Chapter 8

Additional Functionality and Third-Party Contributions

The open-source nature of eCos caters to a rich set of extended functionality. This functionality is often provided by external third-party contributors to enhance their own and the open-source community’s embedded systems. Included in this functionality and contributions are:


•
POSIX, EL/IX, and ITRON Compatibility Layers


•
ROM Monitors


•
RAM and ROM File Systems


•
PCI Support


•
TCP/IP Networking Support


•
Embedded Simple Object Access Protocol (SOAP) Toolkit


•
Kaffe Java Virtual Machine


•
Bluetooth and Wireless Application Protocol (WAP) Support


•
Embedded Web Server Support

The eCos Web site maintains a list of the different contributions available and can be found online at:

http://sources.redhat.com/ecos/contrib.html

Another source to find the latest information about the latest contributions and functionality available for eCos is the NEWS file. The eCos NEWS file is located in the online source code repository, under the packages directory. The online source code repository can be viewed in HTML format at:

http://sources.redhat.com/cgi-bin/cvsweb.cgi/ecos/?cvsroot=ecos

In this chapter, we take a look at some of the software components and contributions available for use with eCos. Combining certain components, such as the file system, networking stack, and Web server, you can achieve the desired feature set for many different embedded systems.

8.1
Compatibility Layers

Compatibility layers are specifications that define standard APIs that interface to the underlying eCos kernel in order to encapsulate implementation-specific functionality. This allows companies to adopt the API, easing the porting process of applications across different platforms and operating systems. This section gives a brief overview of the compatibility layer support offered with eCos. Resources for additional detailed information are included as well. eCos supports two different compatibility layers:


•
POSIX


•
ITRON

The packages for these different layers are found under the compat subdirectory. This is further divided into the posix and uitron subdirectories. Figure 1.3, in Chapter 1, shows the overall directory structure.

8.1.1
POSIX

The Portable Operating System Interface (POSIX) is a set of Institute of Electrical and Electronics Engineers, Inc. (IEEE) standards designed to ease application portability. The POSIX specifications define APIs that detail how applications interface to operating systems.

eCos contains support for the POSIX 1003.1—1996 Specification (ISO/IEC 9945-1). Support for a function means that the data types and definitions necessary to support the particular function, including the objects it manipulates, are also defined. The eCos POSIX support is a subset of the entire POSIX standards, including the implementation of threads, signals, and synchronization objects. Additional information about POSIX can be found in the standard Portable Operating System Interface (POSIX)—Part 1: System Application Programming Interface (API)[C Language] ISO/IEC 9945-1:1996, IEEE.

eCos divides the POSIX support into two packages called the POSIX Compatibility Layer (CYGPKG_POSIX) and POSIX File IO Compatibility Layer (CYGPKG_IO_FILEIO). The POSIX Compatibility Layer package provides support for threads, signals, synchronization, timers, and message queues, while the POSIX File IO Compatibility Layer package provides support for file and device I/O.

eCos defines a template called Posix that is used to enable the standard configuration options for POSIX compatibility. Chapter 11, The eCos Toolset, describes the process for using templates in greater detail. There are configuration options for both the POSIX Compatibility Layer and the POSIX File IO Compatibility Layer. The POSIX Compatibility Layer package is made up of the following configuration components:


•
POSIX Scheduling Configuration (CYGPKG_POSIX_SCHED)


•
POSIX Pthread Configuration (CYGPKG_POSIX_PTHREAD)


•
POSIX Timers (CYGPKG_POSIX_TIMERS)


•
POSIX Semaphores (CYGPKG_POSIX_SEMAPHORES)


•
POSIX Message Queues (CYGPKG_POSIX_MQUEUES)


•
POSIX Signals Configuration (CYGPKG_POSIX_SIGNALS)


•
POSIX Utsname Configuration (CYGPKG_POSIX_UTSNAME)

8.1.1.1
EL/IX

EL/IX is an API developed by Red Hat to provide compatibility across different operating systems including Linux, embedded Linux, and eCos. The EL/IX API encapsulates subsets of the ISO/IEC 9899:1990 (ISO C) and ISO/IEC 9945-1 (POSIX 1003.1) APIs, as well as a number of other well-known functions commonly found on UNIX and particularly Linux that are suitable for embedded systems.

The EL/IX interface ensures application portability for operating systems adopting the standard, which preserves the investment in software development and developer knowledge. Red Hat has initiated the EL/IX API as an open-source project. Other companies involved with EL/IX include Intel, MIPS, Toshiba, and Pacific Softworks. Additional detailed information about EL/IX can be found at:

http://sources.redhat.com/elix

Since the base of EL/IX functionality is the POSIX specification, operating systems that conform to the POSIX standard should be largely compatible with the EL/IX specification.

Functions are present at the associated level and all higher levels. The eCos EL/IX package follows Level 1, the RTOS compatibility layer. These various API subsets are different levels defined within EL/IX:


•
Level 1—RTOS Compatible Layer. These functions are available in both Linux and embedded operating systems, such as eCos, RTEMS, VxWorks, and PSOS. Certain functions at this level might have reduced or modified semantics.


•
Level 2—Linux Single Process Only. Includes Level 1 along with functions from Linux that are not easily implemented on an RTOS. Includes the full implementation of any reduced Level 1 functions.


•
Level 3—Linux Multiprocess for Embedded Applications. Based on POSIX.1 with the removal of functions not intended for embedded applications.


•
Level 4—Full POSIX or Linux Compliance. These functions are present in a standard Linux kernel.

8.1.2
ITRON

Another compatibility layer eCos supports is called ITRON. The ITRON specification defines APIs that enable highly flexible operating system architectures tailored specifically for embedded system applications. One advantage of the ITRON compatibility layer, as with other compatibility layers, is that the effort of understanding and porting application software to new processor architectures is reduced. A great reference on ITRON is ITRON 3.0, An Open and Portable Real-Time Operating System for Embedded Systems by Ken Sakamura.

There are four levels of the ITRON specification:


•
Required (R)—Functions in this level are mandatory for ITRON 3.0 implementations.


•
Standard (S)—Includes basic functions for achieving a real-time, multitasking operating system.


•
Extended (E)—Includes additional and extended functions, such as object creation and deletion, memory pools, and timer handler functions.


•
CPU Dependent (C)—Incorporates CPU or hardware configuration implementation-dependent functions.

The eCos ITRON package supports version 3.02 of the specification, which incorporates all of the Required (R) level functions, all of the Standard (S) level functions, and most of the Extended (E) level functions as well. More detailed information about the ITRON specification can be found online at:

www.itron.gr.jp

eCos defines a template called Uitron that is used to load the packages for ITRON compatibility. The configuration options for ITRON are located within the ITRON Compatibility Layer (CYGPKG_UITRON) package. Included under this package are configuration options for semaphores, mailboxes, tasks, alarm handlers, and others.

8.2
ROM Monitors

A ROM monitor is a program, typically residing in ROM or flash memory, which provides debug functionality. The ROM monitor is used to load an application program into memory for debugging. After loading the application image, the ROM monitor provides some basic level of debug functionality, such as reading and writing memory or processor registers. The application does not need to provide any debug facilities because this is incorporated into the ROM monitor program.

The eCos system offers several choices for debugging applications. Some of the debugging support options include:


•
Use an In-Circuit Emulator (ICE) or other hardware debugging module supported by GDB.


•
Include support for GDB directly into the application.


•
Use CygMon or RedBoot ROM monitors, which include GDB support, as the resident ROM monitor on the target platform.


•
Create a simple application that only includes GDB debugging support known as a GDB stub ROM. This application is programmed into ROM and provides loading and debugging of applications.


•
Use a third-party ROM monitor. This ROM monitor must support GDB debugging; otherwise, the application must provide GDB debugging support directly.

The debugging option used is dependent on your preferences and the system resources available.

8.2.1
CygMon

CygMon, short for Cygnus ROM Monitor, is an eCos supplied standalone ROM monitor program. CygMon is a command-line driven program that provides basic debug functionality, such as program loading and memory content inspection and manipulation. In addition, GDB communication support is included through the use of the GDB stub. CygMon is designed to be portable across all of the supported eCos architectures. Currently, this support includes the arm, mips, and mn10300 architectures. CygMon also provides an API for applications, which includes system calls that allow access to serial ports or on-board timers. eCos provides a template, Cygmon, for building the ROM monitor program. The CygMon package (CYGPKG_CYGMON) is located under the cygmon subdirectory.

	N O T E 
CygMon is no longer maintained in the eCos project. The preferred ROM monitor program to use is RedBoot. Most of the functionality provided by CygMon is contained in the RedBoot ROM monitor. The CygMon monitor can still be used; however, upkeep, such as bug fixes and enhancements, on the code base is being maintained.


