Chapter 12

An Example Application Using eCos

In this chapter, we get down to using eCos and the development tools. The examples here detail one method for setting up a debug environment using RedBoot, building an eCos library, and then building an application that incorporates eCos. There are several different approaches to use to achieve a similar development and debug environment using different configuration options. These examples provide a straightforward method to achieving our goal: getting eCos up and running.

We begin by building the RedBoot ROM monitor, which allows us to debug our application using GDB on our host development system. Next, we build an eCos library image for us to use with our application. Then, we build a simple application, which includes the eCos library image, to understand the process. Each of the examples in this chapter builds on the previous steps. After becoming familiar with the process, you will be able to tailor the build and debug procedure to meet your own needs and development style.

12.1
The eCos Build Process

The main goal of the eCos build process is the generation of an eCos library. This library is called libtarget.a. Other target files are also generated, such as a linker script file and, in some cases, additional libraries may be generated.

The RedBoot build process is slightly different from that for eCos because a binary file is generated at the end of a RedBoot build, which is then installed on the target hardware.

The eCos library build process uses makefiles and the GNU make utility to assist in generating the eCos library. The eCos build process involves three separate trees: source, build, and install. The source tree is the source code repository, which is located under the packages directory.

The build tree is generated by the configuration tools and contains intermediate files, such as makefiles and object files. The structure of the build tree might differ between system builds. Typically, each package in the configuration has its own directory in the build tree, which is used to store that package’s makefiles and object files.

The install tree is the location of the eCos main library file and the exported header files, which are used when the application is built. The library files are located under the lib subdirectory, and the header files are contained under the include subdirectory. By default, the build and install trees are contained in the same working directory.

12.1.1
A Closer Look

Let’s take a closer look at the eCos build process using our example eCos configuration that we cover later in this chapter. In this example, we are building an eCos library for use on the i386 PC hardware platform.

The build process starts with a configuration. We are able to construct a configuration according to our requirements using the Configuration Tool, which allows us to incorporate certain packages and set configuration option values. After we have included the packages we need and set the configuration options accordingly, we save our configuration file in the file ecos.ecc. This generates the build and install tree in our working directory. A detailed look at the build and install tree is shown in Figure 12.6 later in this chapter.

By saving our configuration, the Configuration Tool generates the files needed for our build process. This includes makefiles, located in the build tree, and header files, located in the install tree.

For now let’s focus on the i386 HAL package and how the configuration option settings are used to generate files for the build process. Figure 12.1 shows a portion of the Configuration Tool configuration window, along with the generated build files that match the configuration option settings.

	Figure 12.1
Configuration Tool file generation diagram.

As we see in the upper-left corner of Figure 12.1, the i386 Architecture package (CYGPKG_HAL_I386) is displayed from the Configuration Tool. The Enable I386 FPU Support (CYGHWR_HAL_I386_FPU) configuration option is enabled, while the other two configuration options are disabled. The following descriptions correspond to the numbers in Figure 12.1. The ellipsis (...) in the code excerpts denote places that the code was cut out to allow us to focus on specific areas of the source files.

1.
First, we see the i386 Architecture package represented in the CDL script file hal_i386.cdl, which is part of the source tree. Since this package is loaded into the configuration, the Configuration Tool uses the i386 Architecture package CDL script file to generate the necessary build files.

The cdl_package command for the CYGPKG_HAL_I386, shown on line 1, contains the files that need to be compiled on line 3, designated by the compile property. The compile property is used by the Configuration Tool at build time to determine which files need to be compiled in order to include the features of the i386 Architecture package. On lines 5 through 9 are the make properties, which are used by the Configuration Tool to generate the appropriate makefile used to compile the i386 Architecture package.

2.
Next, we see a portion of the makefile generated by the Configuration Tool, which occurs when we save our configuration. This makefile is part of the build tree and is located in our working directory under ecos_build\ hal\i386\arch\current. Details about the build and install tree are covered later in this chapter. In Figure 12.1, we see the translation from the CDL script file make property to the generation of the makefile on lines 2 through 4.

3.
Now we see that the Enable I386 FPU Support (CYGHWR_HAL_I386_FPU) configuration option is enabled in the Configuration Tool. When the configuration is saved in the ecos.ecc configuration file, the CDL script is generated as we see on lines 2 through 6.

4.
Finally, the Configuration Tool generates a header file hal_i386.h that includes the CYGHWR_HAL_I386_FPU configuration option. This header file is located in the install tree portion of our working directory under the ecos_install\ include\pkgconf directory. Since this option is enabled, the Configuration Tool defines the configuration option CYGHWR_HAL_I386_FPU as 1, which we see on line 2 of this file excerpt.

The preceding example shows the simple generation by the Configuration Tool of two files for the configuration setup. After all files are generated and the appropriate header files are included in the install tree, the build process can continue.

Next, the relevant source files, based on the packages included in the configuration, are compiled. The Configuration Tool determines which files need to be compiled from the CDL script file, as shown in Figure 12.1 in the hal_i386.cdl file. The compile property alerts the Configuration Tool of the necessary files for including the specified package’s functionality into the build.

Global compiler flags (CYGBLD_GLOBAL_FLAGS) are used during the compilation stage of the build process. Some packages have their own specific build options as well. In addition, in some cases, packages allow certain global compiler flags to be suppressed. The compiler flags can be set just as the other configuration options.

During the build process, the object files are output into the build tree. The build tree is structured according to packages, similar to the source tree. Then, the Configuration Tool links the files together. Global linker flags (CYGBLD_GLOBAL_LDFLAGS) can be set, just as the compiler flags.

The compiler flags and linker flags can also be displayed in a dialog box in the Configuration Tool. An example of this dialog box is shown in Figure 12.2.

	Figure 12.2
Configuration Tool build options dialog box.

The dialog box in Figure 12.2 is displayed by selecting Build –> Options. The compiler (CFLAGS) or linker flags (LDFLAGS) are selected using the drop-down list in the upper-left corner of the dialog box. The left pane displays the packages in the configuration. The right pane shows the flags for the specific package selection. Different flags can be displayed by selecting different packages in the left pane. In Figure 12.2, the global compiler flags are displayed since the entire configuration is selected in the Packages pane.

As the final step in the build process, for an eCos image, the Configuration Tool invokes the archive utility to create a library file. This library file is output into the install tree under the ecos_install\lib directory. In the case of building a RedBoot image, the final product is a binary file, which is output in the install tree under the ecos_install\bin directory.

