alignment of the reserved_vsr_table is also specified on a 1-byte boundary. If an Absolute address is used, this should be entered in hexadecimal.

	Figure 11.6
reserved_vsr_table section Property 
Sheet dialog box.


The next tab in the section property sheet is for Relocation. For the Motorola PowerPC MBX860 platform with ROM Startup Type, the only section that is relocated is the data section. We can see this in Figure 11.4 in the ram region that has the description relocated in the data section box below align 10. In Figure 11.7 we see the Relocation tab for the data section. The Relocate Section check box is checked and the Initial Location, or Load Memory Address (LMA), for the data section is specified. The LMA can be either an Absolute address in hexadecimal or Following a specific section that is selected from a drop-down list. In Figure 11.7, the data section LMA is initially loaded in the rom region following the gcc_except_table section. The General tab in the data section property sheet specifies a VMA, or final location, following the reserved_virtual_table section. If we look at Figure 11.4 we can see that the data section is present in both the rom and ram region. Since the data section is relocated from the rom to ram region, it is grayed in the rom region.

	Figure 11.7
 data section property sheet dialog box.


The last tab is the Notes tab, which can be used to keep any information about the memory section.

Let’s briefly look at how we would access a user-defined memory section. In this example, we create a user-defined section using the MLT and then go through a code listing showing how this section is accessed. We are using the Motorola PowerPC MBX860 platform with ROM Startup Type.

First, the section kfm1 is created using the MLT, as shown in Figure 11.8. We see the MLT representation of the RAM and ROM memory regions. In the RAM memory region, we see the kfm1 section at the end. The section Properties dialog box is also shown for the kfm1 section. In this case, the section starts at address 0x000A_0000 and is 296 bytes long.

	Figure 11.8
Memory layout tool showing user section, kfm1, and the associated section properties dialog box.


When we save our configuration, the Configuration Tool generates the memory layout header file, mlt_powerpc_mbx_rom.h, automatically. This file is stored in the install tree directory structure under the include\pkgconf directory. An excerpt from the memory layout header file with the kfm1 section defined is shown in Code Listing 11.7.


1

 #define CYGMEM_SECTION_kfm1 (CYG_LABEL_NAME (__kfm1))


2
 #define CYGMEM_SECTION_kfm1_SIZE (0x128)

Code Listing 11.7
Memory layout file excerpt showing kfm1 section definitions.

In Code Listing 11.7, we see that line 1 shows the address definition of our kfm1 section we defined using the MLT. The actual address, 0x000A_0000, is contained in the linker script file 

mlt_powerpc_mbx_rom.ldi, which is also generated by the Configuration Tool. On Line 2, the size for our new section is defined; in this case, the size is 296 (128 in hexadecimal) bytes.

Code Listing 11.8 shows the example code we implement in our application to access our user-defined section kfm1.


1

#include <pkgconf/system.h>


2

#include <pkgconf/mlt_powerpc_mbx_rom.h>


3




4

//


5

// Main starting point for the application.


6

//


7

void cyg_user_start( void )


8

{


9

   // Use the memory section as an integer array.


10

   char *user_section = (char *)CYGMEM_SECTION_kfm1;


11

   unsigned char user_sect_size = CYGMEM_SECTION_kfm1_SIZE;


12

   unsigned int index;


13




14

   // Initialize each element in the kfm1 section of memory.


15

   for ( index = 0; index < user_sect_size; index++ )


16

      user_section[ index ] = 0;


17

}

Code Listing 11.8
Example of how to access a user-defined memory section.

In Code Listing 11.8, we see that the header file, mlt_powerpc_mbx_rom.h, which defines our new user section kfm1 is included on line 2. On line 10 we set the variable user_section to our user-defined section address, which allows us to access the section using this local variable. The size of the section is set to the variable user_sect_size on line 11, again allowing us to use a local variable to access the size of our user-defined section. Finally, we initialize the user-defined memory section kfm1 to 0, which is shown on lines 15 and 16, using our local variables user_section and user_sect_size.

11.2.2
eCos Repository Database

The Configuration Tool uses the eCos repository database to understand the components within the repository. The descriptions of the packages in the repository database are contained in the file ecos.db, which is located under the D:\ecos\packages subdirectory in our installation. This file uses the CDL to describe all packages and targets in the database.

The Configuration Tool needs to know the location of this file, and the entire repository. The Configuration Tool searches for the component repository by first using the most recently used repository location, then by using the default location setup by the installation, and finally, by whatever path you select. The component repository location should already be configured properly from our installation.