8.2.2
RedBoot

RedBoot is an acronym for Red Hat Embedded Debug and Bootstrap. The RedBoot ROM monitor provides a complete bootstrap environment and features such as a flash file system, as well as network downloading and debugging. RedBoot provides its own GDB stub for communication with a GDB host. RedBoot is intended to replace the CygMon ROM monitor and GDB stub ROM debug software. Chapter 9, The RedBoot ROM Monitor, provides complete details about using RedBoot.

8.2.3
GDB Stub

At the core of the two ROM monitors is the GDB stub. The GDB stub is a piece of software that provides the low-level interaction with the HAL, as well as the GDB protocol communication layer. The low-level HAL interaction includes hooking into the serial port for communication with the GDB host and installing trap handlers for breakpoint support.

The GDB stub can also be built into a simple GDB stub ROM application that resides in the target hardware’s ROM and provides the ability to load and debug applications. This application can be used in lieu of a ROM monitor.

The GDB stub code is contained in the file generic-stub.c with support routines in the file hal_stub.c. These files are located under the common HAL subdirectory. For additional information on the GDB communication protocol, see the online documentation at:

http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

GDB stub software can be included in any eCos image to provide GDB debugging functionality. Both CygMon and RedBoot include GDB stubs. The stub code can then be invoked by the GDB host or by the application itself by calling the breakpoint routine. There are configuration options that control whether GDB stub code is included. These options are located under the common HAL configuration component Source-Level Debugging Support. The configuration options for including GDB stubs in eCos images are detailed in Item List 8.1.

Item List 8.1
GDB Stubs Configuration Options

Option Name

Include GDB Stubs in HAL

CDL Name

CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS

Description

Causes the GDB stub code to be included in the image, enabling GDB communication and debug support. The default for this option is disabled.

Option Name

Include GDB External Break Support For Stubs

CDL Name

CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT

Description

Enables the GDB stub to include a serial port interrupt handler to listening for GDB break packets. This option allows a target to be stopped asynchronously using the GDB host.

Option Name

Include GDB External Break Support When No Stubs

CDL Name

CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT

Description

Allows a GDB host to stop a target asynchronously by listening for GDB break packets in a serial port interrupt handler. This option is used when GDB stubs are not present.

Option Name

Include GDB Multi-Threading Debug Support

CDL Name

CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT

Description

Enables additional HAL code to support multithreaded debugging of an application. This option is enabled by default.

Let’s look at the two configuration options available that enable the building of a GDB stub ROM image. This image can then be programmed into a target hardware platform for communication with a GDB host. The configuration options for building a GDB stub image are under the Global Build Options component. The stubs package template controls the GDB stubs options.

	N O T E 
It is best to use a template with the stubs packages when building a GDB stub application rather than individually configuring the GDB stub options. This ensures that the proper packages are loaded and the configuration options are set properly.


The first option is Build GDB Stub ROM Image (CYGBLD_BUILD_GDB_STUBS), which is disabled by default. When this option is enabled, the platform-specific stub code is built into the GDB stub image. The platform-specific stub code, contained in the files plf_stub.c and plf_stub.h, provides the necessary functionality to initialize the hardware for GDB stub communication with the hardware. This functionality includes initializing the stub serial port, configuring any Light Emitting Diodes (LED), and setting up the necessary interrupt support for asynchronous program breaking. These routines, if supplied, are called from the common HAL stub function initHardware. The GDB stub files produced from this option are gdb_module.img, a GDB recognizable file format; gdb_module.bin. a binary image; and gdb_module.srec, an S-record file. Enabling the platform-specific GDB stub build option requires that the Build Common GDB Stub ROM Image option be enabled as well.

The second option, Build Common GDB Stub ROM Image (CYGBLD_BUILD_COMMON_ GDB_STUBS), is disabled by default. Enabling this option causes the common stub file, stubrom.c, to be compiled into the image. This file supplies a cyg_start routine, which calls the HAL breakpoint function to enter into a GDB debug mode.

8.3
File Systems

eCos provides three different file system implementations: ROM, RAM, and JFFS2. File Allocation Table (FAT) support is also being developed.

The Journalling Flash File System version 2 (JFFS2) is a log-structured file system intended for embedded systems containing flash memory devices. 

Both the ROM and RAM file system use the POSIX File I/O Compatibility Layer (CYGPKG_IO_FILEIO) package. The POSIX File I/O package provides control over the file systems installed and can be found in the fileio subdirectory under the I/O Sub-System. The POSIX File I/O package contains a file system table array containing entries from each installed file system. The entries in this array are of the type cyg_fstab_entry, defined in the file fileio.h. Each entry contains information about the file system, such as the name that might have a value of “romfs” for a ROM file system. Also included with each entry are pointers to functions that control directories and files; for example, make directory, romfs_mkdir, and change directory, romfs_chdir. The maximum number of installed file systems is controlled by a configuration option, as shown in Item List 8.2.

Another table the POSIX File I/O package uses is the mount table, defined in the file fileio.h as cyg_mtab_entry. This table keeps track of the file systems that are mounted or active. Tables can be mounted statically, using the MTAB_ENTRY macro, or dynamically during run time by calling the mount function. The maximum number of mounted, statically and dynamically, file systems is controlled by a configuration option; see Item List 8.2 for more details.

When a file is opened, information about the file is stored in the CYG_FILE_TAG structure, also defined in the file fileio.h. This structure, commonly referred to as a cyg_file, keeps track of the state of the file and also contains a pointer to a table of file I/O operations. The file operations include read, write, and seek.

Item List 8.2 describes the configuration options available for the POSIX File I/O package. These options give you control over file system components.

Item List 8.2
POSIX Compatibility Layer File I/O Configuration Options

Option Name

Enable Socket Support

CDL Name

CYGPKG_IO_FILEIO_SOCKET_SUPPORT

Description

Allows file support for socket interfaces. This option is only valid when the networking package is installed. This option is enabled by default.

Option Name

Maximum Number of Open Files

CDL Name

CYGNUM_FILEIO_NFILE

Description

Controls the maximum number of open files allowed for all file systems. Valid values for this option are 1 to 9,999,999. The default value for this option is 16.

Option Name

Maximum Number of Open File Descriptors

CDL Name

CYGNUM_FILEIO_NFD

Description

Controls the number of open file descriptors allowed for all file systems. The minimum value for this option is set to the Maximum Number of Open Files; the maximum value is 9,999,999. The default value for this option is 16.

Option Name

Maximum Number of Installed File Systems

CDL Name

CYGNUM_FILEIO_FSTAB_MAX

Description

Sets the maximum number of file systems that the POSIX File I/O package can handle. Valid values for this option are 1 to 9,999,999. The default value for this option is 4.

Option Name

Maximum Number of Mounted File Systems

CDL Name

CYGNUM_FILEIO_MTAB_MAX

Description

Controls the number of mounted file systems handled by the POSIX File I/O package. The minimum value for this option is set to the Number of Dynamically Mounted File Systems; the maximum value is 9,999,999. The default value for this option is 8.

Option Name

Number of Dynamically Mounted File Systems

CDL Name

CYGNUM_FILEIO_MTAB_EXTRA

Description

Sets the maximum number of mounted file systems that can be created dynamically. Valid values for this option are 0 to 9,999,999. The default value for this option is 4.

Option Name

Maximum Number of Installed Network Stacks

CDL Name

CYGNUM_FILEIO_NSTAB_MAX

Description

Controls the maximum number of networking stacks that can be handled by the POSIX File I/O package. Valid values for this option are 1 to 9,999,999. The default value for this option is 1.

Option Name

Enable Current Directory Tracking

CDL Name

CYGPKG_IO_FILEIO_TRACK_CWD

Description

Allows the POSIX File I/O package to track the name of the current directory as a string. This supports the getcwd function. The default for this option is enabled.

8.3.1
ROM File System

The eCos ROM File System (CYGPKG_FS_ROM) package is located in the rom subdirectory under the file system packages subdirectory fs. Figure 1.3 in Chapter 1 shows the overall directory structure.

A ROM file system is built on the host development system. This file system is read-only and is stored in the target memory exactly as it was constructed on the host.

At the start of the ROM file system is a header, defined in the file romfs.c as romfs_disk. This header includes the name of the file system, the size of the file system in bytes, and the total number of nodes in the file system.

Each file and directory in the file system is a node. Nodes are defined by the structure romfs_node within the file romfs.c. The node structure includes a description of whether the node is a file or directory, the size of data in the node, and the creation time of the file. The data for each file is stored in a contiguous block of memory, which is referenced by the data member of the node structure. A table of node objects present in the file system follows the header in memory. Figure 8.1 shows an example ROM file system architecture. We can see the header information and node table location at the base address configuration option. The directory main and the file sys_info.txt are represented as romfs_node objects in the node table. 