Additional details about each step in the eCos build process, as well as information on how to customize the build process, are provided in the eCos Component Writer’s Guide. This document can be found online at:

http://sources.redhat.com/ecos/docs.html

12.2
Examples Overview

Several different approaches can be used to configure a target system to load and debug eCos applications. The method described here offers a direct approach to using the different tools available in the eCos system. Each platform has its own techniques for loading and debugging code. Using the examples in this chapter, you will have a solid understanding of the development process using the eCos system.

The examples in this chapter assume that one of the supported hardware platforms is used for the target system. Moving to your own hardware platform and getting eCos running is the end goal, which we discuss in Chapter 13, Porting eCos.

An overview of the steps involved in building and running the examples in this chapter is shown in Figure 12.3.

	Figure 12.3
Overview of the stages for examples covered in this chapter.

As we see in Figure 12.3, the first stage covered in the examples in this chapter is to build the RedBoot ROM monitor to provide application load and debug support. Next, we install the RedBoot image onto the target hardware. These first two stages are covered in the RedBoot section.

The next step is to configure eCos and build the libraries according to our configuration settings, which is covered in the eCos section. These libraries are linked in by the application when the application is built.

Now we can build our example application using the eCos libraries from the previous stage. This application is a simple example showing some of the functionality provided by eCos. After we have an application image, we can run and debug the image using RedBoot and GDB. These two stages are covered in the Application section.

12.2.1
Development Hardware Setup

The development configuration used for the examples in this chapter, which shows the PC platforms and other hardware modules, is detailed in Figure 12.4.

	Figure 12.4
Development environment configuration for eCos examples.

Figure 12.4 gives us an overview of the major components used in the development environment for the examples in this chapter. The Host Development System contains the complete eCos development environment, which we set up in Chapter 10, The Host Development Platform. This system is also the host when running GDB during debug sessions.

The i386 PC Target is a Pentium-based PC used to run RedBoot and our applications. The target system also needs to have a floppy drive. As we see in Figure 12.4, the host connects to the target via serial and Ethernet. We can use either connection for console and debug communication between the host and target, which was covered in Chapter 9, The RedBoot ROM Monitor.

Finally, a network hub is used to connect the Ethernet ports together between the host and target system. The diagram gives the IP addresses used for the examples in this chapter. It might be necessary in your own development environment to use different IP addresses based on your network configuration. The points where the network is configured are detailed in the examples.

When using the serial port for debug and communications a null modem cable is used to connect the COM port of the host to the serial port on the target.

The Ethernet cards used in both PCs use the Intel 82559 Ethernet controller. It is important to use an Ethernet card that contains a controller supported by eCos; otherwise, the Ethernet port might not work properly for communications.

In this development environment, the IP addresses are statically configured. This eliminates the need for a DHCP or BOOTP server, which simplifies the development environment. The Host Development System uses IP address 192.168.0.2. The RedBoot IP address is 192.168.0.10. Information regarding RedBoot and static IP addresses is covered in Chapter 9. By using these IP addresses, a private network is created. Both connections are on the same network using a subnet mask of 255.255.255.0.

	N O T E
It is not a good idea to use static IP addresses in a released product. The network that a device goes into can vary widely. In this case, it is better to use a dynamic IP address configuration scheme such as DHCP or BOOTP in order for the device to obtain its IP address. However, we use static IP addresses in these example scenarios to simplify things.

12.2.2
eCos Tools

The Configuration Tool, instead of the command-line interface, is used to configure and build the images needed for the examples in this chapter. Other tools that are used are also detailed in the examples in this chapter.

	N O T E
The Configuration Tool is evolving just as the eCos source code itself. Since this is the case, there are times when the Configuration Tool does not behave exactly as expected. In these cases, a note is given describing the circumstance that might occur and workarounds are detailed to ensure that you can proceed with the examples successfully.

The examples in this chapter use a working directory to store the build and configuration files. The working directory is D:\workdir used for each example.

All software needed to recreate the development environment used for building and running these examples are contained on the CD-ROM under the examples directory. These files offer a good starting point to bring up your own development environment, which you can then augment to meet your development and debugging requirements.

12.3
RedBoot

In this section, we go through the process of building, loading, and booting RedBoot. There are pre-built binary images of the RedBoot ROM monitor. These are located in the online eCos repository under the subdirectory ecos\images. The RedBoot images are grouped according to hardware architecture. It might suffice to use these images in the beginning; however, understanding how to build your own RedBoot image is important if you need to make bug fixes or enhance the standard RedBoot program.

The RedBoot image built in this example uses the FLOPPY Startup Type configuration option. This means that the RedBoot image boots and runs from the floppy disk drive of the target PC.

12.3.1
Building RedBoot

As mentioned before, we are going to use the Configuration Tool to configure and build RedBoot. Since we are using RedBoot to debug our example application, we need to configure the IP addresses properly. We discussed IP address configuration with respect to RedBoot in Chapter 9.

Before we begin, let’s get an overview of the build procedure. Figure 12.5 shows us the flow of the build and install procedure for our RedBoot example.

	Figure 12.5
RedBoot build and install procedure flow diagram.

As we see in Figure 12.5, the beginning of the RedBoot build procedure starts with the source tree; in our case, this is located under D:\ecos\packages. The appropriate files are included into our configuration, which we store in the file redboot.ecc.

Next, the Configuration Tool uses the GNU cross-development tools, such as i386-elf-gcc, to build our RedBoot image. The output from the Configuration Tool is stored in the build and install trees. Our final RedBoot image, redboot.bin, is the product of our build procedure. Finally, this image is installed onto a floppy drive using the Cygwin tools.

In our examples, we are going to use a static IP address for RedBoot. The static IP address used depends on the specific network configuration where the target hardware resides. The hardware environment for the examples, including the IP address configuration, is shown in Figure 12.4.

The CD-ROM contains an eCos configuration file (.ecc) that was saved after going through the steps to build the RedBoot image. The RedBoot configuration file is redboot.ecc, which is located under the examples\redboot subdirectory. This file is provided in case you need to recreate the exact configuration file used for this example. Also included in this directory on the CD-ROM is the entire install tree under the directory examples\redboot\ redboot_install created from the example RedBoot build procedure. The binary files created (redboot.bin and redboot.elf) are in the bin directory under the install tree. The MLT directory is also included under examples\redboot\redboot_mlt.