If you needed to change the location of the component repository, you could do so by selecting Build –> Repository from the menu bar. This brings up a dialog box that allows you to browse to the new location of the repository.

We can see an example of the relationship between the repository database file, ecos.db, and the Configuration Tool in Figure 11.9. In Figure 11.9, the CDL package description for the eCos HAL is shown along with the Configuration window, the Properties window, and the Short Description window from the Configuration Tool. We can see how the Configuration Tool interprets the CDL package for the eCos HAL in order to display the properties and description correctly. The Configuration Tool uses the CDL script file, hal.cdl, shown on line 4 of the ecos.db code fragment in Figure 11.9, to display the proper components within the eCos HAL package.

	Figure 11.9
eCos repository database, ecos.db, and Configuration Tool relationship.


Along with all of the package descriptions in the ecos.db file, the template descriptions are also contained within the database file. Template descriptions are used by the Configuration Tool to load pre-configured packages for a particular target platform. Details about using templates can be found in the Using Templates section of this chapter. The template description for the i386 PC target platform is shown in Code Listing 11.9.

We see in Code Listing 11.9, line 1 contains the name of the target; in this case, pc. An alias for the target, which is displayed by the Configuration Tool when selecting a template, is shown on line 2. The packages that are loaded by the Configuration Tool when the i386 PC target template is selected are given on lines 3 through 13. These packages give a baseline of functionality for a given target. Packages can then be configured, added, or removed in order to get the specific configuration you need for your target platform. Finally, lines 15 through 19 give the description of this template.


1
target pc {


2
   alias       { "i386 PC target" }


3
   packages    { CYGPKG_HAL_I386


4
                 CYGPKG_HAL_I386_GENERIC


5
                 CYGPKG_HAL_I386_PC


6
                 CYGPKG_HAL_I386_PCMB


7
                 CYGPKG_IO_PCI


8
                 CYGPKG_IO_SERIAL_GENERIC_16X5X


9
                 CYGPKG_IO_SERIAL_I386_PC


10
                 CYGPKG_DEVS_ETH_INTEL_I82559


11
                 CYGPKG_DEVS_ETH_I386_PC_I82559


12
                 CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS12887


13
                 CYGPKG_DEVICES_WALLCLOCK_I386_PC


14
   }


15
   description "


16
      The pc target provides the


17
      packages needed to run eCos


18
      binaries on a standard i386


19
      PC motherboard."


20
}

Code Listing 11.9
i386 PC target template description from eCos database file ecos.db.

Figure 11.10 shows the template dialog box displaying the i386 PC target from Code Listing 11.9. The template dialog box is displayed when Build –> Templates is selected from the menu bar. We can see in Figure 11.10 that the alias description, from line 2, is displayed in the Hardware drop-down list.

Below the target alias is the description for the template, from lines 15 through 19. In this case, the default packages are included, which are described in the Packages in Selected Templates description box. These packages are listed on lines 3 through 13 in Code Listing 11.9. The different options in the package drop-down list are described in the Using Templates section of this chapter.


	Figure 11.10
Configuration Tool template selection dialog box.


In certain circumstances, it might be necessary to edit the ecos.db file in order to have the Configuration Tool recognize a package you added. We look at editing the ecos.db file in Chapter 13, Porting eCos.

A file named ChangeLog is also located in the same subdirectory as the ecos.db file. This log file tracks the changes made to the ecos.db file. Entries to this log file are similar to the entries in the other ChangeLog files described in the Package Directory Structure section in this chapter.

11.2.3
Graphical Representation of CDL Script Files

Now that we have looked at the relationship between the repository database file and the Configuration Tool, let’s go a step further and examine the relationship between the CDL script files and their graphical representation in the Configuration Tool.

This section gives us a basic understanding for how the Configuration Tool interprets the commands in the CDL script files and uses this information in its different display windows. All CDL commands and properties are not described in this section; however, you should be able to see the basic relationship between the CDL scripts and the Configuration Tool allowing you to investigate other script details on your own.

As we know from the Packages section in this chapter, every package must have at least one CDL script file to define the package. The Configuration Tool uses the CDL script files to display the necessary configuration and description information so that you can set up the package according to your needs. We use the same CDL script file from the i386 PC HAL package described in Code Listing 11.3, which you can look at to get an overview of where each portion of the CDL script commands are located. The line numbers from Code Listing 11.3 are used in the code fragments located in the figures. Figures 11.11, 11.12, and 11.13 show three different portions of the CDL script file and how the Configuration Tool displays this information. Each figure shows a portion of the Configuration window, the Properties window, and the Short Description window.