	Figure 8.1
Example ROM file system memory architecture.


The ROM file system package contains a utility to make a ROM file system image. This code is located in the file mk_romfs.c under the support subdirectory. The output from this utility is a file romfs.img, which contains the files and directories and can be loaded into memory. The ROM file system image utility is built on a host system, such as Windows or Linux. The eCos development tools are not used to build the ROM file system image utility. Additional details about using the ROM file system utility can be found in the file mk_romfs.txt in the doc subdirectory of the ROM file system package.

8.3.2
RAM File System

The eCos RAM file system purely uses RAM to store file data. Therefore, it does not permanently store the file system data because the contents are lost when the system is reset. The RAM file system starts off uninitialized with no files present. It can then be used to store temporary data using the classic file system abstraction, for applications requiring a file system, or it can be loaded with the contents of a ROM file system to provide a fully writeable file system.

The eCos RAM File System (CYGPKG_FS_RAM) package is located in the ram subdirectory under the file system packages subdirectory fs. Figure 1.3 in Chapter 1 shows the overall directory structure. The RAM file system, similar to the ROM implementation, uses a node to describe files and directories in the system.

The node structure, ramfs_node, is defined in the file ramfs.c and includes the node type, size of the file in bytes, the last file access time, and last file modification time. The RAM file system implementation contains two different storage mechanisms, Simple and Block.

The Simple mechanism uses the malloc and free routines to allocate memory for nodes and the file data. If the file data increases in size, memory is reallocated for file. This mechanism has the advantage of using only the amount of memory it needs to contain all files in the RAM file system. The Simple mechanism, as the name implies, is a straightforward approach. One disadvantage of this mechanism is fragmentation of the heap from constant reallocations for files. This can lead to the inability of a file to grow because the file size might be larger than the amount of memory that can be allocated from the heap. Another disadvantage is that the malloc implementation must be included in the eCos image.

The Block mechanism divides file data storage memory into fixed-size blocks. The allocation method for these blocks can be from a predefined array of blocks or using malloc and free. File data storage for each node, ramfs_node, is arranged in up to three arrays of pointers to the data block structure, ramfs_block. The number of arrays used is set by configuration options, shown in Item List 8.3. The three arrays allow direct access, single-level indirect access, and two-level indirect access to the data blocks. Figure 8.2 shows the three different data access object arrays for an example file node with a filename sys_info.txt. 

	Figure 8.2
RAM file system Block data storage mechanism architecture.


The Block data storage mechanism has the advantage of using fixed-size blocks making management of memory easier. Another advantage is that the allocation mechanism is configurable; therefore, the malloc implementation can be excluded from the image. A disadvantage of this mechanism is when using the malloc allocation method; each block causes a malloc function call rather than a single call for the entire file. The memory allocated is also only available for the RAM file system.

There are two configuration options that determine the data storage implementation used for the RAM file system. These options are Simple Implementation (CYGPKG_FS_RAM_SIMPLE) and Block-Based Allocation (CYGPKG_FS_RAM_BLOCKS), which are located under the RAM File System package. Only one of the data storage implementations can be selected for the RAM file system. The Simple Implementation contains the configuration suboption that sets the amount of memory to allocate for new data added to a file. This suboption is Size of File Data Storage Increment (CYGNUM_RAMFS_REALLOC_INCREMENT). The different configuration options for the Block storage mechanism are detailed in Item List 8.3.

Item List 8.3
RAM File System Block Mechanism Configuration Options

Option Name

Size of File Data Storage Block

CDL Name

CYGNUM_RAMFS_BLOCK_SIZE

Description

Controls the size of the ramfs_block for file data storage. The valid values for this option are 64 to 32,768 bytes. The default value is 256.

Option Name

Directly Referenced Data Storage Blocks

CDL Name

CYGNUM_RAMFS_BLOCKS_DIRECT

Description

Sets the size of the array for the directly accessed data storage blocks. The valid values for this option are 0 to 32. The default value is 8.

Option Name

Single Level Indirect Data Storage Blocks

CDL Name

CYGNUM_RAMFS_BLOCKS_INDIRECT1

Description

Sets the size of the array for the single-level indirect data storage blocks. The valid values for this option are 0 to 32. Setting this value to 0 eliminates the single-level indirect array from the file node. The default value is 1.

Option Name

Two Level Indirect Data Storage Blocks

CDL Name

CYGNUM_RAMFS_BLOCKS_INDIRECT2

Description

Sets the size of the array for the two-level indirect data storage blocks. The valid values for this option are 0 to 32. Setting this value to 0 eliminates the single-level indirect array from the file node. The default value is 1.

Option Name

Use Block Array Rather Than Malloc

CDL Name

CYGPKG_FS_RAM_BLOCKS_ARRAY

Description

Determines whether malloc is used to allocate data storage blocks or an external array block. Using an external array block enables configuration suboptions for setting the size and name of the array. The default for this option is disabled, which causes malloc to be used.

8.3.3
Journalling Flash File System Version 2

eCos also provides support for the Journalling Flash File System, version 2 (JFFS2). JFFS2 is based on JFFS (version 1). JFFS was designed to use embedded flash memory devices more efficiently. JFFS and JFFS2 take into account the characteristics of flash technology when dealing with the typical situation in an embedded system where the system is not always cleanly shut down.

JFFS2 is a log-structured file system, whereas a typical embedded file system emulates a traditional file system that uses block-based storage and keeps track of the files in these blocks. JFFS2 builds on the version 1 technology.

The JFFS2 package (CYGPKG_FS_JFFS2) is contained in the jffs2 directory under the file system’s packages directory fs. The license for the JFFS2 file system can be found in the file License under the src directory. Additional details about JFFS2 can be found online at:

http://sources.redhat.com/jffs2

8.4
PCI Support

eCos provides a Peripheral Component Interconnect (PCI) bus library. The PCI bus is a high-performance 32- or 64-bit bus that has multiplexed address and data lines. The bus is intended to connect peripheral controller components, add-in boards, and processor/memory systems. The PCI bus is commonly found in PCs today, but is has also made its way into embedded system designs. The current version of the PCI bus specification is 2.2. Additional information about the PCI specification can be found online at:

www.pcisig.com

The eCos PCI Configuration Library (CYGPKG_IO_PCI) package can be found in the pci subdirectory under the I/O Sub-System packages subdirectory, io. See Figure 1.3 in Chapter 1 for an overall view of the directory structure. This library provides the following functionality:


•
Scan the bus for specific devices based on Device and Vendor ID or on a particular device class code.


•
Read and modify the generic PCI information.


•
Read and modify the device-specific PCI information.


•
Allocate PCI memory and I/O space for devices.


•
Translate device specific PCI interrupts into HAL vectors.

8.4.1
PCI Library API

The eCos PCI library package contains two main source files, pci.c, high-level PCI library API functions; and pci_hw.c, low-level HAL interface routines. The high-level API routines are used by applications to control the devices on the PCI bus. There are also low-level PCI routines, which are used by the high-level API to access the HAL platform-specific PCI functionality. The high-level PCI library API functions are described in Item List 8.4 and can be found in the file pci.h.

Item List 8.4
PCI Library API Functions

Syntax:

void

cyg_pci_init(

 void

 );

Parameters:

None

Description:

Initialize the PCI bus allowing access to the configuration space. This should be the first function called, although certain HALs might call this function as part of the platform initialization procedure.

Syntax:

cyg_bool

cyg_pci_find_device(

 cyg_uint16 vendor,

 cyg_uint16 device,

 cyg_pci_device_id *devid

 );

Parameters:

vendor—Vendor ID of the device to find.

device—Device ID of the device to find.

devid—pointer to the Device ID where to start the scan. When the function returns, this points to the Device ID of the next device.

Description:

Scans the PCI bus configuration space for a device with the given Vendor and Device IDs. The search begins with the device specified in the devid parameter; specifying CYG_PCI_NULL_DEVID starts the search at the first slot. This function returns TRUE if the specified device is found; otherwise, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_find_class(

 cyg_uint32 dev_class,

 cyg_pci_device_id *devid

 );

Parameters:

dev_class—Class Code of the device to find.

devid—pointer to the bus number, device number, and functional number of the device where to start the scan. When the function returns, this points to the bus number, device number, and functional number of the next device.

Description:

Searches the PCI bus configuration space for the device with the Class Code specified in the dev_class parameter. The search begins with the device specified in the devid parameter; specifying CYG_PCI_NULL_DEVID starts the search at the first slot. This function returns TRUE if the specified device is found; otherwise, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_find_next(

 cyg_pci_device_id cur_devid,

 cyg_pci_device_id *next_devid

 );

Parameters:

cur_devid—bus number, device number, and functional number of the device where the search begins.

next_devid—pointer to the bus number, device number, and functional number of the next device. This parameter can also point to cur_devid.