STEP 1

The first step is to load the packages we need to build the RedBoot image using the Configuration Tool. For this, we use a template. The template dialog box is launched by selecting Build –> Templates.

In the templates dialog box we select i386 PC Target from the hardware drop-down list. From the packages drop-down list we select the redboot package. Then, click the OK button.

The Resolve Conflicts dialog box might pop up because we are changing to a new template with different configuration option settings. Using the Configuration Tool, we can resolve these conflicts automatically. We want to click the Continue button to proceed with loading the proper packages and configuration options for the i386 PC Target.

STEP 2

Next, we want to set up the configuration options for our RedBoot build. We can do this by manually selecting the various configuration option settings, or by importing a pre-configured eCos minimal configuration file (.ecm). The .ecm files are included in the source code repository for each HAL platform supported, which give us a baseline for configuration settings needed to build a valid image.

To import the eCos minimal configuration file, we select File –> Import. Now we browse to the location of the i386 PC platform redboot_FLOPPY.ecm file. This file is located under the D:\ecos\packages\hal\i386\pc\current\misc subdirectory. After selecting the redboot_FLOPPY.ecm file, we click the Open button.

The resolve conflicts dialog box might pop up. Click the Continue button to proceed with importing the eCos minimal configuration file.

STEP 3

Now we need to verify the configuration option settings. First, we want to ensure that the RedBoot IP address is configured properly.

The RedBoot IP address configuration options are located within the RedBoot ROM Monitor (CYGPKG_REDBOOT) package under the RedBoot Networking (CYGPKG_REDBOOT_ NETWORKING) package. The configuration option we want to enter is the Default IP Address (CYGDAT_REDBOOT_DEFAULT_IP_ADDR). The static IP address for the RedBoot image is 192,168,0,10. We also want to enable the Do Not Try To Use BOOTP (CYGSEM_REDBOOT_DEFAULT_NO_BOOTP) configuration option.

	N O T E
The Default IP Address configuration option must be entered with commas separating the IP address numbers, not decimals.

We also want to verify the configuration of the communication channels on the target system. The communication channels are nested under the eCos HAL package, under i386 Architecture (CYGPKG_HAL_I386) package, under the i386 PC Target (CYGPKG_HAL_I386_PC) platform package. The configuration suboptions under the i386 PC Target package control the settings for the communication channels. The Number of Communication Channels on the Board (CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS) configuration option defines the PC serial ports that are used to communicate with the host. The default is set to 3 for this option. The mapping of these communication channels to PC ports is detailed in Table 12.1.
	Table 12.1
Communication Channel to PC Port Mapping

	Communication Channel
	PC Port

	Channel 0
	COM 1

	Channel 1
	COM 2

	Channel 2
	PC Screen and Keyboard

The communication channels for debug (Debug Serial Port [CYGNUM_HAL_VIRTUAL_ VECTOR_DEBUG_CHANNEL]) and console (Default Console Channel [CYGNUM_HAL_ VIRTUAL_VECTOR_CONSOLE_CHANNEL_DEFAULT]) are configured to use channel 0, or COM 1. However, the communication channel RedBoot receives input on first is used as the communication channel.

Since we have the configuration option Output to PC Screen (CYGSEM_HAL_I386_ PC_DIAG_SCREEN) enabled, you can use the PC monitor and keyboard for communication with RedBoot.

STEP 4

Next, we save our configuration file. For this, we select File –> Save As. We need to pick a name for the eCos configuration file (.ecc) that we are saving. We use the filename redboot.ecc.

Now, we browse to our working directory location where the build and install trees are generated. We use D:\workdir\redboot. If this directory does not exist, you can create it now. Then, click the Save button.

The Configuration Tool takes the .ecc filename selected, redboot in our case, and creates the directories needed to build the image we have configured. The Configuration Tool appends _build and _install to the filename when generating the build and install tree directories.

Figure 12.6 shows the working directory structure created by the Configuration Tool for the RedBoot image we are building.

	Figure 12.6
Working directory structure for RedBoot example.

The redboot_build subdirectory contains the build tree and is used by the Configuration Tool to store the different files used and created in the build process, such as makefiles and object files. The redboot_install subdirectory contains the install tree and includes the final output binary images as well as the header files used for the build process. The redboot_mlt subdirectory contains the memory layout files used by the Configuration Tool Memory Layout Tool.

STEP 5

Now we have the packages and configuration options settings loaded that we need to build the RedBoot image for the i386 PC platform. We can now proceed with building the image. We want to verify that the status bar, in the lower right-hand corner, on the Configuration Tool shows No Conflicts. If conflicts were present in our configuration, we could view them by opening the Conflicts window by selecting View –> Conflicts, or using the hot key Alt+5.

To start the build, select Build –> Library, or click the Build Library icon on the toolbar. During the build process, the Configuration Tool shows messages on the status bar. In this case, Building is displayed. The output window also displays messages as the build progresses.

When the RedBoot build is complete, the output window displays build finished. If build errors were to occur, the build process would halt and specific error messages would be displayed in the output window. After the errors are corrected, selecting Build –> Library again proceeds with the build process.

The file we need is located under redboot_install\bin subdirectory. We use the redboot.bin file.

12.3.2
Installing RedBoot

The method for installing the RedBoot image on the target hardware varies from platform to platform. The next steps detail the process for booting an image from a floppy disk drive. Using other Startup Types or hardware platforms might require a different procedure. A floppy disk is required to install and run RedBoot using the floppy drive.

Additional information about installing RedBoot on the various supported hardware platforms can be found in the RedBoot documentation online at:

http://sources.redhat.com/ecos/docs.html

STEP 6

Launch the Cygwin Bash Shell by double-clicking the Cygwin desktop icon or selecting Cygwin Bash Shell under Start –> Programs –> Cygnus Solutions –> Cygnus Solutions. Using the bash shell, we enter commands to mount the floppy drive and install the binary image onto a floppy disk.

First, we need to make sure that the floppy drive is mounted properly on the development system. For this, we enter the command:

$ mount -f -b //./a: /dev/fd0

STEP 7

Next, we want to make sure we are in the proper subdirectory to install the RedBoot binary image. We want to change to the proper working directory in the bash shell using the command:

$ cd d:/workdir/redboot

STEP 8

Now, we place a floppy disk into our host development system’s floppy disk drive. We are using the dd utility, which was installed during the Cygwin installation procedure, to transfer the RedBoot image to the floppy disk.

