
Introduction

Around twenty years ago a computer revolution started when the IBM PC was
released. The IBM PC took computing away from the air-conditioned environ-
ment of the mainframe and minicomputer and put it onto the desk of poten-
tially everyone. Nowadays most workers have a PC on their desk, and many
have a PC at home, too. Laptop computers allow users to have one computer
that can be used both at home and at work, as well as on the road. PCs are ge-
neric computing devices providing tremendous computing power and flexibil-
ity, and all PCs in the world from laptops to desktop PCs and through to servers
have fundamentally the same architecture. Living through the PC era has been
fun, frustrating, and exciting. However, there is an even bigger revolution on
the way with more potential and even more challenges—the move to truly
mobile-device-based computing.

In the last few years computing devices have been coming onto the mar-
ket that provide unparalleled portability and accessibility. Microsoft Windows
CE devices, such as the palm-size device and handheld PC, provide cutdown
desktop PC capabilities in a really small footprint, and Palm Pilot has been a very
successful PDA (Personal Digital Assistant). Microsoft Pocket PC has tremen-
dous features for enterprise computing, games, and entertainment. The Win-
dows CE operating system has been embedded into many appliances (such as
gas pumps and productions systems) for monitoring and control. Unlike the
generic PC, these computing devices are not all the same and are designed for
specific purposes.

We think of laptop PCs as being mobile devices, but really they are a
convenient way of moving a PC from desktop to desktop. Think of a situation
where I go to a client’s offices, and as I walk through the door I want to check
the names of the people I will be meeting. With a laptop computer, I have to
power-on (assuming I haven’t let the battery run down), wait for the operating

O N E

1

01-P1437 9/8/00 4:54 PM Page 1

system to boot, login, run my calendar application, and look up the informa-
tion. This whole operation could take five minutes during which I have to suf-
fer quizzical looks from the receptionist. The same scenario with a true mobile
device is entirely different—with instant power-on and one-click access to my
calendar, I can have the information within 30 seconds.

Most people tend to think of a mobile worker as the typical road war-
rior, out of the office taking orders from customers and flying or driving from
here to there and never visiting the office from one week to the next. Sales
force automation (SFA) and field engineer support are classic applications for
this type of activity. The reality, though, is that we are all mobile workers—
start thinking of a mobile worker as someone away from his or her desk. If I
am at a project status meeting, I may be expected to take decisions or provide
comments on a project’s progress. I need to have the information in front of me,
but chances are it is on my desktop PC back in the office. With a mobile device,
I can bring the information with me.

The mobile devices are designed to fill in the gaps in our lives where we
haven’t had convenient access to computing. The desktop PC provides comput-
ing capability at the desk at work and at home. Mobile devices allow access to
computing while commuting and traveling, at client meetings, on holidays, and
anywhere else we may be. Computing is not just about work, so these devices
can also entertain. I can listen to my favorite music, play a game, or read a book.

To date, most devices have worked their way into organizations through
personal purchases. The devices arrive in the office on Monday morning and are
hooked up to the desktop PC; information such as contacts and tasks are then
downloaded onto the device. Of course, this doesn’t always work the first time,
so IT support staff are called in to try to support a device that may be new to
them. Consequently, many organizations are now starting to produce strategies
for adopting and supporting mobile devices. It soon becomes apparent that these
devices should be enterprise players and have the capability of downloading,
uploading, and manipulating data from databases, the Internet, and the intranet.

Mobile devices are not just about mobility. For example, desktop Win-
dows CE devices are available that provide thin-client computing. They have
Windows Terminal Server client installed, allowing them to effectively run Win-
dows NT and 2000 applications. Being thin clients, they are easy to set up, con-
figure, and maintain. Windows CE has successfully been embedded into many
different custom devices by developers around the world.

As devices are produced which combine technologies, the possibilities
become even more exciting. Combining a computing device with a GSM phone
allows mobile computing with access to data even when a telephone connec-
tion is not present. Enterprise servers can push data down onto the devices
without user intervention—the device will even wake itself up to receive the
data. By incorporating GPS (Global Positioning System) support, a device’s lo-
cation may be determined very accurately, and this can be used to direct the

2 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 2

user to a local service, such as a coffee shop or gas station. Harnessing these
possibilities requires applications, and this book shows how to do just that us-
ing the Windows CE operating system.