Description:

Scans the PCI configuration space for the next valid device after the device specified in the cur_devid parameter. The search begins with the device specified in the devid parameter; specifying CYG_PCI_NULL_DEVID starts the search at the first slot. This function returns TRUE if another device is found; otherwise, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_find_matching(

 cyg_pci_match_func *matchp,

 void *match_callback_data,

 cyg_pci_device_id *devid

 );

Parameters:

matchp—pointer to function, supplied by the caller, that checks if the device returned matches.

match_callback_data—pointer to user data to pass to the matchp callback function.

devid—pointer to device information to begin search.

Description:

Searches the PCI bus configuration space for a device whose properties match those required by the matchp function. The matchp function is called for each device on the bus. The search begins with the device pointed to in the devid parameter. This function returns TRUE if a matching device is found; otherwise, FALSE is returned.

Syntax:

void

cyg_pci_get_device_info(

 cyg_pci_device_id devid,

 cyg_pci_device *dev_info

 );

Parameters:

devid—bus number, device number, and functional number of the device.

dev_info—pointer to returned configuration information for the device.

Description:

Gets the generic PCI configuration information for the device specified in the devid parameter.

Syntax:

void

cyg_pci_set_device_info(

 cyg_pci_device_id devid,

 cyg_pci_device_id *dev_info

 );

Parameters:

devid—bus number, device number, and functional number of the device.

dev_info—pointer to configuration information to set the device. The function sets this parameter to the configuration information by reading back the written information when it returns.

Description:

Set the generic PCI configuration information for the device specified in the devid parameter.

Syntax:

void

cyg_pci_read_config_uintX(

 cyg_pci_device_id devid,

 cyg_uint8 offset,

 cyg_uintX *val

 );

Parameters:

devid—bus number, device number, and functional number of the device.

offset—register offset.

val—pointer to the returned register value.

Description:

Reads the device-specific register from the PCI configuration space for the device specified in the devid parameter. The X in the function name and the type of the val parameter are 8, 16, or 32 and determine the size of the read performed. This routine should be used to access device-specific registers; general accesses should use the cyg_pci_get_device_info function.

Syntax:

void

cyg_pci_write_config_uintX(

 cyg_pci_device_id devid,

 cyg_uint8 offset,

 cyg_uintX val

 );

Parameters:

devid—bus number, device number, and functional number of the device.

offset—register offset.

val—value to set in the specified register.

Description:

Sets the device specific register in the PCI configuration space for the device specified in the devid parameter. The X in the function name and the type of the val parameter are 8, 16, or 32 and determine the size of the write performed. This routine should be used to access device-specific registers; general accesses should use the cyg_pci_set_device_info function.

Syntax:

cyg_bool

cyg_pci_configure_device(

 cyg_pci_device *dev_info

 );

Parameters:

dev_info—pointer to the device configuration header information. When the function returns, this parameter contains the resource allocations for the device.

Description:

Handles all I/O and memory regions that need configuration on a device by allocating memory to all Base Address Registers (BARs). These allocated base addresses are stored in the dev_info parameter. If the dev_info parameter does not contain valid base size values, false is returned. This function also calls cyg_pci_translate_interrupt.

Syntax:

cyg_bool

cyg_pci_configure_bus(

 cyg_uint8 bus,

 cyg_uint8 *next_bus

 );

Parameters:

bus—current bus number.

bus_next—pointer to the subordinate buses. This parameter specifies the bus number to assign to the next subordinate bus found. The number is incremented for new buses discovered.

Description:

Allocates memory and I/O space for all Base Address Registers (BAR) on all devices for the bus specified by the bus parameter and subordinate buses specified by the bus_next parameter. This function is used in systems with multiple buses connected by bridges. On success, TRUE is returned; otherwise, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_translate_interrupt(

 cyg_pci_device *dev_info,

 CYG_ADDRWORD *vec

 );

Parameters:

dev_info—pointer to the device configuration header information.

vec—pointer to translated interrupt vector number.

Description:

Translates the PCI interrupt signal (INTA\, INTB\, INTC\ or INTD\) to the associated HAL interrupt vector. If the device generates interrupts, the translated vector number is placed in the vec parameter and TRUE is returned; otherwise, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_allocate_memory(

 cyg_pci_device *dev_info,

 cyg_uint32 bar,

 CYG_PCI_ADDRESS64 *base

 );

Parameters:

dev_info—pointer to the device configuration header information.

bar—Base Address Register to allocate memory.

base—pointer to the base address to allocate the memory. The address of the next free location is returned in this parameter if the allocation succeeds.

Description:

Allocates memory to the BAR specified in the bar parameter, which allows a device driver to set up its own memory mappings. If the BAR is the wrong type or the dev_info parameter does not contain valid base sizes, FALSE is returned.

Syntax:

cyg_bool

cyg_pci_allocate_io(

 cyg_pci_device *dev_info,

 cyg_uint32 bar,

 CYG_PCI_ADDRESS32 *base

 );

Parameters:

dev_info—pointer to the device configuration header information.

bar—Base Address Register to allocate I/O space.

base—pointer to the base address to allocate the I/O space. The address of the next free location is returned in this parameter if the allocation succeeds.

Description:

Allocates I/O space to the BAR specified in the bar parameter, which allows a device driver to set up its own I/O mappings. If the BAR is the wrong type or the dev_info parameter does not contain valid base sizes, FALSE is returned.

Syntax:

void

cyg_pci_set_memory_base(

 CYG_PCI_ADDRESS64 base

 );

Parameters:

base—address for BAR memory mapping.

Description:

Set the base address for memory mapping, overriding the default values set in the platform PCI initialization.

Syntax:

void

cyg_pci_set_io_base(

 CYG_PCI_ADDRESS32 base

 );

Parameters:

base—address for BAR I/O mapping.

Description:

Set the base address for I/O mapping, overriding the default values set in the platform PCI initialization.

A good source for example code on using the PCI library API functions can be found in the PCI Library package test file pci1.c. Within this file is the routine pci_test. This routine shows how to initialize the PCI bus and then scan the bus for all devices present.

8.5
USB Support

Universal Serial Bus (USB) networks consist of a single host, called the Host Controller, and one or more slave devices. Slave devices connect to the USB through ports on specialized USB devices called hubs. The host initiates all USB operations. For example, if a host wants to receive data from a USB peripheral, the host issues an IN token to the peripheral. The slave peripheral then responds with the data or a NAK. USB slave peripherals cannot interact with each other. The current version of the USB specification is 2.0. USB supports four different types of communication:


•
Control Transfers—consist of standard, class, vendor, and reserved. All devices must respond to certain standard control messages.


•
Interrupt Transfers—limited-latency transfer to or from a device. The data can be presented for transfer at any time and is delivered by the USB at a rate that is not slower than what is specified by the device. An example of this type of transfer is the coordinates from a USB mouse device.


•
Isochronous Transfers—intended for multimedia devices with large amounts of data that is continuously exchanged.


•
Bulk Transfers—typically consists of larger amounts of data. Reliability of this data is ensured by the hardware level using error detection and retries. Bandwidth for bulk transfers varies depending on other bus activities.

Additional detailed information about the USB and the necessary specifications can be found online at:

www.usb.org

eCos provides support for USB slave devices. The eCos USB support consists of four different packages, which only provide support for developing USB slave peripherals and not USB hosts. USB slave device driver packages are located under the usb subdirectory. This is with the other device drivers within the devs subdirectory. The other packages for USB support are located under the usb subdirectory within the I/O Sub-System subdirectory io. Figure 1.3 in Chapter 1 gives an overall view of the directory structure. The USB packages are:


•

USB Device Drivers—contains the specific implementations for the USB slave hardware devices supported. Currently, the USB device driver support exists for the Intel StrongARM SA-11x0, and has the package name SA11X0 USB Device Driver (CYGPKG_DEVS_USB_SA11X0).


•

Common USB—provides information common to the host and slave sides of the bus such as the details of the control protocol. The USB Support (CYGPKG_IO_USB) package is located under the common subdirectory within the I/O Sub-System.


•

Common USB Slave—defines the USB API for device drivers and provides utilities, such as control message handlers, needed by the device drivers and applications. The file usbs.h contains the USB API. The USB Slave-Side Support (CYGPKG_IO_USB_SLAVE) package is located under the slave subdirectory within the I/O Sub-System.


•

Class-Specific USB Support—eases the development of specific classes of USB peripherals. Currently, USB-Ethernet devices are supported. The package USB Slave Ethernet Support (CYGPKG_IO_USB_SLAVE_ETH) is located under the eth subdirectory within the I/O Sub-System.

