Chapter 9

The RedBoot ROM Monitor

This chapter covers the RedBoot ROM monitor embedded software tool. The RedBoot ROM monitor provides debugging and bootstrap support. We cover thhe installation and configuration details necessary to get RedBoot running on target hardware and communicating with a host unit.

We look at the RedBoot user interface and commands provided for controlling the features provided. It is important to understand the method for building a RedBoot image to make use of upgrades and to extend the default command set; however, we cover this information in later chapters of this book. Although RedBoot is a standalone program that can be used with any real-time operating system, the information in this chapter focuses on using RedBoot with eCos applications.

9.1
 Overview

RedBoot is an acronym for Red Hat Embedded Debug and Bootstrap. It is a program designed for embedded systems to provide a debugging and bootstrap environment. RedBoot is intended to take the place of older programs; specifically, CygMon and GDB stub ROM. In fact, CygMon is no longer supported.

RedBoot is an eCos-based application and uses the eCos Hardware Abstraction Layer for its foundation. However, RedBoot can be used on any embedded system or with any RTOS. RedBoot can be used for debug support during the product development cycle or in a released product to provide flash and network booting. Some of the features provided by RedBoot include:

•
Boot scripting support

•
Command Line Interface (CLI) for monitor and control support

•
Access via serial or Ethernet ports

•
GDB support

•
Flash image system support

•
X/Y modem support

•
Network bootstrap support using BOOTP or static IP address configurations

RedBoot is a standalone, self-contained module that runs as an application on the target platform. Included in RedBoot is a GDB stub (see Chapter 8, Additional Functionality and Third-Party Contributions, for more information) that allows connection to the target platform from a GDB host for application debugging. This debug connection can be over the serial or Ethernet port. RedBoot uses a standalone stack, separate from the eCos networking stack, which provides a base of functionality for network communications.

RedBoot supports booting from ROM, RAM, floppy disk, or an Integrated Disk Electronics (IDE) hard drive running the ext2 file system. A ROMRAM startup mode is also available; in which case, RedBoot resides in ROM but is copied to RAM before it begins to run.

When we build a RedBoot image, as in Chapter 12, An Example Application Using eCos, the result is a binary file that is programmed directly onto the target hardware. This RedBoot image can contain, depending on the configuration options and packages, all the software components to use all features of the target hardware.

Figure 9.1 shows the block diagram architecture of some of the features included with the RedBoot ROM monitor. From this illustration, we can see that the functionality provided by RedBoot is all contained within the RedBoot program image. The interaction between RedBoot and the eCos application varies depending on the configuration option settings in both images. RedBoot can be configured to provide simple load and run functionality, or can be configured to provide flash management support, monitor and control for the eCos application via the CLI using the serial port, and GDB debugging capabilities.

	Figure 9.1
RedBoot ROM monitor architecture.

RedBoot is shipped in many products currently on the market, including:

•
Intel Residential Gateway

•
Intel XScale Development Board

•
Intel StrongARM Development Boards

•
MIPS Malta 4kc/5kc/20kc Development Board

•
MIPS Atlas 4kc/5kc/20kc Development Board

The latest developments and information about the RedBoot ROM monitor can be found online at:

http://sources.redhat.com/redboot

9.2
RedBoot Directory Structure

Although RedBoot is a standalone application, which can run on a target system with or without eCos, the directory structure of RedBoot is similar to other eCos packages. Figure 9.2 shows the RedBoot directory structure.

	Figure 9.2
RedBoot directory structure.

As we see in Figure 9.2, the RedBoot package is contained in the directory redboot. Additional details about the typical eCos package directory structure are covered in Chapter 11, The eCos Toolset.

Beneath the main directory is the version of RedBoot, which might vary depending on the source code used. However, in our installation, the version directory is named current, as we see in Chapter 10, The Host Development Platform.

The cdl directory contains the CDL description file of the RedBoot package. The CDL file contains the information needed for RedBoot configuration options, packages, and build information.

Next is the doc directory. This contains documentation about the RedBoot ROM monitor for use by the eCos configuration tools.

The include directory contains the source code header files for RedBoot. This directory contains two additional directories. The fs directory contains the RedBoot file system header files, and the net directory contains the RedBoot networking header files.

The misc directory contains an eCos minimal configuration file for RedBoot. Finally, the src directory contains all of the RedBoot source code. The file system source code is contained under the fs directory, and the networking code is contained under the net directory.

9.3
Installation and Configuration

eCos provides a template called Redboot. Using this template, the default packages used with the RedBoot ROM monitor are loaded and configured with the default option settings. The specific packages loaded depend on the hardware platform you are using. For example, the Motorola PowerPC MBX860 board platform loads the Ethernet device driver since this is supported on the MBX platform. However, the Intel StrongARM SA-1100 Multimedia board platform does not contain Ethernet support; therefore, the Ethernet device driver is not loaded on the SA-1100 Multimedia platform. We cover building a RedBoot image in Chapter 12.

	N O T E
Most HAL packages include a .ecm file that can be imported, along with using the RedBoot template, in order to set up the packages needed to build the RedBoot ROM monitor for a specific platform. The files are typically named redboot_RAM.ecm, redboot_ROM.ecm, or redboot_ROMRAM.ecm, where ROM, RAM, and ROMRAM determine the startup type for the RedBoot ROM monitor. The files are located in the misc subdirectory under the HAL packages. We cover the details of using .ecm files with the Configuration Tool in Chapter 11.