The dd utility writes raw data from the standard input to standard output. In our case, we write the RedBoot binary file from the hard disk to our floppy disk.

	N O T E
The process of transferring the RedBoot image to the floppy disk erases any file system and data contained on the disk.

To install the RedBoot binary image onto the floppy drive we use the command:

$ dd conv=sync if=redboot_install/bin/redboot.bin of=/dev/fd0

After the process is complete, a message is displayed showing the records converted, similar to:

178+1 records in

179+0 records out

The operation is complete when the bash shell returns the $ prompt.

12.3.3
Booting RedBoot

We are using the development environment configuration as shown in Figure 12.3. Using this configuration, we are able to debug applications over the serial port or Ethernet port, depending on the functionality in the application.

For this example, we are using the Windows resident terminal program called HyperTerminal, although any terminal program can be used. Remember, RedBoot uses the first communication channel it receives input from as its port to communicate with the host.

STEP 9

Place the floppy disk containing the RedBoot image into the drive on the target PC. Power up the PC. Since our configuration allows output to the PC monitor (as described in step 3), RedBoot outputs the initialization message shown in Code Listing 12.1 to the screen.

1

Ethernet eth0: MAC address 00:d0:bd:43:9d:d2

2

IP: 192.168.0.10, Default server: 0.0.0.0, DNS server IP: 0.0.0.0

3

4

RedBoot(tm) bootstrap and debug environment [FLOPPY]

5

Non-certified release, version UNKNOWN - built 12:22:06, Apr 20 2002

6

7

Platform: PC (I386)

8

Copyright (C) 2000, 2001, 2002, Red Hat, Inc.

9

10

RAM: 0x00000000-0x000a0000, 0x0008ac30-0x000a0000 available

11

RedBoot>

Code Listing 12.1
RedBoot initialization message.

Code Listing 12.1 shows us the initialization message after booting RedBoot. The RedBoot network configuration information is displayed on lines 1 and 2, including the static IP address we configured in step 3, 192.168.0.10. Lines 4 and 5 give us information about the RedBoot image, including the floppy startup and the build time and date. The platform information is output on line 7. The RAM memory utilization and availability is output on line 10. Finally, the RedBoot prompt is output on line 11 showing that RedBoot is ready for input.

STEP 10

Next, we connect to the target PC using HyperTerminal. The communication parameters we set in HyperTerminal are a baud rate of 38400, 8 data bits, no parity, 1 stop bit, and no flow control. After clicking connect, we can press Enter to get a RedBoot prompt displayed.

We can verify communication over the serial port by entering the help command, to which RedBoot responds with the commands available.

STEP 11

Finally, we verify our network connections using the ping utility. We verify the connection between our host and the target. We accomplish this by entering the following command at the RedBoot prompt:

RedBoot> ping -v -n 3 -h 192.168.0.2

The preceding ping command is set in verbose mode, using the –v option; the number of ping packets to send is set to 3 by the –n option; and the address to send the ping packets is set to 192.168.0.2 by the –h option. The IP address you use depends on your network configuration. This results in the output shown in Code Listing 12.2.

1

Network PING - from 192.168.0.10 to 192.168.0.2

2

 seq: 1, time: 1 (ticks)

3

 seq: 2, time: 1 (ticks)

4

 seq: 3, time: 1 (ticks)

5

PING - received 3 of 3 expected

6

RedBoot>

Code Listing 12.2
Response output from ping command to host PC.

On line 1 of Code Listing 12.2, RedBoot displays the message that the ping command is executing and the two IP addresses being used. Lines 2 through 4 output the response sequence numbers and times, in ticks, from the ping packets. Finally, line 5 gives a summary of the successful reception and response of the three ping packets sent from the target to the host.

A telnet program can also be used to connect to the target PC via the Ethernet port. This allows you to use telnet to send commands to and receive output from RedBoot, in the same way as using the serial port. One thing to remember is that the telnet connection must be on port 9000, as set by the TCP Port To Listen For Incoming Connections (CYGNUM_REDBOOT_NETWORKING_ TCP_PORT) configuration option under the RedBoot package.

	N O T E
Although this is not true for the PC platform booting from the floppy drive, other hardware platforms allow RedBoot images to be installed into flash ROM memory. In these cases, constantly reprogramming the flash device can be tedious. Therefore, RedBoot can be used to update an older image running from flash memory. Information about updating existing RedBoot images residing in flash memory on various target platforms can be found in the RedBoot documentation online at http://sources.redhat.com/ecos/docs.html.

12.4
eCos

Continuing with our examples, we now need to configure and build an eCos image that will be linked with our application. The eCos image we build in this section uses the RAM Startup Type configuration option. This allows us to use RedBoot to load our example application into RAM. We are then able to run and debug our application.

12.4.1
Building eCos

The main goal of this stage is to generate the eCos library file according to our configuration settings. The flow diagram for the eCos build procedure used in this example is shown in Figure 12.7.

	Figure 12.7
eCos build procedure flow diagram.

Similar to the RedBoot build procedure, we start with the source tree as shown in Figure 12.7. After setting up our configuration according to our specification using the Configuration Tool, we save the file ecos.ecc.

Next, the Configuration Tool generates the appropriate files for our build. The GNU cross-development tools are used to compile the source code files and produce our final output file, the eCos library libtarget.a. Other necessary files, which include additional libraries and a linker script file, are also produced by the Configuration Tool.

The CD-ROM includes the eCos configuration file (.ecc) containing the packages and configuration option settings used in this example. The filename is ecos.ecc and is located in the examples\ecos subdirectory. As with the RedBoot image, you can recreate the eCos library files by copying this file to your working directory and then loading it into the Configuration Tool.

Also included in this directory on the CD-ROM is the install tree from this example eCos build procedure. These files are located under the examples\ecos\ecos_install directory. The MLT directory is also included under examples\ecos\ecos_mlt.

	N O T E
It is a good idea to start with a new configuration by selecting File –> New from the menu before proceeding with the eCos build procedure. This resets the Configuration Tool to its default platform and default configuration option settings, and clears out any previous configurations.

STEP 1

We need to load the packages to build the eCos image. We use a template to get a baseline of packages loaded to meet our requirements.

The template dialog box is launched by selecting Build –> Templates. In the Templates dialog box, we select i386 PC Target from the hardware drop-down list. From the packages drop-down list we select the default package. This selects the standard packages for incorporation into the eCos image. Then, click the OK button.