	Figure 11.11
CDL script file, showing CDL package command, and Configuration Tool representation for the i386 PC HAL package.


First, in Figure 11.11, is the CDL package command. Line 1 gives the macro name of the package CYGPKG_HAL_I386_PC, which can also be seen next to the Macro property in the Properties window. Line 2 uses the display command to give a description of the package, which we can see is used in the Configuration window. The i386 PC Target is part of the i386 Architecture. In order to locate the i386 PC Target package under the i386 Architecture, the parent command shown on line 3 is used.

	Figure 11.12
CDL script file, showing CDL component command, and Configuration Tool representation for 
the i386 PC HAL package.


The different properties, on lines 4, 5, and 11 through 15, for the i386 PC Target are displayed in the Properties window. The description command from lines 6 through 9 is shown in the Short Description window.

Within the i386 PC Target package is the Startup Type component. The CDL script file and Configuration Tool representation for the Startup Type component is shown in Figure 11.12. Because this component is part of the CDL package command i386 PC Target (CYG_HAL_I386_PC) body, the Startup Type component is displayed under the i386 PC Target in the Configuration window hierarchy structure.

Again, we see the macro name, CYG_HAL_STARTUP, on line 17, which is also displayed in the Properties window. The display command, on line 18, gives the Configuration Tool a descriptive name for the component to display in the Configuration window.

The properties on lines 19 through 23 are displayed in the Properties window. One note is that since this component has a flavor property of data and a type property of enumeration, a drop-down list is used to show the legal_values to configure this component. We can see the enumeration type icon, as previously described in Table 11.1, next to the Startup Type description in the Configuration window. The legal_values for the i386 PC Target package Startup Type are RAM, FLOPPY, and ROM.

Finally, we see the description command from lines 24 through 35 displayed in the Short Description window.

Finally, we look at the CDL option command Output to PC Screen in Figure 11.13. The macro for this option is on line 38, CYGSEM_HAL_I386_PC_DIAG_SCREEN. This option is also located within the i386 PC Target package as we can see from the hierarchy structure shown in the Configuration window. Line 39 shows the display command represented in the Configuration window with the text Output to PC Screen.

A check box icon to the left of the display text is used for this option since the flavor property is bool, as shown on line 40 and in the Properties window. The other properties on lines 41 and 42 are displayed in the Properties window as well.

As we have seen with the other CDL script fragments, the description command is used by the Configuration Tool to display text in the Short Description window, shown on lines 43 through 46.

11.2.4
Using Templates
	Figure 11.13
CDL script file, showing CDL option command, and Configuration Tool representation for the i386 PC HAL package.


Templates are predefined configurations provided in the eCos repository that load specific packages for a supported hardware platform. As described in Chapter 1, templates are used as a baseline starting point to begin selecting the configuration settings specific to your application.

The templates dialog box, shown in Figure 11.10, is displayed by selecting Build –> Templates from the menu bar. We use a template in Chapter 12 to load a baseline of packages and configuration options for our example application.

	N O T E 
Prior to using templates for different hardware architectures you must make sure that the platform-specific cross-development tools have been built for the hardware architecture you have selected. You must also make sure that the appropriate cross development tools are selected from the Tools –> Path –> Build Tools menu in the Configuration Tool.

The Configuration Tool will display errors if you try to configure and build the eCos library with the wrong cross-development tools installed. The installation of the cross-development tools is covered in Chapter 10.


The templates dialog box allows the selection of a combination of hardware and package templates. The hardware templates are defined in the eCos database file, ecos.db, using CDL script commands. The hardware template is selected from the drop-down list in the Templates dialog box under the Hardware label.

Beneath the drop-down list is a brief description of the target platform selected. The hardware template ensures that the proper packages are loaded into the Configuration Tool for a particular target platform, including HAL, I/O, and device driver packages. There is a hardware template in the drop-down list for each of the supported evaluation platforms supported by eCos, as shown in Appendix A, Supported Processors and Evaluation Platforms.

The package templates are generic across all hardware platforms and are defined under the templates subdirectory located under the D:\ecos\packages directory. The package template is also selected from a drop-down list under the Packages label in the Templates dialog box.

Next to the package template list is a drop-down list that allows you to select the version of the package template to load. In this case, the current template version is selected.

A brief description of the package template selected is located beneath the drop-down lists. Clicking the Details button displays a scroll list of the packages that are contained in the package template selected, as shown in Figure 11.10.