Although .ecm files are useful for loading a baseline of the proper packages for a specific platform, you should still verify the configuration option settings prior to building the RedBoot image. This ensures that the proper functionality you need is supported by RedBoot; for example, the configuration of certain options allows RedBoot to include certain required functionality, or alternatively eliminate particular features, thus reducing RedBoot’s memory footprint.

RedBoot typically resides in the flash boot sector or boot ROM on the target platform. This gives control to RedBoot when the board is powered up. RedBoot can be configured to run from RAM if you need to debug the RedBoot code itself. This might be the case if you are porting RedBoot to run on your own hardware platform.

The method for programming the RedBoot image onto the target hardware varies from platform to platform and depends on the tools available. Some platforms include their own ROM monitor, such as the Motorola PowerPC MBX860 board, which can be used to program an image into flash memory and then run the programmed image on power up. In other cases, a device programmer might need to be used in order to burn the image into memory. Detailed instructions on programming a RedBoot image for each target platform supported by RedBoot can be found online at:

http://sources.redhat.com/ecos/docs.html

The steps involved in running an image on the i386 PC platform and the Motorola PowerPC MBX860 platform are covered in Chapter 12. These same steps can be applied to running the RedBoot image as well.

The resources (ROM, RAM, and communication ports) used by RedBoot vary for each platform. A description of the resource utilization for the supported platforms can be found in the RedBoot online documentation. The Configuration Tool’s Memory Layout viewer can also be used to check and modify the RAM and ROM resources used by RedBoot. We cover the Configuration Tool, and all of its features, in Chapter 11.

9.3.1
RedBoot Configuration

The configuration of the RedBoot image is dependent on the features you want provided by the ROM monitor and the features provided in the application. As previously mentioned, the RedBoot ROM monitor is a standalone program and should be viewed as completely independent and separate from your application. However, the steps for configuring and building a RedBoot image are the same as the steps for configuring and building your application. The configuration allows you to control the functionality provided by RedBoot in order to meet the resource requirements of your system.

The RedBoot ROM Monitor (CYGPKG_REDBOOT) package is contained in the redboot subdirectory under the eCos repository root directory. Item List 9.1 shows the configuration options available for the RedBoot ROM monitor. Some of the options specified in the table are not supported by all platforms and, therefore, cannot be configured.

Item List 9.1
RedBoot Configuration Options

Option Name

Include Support for ELF File Format

CDL Name

CYGSEM_REDBOOT_ELF

Description

Allows application files in ELF to be loaded by RedBoot.

Option Name

Build RedBoot ROM ELF Image

CDL Name

CYGBLD_BUILD_REDBOOT

Description

Builds an ELF of the RedBoot image. This option is disabled by default. The suboptions under this option allow inclusion of decompression support, thread debugging support, and setting a customized version string.

Option Name

RedBoot Networking

CDL Name

CYGPKG_REDBOOT_NETWORKING

Description

Contains suboptions for configuring network support. The default mode for this option is enabled for platforms with Ethernet support. The suboptions allow you to configure a default IP address when BOOTP is used (disabled by default), specify the TCP port for incoming connections (default is 9000), and specify the number of network buffers (default is 4).

Option Name

Allow RedBoot to Use Any I/O Channel for Console

CDL Name

CYGPKG_REDBOOT_ANY_CONSOLE

Description

RedBoot attempts to use all serial I/O channels that are defined for console communication. When input arrives, RedBoot uses that channel for its console. This option is enabled by default.

Option Name

Allow RedBoot to Adjust the Baud Rate Serial Console

CDL Name

CYGSEM_REDBOOT_VARIABLE_BAUD_RATE

Description

Enables RedBoot to support baud rate set commands. This option is enabled by default.

Option Name

Maximum Command Line Length

CDL Name

CYGPKG_REDBOOT_MAX_CMD_LINE

Description

Sets the maximum length for CLI commands. The default value is 256.

Option Name

Command Processing Idle Timeout (ms)

CDL Name

CYGNUM_REDBOOT_CLI_IDLE_TIMEOUT

Description

Specifies the period before command processing is considered idle. A smaller value for this option causes more frequent idle processing. The default value is 10 ms.

Option Name

Size of ZLIB Decompression Buffer

CDL Name

CYGNUM_REDBOOT_LOAD_ZLIB_BUFFER

Description

Sets the size (in bytes) of the buffer that is filled with incoming data during a load before calling the decompression function. The default value is 64 bytes.

Option Name

Validate RAM Addresses During Load

CDL Name

CYGSEM_REDBOOT_VALIDATE_USER_RAM_LOADS

Description

Allows RedBoot to check the validity of user RAM when loading an image. This option is enabled by default; care should be taken when disabling this option.

Option Name

Allow RedBoot to Support Flash Programming

CDL Name

CYGPKG_REDBOOT_FLASH

Description

Enables RedBoot to provide flash image system management. This option is enabled by default for platforms that contain flash support. Suboptions allow specific configuration of the flash memory, such as the minimum image size and the offset where the flash image system begins.

Option Name

Allow RedBoot to Support Disks

CDL Name

CYGPKG_REDBOOT_DISK

Description

Enables RedBoot commands for loading disk files. This option is enabled by default for platforms with disk support. Suboptions allow specific configuration of the disk details such as number of supported disks.

Option Name

Boot Scripting

CDL Name

CYGPKG_REDBOOT_BOOT_SCRIPT

Description

Component that contains the boot scripting configuration options. The options set the script timeout value and default boot script. The default is enabled.

Option Name

Behave Like a ROM Monitor

CDL Name

CYGPRI_REDBOOT_ROM_MONITOR

Description

Allows RedBoot to provide ROM monitor services to applications that are loaded. This option is always enabled when building a ROM startup type image.