About Microsoft Windows CE
First, let’s start by describing some of the Windows CE operating system char-
acteristics and capabilities:

� Compatible API with Windows NT and 2000
� Multiprocessing, multithreaded support with synchronization
� Virtual memory architecture
� File system and property database support
� TCP/IP stack with functions allowing HTTP and socket communication
� Access to Windows NT and 2000 network resources
� Serial port communications
� Database access through ADOCE (ActiveX Data Objects for Windows CE)
� COM (Component Object Model) support for building componentized

software
� DCOM (Distributed Component Object Model) support for building Win-

dows DNA client software
� Synchronization of data with desktop PCs using ActiveSync

Windows CE is a modular operating system designed to build computing de-
vices. Its modularity means that engineers can select which parts of the oper-
ating system are required—for example, a device may not need a keyboard or
a display, but perhaps it needs networking capability. By selecting only those
modules a device requires, the size and cost of the device can be controlled.
Device manufacturers can use the Microsoft Platform Builder product to pro-
duce their own customized devices, or use one of the standard configurations
such as the Pocket PC or Handheld PC. These standard configurations come
with utilities and tools, such as Pocket Word or Pocket Internet Explorer, that
can be incorporated into the devices.

This flexibility also produces problems for the application developer.
While the Windows CE operating system may support some functionality, such
as a TCP/IP stack, the device being targeted may not. Therefore, the applica-
tion developer should first determine if the feature is present before program-
ming for it!

There is currently much confusion around Windows CE versions and nam-
ing conventions. In particular, recent devices such as the Pocket PC are labeled
“Powered by Windows” and don’t actually mention Windows CE at all. The
truth is that Pocket PC does use Windows CE. Here are some of the more re-
cent releases of Windows CE:

About Microsof t Windows CE 3

01-P1437 9/8/00 4:54 PM Page 3

� Windows CE 3.0. This version of the operating system is designed to pro-
vide hard, real time operating system characteristics and other improve-
ments. Pocket PC uses this version of Windows CE.

� Windows CE 2.12. Used primarily by embedded device manufacturers us-
ing the Microsoft Platform Builder product. This version did not make its
way into many consumer devices.

� Windows CE 2.21. The version of Windows CE used in Windows Hand-
held and Palm size devices.

To add to the confusion, each of the standard configurations such as
palm-size and handheld devices has its own version number. For example, the
Handheld PC Edition Version 3.01 actually runs on Windows CE 2.11. To sim-
plify matters, the descriptions of devices will apply to the following operating
systems:

� Pocket PC—Running on Windows CE 3.0
� Handheld PC—Running on Windows CE 2.11
� Palm size PC—Running on Windows CE 2.11

Microsoft Pocket PC
The Pocket PC does not have a keyboard and supports written character in-
put using SIP (Supplementary Input Panel) with either character recognition or
a virtual keyboard. Pocket PC can also use Microsoft Transcriber, a program
that uses neural network programming techniques for handwriting recognition.
Pocket PC provides multimedia playback (for music using MP3 and video),
Microsoft Reader for reading books, Microsoft Pocket Word and Pocket Excel,
and Microsoft Pocket Internet Explorer for web access.

Pocket PC marks the start of a new era in mobile devices. Not only does
it offer unparalleled consumer functionality; it also provides tools for the enter-
prise developer for accessing databases, the Internet and intranet, and server-
side components.

Most Pocket PC devices support either a type-1 or type-2 Compact Flash
slot which can be used for expanding storage (using either solid-state memory
devices or Winchester disk drives), or adding peripheral support such as bar-
code readers, cameras, modems, or connections to GSM mobile phones.

Handheld PC
The Handheld PC differs from Pocket PC primarily in its keyboard support. It
also has a larger screen. Sub-notebook size devices with larger screens and key-
boards are also available.