The Resolve Conflicts dialog box might pop up because we are changing to a new template with different configuration option settings. Using the Configuration Tool, we can resolve these conflicts automatically. We want to click the Continue button to proceed with loading the proper packages and configuration options for the i386 PC Target.

STEP 2

Now that we have a baseline configuration for our eCos image, we want to verify the configuration option settings. You might need to tailor the configuration option settings according to the specific target hardware you are using. Some of the configuration options might be set to the proper values for our build by default. In this case, no modifications are necessary.

First, we want to verify the Startup Type (CYG_HAL_STARTUP) configuration option setting. This is nested under the eCos HAL package, under i386 Architecture (CYGPKG_HAL_I386) package, under the i386 PC Target (CYGPKG_HAL_I386_PC) platform package. We want to set the Startup Type to RAM, so that we can load our application into RAM for running and debugging.

Next, since we are using the RedBoot ROM monitor, we want to verify the ROM Monitor Support components. Specifically, we want to enable the Work With a ROM Monitor (CYGSEM_ HAL_USE_ROM_MONITOR) configuration option. Since we are going to use GDB on our host system for debugging, we want to set this option to GDB_stubs.

It is a good idea to enable asserts during the debug phase of a project. This enables various levels of checking in the software, such as argument checking, to ensure the software is behaving properly. As the software gets closer to a production release asserts should be disabled to ensure there are no timing problems hiding in the system. Asserts are enabled by selecting the Asserts & Tracing (CYGPKG_INFRA_DEBUG) component and then enabling the Use Asserts (CYGDBG_USE_ASSERTS) configuration option, which is enabled by default. This configuration option is located under the Infrastructure package.

Other configuration options might need to be validated or modified for your specific target hardware. This step is intended to make us aware of some of the key configuration option settings necessary to build an eCos library that works for our examples.

STEP 3

Next, we save our configuration file by selecting File –> Save As. We use the filename ecos.ecc.

Now, we want to browse to our working directory where we want the eCos files stored. We use D:\workdir\ecos. If the directory does not exist, you can create it now. Then, click the Save button.

The Configuration Tool saves the file ecos.ecc under the new eCos working directory and creates the build and install tree directories named ecos_build and ecos_install, respectively. The Configuration Tool MLT file is contained in the ecos_mlt directory. The directory structure for this build process is similar to that shown in Figure 12.4.

STEP 4

We are now ready to build the eCos library. Prior to building, we ensure that there are no conflicts in our configuration, which is shown in the bottom-right corner on the status bar. If conflicts were present in our configuration, we could view them by opening the Conflicts window by selecting View –> Conflicts, or using the hot key Alt+5.

To start the build, select Build –> Library, or click the Build Library icon on the toolbar. During the build process, the Configuration Tool shows the Building message on the status bar. The output window also displays messages as the build progresses. After the build completes, the output window displays build finished.

If build errors were to occur, the build process would halt and specific error messages would be displayed in the output window. After the errors are corrected, selecting Build –> Library again continues the build process.

The files that we need for the next application example are located in the ecos_install subdirectory. The header files used when we build our application are contained under the ecos_install\include directory. The eCos library files and linker script are located under the ecos_install\lib directory.

We are now ready to proceed with building our application.

	N O T E
If modifications need to be made to a configuration after it is built, the Configuration Tool can be used to remove the build files generated. This is done by selecting Build –> Clean from the menu. However, there are times when this does not correctly remove all files and can cause problems in the resulting output image. To be safe, it is best to delete the build and install trees to ensure that all files are rebuilt for an image. In our example, these directories are ecos_install and ecos_build, which we would want to delete. Saving the configuration causes the Configuration Tool to regenerate these directories for the next build.

12.5
Application

We are now at the point where we can build our application and incorporate our eCos library built in the previous stage. After we have our application image, we can use RedBoot to load the application into RAM and run it. In this section, we also look at using GDB to debug our application.

The main goal of the application build is to generate a binary file, which includes our eCos library. The flow diagram for the application build procedure is shown in Figure 12.8.

	Figure 12.8
Application build procedure flow diagram.

As we see in Figure 12.8, we start with our C language source file basic1.c. In this example, we use a makefile and the GNU make utility for the build process. First, the GNU cross compiler—in our case, i386-elf-gcc—is invoked.

Next, the GNU linker, i386-elf-ld, is run, which links our application object file and the eCos library, libtarget.a. The other necessary eCos libraries are also linked at this time. The linker script file target.ld, generated during the eCos build procedure, is used during the linking process.

The output is an ELF executable file, basic1.exe. We use one of the GNU binary utilities, i386-elf-objcopy, to translate the ELF format file into an S-record file. RedBoot is used to download our application image in the S-record file.

12.5.1
Building the Application

The source code for this example application is located on the CD-ROM under the examples\ application subdirectory, which includes the source code file basic1.c and the build file makefile. Also included in the examples\application\bin directory are the ELF (basic1.exe), S-record (basic1.srec), and map files for the basic application build.

Let’s look at the application we are using for this example. There are two threads, A and B, that run in this application. Thread A uses a semaphore to signal Thread B. Both threads are passed a value that they print out when they run.

STEP 1

We need to create a directory for our application code. Under our workdir directory, we create the subdirectory application. We now copy the application source code files from the CD-ROM examples\application subdirectory. The files we copy are basic1.c and makefile.

STEP 2

Launch the Cygwin Bash Shell, if it is not already open, by double-clicking the Cygwin desktop icon or by selecting Cygwin Bash Shell under Start –> Programs –> Cygnus Solutions –> Cygnus Solutions.

From the bash shell we change to the application working directory using the command:

$ cd d:/workdir/application

STEP 3

Next, we can build the application image. Before we build the image, let’s take a moment to understand the makefile we are using to build our application. The makefile used to build this application, a portion of which is shown in Code Listing 12.3, is based on the makefile included in the eCos source code examples, located under the examples subdirectory in the eCos source code repository. Additional information about the make utility and makefiles can be found online at:

www.gnu.org/manual

Commands and options can be passed in on the command line to build the application image as well; however, the makefile prevents us from having to repeatedly reenter commands. Makefiles are also useful in larger projects when multiple files are being built.

1

eCos library installation directory

2

PKG_INSTALL_DIR = /cygdrive/d/workdir/ecos/ecos_install

3

4

This sets the compiler to i386 PC.

5

XCC = i386-elf-gcc

6

7

Build flags.

