Chapter 6

Threads and Synchronization Mechanisms

The previous chapter on the eCos kernel provided us with an understanding of how the different schedulers handle threads and their associated priority levels. In this chapter, we start by covering threads; specifically, how we configure the operation of threads, and how we create and use threads in an application.

Building on this, we then cover different mechanisms available for communication between threads and other elements of a typical embedded system. These synchronization mechanisms provide standard tools for developing robust applications.

6.1
Threads

A thread is a single flow of execution through a program. Multiple threads can exist in a program, allowing an individual thread to perform its own operations on the system. Each thread defined in the eCos system contains its own context or workspace to perform its operations and a priority level to execute. It is the job of the scheduler to determine which thread is entitled to run at any given time. The kernel contains API functions for controlling threads within an application.

eCos offers configuration options that control the behavior of threads in the system, as well as providing additional features to support various thread operations. Item List 6.1 details the thread configuration options available. These are located under the Thread-Related Options component within the eCos Kernel package.

Item List 6.1
Kernel Thread Configuration Options

Option Name

Allow Per-Thread Timers

CDL Name

CYGFUN_KERNEL_THREADS_TIMER

Description

Enables clock- and alarm-related functions on a per-thread basis. This option is required when using timed wait operations for semaphores and condition variables. The default for this option is enabled.

Option Name

Support Optional Name For Each Thread

CDL Name

CYGVAR_KERNEL_THREADS_NAME

Description

Allows a string name to be used to identify a thread for debugging purposes. Disabling this option reduces code and data size. The default for this option is enabled.

Option Name

Keep Track of All Threads Using a Linked List

CDL Name

CYGVAR_KERNEL_THREADS_LIST

Description

Enables the kernel to keep a list of threads for easy access when debugging. The default for this option is enabled.

Option Name

Keep Track of the Base of Each Thread’s Stack

CDL Name

CYGFUN_KERNEL_THREADS_STACK_LIMIT

Description

Allows the kernel to monitor, and adjust for per-thread data, the lower limit of a thread’s stack. This does not perform any type of overflow checking for the stack. The default for this option is enabled.

Option Name

Check Thread Stacks For Overflows

CDL Name

CYGFUN_KERNEL_THREADS_STACK_CHECKING

Description

Causes checks for stack overflowing using signatures at the top and bottom of the thread stacks. This option is enabled when debugging and using asserts. When enabled, suboptions control the amount of checking performed, as well as the size of the signature used for overflow checks. The default for this option is enabled.

Option Name

Measure Stack Usage

CDL Name

CYGFUN_KERNEL_THREADS_STACK_MEASUREMENT

Description

Enabling this option causes a predefined value to be initialized into each thread’s stack. The kernel API function cyg_thread_measure_stack_usage can be called to obtain a snapshot of the amount of stack used by the thread. The default for this option is disabled.

Option Name

Support For Per-Thread Data

CDL Name

CYGVAR_KERNEL_THREADS_DATA

Description

Uses an area of memory to store thread-specific data. This data is often used by other packages such as the ISO C library. A suboption defines the number of words to use for the per-thread data, which has a default value of six. The default for this option is enabled.

Option Name

Thread Destructors

CDL Name

CYGPKG_KERNEL_THREADS_DESTRUCTORS

Description

Enables registered destructor functions to be called when a thread exits. When enabled, a suboption controls the number of possible destructors allowed. This has a range of 1 to 65535 with a default value of 8. There is also a suboption that when enabled allows each thread to have its own list of destructors. If this suboption is disabled, there is a global destructor list for all threads.

Option Name

Stack Size For the Idle Thread

CDL Name

CYGNUM_KERNEL_THREADS_IDLE_STACK_SIZE

Description

Specifies the stack size, in bytes, for the idle thread. If a separate interrupt stack is not used, this stack must be able to accommodate the requirements of all interrupt handlers. Valid values for this option are from 512 to 65536 bytes, with a default value of 2048 bytes.

Option Name

Maximal Suspend Count

CDL Name

CYGNUM_KERNEL_MAX_SUSPEND_COUNT_ASSERT

Description

This option aids in debugging by providing an assertion if thread suspends exceed this count value. This option is only used when asserts are included in the configuration. The default for this option is 500.

Option Name

Maximal Wake Count

CDL Name

CYGNUM_KERNEL_MAX_COUNTED_WAKE_COUNT_ASSERT

Description

This option aids in debugging by providing an assertion if thread wakeups exceed this count value. This option is only used when asserts are included in the configuration. The default for this option is 500.

Option Name

Idle Thread Must Always Yield

CDL Name

CYGIMP_IDLE_THREAD_YIELD

Description

If a scheduler configuration contains a single priority level, this option ensures that the idle thread yields to the application threads. The default for this option is enabled.

Item List 6.2 lists the kernel API functions that are available for thread control. For information about the priority-related kernel thread API functions, see Item List 5.2 in Chapter 5.

Item List 6.2
Kernel Thread API Functions

Syntax:

void

cyg_thread_create(

 cyg_addrword_t sched_info,

 cyg_thread_entry_t *entry,

 cyg_addrword_t entry_data,

 char *name,

 void *stack_base,

 cyg_ucount32 stack_size,

 cyg_handle_t *handle,

 cyg_thread *thread

);

Parameters:

Init/Thread

Context:

sched_info—scheduler-specific information. For most schedulers, this is the priority value for the thread.

entry—routine that begins execution of the thread.

entry_data—data value passed to the thread entry routine.

name—string name of the thread.

stack_base—base address of the stack for the thread.

stack_size—size, in bytes, of the stack for the thread.

handle—returned handle to the thread.

thread—thread information is stored in the thread memory object pointed to by this parameter.

Description:

Creates a thread in a suspended state. It is important to note that a thread will not run until the cyg_thread_resume call is made for the thread and the scheduler is started.

	N O T E
It is up to the caller of this create thread function to ensure that the stack is aligned correctly based on the requirements of the processor.

Syntax:

void

cyg_thread_delay(

 cyg_tick_count_t delay

);

Parameters:

Thread

Context:

delay—time for thread to sleep (in ticks).

Description:

Places the thread in a sleep state for the specified number of ticks. The number of ticks per second is dependent on the HAL configuration option settings for the real-time clock. For example, a delay value of 1 corresponds to a sleep of 10 milliseconds for a system clock running at 100 Hz. Since, 1 second / 100 Hz = 0.01 seconds = 10 milliseconds.

Syntax:

void

cyg_thread_suspend(

 cyg_handle_t thread

);

Parameters:

Thread/DSR

Context:

thread—handle to the thread.

Description:

Postpones the execution of a thread. If a thread is suspended multiple times, the resume function call must be made for each suspend function call before the thread will execute.

Syntax:

void

cyg_thread_resume(

 cyg_handle_t thread

);

Parameters:

Thread/DSR

Context:

thread—handle to the thread.

Description:

Causes a thread to continue execution. This call must be made after a thread is created in order to start the execution of the thread. Each suspend function call must correspond to a resume function call before a thread will continue execution.

Syntax:

void

cyg_thread_yield(

 void

);

Parameters:

Thread

Context:

None

Description:

Gives execution control to the thread that is ready to run at the same priority level. If another thread does not exist, this call has no effect.

Syntax:

void

cyg_thread_kill(

 cyg_handle_t thread

);

Parameters:

Thread

Context:

thread—handle to the thread.

Description:

Causes a thread to exit. This does not release any memory allocated for the thread.

Syntax:

cyg_bool_t

cyg_thread_delete(

 cyg_handle_t thread

);

Parameters:

Thread

Context:

thread—handle to the thread.