Each package template contains its own subdirectory containing a file named current.ect, as well as a ChangeLog file. You can generate your own package template files, which can be useful if you need to incorporate different versions of various packages. Before the new package template is noticed, the Configuration Tool needs to be restarted. The package template files use CDL scripts to define the proper packages to load and configuration options to set according to the template. The package templates included with eCos are defined in Table 1.2 in Chapter 1.

11.2.4.1
Conflicts and Resolutions

When templates are loaded into the Configuration Tool, oftentimes conflicts arise between different components and configuration options. How and when conflicts are displayed depends on the settings selected under the Tools –> Options menu. This allows you to check for conflicts after any item is changed, before saving and building, or never.

When the conflict option Automatically Suggest Fix is selected, a dialog box is displayed when a conflict arises by the Configuration Tool, similar to the one shown in Figure 11.14, which allows you to resolve the conflicts before proceeding with the configuration setup.

	Figure 11.14
Resolve Conflicts dialog box.


As we see in Figure 11.14, the top window displays the conflict that needs to be addressed with the columns Item, Conflict, and Property, which is the same format as the Conflicts window. The bottom window gives a Proposed Solution for each conflict. Each proposed solution can be individually enabled or disabled by selecting the check box in the Item column or a global enable, provided by the All button, and disable, provided by the None button, are included in the dialog box. The default state is that all proposed solutions are enabled. Clicking the Continue button applies the proposed solutions selected. Clicking the Cancel button exits the dialog box without applying any solutions.

If you choose not to apply the proposed solutions, the resolve conflicts dialog box can be displayed later by selecting Tools –> Resolve Conflicts from the menu bar. Unresolved conflicts are also displayed in the Conflicts window and a total count is shown on the bottom-right side of the status bar.

	N O T E 
There are a couple of points to understand about conflicts and resolutions. First, an automatic resolution might not be generated for every conflict that comes about. You might need to resolve the conflict yourself by altering the configuration in some way. If this is the case, it is useful to use the Find tool, as described in The Configuration Tool section of this chapter, to search for the macro causing the conflict. The property column in the Conflicts window gives you a hint as to what the problem is and how you can resolve it.

Finally, resolving a conflict might cause other conflicts to occur. In this case, you might, again, need to search and edit the configuration to resolve the conflict. In other circumstances, you might need to unload or load particular packages to resolve the conflict.


11.2.5
Package Control

After a template has been loaded, it is often necessary to load or unload particular packages to set up the configuration to support all of the features for your application. Adding and removing packages is accomplished by using the Packages dialog box as shown in Figure 11.15. This dialog box is displayed by selecting Build –> Packages from the menu bar.

The left side of the Packages dialog box contains a scroll list of all available packages in the eCos component repository under the label Available Packages. The right side contains a scroll list of the packages currently selected in the configuration under the label Use These Packages. The version of the currently selected package is shown in the drop-down list below the label Version. If multiple packages are selected, the versions common to both packages are displayed in the version drop-down list. A brief description of the package is located below the version. The description window is blank when multiple packages are selected. In Figure 11.15, we see that the current version of the RAM Filesystem package is selected from the available packages.

To add a package to the configuration, select the package from the available packages list and click the Add button. Multiple packages can be selected by holding down the Ctrl key while clicking packages. Next, you select the version of the package you want to add from the Version drop-down list. This contains all versions installed under your component repository installation. Since the current version is the one we installed in Chapter 10, this is the only version shown.

To remove a package from the configuration, select the package from the current packages being used and then click the Remove button. Again, multiple packages can be selected by holding down the Ctrl key while clicking packages. 

	Figure 11.15
Package control dialog box.


	N O T E 
An error message might be displayed when you try to add particular packages from the package control dialog box. For example, if you were to try to add a device driver that is not supported by your selected platform, a message box appears informing you that you need to load a different hardware template in order to load the package you just specified. This means that there is some conflict between the packages you have currently selected and the package you are trying to add. In this case, the hardware template selected does not support the device driver package you are trying to add.


11.3
Other eCos Tools

There are two additional tools installed with the eCos development kit that we cover in this section. The first is the Package Administration tool. The Package Administration tool allows you to control the packages contained in your local eCos component repository.