Option Name

Allow RedBoot to Handle GNUPro Application ‘syscalls’

CDL Name

CYGSEM_REDBOOT_BSP_SYSCALLS

Description

RedBoot installs a syscall handler to support application debugging based on GNUPro newlib/bsp when this option is enabled. The default for this option is disabled.

The RedBoot image contains its own implementation of the HAL for the specific hardware platform selected. The HAL package is the same that is used in your application. The difference is how the HAL configuration options are set. The standard RedBoot configuration enables the RedBoot HAL option Behave as a ROM Monitor. Enabling this configuration option includes setting the Startup Type to ROM, which directs the HAL to perform all initialization necessary to bring up the hardware from a powered-off state. Using RedBoot in this standard configuration allows applications to be loaded into RAM for debugging on a hardware platform that is properly initialized.

Included in the HAL configuration is the setup of the virtual vectors. The standard configuration allows RedBoot to initialize the entire VVT and claim all of the virtual vectors in the table. The default configuration options for the VVT, which can be overridden, are that the ROM monitor provides the debugging and diagnostic I/O services and RAM applications rely on these services. Refer to Chapter 4, Virtual Vectors, for detailed information on virtual vectors and the VVT.

Because the VVT resides at a fixed area of memory, known by both the ROM monitor and the RAM application, the application can take over any services in the VVT at run time, leaving other services to be provided by RedBoot. RedBoot is capable of providing debugging and diagnostic services via the serial or Ethernet port. The ports used for debugging and diagnostic messages depend on the resources available on the particular platform and your debug configuration. For example, if your platform contains a serial port and an Ethernet port, you can use one port for RedBoot debugging, and the other can be used by your application. With the proper virtual vector setup and configuration option settings, RedBoot is also able to share the ports it uses for debugging and diagnostics with the eCos application.

	N O T E
To avoid terminating a RedBoot communication channel that is using the networking stack, you must ensure proper configuration of two options within the eCos application image.

The first configuration option, Inherit Console Settings From ROM Monitor (CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE), must be enabled. The second configuration option, Claim Comms Virtual Vectors (CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_COMMS), must be disabled. These configuration options are located under the ROM Monitor Support component within the common configuration components of the eCos HAL.

One issue to keep in mind when configuring your debug environment settings is that using a serial port for debug communications can often be slow when you are loading large application images.

Typically, it is better if the port resources can be dedicated for either RedBoot usage or application usage. The HAL configuration options allow you to set up the debug and diagnostic I/O communications to meet your specific needs. The following two configuration options are used to configure the method of communication for the application. The first configuration option, Route Diagnostic Output to Debug Channel (CYGDBG_HAL_DIAG_TO_DEBUG_CHAN), under the Platform-Independent HAL Options component within the common configuration components allows the use of RedBoot’s debug channel for diagnostic messages from the application. RedBoot provides mangling support, using GDB, which then outputs the message to the host. Mangling in this scenario means that RedBoot converts diagnostic messages from the application into a properly formed GDB remote protocol packet.

The second configuration option is Inherit Console Settings From ROM Monitor (CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE) under ROM Monitor Support within the common configuration components. This option allows the application to use the currently configured RedBoot console setup for output from the application. RedBoot again handles the mangling needed for proper communication.

Two platform-specific configuration options allow specific designation of the port number used for debug and diagnostic communications. If only one port exists on the platform, these options should be configured to use that port. The first is Debug Serial Port (CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL), which determines the port used to connect to the GDB host.

The other configuration option is Diagnostic Serial Port (CYGNUM_HAL_VIRTUAL_ VECTOR_CONSOLE_CHANNEL), which determines the port used for output of diagnostic messages; for example, using the diag_printf function. Chapter 4 details these configuration options and the steps involved for a typical debug environment configuration using the RedBoot ROM monitor with a separate application RAM image.

	N O T E
If the RedBoot image is built with the configuration option Allow RedBoot To Use Any I/O Channel For Its Console (CYGPKG_REDBOOT_ANY_CONSOLE) enabled, which is the default value, the debug and diagnostic serial port configuration settings are ignored and RedBoot latches on to the first port that it receives input.

9.3.2
Host Configuration

Currently, there are two methods for connecting a host to a target running RedBoot, serial or Ethernet. With either method used, RedBoot uses the connection for both GDB and RedBoot command communications, although RedBoot can be configured to use separate communication channels for debugging and commands. RedBoot provides commands, which are detailed in the User Interface and Command Set section of this chapter, for configuring the different parameters associated with both communication methods. After setting these parameters, they are used on subsequent boots of the target hardware.

One important point to understand about the RedBoot driver implementations, for both serial and Ethernet, is that polling (not interrupts) is used for I/O communication. The configuration option Command Processing Idle Timeout (ms) (CYGNUM_REDBOOT_CLI_IDLE_TIMEOUT) sets the RedBoot command processing interval. After this timeout expires, RedBoot assumes the command console is idle and performs various background tasks. The default value for this option is 10 milliseconds. If traffic increases, there might be a point at which the RedBoot driver cannot keep up and packets are dropped. In that case, it might be necessary to adjust the timeout configuration option or re-check the traffic that RedBoot needs to process on the communication channel.

9.3.2.1
Serial

Using the serial connection requires a host-side terminal program. The default parameters that RedBoot uses for a serial connection are specific to the target hardware platform. On some target hardware platforms, the RedBoot baud rate setting can be changed using the baudrate command, which is detailed in the User Interface and Command Set section of this chapter.