Additional information about the USB support in eCos can be found online at:

http://sources.redhat.com/ecos/docs.html

8.6
Networking Support

Internet connectivity for embedded devices is quickly becoming a standard requirement. From Internet Appliances to remote sensor controllers, the ability to send and receive data over the Internet, or a private network, is becoming standard. The core to this connectivity is the network stack. Figure 8.3 shows a general architecture diagram of the some of the protocols supported by the eCos Networking package.

	Figure 8.3
eCos general networking architecture.


Networking stacks use several different protocols for communication. For example, the Simple Mail Transfer Protocol (SMTP) is used to send and receive email. The eCos Networking package incorporates the frequently used standard protocols for network communication. Using these protocols, a wide range of application layer components can be developed, such as a mail transfer module for remote email notifications or a Web server module for remote status and control, which meet the needs of many embedded devices. Additional information about the networking stack, including the networking stacks API, can be found online at:

http://sources.redhat.com/ecos/docs.html

Several sources are available that detail the different protocols commonly used for network communications. One good source is the book TCP/IP Illustrated, Volume 1: The Protocols by W. Richard Stevens.

Another source for detailed information about Internet protocols is the Request For Comment (RFC) repository. RFCs are documents that set standards for the Internet community. Several sites are available for browsing through these documents; one RFC site is:

www.ietf.org/rfc.html

There is a Basic Networking Framework package provided with eCos for networking support. This Basic Networking Framework package is modular, which allows the selection of the actual stack implementation as a configuration option. There are two different network stack implementations available. One is adapted from OpenBSD and the other from FreeBSD.

8.6.1
OpenBSD

The first implementation is derived from the OpenBSD networking code. OpenBSD is a UNIX-like open-source operating system project based on 4.4BSD source code. Various components are incorporated in the OpenBSD project, including a networking stack. Additional information about OpenBSD can be found online at:

www.openbsd.org

The protocols supported in the OpenBSD implementation are:


•
IPv4—Internet Protocol version 4


•
ARP—Address Resolution Protocol


•
RARP—Reverse Address Resolution Protocol


•
ICMP—Internet Control Message Protocol


•
UDP—User Datagram Protocol


•
TCP—Transmission Control Protocol


•
DHCP—Dynamic Host Configuration Protocol


•
BOOTP—Bootstrap Protocol


•
TFTP—Trivial File Transfer Protocol

In addition, the OpenBSD implementation also supports raw packet interface. There are other features supported, but untested, by the OpenBSD network stack. These other features include:


•
IPv6—Internet Protocol version 6


•
Berkeley Packet Filter (BPF)


•
Generic Tunneling Interface (GIF)


•
Multicast support, which includes Multicast routing

The source code for the OpenBSD network stack implementation is located in the tcpip subdirectory under the net root directory.

The eCos Net template includes the OpenBSD implementation. Using the Net template allows you to incorporate the OpenBSD network stack into your application image, which includes the necessary device drivers for a particular platform. See Chapter 11 for more information about using templates. The OpenBSD networking package (CYGPKG_NET_OPENBSD_STACK) can also be added independently to customize the network configuration for a specific image build.

The license terms of the OpenBSD stack can be found online at:

www.openbsd.org/policy.html

8.6.2
FreeBSD

The other networking implementation is derived from FreeBSD networking code released from the KAME project. FreeBSD is based on the 4.4BSD-Lite operating system. Additional information about FreeBSD can be found online at:

 www.freebsd.org

Additional information about the KAME project can be found online at:

 www.kame.net

The networking protocols supported in the FreeBSD implementation include:


•
IPv4—Internet Protocol version 4


•
IPv6—Internet Protocol version 6


•
ARP—Address Resolution Protocol


•
RARP—Reverse Address Resolution Protocol


•
ICMP—Internet Control Message Protocol


•
IGMP—Internet Group Management Protocol


•
UDP—User Datagram Protocol


•
TCP—Transmission Control Protocol


•
DHCP—Dynamic Host Configuration Protocol


•
BOOTP—Bootstrap Protocol


•
TFTP—Trivial File Transfer Protocol


•
Multicast addressing

Along with these protocols, the FreeBSD implementation also supports raw packet interface. FreeBSD also supports other features in its network stack; however, these features are untested. These other features include:


•
Berkeley Packet Filter (BPF)


•
Multicast routing

The source code for the FreeBSD network stack implementation is located in the bsd_tcpip subdirectory under the net root directory.

eCos also has a template available to include the FreeBSD implementation called New_Net. However, the FreeBSD networking package (CYGPKG_NET_FREEBSD_STACK) can be included as an individual component as well. Chapter 11 contains details about using templates and packages in eCos.

The FreeBSD license terms can be found online at:

 www.freebsd.org/copyright/copyright.html

8.6.3
lwIP

There is also a network stack contribution available called Lightweight TCP/IP (lwIP), which is basically a small memory footprint implementation of the TCP/IP protocol suite. The focus of the lwIP implementation is to provide full TCP/IP support while reducing the necessary memory footprint. lwIP supports IP, ICMP, UDP, and TCP and is available under a BSD-style license. Additional information about the lwIP contribution can be found online at:

 www.sics.se/~adam/lwip

8.6.4
Networking Threads

The eCos networking code uses threads to accomplish particular tasks. It is important to understand what networking threads are running in the system to determine the resource needs when using the networking stack.

It is also necessary to keep the thread priorities for the networking code in mind when designing the overall thread priority scheme to ensure that adequate network performance is achieved. Certain threads can be enabled or disable via the Basic Networking Framework package configuration options or under the specific stack implementation, OpenBSD or FreeBSD, configuration options. Item List 8.5 describes the networking threads, their default priority levels, and the configuration options used to set the specific priority level.

Item List 8.5
Networking Threads

Thread Function

alarm_thread

Filename

timeout.c

CDL Name

CYGPKG_NET_FAST_THREAD_PRIORITY

Default Priority Level

6

Description

Services transmit and receive interrupts for Ethernet network device driver. This thread also handles network timeout events. Setting this thread’s priority level higher than other application thread priority levels allows the best network performance. Setting the priority level lower can affect the throughput of network traffic. This thread is enabled by default.

Thread Function

cyg_netint

Filename

support.c

CDL Name

CYGPKG_NET_THREAD_PRIORITY

Default Priority Level

7

Description

Handles ARP requests and IP (version 4) incoming datagram parsing. Also processes IPv6 incoming datagram parsing and Ethernet bridge frames when these options are enabled. This background thread priority level affects the network stack performance. This thread is enabled by default.

Thread Function

cyg_rs

Filename

ipv6_routing_thread.c

CDL Name

CYGINT_NET_IPV6_ROUTING_THREAD_PRIORITY

Default Priority Level

8

Description

Handles sending router solicitation messages used to exchange IP addresses and other information. This thread is disabled by default since IPv6 is also disabled by default.

Thread Function

dhcp_mgt_entry

Filename

dhcp_support.c

CDL Name

CYGPKG_NET_DHCP_THREAD_PRIORITY

Default Priority Level

8

Description

Manages the DHCP leases for each network interface by ensuring that each interface is configured and functioning properly. If a problem occurs or a lease expires, the DHCP thread reinitializes and reconfigures the network interfaces. This thread is enabled by default with DHCP support.

Thread Function

tftpd_server

Filename

tftp_server.c

CDL Name

CYGPKG_NET_TFTPD_THREAD_PRIORITY

Default Priority Level

10

Description

A TFTP server that manages client applications attempting to connect and perform read and write requests. The TFTP is used to exchange files among devices connected to the Internet. Using the TFTP server requires the inclusion of a file system implementation. This thread is enabled by default.

8.6.5
Networking Configuration

The eCos Basic Networking Framework package (CYGPKG_NET) is located in the common subdirectory under the net subdirectory. See Figure 1.3 in Chapter 1 for an overall view of the repository directory structure. The Basic Networking Framework package configuration options are described in Item List 8.6.

Item List 8.6
Basic Networking Framework Package Configuration Options

Option Name

INET Support

CDL Name

CYGPKG_NET_INET

Description

Allows the use of IPv4 and ARP within the networking stack. This option is enabled by default. This option contains suboptions for enabling IPv6 Support (CYGPKG_NET_INET6), Multicast Routing Support (CYGSEM_NET_ROUTING), and the Use Random Sequence (CYGSEM_NET_RANDOMID). All suboptions are disabled by default.

Option Name

TFTP (RFC-1350) Support

CDL Name

CYGPKG_NET_TFTP

Description

Includes client and server library support for TFTP. This option is enabled by default. The Priority Level for TFTP Daemon Thread (CYGPKG_NET_TFTPD_THREAD_PRIORITY) suboption sets the priority level of the TFTP server thread. The default priority level is 10.