Description:

Kills a thread, using the cyg_thread_kill function, and removes it from the scheduler. A value of false is returned if the thread cannot be killed. After this call, memory (the thread handle, stack and thread object) created for the thread can be reused. Resources allocated by the thread are not freed by calling this function. In addition, synchronization objects owned by the thread are not unlocked; this is the responsibility of the programmer.

Syntax:

void

cyg_thread_exit(

 void

);

Parameters:

Thread

Context:

None

Description:

Exits the current thread, causing it to be removed from the scheduler.

Syntax:

cyg_bool_t

cyg_thread_add_destructor(

 cyg_thread_destructor_fn fn,

 cyg_addrword_t data

);

Parameters:

Thread. (If the configuration suboption Per-Thread Destructors is disabled, this function can be called from Init, Thread or DSR context.)

Context:

fn—destructor function called on thread termination.

data—argument passed to destructor function when it is called.

Description:

Register a destructor function that is called when the thread terminates. TRUE is returned on success, or FALSE on failure. This function can only be called when the configuration option Thread Destructors is enabled. If the configuration suboption Per-Thread Destructors is enabled, the destructor is registered for the current thread. If this suboption is disabled, the destructor is called for when any thread exits. The configuration suboption Number of Possible Destructors sets the maximum value for registered destructors; going over the limit causes a return value of FALSE.

Syntax:

cyg_bool_t

cyg_thread_rem_destructor(

 cyg_thread_destructor_fn fn,

 cyg_addrword_t data

);

Parameters:

Thread. (If the configuration suboption Per-Thread Destructors is disabled, this function can be called from Init, Thread or DSR context.)

Context:

fn—destructor function called on thread termination.

data—argument passed to destructor function when it is called.

Description:

Remove a registered destructor function. TRUE is returned on success, or FALSE on failure. This function may only be called when the configuration option Thread Destructors is enabled.

Syntax:

cyg_handle_t

cyg_thread_self(

 void

);

Parameters:

Thread

Context:

None

Description:

Returns the handle of the current thread.

Syntax:

cyg_addrword_t

cyg_thread_get_stack_base(

 cyg_handle_t thread

);

Parameters:

Any

Context:

thread—handle to the thread.

Description:

Returns the stack base used during thread creation.

Syntax:

cyg_uint32

cyg_thread_get_stack_size(

 cyg_handle_t thread

);

Parameters:

Any

Context:

thread—handle to the thread.

Description:

Returns the stack size used during thread creation.

Syntax:

cyg_uint32

cyg_thread_measure_stack_usage(

 cyg_handle_t thread

);

Parameters:

Any

Context:

thread—handle to the thread.

Description:

Returns maximum number of bytes of stack spaced used, up to that point, by the specified thread. This function is only available if the configuration Measure Stack Usage is enabled.

Syntax:

cyg_handle_t

cyg_thread_idle_thread(

 void

);

Parameters:

Thread/DSR

Context:

None

Description:

Returns the handle to the idle thread, which is created by the kernel.

Syntax:

void

cyg_thread_release(

 cyg_handle_t thread

);

Parameters:

Thread/DSR

Context:

thread—handle to the thread.

Description:

Break the thread out of any wait, such as a delay or synchronization object wait.

Syntax:

cyg_ucount32

cyg_thread_new_data_index(

 void

);

Parameters:

Init/Thread

Context:

None

Description:

Allocates and returns a new index from the pool for the current thread. This index is used to access the thread-specific data. This requires the option for per-thread data support to be enabled. If no indexes are available, an assertion is raised.

Syntax:

void

cyg_thread_free_data_index(

 cyg_ucount32 index

);

Parameters:

Init/Thread

Context:

index—offset into the per-thread data.

Description:

Returns the per-thread data index to the pool for the current thread. This requires the configuration option Support For Per-Thread Data to be enabled.

Syntax:

CYG_ADDRWORD

cyg_thread_get_data(

 cyg_ucount32 index

);

Parameters:

Thread

Context:

index—offset into the per-thread data.

Description:

Retrieves the per-thread data at the specified index for the current thread. This requires the configuration option Support For Per-Thread Data to be enabled.

Syntax:

CYG_ADDRWORD

cyg_thread_get_data_ptr(

 cyg_ucount32 index

);

Parameters:

Thread

Context:

index—offset into the per-thread data.

Description:

Returns a point to the per-thread data at the specified index for the current thread. This requires the configuration option Support For Per-Thread Data to be enabled.

Syntax:

void

cyg_thread_set_data(

 cyg_ucount32 index,

 CYG_ADDRWORD data

);

Parameters:

Thread

Context:

index—offset into the per-thread data.

data—value to set at per-thread data index.

Description:

Store data for the current thread at the specified index. This requires the configuration option Support For Per-Thread Data to be enabled.

The code in Code Listing 6.1 is an example of how to create a thread using the kernel thread API functions.

1

#include <cyg/kernel/kapi.h>

2

3

#define MONITOR_THREAD_STACK_SIZE (2048 / sizeof(int))

4

5

int monitor_thread_stack[MONITOR_THREAD_STACK_SIZE];

6

cyg_handle_t monitor_thread_handle;

7

cyg_thread monitor_thread_obj;

8

9

//

10

// Monitoring thread.

11

//

12

void monitor_thread(cyg_addrword_t index)

13

{

14

 unsigned long monitor_counter = 0;

15

16

 // Infinite loop for monitor thread.

17

 while (1)

18

 {

19

 // Delay for 1000 ticks.

20

 cyg_thread_delay(1000);

21

22

 // Increment the counter.

23

 monitor_counter++;

24

 }

25

}

26

27

//

28

// Main starting point for the application.

29

//

30

void cyg_user_start(void)

31

{

32

 // Create the Monitor thread.

33

 cyg_thread_create(

34

 12,

35

 monitor_thread,

36

 0,

37

 "Monitor Thread",

38

 &monitor_thread_stack,

39

 MONITOR_THREAD_STACK_SIZE,

40

 &monitor_thread_handle,

41

 &monitor_thread_obj);

42

43

 // Let the thread run when the scheduler starts.

44

 cyg_thread_resume(monitor_thread_handle);

45

}

Code Listing 6.1
Thread initialization example.

In the example shown in Code Listing 6.1, a simple monitor thread, cleverly called monitor_thread on line 12, is created in the cyg_user_start routine, shown on line 33. The monitor_thread waits for 1000 ticks, as we can see on line 20, and then increments a local variable, shown on line 23. It is important to note that threads can be created at anytime during the execution of an application, not just at startup.

As we see in the code, the monitor thread is created with a priority level of 12 (line 34), a stack size of 2048 bytes (lines 3 and 39), and a name “Monitor Thread” (line 37). The application is responsible for providing the stack space, which is monitor_thread_stack on line 5, for the thread. The thread stack is defined on line 3 so that the thread stack is aligned properly for the processor.

There is no need for data to be passed into the monitor thread, so the entry_data parameter is set to zero when the thread is created, as we see on line 36. The object monitor_thread_obj (lines 7 and 41) is where the scheduler will store thread-specific information for the monitor thread.

It is important to note that the kernel API call cyg_thread_resume, shown on line 44, is needed if the monitor_thread is intended to run when the scheduler starts. The resume thread call takes the handle of the monitor thread, monitor_thread_handle, as its parameter. The kernel fills in the thread handle, on line 40, after successful creation of the thread. When the scheduler starts, it places the monitor thread in the ready queue to be executed.