Most hardware target platforms should contain at least one serial port for RedBoot communications. Some platforms contain multiple serial ports. The serial port RedBoot uses for serial communication is described in the RedBoot Configuration section of this chapter. By default, RedBoot attempts to communicate with the host via the serial port, set by the configuration options, on power up. Once a command is received by RedBoot on one of the serial ports, that port is used for communications. There is a channel command available, which is detailed in the User Interface and Command Set section of this chapter, that allows the port RedBoot uses for console communication to be changed.

9.3.2.2
Ethernet

The other method for RedBoot communication is using an Ethernet port. In order to use an Ethernet port, the RedBoot image must include networking support and, obviously, the target hardware must have an Ethernet port.

One issue that must be resolved is the method for RedBoot to obtain the Ethernet MAC address. RedBoot attempts to use the MAC address provided by the board manufacturer. However, the MAC address is not provided on all target hardware platforms. On some hardware platforms, the Ethernet driver allows RedBoot to program a MAC address into the flash configuration, using the fconfig command. A default MAC address can also be built into the RedBoot image.

Another issue when using the Ethernet port for RedBoot communication is obtaining an IP address. RedBoot offers two methods for obtaining an IP address for network communication, static and dynamic. Selection of the method is controlled by the fconfig command, which is described in detail in the User Interface and Command Set section of this chapter.

When using the static method, you must set a unique IP address for the RedBoot image. Several IP address ranges are good to use because they are private addresses. By using private addresses, you can create a private network for your debugging configuration, and packets that leave this private network are not forwarded. According to RFC 1918, the reserved private addresses are:

•
10.0.0.0 to 10.255.255.255

•
172.16.0.0 to 172.31.255.255

•
192.168.0.0 to 192.168.255.255

It is important to realize that RedBoot does not offer any routing support; therefore, the IP address selected for the target hardware running RedBoot and the host must be on the same subnet. RedBoot uses ARP to resolve the host address and then sends packets directly to the host unit.

When using the dynamic method, the BOOTP protocol is enabled in the RedBoot image. Again, selecting the dynamic method is accomplished through the fconfig command. The dynamic method also requires a BOOTP server running on the host in order to provide an IP address to the target hardware. There are several free or shareware BOOTP servers available on the Web, including the BOOTP Turbo Server from Weird Solutions and a DHCP/BOOTP Server from Dr. Herbert Hanewinkel.

	N O T E
When using the Ethernet port for RedBoot communication and in your application, it is important to set up the IP addresses properly. The system distinguishes the destination of a packet using the IP address. If the IP address for RedBoot and the application are the same, RedBoot will receive all incoming Ethernet packets, not passing them on to the application for processing. To avoid this situation, it is best to use a static IP address in one image and a separate static or dynamic image in the other image.

N O T E
If you are using RedBoot for debugging purposes and it will not be shipped in the final product, you can assign a static IP address for RedBoot to use and allow the application to obtain its IP address via BOOTP or DHCP. This allows you to test the BOOTP/DHCP protocol in the application.

Once the IP address has been successfully set on the target hardware, you can use the ping utility to verify communication between the target and the host. Most host operating systems should offer this utility. RedBoot also contains a ping command, which is described in the User Interface and Command Set section of this chapter.

After the IP address is assigned to the target hardware Ethernet port, you can connect to RedBoot from the host using a Telnet client application. Most host operating systems provide a Telnet application utility and if not, again, a search on the Web should bring up a few options. Next, the port number that is used for Telnet protocol communications must be set on the host application and in RedBoot. By default, RedBoot uses port 9000. The default port can be changed using the fconfig command. Once the host connects to RedBoot using Telnet, all RedBoot communications take place over the Ethernet port.

	N O T E
If your application contains complex networking software, it is better to use a serial port for RedBoot communication and allow the application to use the Ethernet port exclusively. Although RedBoot and the application can share an Ethernet device, there are times when debugging is simplified if a separate communications channel is used. If the application image is large and you have concerns over the download time via a serial port, one solution is to download the application over the Ethernet port and then switch to the serial port for the debugging.

9.4
User Interface and Command Set

RedBoot provides a CLI. The port, serial or Ethernet, which the CLI is available on is determined by configuring RedBoot; refer to the Host Configuration section of this chapter. Once the initialization message is output by RedBoot, commands can be entered to control the target. An example of the RedBoot initialization message for the Intel x86 processor is shown in Code Listing 9.1.

1

Ethernet eth0: MAC address 00:d0:b7:92:9d:d2

2

IP: 192.168.0.10, Default server: 192.168.0.1, DNS server IP: 0.0.0.0

3

4

RedBoot(tm) bootstrap and debug environment [FLOPPY]

5

Non-certified release, version UNKNOWN - built 17:55:00, Apr 21 2002

6

7

Platform: PC (I386)

8

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

9

10

RAM: 0x00000000-0x000a0000, 0x00088870-0x000a0000 available

11

RedBoot>

Code Listing 9.1
Example RedBoot initialization message.

In Code Listing 9.1, line 1 shows the Ethernet port (eth0) MAC address, which RedBoot retrieved from the Ethernet card. Line 2 displays the IP addresses for the target platform (192.168.0.10, which was statically configured in this case), the default server (192.168.0.1), and the DNS server, which has no IP address configured.

On line 4 we see the RedBoot title message along with the Startup Type configuration option selection; in this case, FLOPPY. The build information is output on line 5. In this case, the image was created from a snapshot of the RedBoot source code; therefore, it is not a certified release and there is no version number. The build time and date are also displayed, which occurred on April 21, 2002 at 5:55 p.m.

Line 7 displays the platform information showing this RedBoot image is for the i386 processor running on a PC platform. Line 8 gives the copyright information.

