Foreword

In 1997, there were over 100 commercially supported embedded operating systems, none of which had more than a minority share of the overall embedded OS market, not to mention countless thousands of others developed for specific projects (cell phones, radar arrays, networking equipment, etc.) that had no application developer base beyond that specific project. In short, the embedded operating systems market was highly fragmented, and the cost of this fragmentation was beginning to seriously limit the viability of many embedded software projects and the OEMs who funded those software projects.
While it was clear to many that the major embedded software companies needed to change their business models in radical ways, each company believed that it could somehow outlast its competition, and that it could consolidate the market through a strategy of attrition rather than a strategy of innovation. At Cygnus Solutions, we couldn’t wait for 90 percent of the market to give up; moreover, we weren’t sure we wanted to serve a market that was 90-percent dead. Therefore, we took up our own challenge to create an embedded operating system that could address the incredible variety of possible embedded system designs, from the very small to the highly complex, using a single source base.

In our market research, we found two primary reasons why people wrote their own RTOSes: first, they didn’t want to pay per-unit royalties to a third party, and second, they didn’t want to suffer the indirect cost of code that they didn’t write/control/understand using up resources within their systems. The fact that writing and debugging an RTOS is expensive (in time and money), and the fact that most custom RTOSes required a complete understanding of the entire system in order to make the smallest manual changes, often resulted in systems that were both more expensive to maintain and inferior in functionality to commercial alternatives, but such were the compromises required to avoid direct and indirect per-unit costs.

The design philosophy of eCos was to augment an open-source RTOS (which meant no per-unit royalties) with source-level configuration tools that would enable embedded developers to scale their RTOS from hundreds of bytes to hundreds of kilobytes without needing to manually change a line of source code. Of course, if some code needed to be rewritten to meet some unique requirement, open-source licensing meant the option was there. However, for most cases the 200+ configuration points supported by eCos resulted in systems that were faster to build (all the hard work was coded into the configuration rules) and resulted in smaller systems than manual methods could produce (because the automated rules were more all-seeing and all-knowing than most embedded developers could afford to be).

Since releasing eCos in 1998, we have seen it develop both a healthy user base and a strong base of talented contributors. With the publication of this book, eCos reaches a new milestone: a completely independent source of technical information about eCos, and a rather complete one at that. While this book is primarily targeted at RTOS engineers, it remains accessible to both technical managers and developers who might use, but not actually maintain, an RTOS.

The scope of the book covers the very latest information about eCos, including a section on using eCos compatibility layers to provide POSIX, Itron, and even embedded Linux API compatibility with the EL/IX. Indeed, as high-end embedded system design consolidates around embedded Linux, eCos is becoming even more important for two reasons: because it provides a platform for migrating to Linux APIs without the overhead of running a full Linux-based system, and because eCos is the basis of RedBoot, the new standard ROM monitor that Red Hat supports for its embedded Linux ports.

Anthony’s book is easily the most complete treatment of eCos system development. I believe it is destined to become part of every eCos developer’s library.

Michael Tiemann

CTO, Red Hat, Inc.

Foreword