8

CFLAGS = -g -Wall -I$(PKG_INSTALL_DIR)/include \

9

 -ffunction-sections -fdata-sections

10

LDFLAGS = -nostartfiles -L$(PKG_INSTALL_DIR)/lib \

11

 -Wl,--gc-sections -Wl,--Map -Wl,basic1.map

12

LIBS = -Ttarget.ld -nostdlib

13

LD = $(XCC)

14

15

Build rules.

16

all: basic1

17

18

basic1.o: basic1.c

19

 $(XCC) -c -o $*.o $(CFLAGS) $<

20

21

basic1: basic1.o

22

 $(LD) $(LDFLAGS) -o $@ $@.o $(LIBS)

Code Listing 12.3
Example application makefile.

In Code Listing 12.3, the first part of the makefile sets up some variables that we can use later so that our makefile is easier to understand and allows repetitious use of variables without re-entering an entire string. When we want to use a variable, we use the syntax $(VARIABLE_NAME). Whatever string VARIABLE_NAME has been declared is substituted where the variable is used.

On line 2 we set the variable PKG_INSTALL_DIR to the location of the eCos library that we built in the previous stage of our example. On line 5 we set the variable XCC to the name of the compiler we are using; in this case, it is the i386 ELF compiler (i386-elf-gcc).

Next, we set the build flags to different variables. Using variables allows us to substitute a variable name in place of a long string for clarity and for repeated use in multiple locations of our makefile.

The first variable is CFLAGS, shown on lines 8 and 9, which contains the flags we pass to the compiler GCC. The next variable is LDFLAGS, shown on lines 10 and 11, which contains the options for the linker LD. Both variables CFLAGS and LDFLAGS are located on a single line in the actual makefile; however, here they are split up so that all the options can be shown.

The variable LIBS on line 12 contains the library options that are also passed to the linker. Finally, the variable LD is defined on line 13 for the linker command. In this case, the linker is built into the compiler executable, i386-elf-gcc, so we use the XCC variable name to invoke the linker.

The next part of the makefile contains the build rules or goals. The goals are the targets that the makefile attempts to update. First, is all on line 16. This is the main target to build, which is the ELF file basic1.

Lines 18 and 19 contain the information to build the target basic1.o. As we can see on line 19, the compiler is invoked using the variable XCC and it is passed the flags that follow, including the string from the variable CFLAGS.

On lines 21 and 22 is the information to build the target basic1. The basic1 target is the ELF image, which is generated using the linker and the linker options shown on line 22.

A brief description of the compiler and linker flags used is included in the makefile. For additional information about the various compiler flags, at the bash shell prompt you can enter the command:

$ i386-elf-gcc –-help -v

The makefile also contains a rule, clean, which removes the files created during the build, such as object files. This allows us to recompile all files, not just the files modified since the last build. To clean the built files, use the command make clean at the bash shell prompt.

Before we proceed with the build, let’s see where exactly the eCos library gets linked into the application.

1

STARTUP(vectors.o)

2

ENTRY(_start)

3

INPUT(extras.o)

4

GROUP(libtarget.a libgcc.a)

Code Listing 12.4
Portion of target.ld linker script file that shows where the eCos library is included when building applications.

Line 1 of Code Listing 12.4 uses the command STARTUP. This causes the vectors.o file to be the first file linked, since the file vectors.S contains the entry point for our application.

The ENTRY command, shown on line 2, sets the entry point where the application will begin execution. In our case, the entry point is in the file vectors.S in the routine _start. Each HAL contains a file vectors.S that contains the startup code for that particular processor. This file is located under the arch source directory for each architecture.

The INPUT command on line 3 notifies the linker to include the named files. In this case, extras.o is the file, which was one of the additional files created during the eCos build procedure.

Finally, on line 4 is the GROUP command. This command is similar to the INPUT command; however, it takes archive files as its parameters. The two eCos libraries are used in this command, libtarget.a and libgcc.a. All of the files mentioned in this section of the linker script file are located in the install tree under the ecos_install\lib directory.

We are readyﾉfinally!!! To build our application image we invoke the make utility at the bash shell command prompt using the following command:

$ make

After the build is complete, the files that are output from our build process are:

•

basic1.o—the compiler output object file.

•

basic1.map—the map file shows the memory layout for the image.

•

basic1.exe—the ELF format executable file.

STEP 4

Next, we change the ELF file into an S-record format to load with RedBoot. For this we use the objcopy utility, which is one of the GNU binary utilities. To get the application image into the S-Record format we want, we use the command:

$ i386-elf-objcopy –O srec basic1.exe basic1.srec

This produces the file basic1.srec. This file is loaded onto the target hardware using RedBoot, as described in the next section.

12.5.2
Loading the Application

Now we can load and run the application using RedBoot. On the host, we use the Windows HyperTerminal program, which contains the facility to transfer files using X, Y, and Z modem protocols. As previously mentioned, RedBoot allows transfer of data using various communication methods such as serial and TFTP. Additional information about other communication methods using RedBoot can be found in Chapter 9.

One utility that can come in handy is the GNU size utility. The size utility is part of the GNU binary utilities. The size utility lists the sizes of the different sections and the total size of the object file. To get the size of our example application we run the command:

$ i386-elf-size basic1.exe

The output from the size utility is shown in Code Listing 12.5.

1

 text data bss dec hex filename

2

76900 544 36744 113188 1ba24 basic1.exe

Code Listing 12.5
Output from GNU size utility for basic application image.

In Code Listing 12.5, the section names, text, data, and bss, are shown on line 1. Also on line 1 is the total size of the basic.exe object file in decimal (dec) and hexadecimal (hex). The size values are listed under their respective sections on line 2. Adding up the text, data, and bss sections gives the total size of the file, 113,188 bytes, under the dec column, which equates to 1BA24 in hexadecimal, shown in the hex column.

Before continuing, ensure that RedBoot is up and running on the target hardware.

STEP 5

To load the example application using RedBoot, we enter the command:

RedBoot> load -v -m yMODEM

The option –v enables verbose mode during the load process. The –m yMODEM option informs RedBoot that we want to use the Y modem protocol to transfer our image. After entering this command, characters (the character is C) are printed that indicate that RedBoot is waiting for the transmission of the image to begin.

To begin transferring the basic1.srec image, we select Transfer –> Send File from the menu in HyperTerminal. This brings up the dialog box shown in Figure 12.9.