The RAM resource information is displayed on line 10. The addresses 0x0000_0000 to 0x000A_0000 show the memory used by RedBoot; in this case, 640 kbytes. Also shown, 0x0008_8870 to 0x000A_0000, is the amount of memory available for loading programs or other development needs.

	N O T E
The i386 PC platform also has memory above 0x0010_0000 (1 Mbyte) and upward available for loading programs. RedBoot does not display this in the initialization message for the i386 PC platform. However, eCos RAM applications are loaded above the 0x0010_0000 address by default.

Finally, line 11 shows the RedBoot prompt, which indicates that RedBoot is ready to receive commands.

9.4.1
RedBoot Commands

The basic form of a RedBoot command takes the form:

RedBoot> COMMAND [-OPTION1] [-OPTION2 VALUE] OPERAND

where COMMAND is one of the supported RedBoot commands. The two optional switches, OPTION1 and OPTION2, modify the behavior of a standard command. The OPERAND specifies additional information needed for particular commands.

Commands are not case sensitive and can be abbreviated to their shortest unique string. For example, to execute the dump command on a default (default means no other commands beginning with d have been added) RedBoot image, d, du, dum, or dump can be entered.

There are a few basic editing commands used in RedBoot:

•
Delete (0x7F) and Backspace (0x08) erase the previous character.

•
Period (.) (0x2E) halts the editing of a command, leaving the current item unchanged.

•
Caret (^) (0x5E) is used as an up arrow for commands, such as fconfig, which go through a list of parameters to set.

•
Dollar sign ($) (0x24) switches RedBoot into GDB stub mode. The GDB stub takes control and waits for a connection from a GDB host. To get out of GDB stub mode, a disconnect message is sent from the GDB host or by a reset of the target.

•
Return (0x0D) leaves the value for a particular parameter unchanged.

RedBoot generates basic error messages when commands are entered incorrectly or invalid commands are used. In the following example, the dump command is entered; however, the –b switch was omitted by mistake causing RedBoot to generate the error message we see on the following line. The message informs us that we have forgotten the switch for our parameter value 0x12. RedBoot then outputs a new prompt following the error message for the next command.

RedBoot> dump 0x12

** Error: no default/non-flag arguments supported

RedBoot>

RedBoot commands are designed to be simple to use and remember. Although, the command set only offers basic commands, the source is available so you can add commands specifically needed for your platform. If you add general-purpose commands that you think are extremely useful, the eCos open-source community would be glad to accept a contribution.

Numbers entered with commands can be entered in decimal or hexadecimal (designated by the 0x prefix). Item Lists 9.2 and 9.3 list the commands available in the default RedBoot image. Optional parameters or switches in the syntax for commands are enclosed in brackets ([]), and value parameters are enclosed in angled brackets (<>). Commands entered without parameters cause a help message about the command to be output or the current setting for the command.

All RedBoot commands listed in Item List 9.2 might not be available on all platforms because not all platforms support certain resources. For example, a platform that does not contain flash memory does not support the Flash Image System (FIS) command set. Item List 9.3 lists the FIS command set.

Item List 9.2
RedBoot ROM Monitor Command Set

Syntax:

alias name [value]

Options:

name—String name for alias.

value—Expression for alias.

Description:

Allows a simple command-line alias to be used for longer expressions. When the pattern %{name} appears in a command line, it is replaced with the value previously set. Aliases can also be used in scripts. These aliases are kept in flash memory. The following shows an example using the alias command. On line 1 the alias SBUF is used for the string –b 0x100000. Therefore, any place %{SBUF} is used, it is replaced by –b 0x100000. Line 2 ensures that you want to update the nonvolatile memory with the alias command. Lines 3 through 6 show the output from RedBoot performing the update.

1
RedBoot> alias SBUF "-b 0x100000"

2
Update RedBoot non-volatile configuration - are you sure (y/n)? y

3
... Unlock from 0x50f80000-0x50fc0000: .

4
... Erase from 0x50f80000-0x50fc0000: .

5
... Program from 0x0000b9e8-0x0000c9e8 at 0x50f80000: .

6
... Lock from 0x50f80000-0x50fc0000: .

In this code example we see how the alias SBUF, defined earlier, is used. Line 1 shows the alias being used with the dump, d for short, command.

1
RedBoot> d %{SBUF}

2
0x00100000: FE03 00EA 0000 0000 0000 0000 0000 0000 |................|

3
0x00100010: 0000 0000 0000 0000 0000 0000 0000 0000 |................|

Syntax:

baudrate [-b <rate>]

Options:

-b rate—Baud rate to set for serial port. If this option is not specified, the current baud rate setting is displayed.

Description:

Query or set the baud rate for the serial port currently in use. If the platform stores configuration information in nonvolatile memory, the baud rate is saved and used the next time the board is reset.

Syntax:

cache [ON | OFF]

Options:

ON | OFF—State to set the instruction and data caches. If this option is not specified, the current data and instruction cache settings are displayed.

Description:

Query or set the state of the data and instruction caches.

Syntax:

channel [channel_number]

Options:

channel_number—Number of the I/O channel. Setting this parameter to –1 causes RedBoot to listen on all channels for console communication, if the CYGPKG_REDBOOT_ANY_CONSOLE configuration option is enabled, which is the default.

Description:

Query or set the I/O channel for RedBoot to use for console communication. This command is only available for platforms with multiple I/O channels for use by RedBoot.

Syntax:

cksum -b <location> -l <length>

Options:

-b location—Memory address, in RAM or ROM, to begin checksum computation.

-l length—Number of bytes to perform checksum calculation over.