Handheld devices often support a full-size PCMCIA card and a Compact
Flash card slot and may have an inbuilt modem. This device configuration is
best suited to job functions that require large amounts of data entry and bet-

4 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 4

ter display capabilities, such as customer-facing situations. Either the screens
are touch sensitive, or some form of mouse support is provided. The sub-
notebooks running Windows CE are generally the same size as some of the
smaller Windows 98 laptop computers, and there is less cost differential.

Palm Size PC
The Palm size PC has been largely replaced with the Pocket PC. It provides a
user interface that is more similar to Windows, as opposed to Pocket PC, which
is more like a browser interface. The Palm size PC suffered from poor battery
life and insufficient capability.

About This Book
First, let me state what this book is not! This book does not look at user inter-
face programming. Why not? I wanted to concentrate on the behind-the-scenes
operating system facilities that are used to make really great applications. There
are many good books on programming the user interface, and many of the prin-
ciples and techniques are the same on Windows CE as for Windows NT/98/
2000. The major difference is the smaller size of display, and knowing which
user interface features are supported.

While many of these operating system features are similar to counterparts
on Windows NT/98/2000 and often use the same API (Application Program-
ming Interface) functions, the emphasis is different. Windows CE applications
need to communicate. They need to communicate with other devices, to com-
municate with the Internet, to communicate with databases, and to communi-
cate with server-side components. These are the areas on which I concentrate.

Also, these devices are smaller and have less memory in which to execute
applications and to store data. Writing memory-efficient applications that can
degrade gracefully in low-memory situations is essential. Data storage can be
in files or in databases, and Windows CE provides unique techniques for both.
These issues are covered in this book.

The techniques here can be used in nearly all Windows CE devices, in-
cluding standard devices such as Pocket PC and Handheld PC, and customized
embedded Windows CE devices produced by embedded developers. Probably
90 percent of the techniques here work in Windows CE 2.11 or 2.12. I have
pointed out code that is specific to Windows CE 3.0 and Pocket PC in particular.

I have tried to provide plenty of code samples showing how to use the
features being discussed. There is little or no user-interface code to get in the
way of seeing the really important code. Feel free to take the code (it is on
the CDROM) and incorporate it into your own applications. However, please,
please, please add error-checking code. For the sake of brevity it is omitted
from the source code samples, but it is essential in any production code.

About Th i s Book 5

01-P1437 9/8/00 4:54 PM Page 5

About You
I expect that you are a developer about to start a serious Windows CE applica-
tion development project for Pocket PC, or an embedded Windows CE devel-
oper who needs to write applications to run on a custom device, or perhaps
someone who wants to find out more about the innards of Windows CE, or
perhaps just plain inquisitive—it really doesn’t matter. However, to get the most
out of the book you will probably need the following experience:

� C and C++ knowledge. Most of the code samples are written using C; a
few require C++ specific knowledge.

� Some Windows API programming experience. You should have already
written some Windows applications, perhaps on Windows NT, 98, or 2000.

� Experience using a Windows CE device. You should try using a Windows
CE device for a while before attempting to write or design applications
for a device. You will need to become accustomed to the capabilities, limi-
tations, and different way of doing things.

I hope that after reading this book you will know a lot more about Win-
dows CE programming in particular, and more about programming in general.

About MFC (Microsoft Foundation Classes)
and ATL (ActiveX Template Libraries)
This book is primarily about using the Windows CE API functions, so most of
the code is standard C code calling these functions. If you are writing an ap-
plication using MFC, you will be able to call these functions in exactly the same
way. However, there are times when MFC provides classes that make calling
these functions easier and more efficient. For example, the Windows CE prop-
erty databases can be programmed through direct API calls, but the MFC
classes make writing database applications much easier. This book will show
how to use MFC classes when appropriate.