Option Name

Use Full DHCP Instead of BOOTP

CDL Name

CYGPKG_NET_DHCP

Description

Enables the use of DHCP for the initialization of the IP address for network interfaces. Otherwise, BOOTP is used, which does not require as much resources as DHCP. This option is enabled by default. When this option is enabled, suboptions configure the DHCP management thread settings.

Option Name

Options Controlling IPv6 Routing

CDL Name

CYGPKG_NET_IPV6_ROUTING

Description

The configuration suboptions control the IPv6 thread for sending router solicitation messages, such as thread priority and the rate at which the solicitations are sent out. This option is only enabled by default when the IPv6 Support configuration suboption is enabled.

Option Name

Debug Output

CDL Name

CYGPKG_NET_DEBUG

Description

Enables diagnostic output for various stack operations. The default for this option is disabled.

Option Name

Network Timing Statistics

CDL Name

CYGPKG_NET_TIMING_STATS

Description

Controls the diagnostic output of timing messages related to various stack function calls such as memcpy and mbuf_alloc. The default for this option is disabled.

Option Name

Build Networking Tests (Demo Programs)

CDL Name

CYGPKG_NET_BUILD_TESTS

Description

Enables network tests to be built. This option is disabled by default.

Option Name

Initialization Options for ‘eth0’

CDL Name

CYGHWR_NET_DRIVER_ETH0_SETUP_OPTIONS

Description

This component contains configuration options that specify the method (DHCP/BOOTP or static) for initializing the Ethernet 0 interface. The default is to use DHCP/BOOTP for initialization.

Option Name

Initialization Options for ‘eth1’

CDL Name

CYGHWR_NET_DRIVER_ETH1_SETUP_OPTIONS

Description

This component contains configuration options that specify the method (DHCP/BOOTP or static) for initializing the Ethernet 1 interface, if it exists. The default is to use DHCP/BOOTP for initialization.

The two networking stack implementations (OpenBSD and FreeBSD) also contain their own configuration options. The configuration options with XXX in the CDL name correspond to either FREEBSD for the FreeBSD stack implementation or OPENBSD for the OpenBSD stack implementation. These configuration options are detailed in Item List 8.7.

Item List 8.7
Network Stack Implementation Specific Package Configuration Options

Option Name

Implement the Socket API Locally

CDL Name

CYGPKG_NET_API_LOCAL

Description

Defines whether the networking API functions, such as bind, socket, and connect, are supplied by the stack itself package.

Option Name

Implement the Socket API Via FILEIO Package

CDL Name

CYGPKG_NET_API_FILEIO

Description

Defines whether the networking API functions, such as bind, socket, and connect, are supplied by the FILEIO package.

Option Name

INET Support

CDL Name

CYGPKG_NET_XXX_INET

Description

Enables IPv4. This option is enabled by default. The suboption for enabling IPv6 Support (CYGPKG_NET_XXX_INET6) is disabled by default.

Option Name

Number of BPF Filters

CDL Name

CYGPKG_NET_NBPF

Description

Sets the number of BPFs. The BPF code, which allows sniffing of the network packets, is not included in the eCos release, but can be obtained from the OpenBSD site. The default for this option is 0.

Option Name

Built-in Ethernet Bridge Code

CDL Name

CYGPKG_NET_BRIDGE

Description

Enables the code for Ethernet bridge support. The default for this option is disabled.

Option Name

Number of GIF Things

CDL Name

CYGPKG_NET_NGIF

Description

Sets the number of GIFs. The GIF code allows tunneling of different versions (4 or 6) of IP packets. The default value is 0.

Option Name

Number of Loopback Interfaces

CDL Name

CYGPKG_NET_NLOOP

Description

Sets the number of loopback interfaces, which allows reception of outgoing packets. The default value for this option is 1.

Option Name

Error and Warning Log Control

CDL Name

CYGPKG_NET_XXX_LOGGING

Description

Controls the type and amount of error/warning message output by the networking code. A 32-bit hexadecimal number is set to control which messages are output. This option is enabled by default.

Option Name

Memory Designated for Networking Buffers

CDL Name

CYGPKG_NET_MEM_USAGE

Description

Controls the amount of memory allocated for buffers used by the networking code. These buffers are used to hold the incoming and outgoing data. The default value is 256 kbytes.

Option Name

Max Number of Open Sockets

CDL Name

CYGPKG_NET_MAXSOCKETS

Description

Controls the maximum number of network sockets that can be simultaneously opened. The default is 16.

Option Name

Number of Supported Pending Network Events

CDL Name

CYGPKG_NET_NUM_WAKEUP_EVENTS

Description

Sets the total possible number of pending network events. An example of a pending network event is a connect function call waiting to complete. The default value is 8.

Option Name

Priority Level for Background Network Processing

CDL Name

CYGPKG_NET_THREAD_PRIORITY

Sets the priority level of the background networking thread. The default priority level is 7.

Option Name

Priority Level for Fast Network Processing

CDL Name

CYGPKG_NET_FAST_THREAD_PRIORITY

Description

Sets the priority level of the fast network thread. This priority level should be higher than the background networking thread. The default priority level is 6.

Option Name

Fast Network Processing Thread ‘Tickles’ Driver

CDL Name

CYGPKG_NET_FAST_THREAD_TICKLE_DEVS

Description

Allows the fast network thread to unblock a network driver due to a hardware problem such as a lost interrupt. Attempting to send a packet allows the driver to become unblocked. This option is not necessary for protocols that exchange keep-alive packets periodically, such as TCP. A suboption sets the delay (in kernel ticks) to wait before sending the packet. The default is enabled with a delay of 50 kernel ticks (approximately 500ms).

Option Name

Build Networking Tests (Demo Programs)

CDL Name

CYGPKG_NET_BUILD_TESTS

Description

Enables network tests to be built. This option is disabled by default.

Some of the configuration options deserve a closer look because of their impact on the operation of the networking package. The configuration option Memory Designated for Networking Buffers is used to set up the memory used by the network stack. This memory consists of a number of memory buffers (mbuf), memory clusters, and a memory pool. The mbuf has a fixed size of 128 bytes, including data and header information, which can store smaller-sized packets. If the packet exceeds the mbuf limit, a memory cluster, which has a fixed size of 4096 bytes, is added to contain the remaining data. The memory pool is like a private heap used by various functions of the network stack, which can malloc and free memory as needed. Fine-tuning the amount of memory designated for use by the Networking package might be necessary to handle the network data flow for the embedded device’s specific application.

A good source for a detailed description of the memory architecture used in the 4.4BSD operating system, which is the basis for the networking packages, is the book The Design and Implementation of the 4.4BSD Operating System by Marshall Kirk McKusick and Keith Bostic.

Another configuration option we need to take a closer look at is the Initialization Options for ‘eth0’. The Networking package contains configuration components for two Ethernet network interface devices. The second Ethernet network device is configured with the Initialization Options for ‘eth1’ configuration option. It is important to put some forethought into how each device is used in the released system; perhaps one interface can be used for debug and one for monitor and control via SNMP. It is necessary to ensure that each device is properly initialized with an appropriate network address when the system is initialized.

A MAC address needs to be preconfigured for each Ethernet network interface. The MAC address typically resides in some form of read-only memory that is set during hardware manufacturing. For some Ethernet drivers, the MAC address can be set by configuration data in the RedBoot ROM monitor or statically configured in the application.

There are three options available for the initialization of the Ethernet network interfaces. The first option is Initialize ‘eth0’ Manually (CYGHW_NET_DRIVER_ETH0_MANUAL). This requires the application to perform all device interface initialization and network address configuration to get the network interface up and running.

The next option we want to better understand is Use BOOTP/DHCP To Initialize ‘eth0’ (CYGHW_NET_DRIVER_ETH0_BOOTP). The suboption Use DHCP Rather Than BOOTP for ‘eth0’ (CYGHWR_NET_DRIVER_ETH0_DHCP) determines what protocol is used for the network interface initialization. The default is to use DHCP; in which case, a DHCP server is needed to provide the IP address. When using BOOTP or DHCP for network interface initialization, the application needs to call the function init_all_network_interfaces to initialize the network interface using the selected protocol. The application must include the file network.h in order to use the networking package API functions.

If the configuration option Use Full DHCP Instead of BOOTP (CYGPKG_NET_DHCP) is enabled, a DHCP management thread is started, which monitors the network interface to ensure that the DHCP leases are properly handled. If this configuration option is disabled, the application is responsible for renewing DHCP leases. A semaphore, dhcp_needs_attention, and a function, dhcp_bind, are provided for the application to manage the DHCP leases.

The last option is Address Setups For ‘eth0’ (CYGHWR_NET_DRIVER_ETH0_ADDRS), which allows you to set static addresses for the network interface. The suboptions allow configuration of the IP address, network mask, broadcast address, and gateway address. Configuring static addresses can be useful in debugging scenarios; however, in a release system that runs the same application image it can be catastrophic to have multiple devices with the same IP address on the same network.