The other tool, the command-line configuration tool, allows you to configure packages the same way as the graphical Configuration Tool. This section is intended to give you an overview of the tools and a basic understanding of how they operate. Additional information for these tools can be found online at:

http://sources.redhat.com/ecos/docs.html

11.3.1
The Package Administration Tool

Each package in the eCos component repository is a self-contained released module. A package contains an individually versioned source code structure. This method supports individual package distributions or other third-party contributors.

The eCos Package Administration tool is a graphical interface, which runs on Windows, that provides the management of all packages in the component repository. A command-line interface can also be used to manage the packages in the repository. We focus on the use of the graphical Package Administration tool in this section.

The Package Administration Tool is installed as part of the eCos development kit installation covered in Chapter 10. The executable is located in the D:\ecos\bin directory. The Package Administration tool can also be started from the Configuration Tool through the Tools –> Administration menu. The source code for this tool, along with the other eCos tools, is also installed with the eCos development kit under the D:\eCos\host\tools\pkgadmin subdirectory.

The Package Administration tool uses a Tcl script file, named ecosadmin.tcl, located in the D:\ecos\packages subdirectory. This file allows you to install or remove packages in the eCos component repository. Packages are distributed in a single file with a .epk extension. Figure 11.16 shows a screen snapshot of the eCos Package Administration tool. 

	Figure 11.16
The eCos Package Administration tool.


As we see in Figure 11.16, the left side of the Package Administration tool displays the currently installed packages. The package icons are the same as those found in the Configuration Tool, which are described in Table 11.1.

The plus and minus signs next to the Package icons allow you to expand or contract the packages. When the package is expanded, the versions of the different packages currently installed are displayed. We can see that in Figure 11.16, the i386 Common HAL package has the current version installed.

	N O T E 
The Package Administration tool provides warnings when removing certain packages from the component repository. You need to take care in your selection of particular packages, because removing certain packages—for example, the eCos Common HAL package—might require you to reinstall the eCos development kit in order to get the package back into the repository.


Clicking the Add button brings up a dialog box that allows us to browse for a new eCos package file (.epk) to install into our local source code repository. The Remove button deletes the selected package from our local eCos repository. When we select the Remove button, a confirmation dialog box is displayed to ensure that the proper package is removed. The Repository button allows us to select a different eCos repository to operate on. 

11.3.2
The Command-Line Configuration Tool

Configuration of packages in the eCos repository for your specific application requirements can also be done with the eCos command-line tool. The command-line configuration tool is installed with the eCos development kit installation, which we did in Chapter 10.

The executable is located in the D:\ecos\bin subdirectory. The command-line configuration tool can be invoked from the bash shell prompt by running the file ecosconfig.exe. Invoking the command-line executable without any parameters displays the help message showing the different commands available. The source code for this tool is also installed with the eCos development kit under the D:\ecos\host\tools\configtool subdirectory.

Since the graphical Configuration Tool is able to run on both Windows and Linux, with version 2.0 and beyond, we do not go into the details of using the command-line configuration tool. It is much easier to use the Configuration Tool to set up, configure, and build the eCos library. The command-line configuration tool also does not offer the ability to interactively resolve conflicts that arise during the configuration process.

11.4
Building the eCos Tools

Yes, even the eCos development tools, including the graphical Configuration Tool, the Package Administration Tool, and the command-line configuration tool, are open source and, therefore, you can build these tools if you desire or need to take on that task. This gives you complete control of your embedded development environment—you are completely autonomous.

The source code for the eCos toolset is contained in the eCos repository under the D:\ecos\host directory. Also included in this directory are other testing tools and utilities. The latest source code for the tools is available in the online CVS repository. Additional information about building the eCos toolset can be found on the eCos home site, as well as information regarding building the graphical Configuration Tool, at:

http://sources.redhat.com/ecos/ct2.html

11.5
Additional Open-Source Tools

In this section, we briefly look at a couple of additional open-source tools that can be used to complete our embedded software development environment. The tools described in this section are often used by developers to aid in producing more robust software and, therefore, a more robust and reliable product.

This brief overview is to make you aware of other open-source tools that can be appended to the core eCos development tools to round out your software development system. Sources for getting additional information are included for you to investigate these tools on your own. All files needed to set up the tools are provided on the CD-ROM.