Many developers are now writing components using ATL. This can be a
difficult learning process, but the benefits are great. ATL is mainly based around
writing and using COM components, although ATL can also be used to write
applications. This book does not use ATL to any great extent, but as with MFC,
the API calls and techniques can be incorporated into ATL applications and
components.

eMbedded Visual C�� 3.0
In the past, Microsoft has provided add-ins for Visual C++ to provide a Win-
dows CE development environment. The main problem with the add-ins was

6 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 6

that all the facilities used for developing Windows NT/98/2000 applications
were still present. Also, tools like the dialog editor were not tailored to writ-
ing Windows CE applications. The documentation was difficult to follow—
Windows CE-specific comments were embedded in the full MSDN documen-
tation set.

eMbedded Visual C++ 3.0 (Figure 1.1) is a new tool specifically designed
to write Windows CE applications. It is based on Visual C++ and shares the
same user interface, but only those tools and facilities necessary for writing
Windows CE applications are present. The ‘WCE Configuration’ toolbar pro-
vides drop-down combo boxes that allow selection of the target platform (for
example, Pocket PC, Palm size PC 2.11, or H/PC Pro 2.11); the target CPU (such
as ARM and MIPS); whether the build is debug or release; and the type of de-
vice to be run on (for example, emulation or a target device).

eMbedded V i sua l C++ 3.0 7

eMbedded Visual C++Figure 1.1

01-P1437 9/8/00 4:54 PM Page 7

The documentation is specific to writing for Windows CE and details
carefully how the various functions are implemented in the various operating
system and platform versions. Figure 1.2 shows a typical example for the Sleep
function.

eMbedded Visual C++ allows you to write Windows CE application for
any target device for which you have an SDK (Software Development Kit). As
well as producing a customized Windows CE operating system, the Microsoft
Platform Builder can also produce an SDK for that device. The SDK can then
be installed in eMbedded Visual C++ and applications can be developed for
the device.

All the sample projects covered in this book and distributed on the CD-
ROM are eMbedded Visual C++ projects, and should not be compiled using the
standard Visual C++. Workspaces in eMbedded Visual C++ use the .vcw ex-
tension, and projects the .vcp extension. In Visual C++ .dsw and .dsp are
used. eMbedded Visual C++ can import Windows CE projects created using Vi-
sual C++. However, in my experience it is sometimes better to rebuild the proj-
ect and import the files.

8 Chapter 1 • Introduction

Typical help screen for a Windows CE functionFigure 1.2

01-P1437 9/8/00 4:54 PM Page 8

Common Executable Format (CEF)
One of the downsides to writing Windows CE applications in the past was the
number of different microprocessors that needed to be supported, such as
MIPS and SH3. Starting with Pocket PC, Windows CE devices now support a
processor-neutral machine code set called Common Executable Format, or CEF
(pronounced ‘keff’). You can compile into CEF using eMbedded Visual C++
and then run that single executable on any platform that supports CEF, such as
Pocket PC.

CEF-enabled platforms have a translator that takes the CEF code and trans-
lates it into the native code, such as MIPS or SH3. Translation can take place
every time the application is run, or the converted code can be saved. There
is an overhead in performance—CEF applications run at around 80 percent the
speed of native applications.

Emulation Environments
Many Windows CE SDKs, such as Pocket PC, support an emulation environ-
ment that runs on the desktop PC. This can be used to test and debug your ap-
plications and is generally quicker to use than downloading applications onto
a real device. However, you should not solely rely on emulation for testing for
the following reasons:

� Emulation is not perfect, and applications that run under emulation may
not work correctly on a proper device. Facilities such as networking and
RAS dialup connections may behave differently.

� User interfaces may appear differently under emulation, since there are
differences in how standard controls and fonts are implemented.

� Desktop performance is generally much better than on a real device. Ap-
plications may perform adequately under emulation, but run too slowly
on a Windows CE device.

Using emulation does save large amounts of development time, particu-
larly when you are debugging non-user-interface code.

The Code Samples
Throughout the book you will find code samples showing how to use the fa-
cilities being discussed. All the code is on the CDROM, so it can be copied di-
rectly into your application. Unless otherwise stated, all the code is in a single
project called examples.vcp in the directory \examples. The source code
is arranged by chapter, and each chapter has its own source file, for example
Chapter2.cpp, Chapter3.cpp, and so on.

The examples.exe application can be run on a real device, or under
emulation. The user interface has been optimized to run under Pocket PC, but

The Code Samples 9

01-P1437 9/8/00 4:54 PM Page 9

can easily be adapted to run on other platforms. The menu contains drop downs
for each of the chapters arranged into groups, and the drop downs contain
menu items allowing each code sample to be run. Figure 1.3 shows how the ap-
plication looks, with sample output. No prizes for best user interface here! Note
that not all the sample code will run on all platforms. In particular, some samples
will not run under emulation.