6.1.1
Thread Stacks and Stack Sizes

As we learned from the example shown in Code Listing 6.1, the application is responsible for providing the stack for a thread, which is used for local variables and tracking function calls and returns. The stack is typically in the form of static data to eliminate the need for dynamic memory allocation functionality in the kernel.

It is important to understand the size requirements for a given thread so an accurate stack size can be created. This eliminates wasting memory if the stack size is set too large, or, more importantly, avoids overflowing the stack if the stack size is set too small for the thread. Stack overflowing can be a very difficult problem to track down.

The stack size depends on a number of factors, which are determined by the characteristics of the code executed by the thread. For example, numerous nesting function calls or large local arrays might require larger stack sizes for a given thread.

There are also configuration options that can have an affect on a thread’s stack usage. The interrupt configuration option Use Separate Stack For Interrupts, when disabled allows interrupt handlers to use a thread’s stack during execution. The interrupt configuration option Allow Nested Interrupts can compound the problem when enabled by allowing higher priority interrupts to occur during execution of another interrupt; therefore, requiring additional stack space. Additional information about the different interrupt configuration options and issues related to a thread’s stack are in Item List 3.5 in Chapter 3, Exceptions and Interrupts.

The HAL defines two macros that can be used by an application as reasonable sizes for a thread’s stack. The values for these macros vary among the different processor architectures. These two macros are typically defined in the architecture HAL in the file hal_arch.h, which also gives an explanation of how the values were derived for a particular architecture.

The first macro is CYGNUM_HAL_STACK_SIZE_MINIMUM. A thread with this stack size is appropriate for threads that run a single function and make simple system calls. It is illegal to attempt to create a thread with a stack size smaller than this value.

The other macro is CYGNUM_HAL_STACK_SIZE_TYPICAL. This value is appropriate for a thread’s stack size when nested function execution is limited to approximately six levels with no large arrays on the stack.

The kernel provides code, controlled by configuration options, which can help detect stack overflows. Additional information about these and other kernel thread configuration options can be found in Item List 6.1.

One configuration option is Check Thread Stacks For Overflows. When this option is enabled (which is the default case for a debug build), a small amount of space at the stack limit is filled with a signature. The signature is verified every time a thread context switch occurs. If the signature is not valid, this is an indication that a stack overflow has taken place.

Another configuration option to aid in thread stack size evaluation is Measure Stack Usage. When this option is enabled, a thread can call cyg_thread_measure_stack_usage to find out the maximum stack used to that point. It is important to realize that this value might not be the absolute maximum since it is possible that no interrupts occurred at the worst possible moment while the thread was executing.

6.2
Synchronization Mechanisms

The eCos kernel provides the mechanisms for the threads in the system to communicate with each other and synchronize access to shared resources. The mechanisms provided by the eCos kernel are:

•

Mutexes

•

Semaphores

•

Condition variables

•

Flags

•

Message boxes

•

Spinlocks (for SMP systems)

The kernel also provides API functions that allow applications to make use of the synchronization mechanisms. Some of the synchronization mechanism API functions provided are either blocking or nonblocking.

Blocking function calls, such as cyg_semaphore_wait, halt execution of the thread until the API function can complete successfully. Nonblocking function calls, such as cyg_semaphore_trywait, attempt to complete successfully; however, if the API function is not successful, a return code indicates the status of the call so the thread can proceed with its execution.

Another type of blocking call, blocking with timeout, also exists for certain synchronization mechanisms. These are API functions that halt execution of the thread for a specified period of time, such as cyg_semaphore_timed_wait, while attempting to complete the function call successfully. If the function does not complete successfully before the timeout period, the function returns, indicating an unsuccessful status.

6.2.1
Mutexes

The first synchronization mechanism provided by eCos is the mutex. A mutex (mutual exclusion object) allows multiple threads to share a resource serially. The resource can be an area of memory or a piece of hardware, such as a Direct Memory Access (DMA) controller.

A mutex is similar to a binary semaphore in that it only has two states—locked and unlocked. However, there are a couple of differences between a binary semaphore and a mutex. A mutex provides protection against priority inheritance, whereas a binary semaphore does not. Priority inheritance is discussed further later in this section.

A mutex also has the concept of an owner, and only the owner can unlock the mutex. A binary semaphore does not have this requirement; it is possible for one thread to lock a binary semaphore and another thread to unlock it. Once a mutex is locked, it should not be locked again; this might cause undefined behavior. A thread that attempts to lock a mutex that is currently owned by another thread will block until the owner unlocks the mutex.

One issue that arises in real-time systems when using mutexes is priority inversion. Priority inversion occurs when a high priority thread is incorrectly prevented from executing by a low priority thread. An example of this is when the high priority thread is waiting on a mutex that is currently owned by the low priority thread. Then, an unrelated medium priority thread preempts the low priority thread, preventing the high priority thread from executing at its proper priority level.

eCos provides two solutions to the priority inversion problem that are selectable as configuration options. The first solution is a priority ceiling protocol. In the priority ceiling protocol, all threads that acquire the mutex have their priority level raised to a preconfigured value. This value is available as a configuration option. One disadvantage to this protocol is that the priority level for threads using the mutex must be known ahead of time so the proper ceiling value can be set. Another disadvantage is that if the ceiling value is set too high, other unrelated threads with priority levels below the ceiling can be locked out from executing, possibly causing real-time deadlines to be missed. The priority ceiling protocol is used even when priority inversion is not occurring.

A more elegant solution eCos provides is a priority inheritance protocol. The priority inheritance protocol allows a thread that owns the mutex to be raised to the priority level equal to the highest level of all threads waiting for the mutex. The priority inheritance protocol is only used when a higher priority thread is waiting for the mutex. The drawback to using this protocol is that synchronization calls are costlier because the scheduler must comply with the inheritance protocol each time.

The configuration options for the mutex synchronization primitive can be found under the Synchronization Primitives component within the eCos Kernel package. The main configuration option Priority Inversion Protection Protocols (CYGSEM_KERNEL_SYNCH_MUTEX_ PRIORITY_INVERSION_PROTOCOL) controls the inversion algorithm used for mutex operations. This option enables or disables the use of one of the priority inversion protocols for mutexes. Eliminating the use of a priority inversion protocol reduces code and data sizes. Currently, eCos defines one algorithm for protection against priority inversion called Simple, which is only available with the multilevel queue scheduler. The Simple algorithm is designed to be fast and deterministic. The priority protocol used within the Simple algorithm can be set by configuration suboptions. The configuration suboption that specifies the inversion protocol used is Default Priority Inversion Protocol, which can be set to INHERIT, CEILING, or NONE. Item List 6.3 lists the configuration suboptions for the mutex priority inversion protocol.

Item List 6.3
Kernel Mutex Configuration Options

Option Name

Enable Priority Inheritance Protocol

CDL Name

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT

Description

Enables the priority inheritance protocol, which causes the owner of a mutex to be executed at the highest priority of all threads waiting for the mutex. The default value for this option is enabled.

Option Name

Enable Priority Ceiling Protocol

CDL Name

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING

Description

Enables the priority ceiling protocol, which causes the owner of a mutex to execute at a preset priority level. The default value for this option is enabled. The suboption Default Priority Ceiling specifies the priority level for the ceiling. The mutex will boost the owner of the thread to this priority level while executing. The default value for this option is 0, which is the maximum priority level.

Option Name

No Priority Inversion Protocol

CDL Name

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_NONE

Description

Disables the priority inversion protocol. This option is necessary for the run-time selection of a priority inversion protocol. The default value for this option is enabled.