Description:

Computes the POSIX checksum on a range of memory.

Syntax:

disks

Options:

None

Description:

Display disk and partition information. This command is not supported by all platforms.

Syntax:

dump -b <location> [-l <length>] [-s] [-1 | -2 | -4]

Options:

-b location—Address to begin memory dump.

-l length—Amount of data, in bytes, to dump.

-s—Dumps data in Motorola S-record format.

-1 | -2 | -4—Specifies the size of the data access. Entering –1 accesses 1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description:

Display a range of memory in hexadecimal format. The following shows example output from a dump command. Line 1 uses du, short for the dump command, with a starting address of 0x100 and a length of 32 bytes. The output is shown on lines 2 and 3.

1
RedBoot> du -b 0x100 -l 0x20

2
0x00000100: 3C60 0004 6044 4D4D 7C20 03A6 8080 0020 |<‘..‘DMM| |

3
0x00000110: 0000 0000 0000 0000 0000 0000 004B 464D |.............KFM|

The memory is displayed in rows of 16 bytes followed by the ASCII interpretation of the data. Care should be taken if this command is used to dump memory mapped hardware registers.

Syntax:

fconfig [-i] [-l] [-d] [-n] [-f] | nickname [value]

Options:

-i—Reset flash configuration settings to their default state.

-l—Display and edit flash configuration.

-d—Allows a simpler interface for the command when backspace is not allowed.

-n—Use nicknames for parameter entries.

-f—Use full names for parameter entries.

nickname value—Allows setting of a particular parameter entry by using the nickname and appropriate value. If value is not included, then the nickname parameter entry is displayed and a prompt for that entry is shown.

Description:

Configure network and startup information stored in flash memory. This command is only supported on platforms that allow flash-based configuration information. As mentioned previously, the editing commands can be used with this command. Typing return leaves the value unchanged, period can be used to halt editing of parameters, and caret can be used as an up arrow to go back to editing a previous parameter. After entering the flash configuration settings, a prompt is displayed asking whether to write the new configuration into flash memory.

The following shows output from the fconfig command. Line 1 shows the command with the option to list the current configuration. Lines 2 through 7 show the output for the current configuration on this particular platform.

1
RedBoot> fconfig –l

2
Run script at boot: false

3
Use BOOTP for network configuration: false

4
Local IP address: 192.168.1.29

5
Default server IP address: 192.168.1.101

6
GDB connection port: 9000

7
Network debug at boot time: false

This information is only used at reset; therefore, in order for changes to take effect, the platform must be restarted. A scripting example is shown in the Boot Scripting section of this chapter.

Syntax:

fis [command]

Options:

command—The different FIS commands are detailed in Item List 9.3.

Description:

Flash Image System (FIS) allows RedBoot to use flash memory for executable and data image storage. FIS commands are available on platforms that support flash memory. There is a subset of commands associated with the FIS that are covered in Item List 9.3.

Syntax:

go [-w <timeout>] [entry]

Options:

-w timeout—Amount of time, in seconds, to wait before beginning program execution. Allows aborting of program execution by typing CTRL-C on the console. If this option is not specified, program execution begins immediately.

entry—Location in memory to begin program execution. If this parameter is not specified, the entry point of the last loaded image is used.

Description:

Execute a program.

Syntax:

help [<topic>]

Options:

topic—Command to display help information about.

Description:

Display information about the RedBoot command set.

Syntax:

ip_address [-l local_IP_addr] [-h server_IP_addr]
[-d dns_server_IP_addr]

Options:

-l local_IP_addr—The IP address for RedBoot.

-h server_IP_addr—The IP address of the default server. This address is used by other commands, such as load.

-d dns_server_IP_addr—The IP address of the DNS server.

Description:

Query or set the RedBoot, server, and DNS server IP address.

Syntax:

load [-r] [-v] [-d] [-h <host>]
[-m [[TFTP]|[HTTP]|[xyMODEM]|[disk]] –c <channel_number>]
[-b <base_address>] <file_name>

Options:

-r—Download raw data into memory. Using this option also requires the –b option to be specified.

-v—Display an indicator while the download is in progress. This is useful for feedback during long downloads.

	N O T E
The –v option should not be used when downloading over the network as it can slow the loading process.

-d—Decompress gzipped image during download.

-h host—Used in TFTP and HTTP modes only to specify the host computer for the download. The host parameter can be specified as an IP address or a hostname if DNS is enabled.

-m TFTP|HTTP|xyMODEM|disk –c channel_number—Specifies the download method to use. The choices are TFTP or HTTP for network-based downloads, xMODEM or yMODEM for serial-based downloads, and disk for downloads from hard disk or CD-ROM (which is not supported on all platforms). The –c option allows specification of the channel used for the download. This option is not available on all platforms, since some platforms only contain one I/O channel for RedBoot console communication.

-b base_address—Address location in memory to load the file. Typically, executable images are loaded into the memory location to which the file was linked; however, this option allows the overriding of the image’s linked location.

file_name—Filename to download. This parameter is not required for the serial-based xyMODEM downloads.

Description:

Download data to the target system. Data can be loaded over the serial port using the X or Y modem protocols, over the network port using the TFTP protocol, over the network using the HTTP protocol, or from a storage disk (the disk method is not supported by all platforms). There are several free TFTP servers available on the Web, and most terminal programs, included with the host operating system, support the different modem protocols.

Syntax:

mcmp –s mem_addr1 –d mem_addr2 –l length [-1 | -2 | -4]

Options:

-s mem_addr1—Memory start address of first location for data comparison.

-d mem_addr2—Memory start address of second location for data comparison.