The code samples are designed to remove all irrelevant code so you can
concentrate on what is really important. In the Examples project, all output is
displayed to a read-only edit window (which, in Figure 1.3, contains the text
“Mounted vol: SystemHeap” and so on). A C++ class object called ‘cout’ has
been created to emulate the basic behaviors of the standard C++ ‘cout’ ob-
ject used in command line, character mode applications. The ‘cout’ object is
an instance of the class COutput which is declared in Examples.h and imple-
mented in InputOutput.cpp. The ‘<<’ operator has overloads for most com-
mon data types, including strings, integers, and characters. Calling the COut-
put ‘CLS’ method removes all the text from the text edit window. You will find
statements like the following to display data to the edit window:

cout << _T("Unicode File") << endl;

Input is obtained from the user in a dialog using the function GetText-
Response. The function is passed the string to prompt the user with, a string
in which the data will be returned as well as the maximum number of charac-
ters of data that can be placed in the string. The function returns TRUE if a
string is returned, or FALSE if the user pressed Cancel.

10 Chapter 1 • Introduction

Examples application
used to run sample code

Figure 1.3

01-P1437 9/8/00 4:54 PM Page 10

if(!GetTextResponse(_T("Enter URL to Display: "),
szURL, MAX_PATH))

return;

The function GetFileNamewill display a File Open command dialog box
allowing the user to select a file. This function takes the same arguments as
GetTextResponse:

if(!GetFilename(_T("Enter filename:"),
szFilename, MAX_PATH))

return;

Some of the sample code is in separate projects, and because some of
these projects run on a desktop PC, the projects should be compiled using Vi-
sual C++ 6.0.

Unicode Text and Strings
Before starting out there are a couple of topics that need to be covered, and
the first of these is Unicode. Windows 98 API functions have partial support
for Unicode strings, and Windows 2000 and NT allow applications to call either
Unicode or ANSI versions of the API functions. Windows CE, on the other hand,
only supports Unicode, so you will need to write your applications using Uni-
code strings and text.

Most of us grew up safe in the knowledge that a character was stored in
a single byte using eight bits. Character strings are stored in ‘char’ arrays and
are terminated with a NULL, ANSI 0 character. Strangely enough, the ‘char’ data
type is signed, but we get used to that. The problem is that there are many more
than the 255 characters that fit in a ‘char’ used by different languages around
the world, so tricks need to be employed to support all these characters. Two
such tricks are:

� Use multi-byte character strings (MBCS), where special characters act as
lead-ins indicating that the next character should be treated as an entirely
different character.

� Use Code Pages, in which the same ANSI character number is used to
display completely different characters depending on which code page is
loaded.

Neither of these tricks is satisfactory. Parsing MBCS strings is difficult; for
example, the length of a string can only be determined by traversing the entire
string and inspecting each character. With code pages, you can display com-
pletely incorrect text by having the wrong code page loaded for the text being
displayed. The Unicode solution uses two bytes to store a single character. This
allows up to 65536 different characters to be displayed—more than enough for
all the languages around the world. With Unicode, a character is stored as an

Unicode Text and S t r ings 11

01-P1437 9/8/00 4:54 PM Page 11

unsigned two-byte integer value. They are also known as ‘wide byte characters’.
The Unicode characters in the range 0x00 to 0x7F are reserved for ANSI char-
acters, so ANSI characters always have the high byte set to zero when repre-
sented in Unicode.

Compilers do not provide native support for Unicode—that is, there is
no magic compiler switch that changes a char from one byte to two bytes. In-
stead, support for Unicode is achieved through defines and typedef statements
in header files. The data type wchar_t is used to represent a Unicode charac-
ter, and an array of wchar_t is used to store strings. As with ANSI strings, a
NULL terminates a string, but this is a two-byte rather than a one-byte value.
ANSI strings and characters can be used alongside Unicode strings and charac-
ters—you can continue to use the ‘char’ data type. This is important because
data coming from the outside world (through the Internet or as a file) may use
ANSI characters, and these need to be converted before being used.