	N O T E 
Debugging via the network interface is allowed by the RedBoot ROM monitor, see Chapter 9 for more details about RedBoot. RedBoot requires its own IP address for communication with the GDB host. The application needs to have a different IP address for its network communications. One solution is to statically configure the IP address RedBoot uses and have the application use DHCP or BOOTP to get its own IP address.


8.6.6
Networking Tests

The eCos networking package provides tests for exercising different features of network communications. The tests can be performed over any of the network interfaces. The network tests, located in the tests directory under the common networking directory, are also a good source for examples on performing various network functions. For example, the file udp_lo_test.c demonstrates how to initialize the network interface, create a UDP client for sending data, and create a UDP server for receiving data.

There are two configuration options for building network tests, one under the Basic Networking Framework package and the other under the specific networking stack implementation (OpenBSD or FreeBSD) package. Both configuration options are Build Networking Tests (Demo Programs) (CYGPKG_NET_BUILD_TESTS).

Some of the tests require additional host machines running programs included in the networking package tests. A makefile, make.linux, is included to build these tests on the host machine. Table 8.1 describes the tests available in the eCos Networking package.
	Table 8.1
Networking Tests



	Test Filename
	Description

	bridge.c
	Example network bridge application.

	dhcp_test.c
	Performs DHCP test by renewing lease and performing pings to the host.

	flood.c
	Continuously sends multiple ping packets, then waits for reception of the responses.

	ftp_test.c
	Connects to an FTP server, then reads and writes data.

	ga_server_test.c
	Waits for a connection on a specified port, then retrieves a packet and closes the connection. This test uses getaddrinfo to set up its addresses.

	ipv6_server_test.c
	Uses IPv6 and waits for a connection on a specified port, then retrieves a packet and closes the connection. A host running a telnet session is needed for this test.

	mbuf_test.c
	Memory buffer (mbuf) allocation.

	multi_lo_select.c
	Performs multiple select operations on different sockets for sending data.

	nc_test_master.c

nc_test_slave.c
	Characterizes the performance of a network by running the nc_test_slave.c on the target machine and the nc_test_master.c on the host machine. UDP and TCP are used to transfer data across the network.

	nc6_test_master.c

nc6_test_slave.c
	Characterizes the performance of a network using IPv4 and IPv6 by running the nc6_test_slave.c on the target machine and the nc6_test_master.c on the host machine. UDP and TCP are used to transfer data across the network.

	ping_test.c
	Sends multiple ping packets to a server machine to verify communication, as well as to a nonexistent machine to verify the timeout of ping packets.

	ping_lo_test.c
	Ping test of the loopback address.

	server_test.c
	Waits for a connection on a specified port, then retrieves a packet and closes the connection. A host running a telnet session is needed for this test.

	set_mac_address.c
	Sets the MAC address for the Ethernet network interfaces. All Ethernet drivers might not support this feature.

	socket_test.c
	Performs basic socket creation and setup.

	tcp_echo.c

tcp_sink.c

tcp_source.c
	Data forwarding test to verify network performance. The file tcp_source.c runs on a host and sends data to the target machine. The file tcp_echo.c runs on the target, which receives the data and forwards it. The file tcp_sink.c runs on another machine and receives the forwarded traffic from the target.

	tcp_lo_select.c
	Performs a TCP throughput test using the loopback address using a server and two clients.

	tcp_lo_test.c
	Sets up a client and server to perform basic data transfer operations using TCP.

	tftp_client_test.c
	Performs TFTP get and put operations using a host server. The host server needs to be configured independently of the target running the client program.

	tftp_server_test.c
	Runs a TFTP server on the target machine. Another machine running an TFTP client can be used to perform various operations. The server program runs for five minutes before closing down. The dummy file system used with this test contains one file, see tftp_dummy_file.c, and can accommodate the creation of three additional files up to 1MB in size. The filenames can be up to 256 bytes long.

	udp_lo_test.c
	Uses a client and server to transfer UDP data via the loopback address.


8.6.7
DNS Support

Domain Name System (DNS) is a standard that allows resolution of domain names into IP addresses. For example, instead of typing in 209.249.29.67 into your browser to visit a particular site, you can just type in sources.redhat.com and your browser is directed to the appropriate Web site. It is easier to remember the domain name rather than an IP address. DNS handles the translation from domain name to IP address.

The DNS Client (CYGPKG_NS_DNS) package is included by default when either the net or new_net templates are used. Otherwise, the package can be added separately using the eCos configuration tools. The DNS client source code is located in the dns subdirectory under the net\ns subdirectory.

A few restrictions exist for the DNS client. First, the DNS client is only supported for IPv4, not IPv6. Next, if the DNS server returns multiple records for a host name, the hostent only contains the record for the first entry. Finally, the gethostbyname and gethostbyaddr functions are thread safe, allowing multiple threads to call these functions. However, it is not safe for a single thread to call both functions; this destroys the results from the previous call.

The DNS client is initialized by calling the function cyg_dns_res_init, located in the source file dns.c. This function takes the address of the DNS server that the client can use to query addresses for translation. The client understands that the target is in a domain, which is not used by default. The domain name is set using the function setdomainname.

8.7
SNMP Support

SNMP is the standard for the exchange of management information between network devices. SNMP uses simple requests and responses to communicate management information about a particular device on a network. A management application runs on a remote system that controls the SNMP agent, which runs on the device. SNMP uses UDP at the transmission layer. A Management Information Base (MIB) contains information and statistics for each device in a network. The MIB information is constantly updated to keep track of the current status of the networked device. The SNMP agent accesses the MIB information to fulfill the remote management requests.

The eCos SNMP package is a port of the UCD-SNMP version 4.1.2 code base. The UCD-SNMP implementations were done at Carnegie Mellon University and University of California at Davis. This code base has been transformed into Net-SNMP, which is maintained by SourceForge. Additional information about the original SNMP code base can be found online at:

http://net-snmp.sourceforge.net

This site also contains additional SNMP tools, including a tool to request or set information from SNMP agents, a tool to generate and handle SNMP traps, and a graphical Perl/Tk/SNMP-based MIB browser.

eCos SNMP support is contained in two packages, the agent and library. The SNMP package is arranged in this manner to remain consistent with the original UCD-SNMP implementation. The separation of packages also allows an eCos client application to use the SNMP library without including the agent package.

The agent contains application-specific handler files that allow a remote SNMP manager to retrieve the MIB information about the device. The library contains the code for formatting packets with the SNMP protocol and the MIB file parser, which uses Abstract Syntax Notation One (ASN-1). The library supports SNMP version 2 and contains security and authentication aspects of version 3. The database information is MIB-II compatible.

The eCos SNMP packages are located in the snmp subdirectory under the net subdirectory. The SNMP Agent (CYGPKG_SNMPAGENT) package is contained in the agent subdirectory, and the SNMP Library (CYGPKG_SNMPLIB) package is in the lib subdirectory. The SNMP package requires the inclusion of the Networking package.

The agent contains a single thread, snmpd located in the file snmpd.c, which is initialized in the routine cyg_net_snmp_init. The task runs at a priority level that is one lower than the background network task (CYGPKG_NET_THREAD_PRIORITY). The application must call the cyg_net_snmp_init function, located in the file snmptask.c, to start the SNMP agent.

The library package contains functionality that relies on the presence of a file system. Currently, this is not implemented in eCos; therefore, it is the responsibility of the application to supply file system support if this functionality is desired.

A MIB compiler utility is also included in the SNMP package. The MIB compiler is located in the utils\mib2c subdirectory within the agent package. The utility is a Perl script that takes the MIB, included in the SNMP agent package, and compiles it into C code. The output from the MIB compiler can then be modified to support the needed MIB functionality of a specific application. The new MIB can then be recompiled and used in the application. The default eCos MIB is located in the mibgroup\mibII subdirectory within the agent package. There are two readme files, in the mib2c subdirectory, which give additional information about the MIB compiler. These files are readme.mib2c and readme-ecos.

8.8
The GoAhead Embedded WebServer

Although SNMP is the long-time standard for remote management, more and more devices are seeking an alternative method to eliminate the shortcomings of SNMP. The latest trend is to use Web protocols, such as HyperText Transfer Protocol (HTTP), HyperText Markup Language (HTML), and Java, for remote device management, also called Web-based management. This is accomplished through the use of an embedded Web server running on the device. A device’s data can be used to generate dynamic content that is represented in a Web page. These pages are accessed by any standard browser and become the graphical interface to the device. Devices become more user friendly when they can be controlled using a common interface, such as the browser. For example, programming a VCR might not be as daunting a task if the job could be done via a browser interface.