Option Name

Default Priority Inversion Protocol

CDL Name

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT

Description

Defines the default inversion protocol to use when mutexes are created if a protocol is not specified. The possible values for this option are INHERIT, CEILING, or NONE. The default value for this option is INHERIT.

Option Name

Specify Mutex Priority Inversion Protocol At Runtime

CDL Name

CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC

Description

Allows the priority inversion protocol used by a mutex to be specified when the mutex is created. The default value for this option is enabled.

The eCos kernel provides API functions for creating and manipulating mutexes. The mutex functions available in the kernel API are listed in Item List 6.4.

Item List 6.4
Kernel Mutex API Functions

Syntax:

void

cyg_mutex_init(

 cyg_mutex_t *mutex

);

Context:

Init/Thread

Parameters:

mutex—pointer to the mutex object to initialize.

Description:

Initialize a mutex in the unlocked state.

Syntax:

void

cyg_mutex_destroy(

 cyg_mutex_t *mutex

);

Context:

Thread

Parameters:

mutex—pointer to the mutex object to remove.

Description:

Destroys a mutex. It is important that the mutex be in the unlocked state when it is destroyed, or else the behavior is undefined.

Syntax:

cyg_bool_t

cyg_mutex_lock(

 cyg_mutex_t *mutex

);

Context:

Thread

Parameters:

mutex—pointer to the mutex object.

Description:

Changes the state of a mutex to the locked state, allowing the thread that called this function to become the owner of the mutex. If the mutex is locked when the thread makes this call, the thread will wait until the mutex is in the unlocked state and then continue to execute. TRUE is returned if the mutex has been locked, or FALSE if it has not been locked.

Syntax:

cyg_bool_t

cyg_mutex_trylock(

 cyg_mutex_t *mutex

);

Context:

Thread

Parameters:

mutex—pointer to the mutex object.

Description:

Attempts to change the state of a mutex to the locked state. This function call returns immediately. TRUE is returned if the mutex has been locked, or FALSE if it has not been locked.

Syntax:

void

cyg_mutex_unlock(

 cyg_mutex_t *mutex

);

Context:

Thread

Parameters:

mutex—pointer to the mutex object.

Description:

Allows the owner of a mutex to change the state to unlocked. This function should not be called with a mutex that is currently unlocked.

Syntax:

void

cyg_mutex_release(

 cyg_mutex_t *mutex

);

Context:

Thread

Parameters:

mutex—pointer to the mutex object.

Description:

Releases all threads waiting on the mutex. The threads will return from the call cyg_mutex_lock with a value of false and not claim the mutex.

Syntax:

void

cyg_mutex_set_ceiling(

 cyg_mutex_t *mutex,

 cyg_priority_t priority

);

Context:

Init/Thread

Parameters:

mutex—pointer to the mutex object.

priority—new priority level for ceiling.

Description:

Sets the priority level for the ceiling of the specified mutex.

Syntax:

void

cyg_mutex_set_protocol(

 cyg_mutex_t *mutex,

 enum cyg_mutex_protocol protocol

);

Context:

Init/Thread

Parameters:

mutex—pointer to the mutex object.

protocol—protocol to use for mutex. Valid values are CYG_MUTEX_NONE, CYG_MUTEX_INHERIT, or CYG_MUTEX_CEILING.

Description:

Sets the protocol for the specified mutex.

Code Listing 6.2 is an example showing two threads using a mutex. The thread and mutex initializations are left out in this example to focus on the use of the mutex.

1

#include <cyg/kernel/kapi.h>

2

#include <cyg/io/io.h>

3

4

cyg_io_handle_t port_handle;

5

cyg_mutex_t mut_shared_port;

6

7

//

8

// Thread A.

9

//

10

void thread_a(cyg_addrword_t index)

11

{

12

 int result;

13

 int write_length = 6;

14

 unsigned char write_buffer[6] = {4,21,4,20,6,28};

15

16

 // Run this thread forever.

17

 while (1)

18

 {

19

 // Get the mutex.

20

 cyg_mutex_lock(&mut_shared_port);

21

22

 // Write data to the I/O port.

23

 result = cyg_io_write(port_handle,

24

 &write_buffer[0],

25

 &write_length);

26

27

 // Release the mutex.

28

 cyg_mutex_unlock(&mut_shared_port);

29

30

 // Get more data to send to the port...

31

 }

32

}

33

34

//

35

// Thread B.

36

//

37

void thread_b(cyg_addrword_t index)

38

{

39

 int result;

40

 int read_length = 3;

41

 unsigned char read_buffer[3];

42

43

 // Run this thread forever.

44

 while (1)

45

 {

46

 // Get the mutex.

47

 cyg_mutex_lock(&mut_shared_port);

48

49

 // Read data from the I/O port.

50

 result = cyg_io_read(port_handle,

51

 &read_buffer[0],

52

 &read_length);

53

54

 // Release the mutex.

55

 cyg_mutex_unlock(&mut_shared_port);

56

57

 // Process the data read from the port...

58

 }

59

}

Code Listing 6.2
Mutex example code.

As we can see in Code Listing 6.2, Thread A and Thread B both use the same hardware I/O port. The mut_shared_port mutex protects the port so that only one thread accesses the port at a time. In this example, we assume Thread A acquires the mutex first by executing its cyg_mutex_lock function call on line 20. Thread A is then able to write out its data to the I/O port on line 23. While Thread A is writing out to the port, Thread B executes. However, Thread B must wait when it reaches its cyg_mutex_lock function call, shown on line 47, since the mutex is already owned by Thread A.

After Thread A finishes writing out its data, the function call cyg_mutex_unlock, on line 28, releases the mutex. Then, Thread B becomes the owner of the mutex and is allowed to access the port. Finally, after Thread B reads its data from the I/O port, on line 50, it releases the mutex with the call cyg_mutex_unlock on line 55.

6.2.2
Semaphores

A semaphore is a synchronization mechanism that contains a count indicating whether a resource is locked or available. There are two types of semaphores, counting and binary. Binary semaphores are similar to counting semaphores; however, their count is never incremented past a value of one. Binary semaphores are in either a locked or unlocked state.

Counting semaphores can be in multiple states depending on their count value. Counting semaphore objects contain a value that is incremented when a thread posts to a semaphore, and the value is decremented when a thread completes a wait for the semaphore. Only the highest priority waiting thread is executed when the semaphore count is above zero. Counting semaphores are often used when a higher priority thread or DSR, which received data, needs to signal another thread to continue processing the data at a lower priority.

The eCos kernel provides API functions for creating and manipulating semaphores. The kernel API is for counting semaphores and not binary semaphores. These API functions, which are defined in Item List 6.5, use counting semaphores.

Item List 6.5
Kernel Semaphore API Functions

Syntax:

void

cyg_semaphore_init(

 cyg_sem_t *sem,

 cyg_ucount32 val

);

Context:

Init/Thread

Parameters:

sem—pointer to semaphore object.

val—initial count for semaphore.

Description:

Initializes a semaphore with a count value specified in the val parameter.

Syntax:

void

cyg_semaphore_destroy(

 cyg_sem_t *sem

);

Context:

Thread

Parameters:

sem—pointer to semaphore object.

Description:

Destroys a semaphore. It is important that there are not any threads waiting on the semaphore when this function is called or the behavior is undefined.

Syntax:

void

cyg_semaphore_wait(

 cyg_sem_t *sem

);

Context:

Thread

Parameters:

sem—pointer to semaphore object.

Description:

When the semaphore count is zero, the thread calling this function will wait for the semaphore. When the semaphore count is nonzero, the count will be decremented and the thread calling this function will continue.