	Figure 12.9
HyperTerminal Send File dialog box.

As shown in Figure 12.9, we want to select Ymodem from the protocol drop-down list. Then, click the Browse button to select the basic1.srec file under the D:\workdir\application subdirectory. When the transfer begins, the status of the transfer is displayed in a dialog box similar to the one in Figure 12.10.

	Figure 12.10
HyperTerminal Transfer Status dialog box.

The progress and information about the transfer of the application to the target hardware, including throughput and time remaining, is shown in Figure 12.10.

When complete, the dialog box is closed and RedBoot outputs a message. An example of the message output by RedBoot is shown in Code Listing 12.6.

1

Entry point: 0x00108000, address range: 0x00108000-0x0011aba0

2

xyzModem - CRC mode, 2(SOH)/215(STX)/0(CAN) packets, 4 retries

Code Listing 12.6
RedBoot output message after transfer of our application is complete.

On line 1, in Code Listing 12.6, the memory information about the image that we just loaded is displayed. This information includes the entry point and the memory range used by the application. Line 2 summarizes the statistics of the transfer.

STEP 6

Now we are ready to run our example application. Since RedBoot is aware of the load address for our application, we do not need to specify an entry point for the RedBoot go command. To run our application, at the RedBoot prompt we enter the following command:

RedBoot> go

As the basic1 application runs, the output in Code Listing 12.7 appears on the HyperTerminal screen. The application continues to run forever.

1

Hello eCos World!!!

2

3

Thread A, count: 1 message: 75

4

Thread A, count: 2 message: 75

5

Thread B, message: 68

6

Thread A, count: 3 message: 75

7

Thread B, message: 68

8

Thread A, count: 4 message: 68

Code Listing 12.7
Basic1 example application output.

12.5.3
Debugging the Application

Although RedBoot does provide some basic facilities for debugging an application, such as viewing memory locations, GDB provides more extensive debugging capabilities. Next, we are going to use GDB to connect to our target hardware, download our example application, and then run the application. Additional documentation about GDB can be found online at:

http://sources.redhat.com/gdb

During the host development tools setup, we built GDB and included the Insight GUI; see Chapter 10 for details. It is possible to run GDB in command-line mode, even with Insight built into GDB. Additional information about Insight can be found online at:

http://sources.redhat.com/insight

In this step, we take a brief look at using GDB in command-line mode and using the Insight graphical interface. A diagram of the debug environment is shown in Figure 12.11.

	N O T E
Debugging optimized code can be unreliable because the compiler might make changes in the executable file that do not exactly match the original source code. In these cases, it might be better to disable the compiler optimization when debugging source code.

To disable the compiler optimization you can either remove the –O2 option from the Global Compiler Flags (CYGBLD_GLOBAL_CLAGS) or set the optimization level to zero using the option –O0. The eCos library and application code would then need to be rebuilt.

	Figure 12.11
The debug environment for our examples, running GDB
on the host and RedBoot on the target.

As we see in Figure 12.11, GDB with the Insight GUI is run on the host development system. We can connect to our target via serial or Ethernet port. The target hardware is running RedBoot, which includes the GDB stub. The GDB stub provides the communication protocol layer for our target.

Before proceeding with the following steps, ensure that RedBoot is up and running on the target hardware.

STEP 7

To launch GDB with the Insight GUI, we run i386-elf-gdb.exe. If you do not want to use the Insight GUI, you can run GDB using the no windows option; for example, i386-elf-gdb.exe –nw.

GDB with Insight application is shown in Figure 12.12.

	Figure 12.12
Insight GDB Source window with Console window in the background.

Figure 12.12 shows the Insight GUI Source window in the foreground with the Console window in the background. The Console window is displayed by selecting View –> Console.

The first step is to load our example application. Using Insight, we select File –> Open, and then browse to the location of our basic1.exe application file.

When our example application is loaded, the source window is loaded with the file main.cxx.

STEP 8

Next, we connect our host GDB to our target hardware. This is accomplished by selecting Run –> Connect To Target, which opens the Target Selection dialog box shown in Figure 12.13.

	Figure 12.13
Insight GDB Target Selection dialog box for connecting to the
target hardware.

There are two options for connecting to the target hardware, serial or Ethernet, as shown in Figure 12.4.

	N O T E
If connecting to the target hardware over the serial port you will need to disconnect the HyperTerminal from the serial port before attempting to connect with GDB. Both GDB and HyperTerminal cannot use COM1 simultaneously.

To connect via serial, we select Remote/Serial in the Target drop-down list, 38400 in the Baud Rate drop-down list, and com1 in the Port drop-down list. The check boxes can be left in their default states. Additional connection parameters can be displayed by clicking the More Options arrow.

To connect via Ethernet, we select Remote/TCP in the Target drop-down list, we enter 192.168.0.10 (or whatever the RedBoot static IP address was configured as) for the Hostname, and 9000 for the Port.

After setting the connection parameters, click the OK button to connect to the target. A dialog box showing Successfully Connected is displayed when the GDB has connected to the target hardware.

STEP 9

Once connected to the target, we download our example application by selecting Run –> Download. During the download, a progress bar appears in the upper right-hand corner of the Insight source window. The status of the download is displayed on the bottom status bar. When the application download is complete, Download Finished is displayed on the bottom status bar, as well as statistics about the download including elapsed time and bytes transferred.

	N O T E
In some cases, the download process can be very slow using GDB and RedBoot. Some things can be done to speed up the download process. Details about speeding up an application download using GDB and RedBoot can be found in the eCos Frequently Asked Questions (FAQ), which is online at http://sources.redhat.com/fom-serv/ecos/cache/1.html. Another eCos FAQ is located online at http://sources.redhat .com/ecos/faq.html.

STEP 10

If the console window is not open, select View –> Console. This enables us to view the output from our application.

To start the application, select Control –> Continue. The output from the basic1 program, as shown in Code Listing 12.7, is displayed in the console window.

You can now familiarize yourself with the different functionality with GDB, such as stopping the program, setting breakpoints, and watching variables.

12.5.3.1
Using the GDB Command-Line Interface

As mentioned previously, GDB can also be run from the CLI if the Insight GUI is not needed. Let’s go through the commands needed to load and run the application from the CLI. These commands can also be entered in the Console window when using Insight. Table 12.2 lists the CLI commands for running GDB using the serial and Ethernet ports. The commands are shown after the GDB prompt (gdb).
	Table 12.2
GDB CLI Commands for Serial and Ethernet Port Debugging

	Serial
	Ethernet

	STEP 1: Change to the application directory.

