
Chapter

1

1

Overview

This book describes the Object-Relational Database Management Systems
(ORDBMS) technology implemented in the INFORMIX Dynamic Server
(IDS) product, and explains how to use it. This first chapter introduces
the basic ideas behind object-relational, or extensible, DBMSs. It is
intended as a road map to guide readers in their own exploration of
the material.

We begin with a little historical background explaining the moti-
vation behind an ORDBMS product such as IDS. At this early stage
of the book, it is enough to say that ORDBMS technology signifi-
cantly changes the way you should think about using a database.
In contrast with the more byte-oriented Relational DataBase Manage-
ment System (RDBMS) technology, an object-relational database
organizes the data and behavior of business objects within an abstract
data model. Object-Relational query statements deal with objects
personal name, part, code, polygon and video, instead of INTEGER,
VARCHAR or DECIMAL data values.

Introduction to
Object-Relational
Database Development

The chapter continues with a high-level description of the features
and functionality of IDS. We introduce the Object-Relational (OR) data
model, type and function extensibility, storage manager extensibility,
and active database features. Later chapters of the book address each
topic in more detail.

Moving along, we take a little time to examine how an ORDBMS is
implemented internally. This digression is important because it provides
a framework for understanding the best way to use the technology. An
ORDBMS is a lot like an operating system. It manages resources such as
memory, I/O, thread scheduling, and interprocess communications.
Developers can acquire these resources from the ORDBMS for their own
programs, which run under the control of the ORDBMS (instead of the
operating system). Where the ORDBMS differs from a traditional operat-
ing system is in how it reorganizes its programs. Instead of running
business logic, an ORDBMS executes it as part of a declarative query
expression

We conclude this chapter with a brief description of the Movies-R-Us
website—a sample database application—which provides many of this
book’s examples.

Evolution of Database Management Systems

The history of DataBase Management Systems (DBMS) is an evolutionary
history. Each successive wave of innovation can be seen as a response
either to some limiting aspect of the technology preceding it or to
demands from new application domains. In economic terms, successful
information technology lowers the costs incurred when implementing a
solution to a particular problem. Lowering development costs increases
the range of information management problems that can be dealt with
in a cost-effective way, leading to new waves of systems development.

2 Chapter One • Introduction to Object-Relational Database Development

 Data Processing

User-Interface

 Data
Management

Figure 1–1. Functional Decomposition of an Information System

As an example of changing development costs, consider that early
mainframe information systems became popular because they could
make numerical calculations with unprecedented speed and accuracy
(by the standards of the time). This had a major impact on how busi-
nesses managed financial assets and how engineering projects were
undertaken.

It took another evolutionary step—the invention of higher level lan-
guages such as COBOL—to get to the point that the economic return
from a production management system justified the development cost.
It took still another innovation—the adoption of relational DBMSs—
before customer management and human resource systems could be
automated.

Today it is difficult to imagine how you could use COBOL and ISAM to
build the number and variety of e-commerce Web sites that have sprung
up over the last three years. And looking ahead, as we move into an era
of ubiquitous, mobile computers and the growing importance of digital
media, it is difficult to see how RDBMS technology can cope.

Early Information Systems
Pioneering information systems of the late 1960s and early 1970s were
constrained by the capacity of the computers on which they ran. Hard-
ware was relatively expensive, and by today’s standards, quite limited.
Consequently, considerable human effort was devoted to optimizing
programming code. Diverting effort from functionality to efficiency
constrained the ambition of early developers, but the diversion of
effort was necessary because it was the only way to develop an infor-
mation system that ran with adequate performance.

Information systems of this era were implemented as monolithic pro-
grams combining user-interface, data processing logic, and data man-
agement operations into a single executable on a single machine. Such
programs intermingled low-level descriptions of data structure details—
how records were laid out on disk, how records were interrelated—with
user-interface management code. User-interface management code
would dictate, for example, where an element from a disk record went
on the screen. Maintaining and evolving these systems, even to per-
form tasks as simple as adding new data fields and indexes, required
programmers to make changes involving most aspects of the system.