Syntax:

cyg_bool_t

cyg_semaphore_trywait(

 cyg_sem_t *sem

);

Context:

Thread/DSR

Parameters:

sem—pointer to semaphore object.

Description:

Attempts to decrement the semaphore count. If the semaphore count is greater than zero, the count is decremented and TRUE is returned. If the count is zero, the semaphore is unchanged and FALSE is returned. In either case, the thread does not block waiting for the semaphore.

Syntax:

cyg_bool_t

cyg_semaphore_timed_wait(

 cyg_sem_t *sem,

 cyg_tick_count_t abstime

);

Context:

Thread

Parameters:

sem—pointer to semaphore object.

abstime—absolute time to wait for semaphore.

Description:

Attempts to decrement a semaphore count. This function is only available when the Allow Per-Thread Timers configuration option is enabled. If the semaphore count is greater than zero, the count is decremented and TRUE is returned. If the count is zero, the function call will wait for the amount of time specified in the abstime parameter. If the timeout occurs before the semaphore count can be decremented, FALSE is returned and the current thread will continue to run. The abstime parameter is an absolute time measured in clock ticks. The following shows how to use a relative wait time:

cyg_semaphore_timed_wait(

 &sem,

 cyg_current_time() + 100);

In this example, the thread will wait for the semaphore for 100 ticks from the present time.

Syntax:

void

cyg_semaphore_post(

 cyg_sem_t *sem

);

Context:

Thread/DSR

Parameters:

sem—pointer to semaphore object.

Description:

Increment the semaphore count. If a thread is waiting on the specified semaphore, it is awakened.

Syntax:

void

cyg_semaphore_peek(

 cyg_sem_t *sem,

 cyg_count32 *val

);

Context:

Thread/DSR

Parameters:

sem—pointer to semaphore object.

val—pointer to returned semaphore count.

Description:

Returns the current semaphore count in the variable pointed to by the parameter val.

Code Listing 6.3 is a simple example of the creation of a semaphore for use by two threads.

1

#include <cyg/kernel/kapi.h>

2

#include <cyg/infra/diag.h>

3

4

#define THREAD_A_STACK_SIZE (2048 / sizeof(int))

5

#define THREAD_B_STACK_SIZE (2048 / sizeof(int))

6

7

cyg_sem_t sem_get_data;

8

int thread_a_stack[THREAD_A_STACK_SIZE];

9

int thread_b_stack[THREAD_B_STACK_SIZE];

10

cyg_handle_t thread_a_handle;

11

cyg_handle_t thread_b_handle;

12

cyg_thread thread_a_obj;

13

cyg_thread thread_b_obj;

14

15

//

16

// Thread A.

17

//

18

void thread_a(cyg_addrword_t index)

19

{

20

 // Run this thread forever.

21

 while (1)

22

 {

23

 // Delay for 1000 ticks.

24

 cyg_thread_delay(1000);

25

26

 // Display a message.

27

 diag_printf("Thread A: Signal Thread B!\n");

28

29

 // Signal Thread B to run.

30

 cyg_semaphore_post(&sem_get_data);

31

 }

32

}

33

34

//

35

// Thread B.

36

//

37

void thread_b(cyg_addrword_t index)

38

{

39

 // Run this thread forever.

40

 while (1)

41

 {

42

 // Signal Thread B to run.

43

 cyg_semaphore_wait(&sem_get_data);

44

45

 // Display a message.

46

 diag_printf("Thread B: Got the signal!\n");

47

 }

48

}

49

50

//

51

// Main starting point for the application.

52

//

53

void cyg_user_start(

54

 void)

55

{

56

 // Initialize the get data semaphore to 0.

57

 cyg_semaphore_init(&sem_get_data, 0);

58

59

 // Create Thread A.

60

 cyg_thread_create(

61

 12,

62

 thread_a,

63

 0,

64

 "Thread A",

65

 &thread_a_stack,

66

 THREAD_A_STACK_SIZE,

67

 &thread_a_handle,

68

 &thread_a_obj);

69

70

 // Create Thread B.

71

 cyg_thread_create(

72

 12,

73

 thread_b,

74

 0,

75

 "Thread B",

76

 &thread_b_stack,

77

 THREAD_B_STACK_SIZE,

78

 &thread_b_handle,

79

 &thread_b_obj);

80

81

 // Let the threads run when the scheduler starts.

82

 cyg_thread_resume(thread_a_handle);

83

 cyg_thread_resume(thread_b_handle);

84

}

Code Listing 6.3
Semaphore example code.

In Item List 6.3, we can see in the function cyg_user_start, on line 53, that the sem_get_data semaphore is initialized, shown on line 57.

	N O T E
This might be understood; however, it should be pointed out nonetheless. It is important to initialize any semaphores, and any other synchronization mechanisms, prior to creating and resuming the threads that use these mechanisms. Undefined behavior will result if this rule is not followed. Careful consideration should also be given to the initial values of synchronization mechanisms to ensure that threads are running at the proper time.

When the semaphore is initialized, a parameter is passed in that determines the initial value of the semaphore count; we can see on line 57 that this value is 0. If the count value is initialized to zero, all threads waiting on the semaphore will continue to wait until a post, which increments the count value, to the semaphore occurs. If the count value is initialized to a value greater than zero, the scheduler will determine which waiting thread to run based on each thread’s priority level until the semaphore count value is zero. Each time a wait function succeeds, the semaphore count value is decremented by one.

Thread A executes a delay of 1000 ticks (line 24), outputs a message (line 27), and then posts to the semaphore (line 30). The scheduler then wakes up Thread B because of the semaphore wait call on line 43, outputs a message (line 46), and then returns to the waiting state (line 43).

6.2.3
Condition Variables

Another available synchronization mechanism is the condition variable. Condition variables are used with mutexes that allow multiple threads access to shared data. Typically, there is a single thread producing the data, and one or more threads waiting for the data to be available. The thread producing the data can either signal a single thread to wake up or all threads to wake up, with a broadcast signal, when the data is available. The waiting threads can then process the data as needed. Item List 6.6 lists the kernel API condition variable control functions.

eCos contains two configuration options for condition variables. These are located in the Synchronization Primitives component within the eCos Kernel package. The first configuration option is Condition Variable Timed-Wait Support (CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT), which allows the cyg_cond_timed_wait kernel API function to be used by applications. This option is enabled by default.

The second configuration option is Condition Variable Explicit Mutex Wait Support (CYGMFN_KERNEL_SYNCH_CONDVAR_WAIT_MUTEX), which permits a thread to provide a different mutex in a call to the wait functions. In the default case, condition variables are created with a statically associated mutex. This configuration option is enabled by default.

Item List 6.6
Condition Variable API Functions

Syntax:

void

cyg_cond_init(

 cyg_cond_t *cond,

 cyg_mutex_t *mutex

);

Context:

Init/Thread

Parameters:

cond—pointer to condition variable object.

mutex—pointer to mutex object to attach to condition variable.

Description:

Initializes a condition variable and attaches it to the specified mutex.

Syntax:

void

cyg_cond_destroy(

 cyg_cond_t *cond

);

Context:

Init/Thread

Parameters:

cond—pointer to condition variable object.

Description:

Destroys a condition variable. It is important that this function not be called with a condition variable that is in use.

Syntax:

cyg_bool_t

cyg_cond_wait(

 cyg_cond_t *cond

);

Context:

Thread

Parameters:

cond—pointer to condition variable object.