-l length—Length of data.

-1 | -2 | -4—Specifies the size of data access for comparison. Entering –1 accesses 1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description:

Compare the contents of two memory address ranges. If the buffers do not match, only the first nonmatching element is displayed.

Syntax:

mfill –b addr –l length –p value [-1 | -2 | -4]

Options:

-b addr—Memory start address for data fill.

-l length—Length of data.

-p value—Value to fill into memory.

-1 | -2 | -4—Specifies the size of data access for comparison. Entering –1 accesses 1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description:

Fill a memory range with the specified data.

Syntax:

ping [-v] [-n <count>] [-l <length>] [-t <timeout>]
[-r <rate>] [-i <IP_address>] –h <IP_address>

Options:

-v—Verbose setting that allows the display of information about each packet sent.

-n count—Number of packets to send. If this option is not specified, 10 packets are sent by default.

-l length—Size of payload for ping packet. The default size of a ping packet when this option is not specified is 64 bytes. The maximum value for this option is 1400.

-t timeout—Length of time in milliseconds (ms) to wait for the host to return a sent packet. The default timeout is 1000 ms if this option is not specified.

-r rate—Time in milliseconds (ms) between sending ping packets. The default is 1000 ms. If 0 is specified for the rate, packets will be sent without delay.

-i IP_address—Allows overriding of IP address in outgoing ping packets.

-h IP_address—Specifies the IP address, or a hostname can be used if DNS is enabled, of the host to send the ping packets.

Description:

Checks the connectivity of the local network by sending ICMP ping packets to the specified host. The host returns the ping packets, if received, and data for each packet sent and received is displayed.

Syntax:

reset

Options:

None

Description:

Reset the target system. This is equivalent to a power-on reset. Not all platforms support this command.

Syntax:

version

Options:

None

Description:

Display the RedBoot version information. The output from the version command is shown in the following listing.

1
RedBoot> version

2
RedBoot(tm) bootstrap and debug environment [FLOPPY]

3
Non-certified release, version UNKNOWN - built 17:34:58, Jun 10 2002

4
Platform: PC (I386)

5
Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

6
RAM: 0x00000000-0x000a0000, 0x00088870-0x000a0000 available

In the preceding listing, line 1 shows the command entry. Line 2 displays the RedBoot title message and Startup Type for which the image was built. The build information is displayed on line 3. Line 4 displays the platform information. Copyright information is output on line 5. Finally, line 6 shows the total RAM resources and what is available for use. This message is similar to the initialization message shown in Code Listing 9.1.

Syntax:

x -b <location> [-l <length>] [-s] [-1 | -2 | -4]

Options:

-b location—Address to begin memory dump.

-l length—Amount of data, in bytes, to dump.

-s—Dumps data in Motorola S-record format.

-1 | -2 | -4—Specifies the size of the data access. Entering –1 accesses 1 byte (8 bits) at a time where only the least significant 8 bits of the pattern are used. Entering –2 accesses 2 bytes (16 bits) at a time where only the least significant 16 bits of the pattern are used. Entering –4 accesses 4 bytes (32 bits) at a time.

Description:

Alias for dump command.

	N O T E
A Little Trick...

The GDB stub in the RedBoot image can be used to load an image into RAM as well. This causes you to lose control of the RedBoot prompt. However, entering the command ++$k#6b directly at the serial port causes RedBoot to restart, retaining the image loaded into RAM.

RedBoot can use flash memory for data and executable image storage. Item List 9.3 details the FIS command set.

Item List 9.3
Flash Image System Commands

Syntax:

fis create -b <mem_base> -l <length> [-f <flash_addr>]
[-e <entry_point>] [-r <ram_addr>] [-s <data_length>]
[-n] <name>

Options:

-b mem_base—Location in RAM of data to be stored in flash memory.

-l length—Length of the data in RAM.

-f flash_addr—Location in flash memory for the image. The flash address can be included as part of the linked executable image. If this option is not specified, the first free block in flash memory is used.

-e entry_point—Execution entry address.

-r ram_addr—Location in RAM when the image is loaded using the fis load command. This option only needs to be specified if the image will be loaded with the fis load command.

-s data_length—Length in bytes of the actual data to be written to flash memory. If this option is not specified, the image length of the –l option is used. If data_length is less than the length for the –l option, the remainder of the image in flash memory is left blank.

-n—Updates FIS directory without copying image data from RAM to flash memory. This option can be used to recreate the FIS entry if it has been destroyed.

name—Name of the image to create.

Description:

Create an image in the FIS directory, which causes data currently in RAM to be stored in flash memory. Data for the image must be present in RAM memory prior to calling this command.

Syntax:

fis delete name

Options:

name—Name of the image to delete.

Description:

Remove the image, specified by the name parameter, from the FIS, which causes the image to be erased from flash memory and removed from the FIS directory.

Syntax:

fis erase –f <flash_addr> -l <length>

Options:

-f flash_addr—Start flash memory address to erase.

-l length—Length in bytes to erase.

Description:

Force an erase of a portion of flash memory. No checking is done to ensure whether the area specified corresponds to a loaded image.

Syntax:

fis free

Options:

None

Description:

Display areas of flash memory that are currently not in use, meaning that the block contains non-erased contents. This command can be to check if a particular location is in use prior to loading an image.

Syntax:

fis init [-f]

Options:

-f—Erase or format all blocks of flash memory.

Description:

Initialize the FIS. This command should only be executed once during the first installation of RedBoot on the target hardware. Executing this command more than once causes the loss of data in flash memory.