There are a few disadvantages to using SNMP for remote management. One disadvantage is the requirement of application software to control remote devices that is often costly and difficult to use. Another disadvantage is that SNMP uses UDP, which is an unreliable protocol, for communication across networks. Packets that are lost in transmission are not retransmitted, and acknowledgment of received packets is not performed. This can have dire consequences if the information contained in that packet was crucial to the system.

Along with being the hip, up-and-coming trend, Web-based management allows the use of a standard interface that is familiar to most users. Having the browser as an interface also allows the use of handheld devices, most of which have browsers as standard software, for portable management. Network communication from devices is accomplished using TCP, which is a reliable protocol.

Companies currently using the GoAhead WebServer in products include Hewlett-Packard, Honeywell, Siemens, and Canon. A complete list of companies is provided on the GoAhead WebServer site at:

www.goahead.com/webserver/customers.htm

One disadvantage to the Web-based management approach is that once a page is served to the browser, the content is static and does not change until there is some user intervention, such as a refresh request. This can be a problem if a constant flow of data is needed or IF a user needs to be notified of an alarm condition on the device. One solution to this problem is the use of the HTTP REFRESH tag, forcing the browser to re-request the data at a specified interval. Another solution is through the use of Java applets and JavaScript to continually request data from the device.

The GoAhead WebServer is an open-source embedded Web server specifically designed for use in embedded systems. The source code is written in C. Unlike typical server-based Web servers, the GoAhead WebServer is focused on meeting constraints found in an embedded system, including:


•
Small memory footprint


•
Configurable security model


•
Supporting the generation of dynamic Web page content


•
Support for devices that do not have a file system


•
Portability across a wide range of platforms and CPU architectures


•
Integration of the source code into very customized devices

The WebServer requires a TCP/IP stack and approximately 60 kbytes of memory. The GoAhead WebServer supports:


•
Active Server Pages (ASP)


•
In-process Common Gateway Interface (CGI)


•
Embedded JavaScript


•
HTTP 1.0 with persistent connections found in HTTP 1.1


•
65 connections per second


•
Secure Sockets Layer (SSL) version 3.0


•
Digest Access Authentication (DAA)


•
User Management via login access


•
Storage of Web pages in ROM

Currently, SSL support is not provided for in eCos. Additional information can be found online at the GoAhead WebServer site at:

www.goahead.com/webserver/webserver.htm

Similar to eCos licensing, the GoAhead WebServer offers its source code free of charge in exchange for any enhancements to the source code base. There are three basic requirements to using the GoAhead WebServer in a product. First, GoAhead must be notified prior to shipping the product using the WebServer. Second, the GoAhead mark (which can be found on their Web site) must be displayed on the initial page. Finally, GoAhead is allowed to identify companies using the WebServer for marketing efforts. The GoAhead WebServer license can be found online at:

www.goahead.com/webserver/license.htm

The GoAhead site contains a searchable database of questions, and their solutions. GoAhead offers a bug report form that allows you to submit specific problems with the Web server. Bugs can also be emailed to:

webserverbugs@goahead.com.

There is also a newsgroup devoted to the GoAhead WebServer, which does not get a large volume of traffic. The newsgroup can be found at:

news://news.goahead.com/goahead.public.webserver

8.9
Symmetric Multi-Processing Support

SMP is a computer architecture that uses multiple CPUs to process program code. The multiple CPUs share a common operating system and memory subsystem. This allows the processors to work together to share the workload in an embedded system, which provides higher performance than a single-processor system. eCos provides SMP support on selected architectures and platforms. This support is broken down into HAL- and kernel-level support. SMP support is only available in the multilevel queue scheduler.

eCos does impose some target hardware limitations in its SMP support, including:


•
The maximum number of CPUs supported is eight, with the typical number being two or four.


•
The hardware must supply a synchronization mechanism in the form of a test-and-set or compare-and-swap instruction. The eCos kernel uses these hardware instructions for the spinlock implementation.


•
No caches are used, all processors share the cache in the system, or the hardware maintains coherent caches. This prevents eCos from performing cache flush operations around each memory access.


•
All memory shared among CPUs is addressed at the same location for all CPUs.


•
All devices are accessible by all CPUs.


•
An interrupt controller must be present to route interrupts to a specific CPU. Other acceptable architectures include all interrupts delivered to a single CPU, certain interrupts bound to a specific CPU, or certain interrupts local to each CPU. eCos does not support delivering all interrupts to all CPUs in the system and allowing the software to resolve conflicts.


•
To allow events on one CPU to cause rescheduling on another CPU, a mechanism is needed to allow one CPU in the system to interrupt another CPU.


•
Software that is running on a particular CPU must be able to identify which CPU it is running on.

The startup sequence is different on SMP systems. A single CPU, called the primary, handles the startup initialization sequence, while the other CPUs, called secondary, are either placed in a suspended state or put into an idle loop by the HAL. After the application calls cyg_scheduler_start, the secondary CPUs are initialized.

One major issue in an SMP system is the ability for the kernel to protect its data structures from concurrent accesses. This is easily accomplished in a single-processor system by disabling interrupts. However, in a system with multiple CPUs, disabling interrupts on one CPU does not block another CPU from accessing the data structures.

When the kernel is operating in a single-processor system, accesses to the kernel data structures are blocked using the scheduler lock. The scheduler lock is implemented as a simple counter that is atomically incremented to acquire the lock and decremented to release the lock. When the value of the lock counter is zero, the scheduler is allowed to selected a different thread to run. Since ISRs can be serviced while the scheduler is locked, certain kernel functions can only be called from certain operating contexts. Additional information about the scheduler for single-processor systems can be found in The Scheduler section of Chapter 5, The Kernel.

For SMP systems, a kernel-locking mechanism is needed that does not rely on interrupt manipulation. This special synchronization mechanism is called a spinlock. Spinlocks are provided for SMP systems, although the other synchronization mechanisms work in SMP systems as well. Spinlocks are covered in Chapter 6, Threads and Synchronization Mechanisms.

In addition, functions have been added for interrupt processing in SMP systems. One of these functions allows routing of interrupts to a specific CPU in the system. The other function enables you to find out which interrupts in the system are handled by which CPUs. Detailed information about these, and other interrupt function calls can be found in Chapter 3, Exceptions and Interrupts.

8.10
Additional Features

Now that we have covered some of the major additional functionality available for use in the eCos system, let’s take a quick look at some other additional features support by eCos. This section is intended to make you aware of some of the other features supported by eCos; however, the details of operation for these packages are omitted.

The dynamic loader allows Executable and Linking Format (ELF) file images to be loaded onto a target during run time. After the new ELF image is loaded, the running application can call functions located in the new image. The dynamic loader package (CYGPKG_LOADER) is located in the services\loader directory.

The zlib package is a general-purpose compression/decompression library widely known in the software community. It provides in-memory compression and decompression functions that are thread safe and include integrity checks of the uncompressed data. Reading and writing of files in gzip format, with interface functions similar to stdio, is also supported by the zlib library. The zlib package (CYGPKG_COMPRESS_ZLIB) contains a port of zlib to eCos and is contained in the services\compress\zlib directory. Additional information about the zlib library can be found online at:

www.gzip.org/zlib

eCos provides support for the Microwindows Graphical User Interface (GUI). Microwindows is an open-source project focused on allowing the features of modern graphical windowing interfaces to be run on smaller devices. The Microwindows package (CYGPKG_MICROWINDOWS) is located under the services\gfx\mw directory. Additional information about Microwindows is provided under the doc directory within the package as well as online at:

www.microwindows.org

A generic power management package is also provided by eCos. This package provides a framework that allows the incorporation of additional power management facilities in an embedded system. The power management package (CYGPKG_POWER) is located in the services\power directory. Additional information about the power management package is contained in the doc directory within the package.

8.11
Summary

In this chapter, we took a brief look at some of the additional features provided in the eCos system and by third-party contributors that can be included within an application. These additional features extend eCos’ core functionality, allowing eCos to meet the requirements of a wider range of embedded systems. Now that you are aware of these features, with some additional investigation they can quickly be incorporated into your system.

References

Sakamura, Ken. ｵITRON 3.0, An Open and Portable Real-Time Operating System for Embedded Systems. (IEEE Computer Society Press, 1997).

Stevens, W. Richard. TCP/IP Illustrated, Volume 1: The Protocols. (Addison-Wesley, 1994).

McKusick, Marshall Kirk, and Keith Bostic. The Design and Implementation of the 4.4BSD Operating System. (Addison-Wesley Longman, Inc., 1996).







�My wife, who finds programming the VCR a daunting task, can verify this and, therefore, relies on me for all of her video recording needs. Yet she is a wizard using a computer to navigate the Web with her favorite browser.