Unicode characters obviously take twice as much space as ANSI to store
strings. In many applications the majority of strings stored using Unicode ac-
tually store ANSI characters, so every other byte is a NULL. In Windows CE, the
compression algorithms used to store data in the object store (that is, data stored
in files or databases) are optimized to recognize this sequence.

Generic String and Character Data Types
You can use the standard Unicode data type wchar_t, but it is more usual to
use generic string data types, and then use compiler defines to specify which
character type should be used for the compilation. You can write code that can
be compiled for ANSI and Unicode and is portable. The define _UNICODE is
defined either as a compiler switch or using #define to indicate that the Uni-
code version of API functions should be used. Some header files expect the
UNICODE define to be used, so both often end up being defined. The compiler
defines _MBCS, and multi-byte character strings (MBCS) are used in Windows
NT/98/2000 to compile for ANSI characters but are not supported under Win-
dows CE. If neither _MBCS nor _UNICODE is defined, the header files default
to single-byte character strings (SBCS). SCBS don’t use lead-in characters to ex-
tend the supported range of characters.

To use generic string and character data types, include the file tchar.h
and ensure that _UNICODE or _MBCS is defined as appropriate. To declare
a character, use the data type TCHAR, and this will be compiled to wchar_t
or char depending on the define in operation. The following code declares a
character variable and a character string that can store up to ten characters in-
cluding the terminating NULL:

TCHAR cChar;
TCHAR szArray[10];

Rather than using the LPSTR data type for specifying a pointer to a char-
acter string, you should use LPTSTR. This will be compiled to either a ‘char*’
or a ‘wchar_t*’.

12 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 12

String Constants
In the following code fragment, the string constant "my string" will always
be compiled as an ANSI character string constant using one byte per character.

LPTSTR lpszStr = "my string";

You will get a compiler type mismatch error if you try to compile this code
with _UNICODE. The header file tchar.h declares two macros ‘_T’ and ‘_TEXT’
that are used to specify Unicode character string constants when _UNICODE is
declared, and ANSI character string constants when _MBCS is declared. So, the
previous line of code should be written as

LPTSTR lpszStr = _T("my string");

or

LPTSTR lpszStr = _TEXT("my string");

The L macro can be used to force a Unicode string constant. In this next
line of code, the LPWSTR data type declares a Unicode string pointer and points
it to a Unicode string constant.

LPWSTR lpszStr = L("my string");

With Windows CE programming you will need to use the _T or _TEXT
macro around just about every string constant. My preference is for _T, only
because it is shorter. I like to set up an eMbedded Visual C++ macro and as-
sign it to the Ctrl+T key sequence to generate the _T("") sequence in the
source file. To do this:

� Select the Tools+Macro menu command.
� Enter the name of the macro, say ‘T’, and click the Record button.
� Enter the text _T("") into a source file, followed by two left arrow key

presses to locate the cursor between the two double quotes.
� Turn off recording by pressing the Macro toolbar icon with a square box.
� Select the Tools+Macro menu command again, this time to assign the

macro to a keystroke.
� Select your macro from the list and click the Options button.
� Select the Keystrokes button, and assign the macro to the required key-

stroke, for example Ctrl+T.

Macros in eMbedded Visual C++ are recorded using VB Script. Here is the
source for the _T macro:

Sub T()
'DESCRIPTION: A macro to enter _T("") into a source file.
'Begin Recording

ActiveDocument.Selection = "_T("""")"
ActiveDocument.Selection.CharLeft dsMove, 2

'End Recording
End Sub

Unicode Text and S t r ings 13

01-P1437 9/8/00 4:54 PM Page 13

Calculating String Buffer Lengths
One of the most common bugs introduced when moving to Unicode pro-
gramming concerns calculating buffer lengths—all too often, code assumes that
characters are stored in one byte. For example:

TCHAR szBuffer[200];
DWORD dwLen;
dwLen = sizeof(szBuffer);

We might expect dwLen to contain the value 200, but it will actually con-
tain 400, which is the number of bytes occupied by szBuffer. If dwLen were
passed to a function indicating how many characters can be placed in sz-
Buffer, the application might fail, as the function could exceed the bounds of
the array szBuffer. The following code should be used instead, and this will
work for both ANSI and Unicode compilation.

dwLen = sizeof(szBuffer) / sizeof(TCHAR);

When passing the length of a string buffer to a function, check whether
the function expects the size of the buffer in bytes or characters.