Description:

Causes the current thread to wait on the specified condition variable and simultaneously unlocks the mutex attached to the condition variable. Returns TRUE on success, and FALSE if the thread is forcibly awakened. This call must be made while the thread has the mutex attached to the condition variable locked. The condition variable signal or broadcast functions wake up threads calling this wait function. When the thread wakes up, the mutex is reclaimed prior to this function proceeding. Since the thread might have to wait for the mutex, this wait function should be called within a loop because the condition might become FALSE during the waiting period.

Syntax:

cyg_bool_t

cyg_cond_timed_wait(

 cyg_cond_t *cond,

 cyg_tick_count_t abstime

);

Context:

Thread

Parameters:

cond—pointer to condition variable object.

abstime—absolute time to wait for condition variable.

Description:

Causes the thread to wait on the specified condition variable for an absolute time period. This function is only available when the Condition Variable Timed-Wait Support configuration option is enabled. If a condition variable signal or broadcast is received, this function returns TRUE. If the timeout occurs before the condition variable is signaled or the thread is forcibly awakened, FALSE is returned. The abstime parameter is an absolute time measured in clock ticks. The following shows how to use a relative wait time:

cyg_cond_timed_wait(

 &cond,

 cyg_current_time() + 100);

In this example, the thread will wait for the condition variable for 100 ticks from the present time.

Syntax:

void

cyg_cond_signal(

 cyg_cond_t *cond

);

Context:

Thread/DSR

Parameters:

cond—pointer to condition variable object.

Description:

Wake up exactly one thread waiting on the condition variable, causing that thread to become the owner of the mutex. It is important to understand that a race condition could arise if more than one thread is waiting for the condition variable. This is why it is important for the waiting thread to retest the condition variable to ensure its proper state. If there are no threads waiting for the condition variable when it is signaled, nothing happens. The state of the condition variable is not stored anywhere. Therefore, the next thread that waits on the condition variable needs to wait until the variable is signaled again. If there were a need for the signaled state to be stored, a semaphore would be a better synchronization mechanism to use.

Syntax:

void

cyg_cond_broadcast(

 cyg_cond_t *cond

);

Context:

Thread/DSR

Parameters:

cond—pointer to condition variable object.

Description:

Wake up all threads waiting on the condition variable. Each thread that was waiting on the condition variable becomes the owner of the mutex when it runs.

Code Listing 6.4 shows an example using a condition variable. The thread, condition variable, and mutex initializations are left out in this example to focus on the use of the condition variable.

1

#include <cyg/kernel/kapi.h>

2

#include <cyg/infra/cyg_type.h>

3

4

unsigned char buffer_empty = true;

5

cyg_mutex_t mut_cond_var;

6

cyg_cond_t cond_var;

7

8

//

9

// Thread A.

10

//

11

void thread_a(cyg_addrword_t index)

12

{

13

 // Run this thread forever.

14

 while (1)

15

 {

16

 // Acquire data into the buffer...

17

18

 // There is data in the buffer now.

19

 buffer_empty = false;

20

21

 // Get the mutex.

22

 cyg_mutex_lock(&mut_cond_var);

23

24

 // Signal the condition variable.

25

 cyg_cond_signal(&cond_var);

26

27

 // Release the mutex.

28

 cyg_mutex_unlock(&mut_cond_var);

29

 }

30

}

31

32

//

33

// Thread B.

34

//

35

void thread_b(cyg_addrword_t index)

36

{

37

 // Run this thread forever.

38

 while (1)

39

 {

40

 // Get the mutex.

41

 cyg_mutex_lock(&mut_cond_var);

42

43

 // Wait for the data and the condition variable signal.

44

 while (buffer_empty == true)

45

 {

46

 cyg_cond_wait(&cond_var);

47

 }

48

49

 // Get the buffer data...

50

51

 // The data in the buffer has been processed.

52

 buffer_empty = true;

53

54

 // Release the mutex.

55

 cyg_mutex_unlock(&mut_cond_var);

56

57

 // Process the data in the buffer...

58

 }

59

}

Code Listing 6.4
Condition variable example code.

In Code Listing 6.4, Thread A is acquiring data that is processed by Thread B. First, Thread B executes. On line 41, Thread B acquires the mutex associated with the condition variable. Next, since there is no data in the buffer to process, and buffer_empty is true on initialization (line 4), Thread B calls cyg_cond_wait on line 46. This call to cyg_cond_wait does two things—first, it suspends Thread B waiting for the condition variable to be set, and second, it unlocks the mutex mut_cond_var.

Now, an event occurs causing Thread A to execute and acquire data into a buffer, as we see on line 16. Next, buffer_empty is set to false on line 19. Thread A then locks the mutex (line 22), signals the condition variable (line 25), and then unlocks the mutex (line 28).

Next, Thread B is able to run because the condition variable is signaled from Thread A. Before returning from cyg_cond_wait, the mutex, mut_cond_var, is locked and owned by Thread B. Now, Thread B can get the data buffer (line 49) and set the buffer_empty flag to true (line 52). Finally, the mutex is released by Thread B on line 55 and the data in the buffer is processed, as we see on line 57.

It is important to understand a couple of issues relating to the code in Code Listing 6.4. First, the mutex unlock and wait code execution in the call to cyg_cond_wait, on line 46, is atomic; therefore, no other thread is allowed to run between the unlock and the wait. If this code were not atomic, then it would be possible for Thread B to miss the signal call from Thread A even though data was in the buffer. Why? Because Thread B calls cyg_cond_wait, which first checks to see if the condition variable is set; in this case, it is not. Next, the mutex is released in the cyg_cond_wait call. Now, Thread A executes, putting data into the buffer and then signaling the condition variable (line 25). Then, Thread B returns to waiting, however, the condition variable has been set.

Another issue to keep in mind is that the call to cyg_cond_wait by Thread B is in a while loop, on lines 44 through 47. This ensures that the condition that Thread B is waiting on is still true after returning from the condition wait call. Take the case where other threads are waiting on the same condition. Another thread might be queued to obtain the mutex before Thread B; therefore, being signaled and waking up before Thread B. When Thread B finally gets to run, the condition is then false. The while loop around the condition wait ensures the condition is still true before a thread executes.

6.2.4
Flags

Flags are synchronization mechanisms represented by a 32-bit word. Each bit in the flag represents a condition, which allows a thread to wait for either a single condition or a combination of conditions. The waiting thread specifies if all conditions or a combination of conditions are to be met before it wakes up. The signaling thread can then set or reset bits according to specific conditions so the appropriate thread can be executed. The kernel API functions for creating and controlling the flags are detailed in Item List 6.7.

Item List 6.7
Kernel Flag API Functions

Syntax:

void

cyg_flag_init(

 cyg_flag_t *flag

);

Context:

Init/Thread

Parameters:

flag—pointer to flag object.

Description:

Initializes a flag variable.

Syntax:

void

cyg_flag_destroy(

 cyg_flag_t *flag

);

Context:

Init/Thread

Parameters:

flag—pointer to flag object.

Description:

Destroys the specified flag variable. Flag variables that are being waited on must not be destroyed.

Syntax:

void

cyg_flag_setbits(

 cyg_flag_t *flag,

 cyg_flag_value_t value

);

Context:

Thread/DSR

Parameters:

flag—pointer to flag object.

value—the bits that are set to one in this parameter are set along with the current bits set in the flag.

Description:

Sets the bits in the flag value that are set to one in the value parameter. Any threads that are waiting on the flag and have their conditions met are woken up.

Syntax:

void

cyg_flag_maskbits(

 cyg_flag_t *flag,

 cyg_flag_value_t value

);

Context:

Thread/DSR

Parameters:

flag—pointer to flag object.

value—the bits that are set to zero in this parameter are cleared in the flag.