Syntax:

fis load [-b <memory_load_addr>] [-c] [-d] name

Options:

-b memory_load_addr—Location in RAM to copy the image from flash memory. If this option is not specified, the image is copied from flash memory to the address given when the image was created. Executable images normally load at their linked location.

-c—Compute and display the checksum of the image data after loading is complete.

-d—Decompress gzipped image while copying the image to RAM.

name—Name of the image.

Description:

Transfer an image from RAM into flash memory.

Syntax:

fis list [-c] [-d]

Options:

-c—Display image checksum instead of the memory address field.

-d—Display image data length instead of amount of flash used.

Description:

Display images currently stored in the FIS.

Syntax:

fis lock –f <flash_addr> -l <length>

Options:

-f flash_addr—Start flash memory address to lock.

-l length—Length in bytes to lock.

Description:

Write-protect a portion of flash memory, preventing overwriting of stored images. This command is only available on platforms that support write-protection of flash memory.

Syntax:

fis unlock –f <flash_addr> -l <length>

Options:

-f flash_addr—Start flash memory address to unlock.

-l length—Length in bytes to unlock.

Description:

Unlock a portion of flash memory, allowing updating of that portion’s contents. This command must be used for portions of flash memory previously locked before the FIS can use those areas of memory.

Syntax:

fis write -b <location> -l <length> -f <flash_addr>

Options:

-b location—Start RAM address to begin reading data.

-l length—Length of bytes to write.

-f flash_addr—Start flash memory address to write data.

Description:

Write data from RAM to flash memory.

As mentioned previously, the RedBoot command set offers basic functionality for debugging and control over target hardware. The RedBoot source code is available if you need to extend the command set or functionality offered by the current commands. After adding the necessary features to RedBoot, a new image needs to be created. The steps involved in creating a RedBoot image are covered in Chapter 11. Next, the current RedBoot image on your target hardware needs to be updated. Updating the RedBoot image is covered in Chapter 12.

9.4.1.1
Boot Scripting

RedBoot supports running scripts during the target hardware boot cycle. Boot scripting allows you to run commands you always want executed after power up. For example, if you are constantly going to load an image into memory for execution and debug, you can avoid entering commands manually by setting up a boot script. A timeout is included in the boot script setup to allow you to abort running the boot script during a particular power up cycle by simply pressing Ctrl+C. This boot script is set up and run on the Motorola PowerPC MBX860 board.

Boot scripts are set up using the fconfig command. Entering true (or t) when fconfig prompts for Run script at boot puts RedBoot in a mode allowing you to begin inputting your boot script commands. The setup for a simple boot script is shown in Code Listing 9.2.

1

RedBoot> fconfig

2

Run script at boot: false t

3

Boot script:

4

Enter script, terminate with empty line

5

>> fi li

6

>>

7

Boot script timeout: 0 10

8

Use BOOTP for network configuration: false .

9

Update RedBoot non-volatile configuration - are you sure (y/n)? y

10

... Erase from 0xfe060000-0xfe070000: .

11

... Program from 0x0000f810-0x0000fc10 at 0xfe060000: .

12

RedBoot>

Code Listing 9.2
RedBoot script setup example.

The bold characters in Code Listing 9.2 are values entered from the keyboard. Line 1 shows the command entry. Line 2 shows selecting t to enter boot script mode; the false shown on this line is the current value. The actual command to run during the boot script execution is shown on line 5. This is the fis list command, or fi li for short. Line 6 contains an empty line input to terminate the boot script. Line 7 shows that a timeout of 10 seconds is entered; the default is 0. On line 8, a period (.) is entered to terminate any more entries for the fconfig command. Lines 9 through 11 show the update of the configuration information in nonvolatile memory.

1

FLASH: 0xfe000000-0xfe080000,8 blocks of 0x00010000 bytes each.

2

IP: 192.168.0.100, Default server: 192.168.0.3, DNS server IP: 0.0.0.0

3

4

RedBoot(tm) bootstrap and debug environment [ROM]

5

Non-certified release, version UNKNOWN - built 04:02:12, Jul 06 2002

6

7

Platform: Motorola MBX (PowerPC 860)

8

Copyright (C) 2000, 2001, 2002 Red Hat, Inc.

9

10

RAM:0x00000000-0x00400000, 0x00022420-0x003e0000 available

11

== Executing boot script in 10 seconds - enter ^C to abort

12

RedBoot> fi li

13

Name FLASH addr Mem addr Length Entry point

14

RedBoot 0xFE000000 0xFE000000 0x00020000 0x00000000

15

RedBoot[backup] 0xFE020000 0xFE020000 0x00020000 0x00000000

16

RedBoot config 0xFE060000 0xFE060000 0x00010000 0x00000000

17

FIS directory 0xFE070000 0xFE070000 0x00010000 0x00000000

18

RedBoot>

Code Listing 9.3
RedBoot script example output.

Code Listing 9.3 shows the output from the simple boot script we set up in Code Listing 9.2. The power to the board was cycled in order to get RedBoot to restart. The RedBoot initialization message is shown on lines 1 through 10.

Line 11 is the message showing that the boot script is going to execute. At this point, Ctrl+C can be entered to abort running the boot script. On line 12 we see the fi li boot script that we set up in Code Listing 9.2 execute. We can see the output from the fis list command on lines 13 through 17. Finally, the script ends and RedBoot is ready for additional commands, as shown on line 18.

9.5
Summary

In this chapter, we covered the RedBoot ROM monitor. Using RedBoot, we are able to load and debug applications. We looked at the various configuration options for RedBoot, as well as the different communication mechanisms available. Finally, we went into details about using RedBoot by exploring the user interface and command set available.