Standard String Library Functions
We are all accustomed to the standard C run-time functions for string manipu-
lation—strlen, strcpy, and so on. These functions work with the ‘char’
data type and cannot be used for Unicode strings. Unicode equivalent func-
tions are provided, such as wcslen and wcscpy (standing for ‘wide character
string length,’ and ‘wide character string copy’).

Generic string functions are also available which will be compiled to the
ANSI or Unicode function equivalents. For example, the function _tcslen will
compile to strlen if _MBCS is defined, or wcslen if _UNICODE is defined.
The header file tchar.h should be included to enable this behavior. Using the
_tc functions makes code portable between ANSI and Unicode. The samples
in this book tend to use the wcs functions rather than _tc, since I never in-
tend to port this code away from Unicode. Table 1.1 shows some of the C com-
mon run-time string functions and their generic and Unicode equivalents.

Converting Between ANSI and Unicode Strings
There are times when you will need to convert ANSI strings or characters to
Unicode and vice versa. Examples include:

� Reading an ANSI text file into a Windows CE application
� Reading and writing characters from a serial device that supplies data in

ANSI
� Reading and writing data from Internet servers, such as web or email serv-

ers, most of which expect text in ANSI

14 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 14

Table 1.1 C common run-time string functions with generic and Unicode equivalents

Generic
String ANSI Unicode

Purpose Function Function Function

Return length of string in characters _tcslen strlen wcslen

Concatenate strings _tcscat strcat wcscat

Search for character in string _tcschr strchr wcschr

Compare two strings _tcscmp strcmp wcscmp

Copy a string _tcscpy strcpy wcscpy

Find one string in another _tcsstr strstr wcsstr

Reverse a string _tcsrev _strrev _wcsrev

Converting an ANSI character to Unicode is easy—all you need to do is
set the high byte in the Unicode character to zero and copy the ANSI character
into the low byte. In this next code fragment, the MAKEWORD macro combines
a low byte and high byte into a single two-byte word, and the result is assigned
to a Unicode character.

WCHAR wC;
char c = 'C';

wC = MAKEWORD(c, 0);

You can convert string using one of the C run-time functions:

� mbstowcs—Convert a multi-byte (ANSI) string to wide character string
(Unicode)

� wcstombs—Convert a wide character string to multi-byte string

Both of these functions take three arguments that are the buffer in which
to place the converted string, the string to convert, and the maximum number
of characters that can be placed in the string. Both functions return the num-
ber of converted characters placed in the string. The following code converts
an ANSI string to Unicode and a Unicode string to ANSI.

WCHAR szwcBuffer[100];
char szBuffer[100];

char* lpszConvert = "ANSI String to convert";
WCHAR* lpszwcConvert = _T("Unicode string to convert");
int nChars;

nChars = mbstowcs(szwcBuffer, lpszConvert, 100);
nChars = wcstombs(szBuffer, lpszwcConvert, 100);

If you are using code pages, the Windows API functions MultiByteTo-
WideChar and WideCharToMultiByte should be used since you can specify
the target or destination code page to be used for the conversion.

Unicode Text and S t r ings 15

01-P1437 9/8/00 4:54 PM Page 15

Error Checking
As with any operating system, it is imperative to check the return results when
calling Windows CE API functions—never assume that the function works.
Many of the code samples in this book do not have sufficient error-checking
code for use as production code, so you will need to add it if you take code
from this book for use in your own applications.

Nearly all Windows CE API functions return a value indicating success or
failure, but little information detailing the nature of the error. You should call
the function GetLastError to determine the actual error number encountered.
You can look up the error numbers in the header file winerror.h, where you
will find a short description of the error. This file is located in the “\Windows
CE Tools\wce300\MS Pocket PC\include”, or another folder appropri-
ate to the SDK version you are using. The on-line documentation often lists the
common errors encountered when calling specific Windows CE functions.