Description:

Clears the bits in the flag value that are set to zero in the value parameter. No threads are awakened by this call.

Syntax:

cyg_flag_value_t

cyg_flag_wait(

 cyg_flag_t *flag,

 cyg_flag_value_t pattern,

 cyg_flag_mode_t mode

);

Context:

Thread

Parameters:

flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.

mode—specifies the conditions for wake up.

Description:

If the mode parameter is set to AND, the function will wait for all bits in the pattern parameter to be set in the flag value. If the mode parameter is set to OR, the function will wait for any bits in the pattern parameter to be set in the flag value. When this function call returns, the condition is met and the flag value is returned. Zero is returned if the thread is forcibly woken up or forced to exit with cyg_thread_exit. The mode parameter can have the following possible values:

CYG_FLAG_WAITMODE_AND—wake up if all bits specified in the mask are set in the flag.

CYG_FLAG_WAITMODE_OR—wake up if any bits specified in the mask are set in the flag.

CYG_FLAG_WAITMODE_CLR—clear all bits in the flag when the condition is met. Typically, only the bits that are set in the pattern parameter are cleared. This flag is bitwise combined with either the AND or OR wait mode flags.

Syntax:

cyg_flag_value_t

cyg_flag_timed_wait(

 cyg_flag_t *flag,

 cyg_flag_value_t pattern,

 cyg_flag_mode_t mode,

 cyg_tick_count_t abstime

);

Context:

Thread

Parameters:

flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.

mode—modifies the conditions for wake up.

abstime—absolute time to wait for flag conditions to be met.

Description:

Waits for the conditions required by the pattern and mode parameters or the timeout specified by the abstime parameter. If the timeout occurs before the conditions are met, zero is returned; otherwise, the flag value is returned. This function is only available when the Allow Per-Thread Timers configuration option is enabled.

Syntax:

cyg_flag_value_t

cyg_flag_poll(

 cyg_flag_t *flag,

 cyg_flag_value_t pattern,

 cyg_flag_mode_t mode

);

Context:

Thread/DSR

Parameters:

flag—pointer to flag object.

pattern—bit setting that will cause the calling thread to be woken up.

mode—modifies the conditions for returning the flag value.

Description:

If the conditions required by the pattern and mode parameters are met, the flag value is returned. If these conditions are not met, zero is returned; otherwise, the flag value is returned. Specifying CYG_FLAG_WAITMODE_CLR in the mode parameter will clear the flag value to zero.

Syntax:

cyg_flag_value_t

cyg_flag_peek(

 cyg_flag_t *flag

);

Context:

Thread/DSR

Parameters:

flag—pointer to flag object.

Description:

Returns the current value of the specified flag.

Syntax:

cyg_bool_t

cyg_flag_waiting(

 cyg_flag_t *flag

);

Context:

Thread/DSR

Parameters:

flag—pointer to flag object.

Description:

Returns TRUE if there are any threads waiting on the specified flag.

Code Listing 6.5 shows an example using the kernel API for flags. The thread and flag initializations are left out in this example to focus on the use of flags.

1

#include <cyg/kernel/kapi.h>

2

3

cyg_flag_t flag_var;

4

5

//

6

// Thread A.

7

//

8

void thread_a(cyg_addrword_t index)

9

{

10

 // Run this thread forever.

11

 while (1)

12

 {

13

 // Delay for 1000 ticks.

14

 cyg_thread_delay(1000);

15

16

 // Set the appropriate flag bits to signal Thread B.

17

 cyg_flag_setbits(&flag_var, 1);

18

 }

19

}

20

21

//

22

// Thread B.

23

//

24

void thread_b(cyg_addrword_t index)

25

{

26

 // Run this thread forever.

27

 while (1)

28

 {

29

 // Wait for the appropriate bits to be set in the flag.

30

 cyg_flag_wait(&flag_var,

31

 3,

32

 CYG_FLAG_WAITMODE_OR |

33

 CYG_FLAG_WAITMODE_CLR

34

);

35

 }

36

}

Code Listing 6.5
Flags example code.

Code Listing 6.5 shows a basic example of how Thread A is using the flag, flag_var declared on line 3, to signal Thread B. Thread B waits on the flag_var flag using the cyg_flag_wait function call, as shown on line 30. The second parameter, on line 31, determines the bit pattern, in this case 3, that the flag variable needs to be set to in order to wake up Thread B. The mode parameters, on lines 32 and 33, specify the conditions for wake up. In this case, CYG_FLAG_WAITMODE_OR means that Thread B will wake up if either bit 1 or bit 2 is set in the flag. The mode parameter CYG_FLAG_WAITMODE_CLR indicates that all bits in the flag are cleared when the condition is met. Thread A sets bit 1 in flag_var using the function call cyg_flag_setbits, as shown on line 17. Since Thread B is waiting on either bit 1 or bit 2 to be set, Thread B is then awakened.

6.2.5
Message Boxes

Another synchronization mechanism provided by eCos are message boxes, also called mailboxes. Message boxes provide a means for two threads to exchange information. Typically, one thread will produce messages and send to another thread for processing. Message boxes offer another method for threads to communicate more than a single byte of information. Item List 6.8 describes the kernel API message box functions.

There are two configuration options for the message box synchronization mechanism. These are located under the Synchronization Primitives component within the eCos Kernel package. The first configuration option is Message Box Blocking Put Support (CYGMFN_KERNEL_SYNCH_ MBOXT_PUT_CAN_WAIT). This option, which is enabled by default, allows the put and timed put function calls to be used when sending messages.

The second configuration option determines the number of messages that can be queued in a Message Box Queue Size (CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE). The valid values for this option are 1 to 65535 with a default value of 10 messages.

Item List 6.8
Kernel Message Box API Functions

Syntax:

void

cyg_mbox_create(

 cyg_handle_t *handle,

 cyg_mbox *mbox

);

Context:

Init/Thread

Parameters:

handle—pointer to the handle for the new message box.

mbox—pointer to new message box object.

Description:

Constructs a message box in the space pointed to by the mbox parameter.

Syntax:

void

cyg_mbox_delete(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Removes the specified message box. You must not call this function if there is an outstanding get operation. The contents of the message box are not cleaned up if the message box is not empty.

Syntax:

void*

cyg_mbox_get(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Removes a message from the specified message box when it is available and returns the address of the data or NULL if the thread is forcibly awakened.

Syntax:

void*

cyg_mbox_timed_get(

 cyg_handle_t mbox,

 cyg_tick_count_t timeout

);

Context:

Thread

Parameters:

mbox—handle to the message box.

timeout—absolute time to wait for message box.

Description:

Attempts to retrieve a message from the specified message box when it is available and returns the address of the data. If the timeout time passes, the message is not retrieved. NULL is returned if the thread is forcibly awakened. The timeout parameter is an absolute time measured in clock ticks. This function is only available when the configuration option Allow Per-Thread Timers is enabled.

Syntax:

void*

cyg_mbox_tryget(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Checks to see if a message is available in the specified message box. If a message is present, it is removed from the message box and the address of the data is returned. If a message is not available or forcibly awakened, NULL is returned.

Syntax:

void*

cyg_mbox_peek_item(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Checks to see if a message is available in the specified message box. If a message is present, the address of the data is returned without removing the message from the message box. If no message is available, NULL is returned.

Syntax:

cyg_bool_t

cyg_mbox_put(

 cyg_handle_t mbox,

 void *item

);

Context:

Thread

Parameters:

mbox—handle to the message box.

item—message to put in the message box.