(gdb) cd d:/workdir/application
	STEP 1: Change to the application directory.

(gdb) cd d:/workdir/application

	STEP 2: Set the serial port baud rate.

(gdb) set remotebaud 38400
	STEP 2: Connect to the target via the Ethernet port.

(gdb) target remote 192.168.0.10:9000

	STEP 3: Connect to the target via the serial port.

(gdb) target remote com1
	STEP 3: Load the application

(gdb) load basic1.exe

	STEP 4: Load the application.

(gdb) load basic1.exe
	STEP 4: Run the application.

(gdb) continue

	STEP 5: Run the application.

(gdb) continue
	

12.6
The eCos Tests

The eCos repository provides test suites for various packages. The tests are designed to thoroughly exercise the various functionality within the different packages to ensure proper operation. These tests exercise the software at the module, component, and system levels and include stress and performance testing.

The eCos repository includes test suites for the kernel, various device drivers, and the I/O Sub-System. The kernel suite includes tests that exercise the different synchronization mechanisms, run various thread-related functions, and use the different clock functionality. The I/O Sub-System includes various serial port tests. There are also various tests for the different target hardware platforms.

The test source code is contained in the eCos source code repository and located under the tests directory within a package’s directory structure; see Figure 11.1 for an illustration of the generic package directory structure. The test source code also provides a great example of how to implement various functionality within an application. These tests can be used to guide you through understanding the different eCos APIs.

Now let’s focus on how we can use the Configuration Tool to build and run various tests in the eCos framework. The tests are built using the Configuration Tool by selecting Build –> Tests. The output files from the test build procedure are located in the install tree under the tests directory. The output files are ELF format files.

	N O T E
Some tests, such as those included in the Basic Networking Framework package, contain a configuration option that must be enabled to build the specified tests. The Build Networking Tests (Demo Programs) (CYGPKG_NET_BUILD_TESTS) configuration option, when enabled, allows additional networking tests to be built.

After the tests are built, the Configuration Tool also facilitates automatically downloading and running the tests on the target hardware. To run the tests using the Configuration Tool, select Tools –> Run Tests. This brings up the Run Tests dialog box as shown in Figure 12.14.

	Figure 12.14
Configuration Tool Run Tests dialog box.

The first tab, Executables, displays all of the tests that are available for running on the target hardware. Checking the box next to the test selects the test for running. Tests can be added or removed using the buttons at the top of the dialog box. Once the tests are configured to run, the Run button at the bottom of the dialog box begins execution of the selected tests.

The next tab is Output. This displays output from the tests as they execute on the target hardware. The Summary tab keeps track of the results of each test, including the time it took to execute and the status as to whether the test passed or failed.

Prior to running the tests, the method for connecting to the target hardware is selected. Clicking the Properties button at the bottom of the Run Tests dialog box brings up the Settings dialog box as shown in Figure 12.15.

	Figure 12.15
Configuration Tool Connection Settings
dialog box for running tests on a target system.

As we see in Figure 12.15, the timeout period can be specified. The connection to the target hardware can also be set to either serial or Ethernet.

12.7
Simulators

The eCos framework provides simulators for several different processor architectures, including the Hitachi H8/300, MIPS, Matsushita AM3x, PowerPC, and SPARClite. A simulator can be useful when a development board is not available, or possibly too costly, and the hardware has not been developed. In these cases, the software can be developed for the target processor and run on a simulator target.

	N O T E
The pre-built PowerPC GNU cross-development tools are also included on the CD-ROM in the file ppcgnutools.tar.bz2 under the gnu\ppctools directory. You can add the PowerPC GNU cross-development tools by unzipping the file under the root D:\cygwin directory. The files are extracted under the D:\cygwin\toolsppc directory. The command to extract the PowerPC GNU cross-development tools is:

$ tar xjvf /cygdrive/e/gnu/ppctools/ppcgnutools.tar.bz2

You would then need to add the D:\cygwin\toolsppc directory to your path, as shown in Chapter 10 in Section 10.2.2, Installing the Platform-Specific Cross-Development Tools, in STEP 4. The PowerPC GNU cross-development tools are used in Chapter 13.

The simulators are run from the GNU debugger (GDB), either using the Insight GUI or from the GDB command line. To invoke the PowerPC-based GNU debugger you run the executable powerpc-eabi-gdb.exe.

First, let’s see how to run code on the simulator using Insight. When running Insight GDB, select File –> Target Settings to bring up the dialog box for connecting to a target, as shown in Figure 12.16. Under the Target drop-down list, select Simulator. Any target-specific options can be entered in the Options edit field within this dialog box.

	Figure 12.16
PowerPC-based Insight GDB Target Selection dialog box.

Using the GDB command line, we use the following commands, assuming we are running a program named ecoshello.exe:

First, load the symbols from the file with the command:

(gdb) file ecoshello.exe

Next, set our target to the simulator:

(gdb) target sim

On successful connection to the simulator, the output message Connected to simulator is displayed. If there are any target-specific options, they can be entered at the end of the command. Then, we load the program using the command:

(gdb) load

Finally, the program is run on the simulator with the command:

(gdb) run

The program is debugged using the standard GDB commands. Using a simulator allows some of the software to proceed without hardware being present; however, certain software modules, such as device drivers, rely on the presence of the target hardware.

12.8
Summary

In this chapter, we got down to the practical aspects of using eCos by running through some examples. We started with an overview of the eCos build process, which we use for generating eCos libraries or RedBoot images.

After covering the details of the build procedure, we began our examples with a build and install of the RedBoot ROM monitor. This provided us with a method for downloading our application code onto our target hardware, as well as providing GDB debugging support on the target.

We then proceeded to construct an eCos library from our configuration. The eCos library was used to build our application. Next, we focused on loading our application using first RedBoot directly and then using GDB for debugging.

We concluded this chapter with a brief look at the eCos test suite and the simulators provided in the eCos framework. Although these examples were basic, they are good starting points for understanding the eCos development environment and provide a baseline for extending the functionality to meet your own requirements.

These examples enable you to evaluate the eCos real-time operating system and become familiar with the build and debug tools available. Moving on to more complex examples by incorporating additional features into the eCos configuration is a good next step.

�Use the static IP address configured when RedBoot was built. The port number, 9000, is entered following the IP address.