11.5.1
Source-Navigator

Source-Navigator is a code analysis and comprehension tool. Source-Navigator is an open-source project that can aid in understanding and reengineering complex software projects. By parsing through C, C++, Java, Tcl, [incr tcl], FORTRAN, COBOL, and assembly language source code, Source-Navigator builds a project database. The database includes useful information such as internal program structures, the location of function declarations, contents of class declarations, and details the relationships between program components. The home site for the Source-Navigator project can be found online at:

http://sources.redhat.com/sourcenav

Source-Navigator also includes a Software Development Kit (SDK). The SDK allows you to add new parsers to support additional languages, modify the graphical user interface, query the database for specific information, and use other applications in conjunction with Source-Navigator, such as a version control system. In addition, it is possible to configure Source-Navigator to build programs and launch the GNU debugger for a completely integrated development environment.

Source-Navigator version 5.0 is included on the CD-ROM under the srcnav directory. The file sourcenavigator50.zip contains the Windows executable you can use to set up Source-Navigator on your development system. Pre-built binary files can also be downloaded for Solaris and HPUX.

Simply unzip the sourcenavigator50.zip file, retaining the directory structure, onto your D:\ drive. Source-Navigator requires approximately 17.4 Mbytes of disk space. All necessary files are placed under the directory D:\SourceNavigator. To start Source-Navigator, run the executable file snavigator.exe under the bin subdirectory.

Also included on the CD-ROM is the source code for the version 5.0 release of Source-Navigator. The source code is contained in the file SN50-010322-source.tar.gz also under the srcnav directory.

The Source-Navigator User’s Guide includes details about using the project editor, using the symbol browser, customizing Source-Navigator for your specific needs, and other features, as well as a tutorial. The User’s Guide can be found online at:

http://sources.redhat.com/sourcenav/online-docs/userguide/index_ug.html

The Source-Navigator Programmer’s Reference Guide contains information about adding parsers, the database API, and integrating a version control system into Source-Navigator. The Programmer’s Reference Guide can be found online at:

http://sources.redhat.com/sourcenav/online-docs/progref/index_pr.html

Two discussion mailing lists are available for Source-Navigator. The first is a general discussion list for issues and submission of patches, which is located online at:

http://sources.redhat.com/ml/sourcenav

Posts for this list should be sent to:

sourcenav@sourceware.cygnus.com

The other mailing list is found online at

http://sources.redhat.com/ml/sourcenav-announce

This is an announcement list for posts about new releases or other important information. Posts for the announcement list should be sent to:

sourcenav-announce@sourceware.cygnus.com

11.5.2
Splint

No, lint is not referring to the stuff you find in the deepest recesses of your pockets. A lint program is used to statically verify a program, or part of a program, against standard libraries, checks the code for portability, and checks the code for common errors such as ignored return values, unused declarations, and type inconsistencies.

Although a compiler provides some checking, lint checks these areas of a program much more carefully and provides output messages where possible problems may occur. Lint can be used to develop more robust software.

Splint is an open source development project; therefore, it can be used free of charge. Splint stands for Secure Programming Lint or Specifications Lint. Additional information about Splint can be found online. The home site for Splint is located at:

www.splint.org

Included on the CD-ROM under the splint directory is a zip file, splint-3016win32.zip, which contains the Splint executable version 3.0.1.6, as well as documentation on how to set up and use the program. A Linux version of Splint is also included on the CD-ROM under the splint\linux directory in the file splint-3.0.1.6.Linux.tgz.

Also included on the CD-ROM under the splint directory is the source code for this Splint version. This is located in the file splint-3.0.1.6.src.tgz. Instructions for building Splint can be found online at:

www.splint.org/source.html

To install Splint, unzip the file splint-3016win32.zip, retaining the directory structure, onto your D:\ drive. This will place all Splint files under the directory D:\splint. The executable is located in the bin subdirectory. Two environment variables need to be set as follows:


•
LARCH_PATH="D:\splint\lib"


•
LCLIMPORTDIR=D:\splint\imports

Finally, set up the command path to include the directory containing the splint.exe executable. Additional installation information can be found in the file README file or on the Splint home site.

11.6
Summary

In this chapter, we focused on the different eCos development tools. We started with an overview of the CDL used in the eCos framework. Moving onto the Configuration Tool, we discovered the relationship between the CDL files and the graphical representation of packages in the Configuration Tool. We also examined the eCos database file and how it is used by the Configuration Tool to represent the information in the repository.

A typical eCos configuration involves selecting one target and one template. Packages can then be added and/or removed based on the requirements of the system. Then, fine-grained configuration is performed on the configuration options.

Then we moved on to the other tools available in the eCos development kit, as well as other open-source tools that allow us to configure a complete embedded development environment free of charge since the tools are all open source. Now that we have an understanding of the eCos Configuration Tool, we are able to move to the next step, which is using the eCos tools to develop our own application.