Windows CE devices, unlike Windows NT/98/2000, do not support the
FormatMessage function for producing textual descriptions of error numbers,
but the function does work under emulation—watch out for this one.

Adding comprehensive error-checking code can increase significantly the
size of your application’s code. With memory-tight Windows CE devices, this
can be a problem. You should therefore place debug-specific error-checking
code in #ifdef / #endif compiler directives with the _DEBUG define so that
the code will not be included in your released application.

#ifdef _DEBUG
// perform error checking that does not need to be in
// the production version

#endif

Exception Handling and Page Faults
A page fault occurs when an application attempts to read or write data from or
to a page that does not have memory associated with it, or to a memory ad-
dress that is illegal. If you try to execute the following code on a desktop PC,
you will get an unhandled page fault error box, and your application will ter-
minate.

char* lpC = 0;
*lpC = 'A';

The code declares a character pointer and sets it to point at address 0. In
most operating systems, including Windows CE, address 0 is protected and
cannot be used. The second line attempts to place a character into the address
pointed to by lpC, and since the address is protected, a page fault is generated
and the application will fail.

16 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 16

Surprisingly, if you attempt to run these two lines of code in Windows CE
you will not get a page protection fault—the application will continue to exe-
cute, although it may not function correctly. This can be a real problem in ap-
plication development. To ensure that your page faults are correctly reported
you will need to use exception handling.

Exception handling allows you to execute code and to trap any errors that
would normally be reported by the operating system. Exception handling is a
long and complex topic, especially with regard to the rules of how exceptions
are handled with C++ object creation and destruction and to nested function
calls. To confuse the issue, three types of exception handling exist in Windows
programming: MFC (Microsoft Foundation Class), C++ language, and Windows
structured exception handling (SEH).

I use Windows structured exception handling (SEH) to trap address and
memory exceptions in my applications, and I try to keep it as simple as pos-
sible. With SEH the code needed to trap errors is placed in a __try block (that
is try with two leading underscores). Errors generated in any function called
from this block of code will be trapped. The error-trapping code to be exe-
cuted in event of an error is placed in an __except block. The EXCEPTION_
EXECUTE_HANDLER constant in the __except block indicates that errors will
be handled by the block and not passed to other handlers.

__try
{

char* lpC = 0;
*lpC = 'A';

}
__except(EXCEPTION_EXECUTE_HANDLER)
{

MessageBox(hWnd,
_T("Page Fault Caught in exception handling!"),
szTitle, MB_OK | MB_ICONEXCLAMATION);

}

Now, even in Windows CE, the assignment to a NULL pointer will be
trapped and reported. When writing a Windows API function with a message-
handling function for a main window, I generally place a __try/__except
block around all the code in the message-handling function. Nearly all the code
in the application will be called from this function, so any page fault in any
function called from the message handler will be trapped.

LRESULT CALLBACK WndProc(HWND hWnd,
UINT message, WPARAM wParam, LPARAM lParam)

{
__try
{

switch (message)
{

case WM_CREATE:
break;

Except ion Handl ing and Page Faul t s 17

01-P1437 9/8/00 4:54 PM Page 17

// ... standard message handling code here
default:

return DefWindowProc(hWnd,
message, wParam, lParam);

}
}
__except(EXCEPTION_EXECUTE_HANDLER)
{

MessageBox(hWnd,
_T("Page Fault in exception handling!"),
szTitle, MB_OK | MB_ICONEXCLAMATION);

}
return 0;

}

Conclusion
Now that the preliminaries—what the book is about, the sample code, and gen-
eral programming techniques such as error trapping—have been dealt with,
you are ready to find out about the great features provided by Windows CE
programming, such as communications, databases, and components. You can
read the book chapter by chapter or, if you like, dip into those chapters that are
important for you and the applications you are building. Before you start, one
last thought: Remember that nearly all errors in an application are your errors,
and just a very few may be due to bugs in the Windows CE operating system.

18 Chapter 1 • Introduction

01-P1437 9/8/00 4:54 PM Page 18