Description:

Attempts to place a message in the specified message box. If the message box is full, configured by Message Box Queue Size, the call will block until the message can be successfully sent; in which case, the call will return TRUE. If the message is not sent successfully, FALSE is returned. This function is only available if the configuration option Message Box Blocking Put Support is enabled.

Syntax:

cyg_bool_t

cyg_mbox_timed_put(

 cyg_handle_t mbox,

 void *item,

 cyg_tick_count_t abstime

);

Context:

Thread

Parameters:

mbox—handle to the message box.

item—message to put in the message box.

abstime—absolute time to wait when trying to put a message in the message box.

Description:

Attempts to place a message in the specified message box. If the message is sent successfully, TRUE is returned. If the message could not be sent immediately, typically because the message box is full, the function will wait until abstime before failing and returning FALSE. This function is only available if the configuration options Message Box Blocking Put Support and Allow Per-Thread Timers are enabled.

Syntax:

cyg_bool_t

cyg_mbox_tryput(

 cyg_handle_t mbox,

 void *item

);

Context:

Thread

Parameters:

mbox—handle to the message box.

item—message to put in the message box.

Description:

Attempts to put a message in the specified message box. If the message is sent successfully, TRUE is returned. If the message could not be sent immediately, typically because the message box is full, FALSE is returned.

Syntax:

cyg_count32

cyg_mbox_peek(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Returns the number of messages in the specified message box.

Syntax:

cyg_bool_t

cyg_mbox_waiting_to_get(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Queries to see if other threads are waiting to receive a message in the specified message box. If so, TRUE is returned; otherwise, FALSE is returned.

Syntax:

cyg_bool_t

cyg_mbox_waiting_to_put(

 cyg_handle_t mbox

);

Context:

Thread

Parameters:

mbox—handle to the message box.

Description:

Queries to see if other threads are waiting to send a message in the specified message box. If so, TRUE is returned; otherwise, FALSE is returned.

Code Listing 6.6 shows an example using a message box to exchange data between two tasks. The thread and message box initializations are left out in this example.

1

#include <cyg/kernel/kapi.h>

2

3

cyg_handle_t mbox_handle;

4

5

// Thread A.

6

//

7

void thread_a(cyg_addrword_t index)

8

{

9

 // Run this thread forever.

10

 while (1)

11

 {

12

 // Delay for 1000 ticks.

13

 cyg_thread_delay(1000);

14

15

 // Send a message to Thread B.

16

 cyg_mbox_put(mbox_handle, (void *)12);

17

 }

18

}

19

20

//

21

// Thread B.

22

//

23

void thread_b(cyg_addrword_t index)

24

{

25

 void *message;

26

27

 // Run this thread forever.

28

 while (1)

29

 {

30

 // Wait for the message.

31

 message = cyg_mbox_get(mbox_handle);

32

33

 // Make sure we received the message before attempting

34

 // to process it.

35

 if (message != NULL)

36

 {

37

 // Process the message.

38

 }

39

 }

40

}

Code Listing 6.6
Message box example code.

Code Listing 6.6 shows an example of Thread A sending a message to Thread B using a message box. Thread A places the message—in this case, the number 12—in the message box using the handle mbox_handle, as shown on line 16. Thread B retrieves the data and stores it in the local variable message using cyg_mbox_get, as we see on line 31. On line 35, we verify that there is valid data in the message variable before proceeding to process the data.

6.2.6
Spinlocks

eCos kernel provides an additional synchronization mechanism for applications running on SMP systems called spinlocks. The other synchronization mechanisms work as well on SMP systems. Additional information about SMP support within eCos can be found in Chapter 8, Additional Functionality and Third-Party Contributions.

A spinlock is basically a flag that a processor can check prior to executing a particular piece of code. If the spinlock is not locked, the processor can set the flag and continue executing the thread. If the spinlock is locked, the thread spins in a tight loop continually checking the flag until it is released. Spinlocks operate at a lower level than other synchronization mechanisms and the implementation is hardware specific. Some processors offer a test-and-set instruction for implementing a spinlock.

Threads that do not acquire a spinlock are not suspended; therefore, it is important that spinlocks are held for a short period of time, typically on the order of 10 or 12 instructions. Understanding the consequences of using a spinlock is important. For example, since a processor does not perform any useful work waiting for a spinlock, it is important when a thread acquires a spinlock that it does not get preempted. This could cause another processor to wait for a timeslice period or longer for the spinlock. To avoid this, the kernel spinlock API, as shown in Item List 6.9, provides a function to disable interrupts on the processor where the thread is executing.

	N O T E
Spinlocks should only be used in SMP systems and are not appropriate for single-processor systems. The problems of using spinlocks on a single-processor system can be illustrated in an example. Let’s take the case where a high priority thread attempts to acquire a spinlock held by a lower priority thread. The high priority thread loops forever waiting for the lower priority thread to release the spinlock. However, since the lower priority thread never gets a chance to run, it can never release the spinlock; hence, a deadlock arises. Another deadlock scenario could arise if an interrupt attempted to acquire a spinlock previously acquired by a thread.

Item List 6.9
Kernel Spinlock API Functions

Syntax:

void

cyg_spinlock_init(

 cyg_spinlock_t *lock,

 cyg_bool_t locked

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

locked—initial state of spinlock, either locked (TRUE) or unlocked (FALSE).

Description:

Initialize a spinlock.

Syntax:

void

cyg_spinlock_destroy(

 cyg_spinlock_t *lock

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

Description:

Destroys the specified spinlock.

Syntax:

void

cyg_spinlock_spin(

 cyg_spinlock_t *lock

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

Description:

Attempt to acquire a spinlock. This function is used when it is known that the current code will not be preempted. For example, if interrupts are disabled or the function is called from an interrupt handler.

Syntax:

void

cyg_spinlock_clear(

 cyg_spinlock_t *lock

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

Description:

Release a spinlock obtained with the cyg_spinlock_spin function.

Syntax:

cyg_bool_t

cyg_spinlock_try(

 cyg_spinlock_t *lock

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

Description:

Nonblocking attempt to acquire a spinlock. On successful acquisition of the spinlock, TRUE is returned; otherwise, FALSE is returned immediately on failure.

Syntax:

cyg_bool_t

cyg_spinlock_test(

 cyg_spinlock_t *lock

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

Description:

Determine if the spinlock is locked. Returns TRUE if the spinlock is locked; otherwise, FALSE is returned.

Syntax:

void

cyg_spinlock_spin_intsave(

 cyg_spinlock_t *lock,

 cyg_addrword_t istate

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

istate—previous interrupt state.

Description:

Attempt to acquire a spinlock. This function disables interrupts when the spinlock is acquired. The previous interrupt state is returned in the istate parameter. This value should be passed when releasing the spinlock with the cyg_spinlock_clear_intsave function.

Syntax:

void

cyg_spinlock_clear_intsave(

 cyg_spinlock_t *lock,

 cyg_addrword_t istate

);

Context:

Any

Parameters:

lock—pointer to spinlock object.

istate—previous interrupt state.

Description:

Release a spinlock obtained with the cyg_spinlock_spin_intsave function. The previous interrupt state, obtained with the cyg_spinlock_spin_intsave function, is passed in the istate parameter.

6.3
Summary

We began this chapter with a look at threads and how we use them in the eCos system, including the importance of how we set the stack size for a particular thread based on its execution flow. We then examined the different synchronization mechanisms available in the eCos system. Proper use of the various synchronization mechanisms is important for our applications to operate as intended.

�If the configuration suboption Per-Thread Destructors is disabled, these functions can be called from Init, Thread or DSR context.