Experience has shown that development is the least expensive stage
of an information system’s life cycle. Programming and debugging
take time and money, but by far the largest percentage of the total cost
of an information system is incurred after it goes into production. As
the business environment changes, there is considerable pressure to

Evolution of Database Management Systems 3

change systems with it. Changing a pre-relational information system,
either to fix bugs or to make enhancements, is extremely difficult. Yet,
there is always considerable pressure to do so. In addition, hardware
constantly gets faster and cheaper.

A second problem with these early systems is that as their complex-
ity increased, it became increasingly important to detect errors in the
design stage. The most pervasive design problem was redundancy,
which occurs when storage structure designs record an item of infor-
mation twice.

Relational DataBase Management Systems
In 1970 an IBM researcher named Ted Codd wrote a paper that described
a new approach to the management of “large shared data banks.” In his
paper Codd identifies two objectives for managing shared data. The first
of these is data independence, which dictates that applications using a
database be maintained independent of the physical details by which
the database organizes itself. Second, he describes a series of rules to
ensure that the shared data is consistent by eliminating any redundancy
in the database’s design.

Codd’s paper deliberately ignores any consideration of how his model
might be implemented. He was attempting to define an abstraction of
the problem of information management: a general framework for
thinking about and working with information.

The Relational Model Codd described had three parts: a data model,
a means of expressing operations in a high-level language, and a set
of design principles that ensured the elimination of certain kinds of
redundant data problems. Codd’s relational model views data as being
stored in tables containing a variable number of rows (or records), each
of which has a fixed number of columns. Something like a telephone
directory or a registry of births, deaths, and marriages, is a good anal-
ogy for a table. Each entry contains different information but is identi-
cal in its form to all other entries of the same kind.

The relational model also describes a number of logical operations
that could be performed over the data. These operations included a
means of getting a subset of rows (all names in the telephone directory
with the surname “Brown”), a subset of columns (just the name and
number), or data from a combination of tables (a person who is mar-
ried to a person with a particular phone number).

By borrowing mathematical techniques from predicate logic, Codd
was able to derive a series of design principles that could be used to guar-
antee that the database’s structure was free of the kinds of redundancy so

4 Chapter One • Introduction to Object-Relational Database Development

problematic in other systems. Greatly expanded by later writers, these
ideas formed the basis of the theory of normal forms. Properly applied,
the system of normal form rules can ensure that the database’s logical
design is free of redundancy and, therefore, any possibility of anomalies
in the data.

Relational Database Implementation

During the early 1970s, several parallel research projects set out to imple-
ment a working RDBMS. This turned out to be very hard. It wasn’t until
the late 1980s that RDBMS products worked acceptably in the kinds of
high-end, online transactions processing applications served so well by
earlier technologies.

Despite the technical shortcomings RDBMS technology exploded in
popularity because even the earliest products made it cheaper, quicker,
and easier to build information systems. For an increasing number of
applications, economics favored spending more on hardware and less
on people. RDBMS technology made it possible to develop information
systems that, while desirable from a business management point of
view, had been deemed too expensive.

To emphasize the difference between the relational and pre-relational
approaches, a four hundred line C program can be replaced by the
SQL-92 expression in Listing 1–1.

CREATE TABLE Employees (

Name VARCHAR(128),

DOB DATE,

Salary DECIMAL(10,2),

Address VARCHAR(128)

);

Listing 1–1. Simple SQL-92 Translation of the Previous C Code

The code in Listing 1–1 implements considerably more functionality
than a C program because RDBMSs provide transactional guarantees
for data changes. They automatically employ locking, logging, and
backup and recovery facilities to guarantee the integrity of the data
they store. Also, RDBMSs provide elaborate security features. Different
tables in the same database can be made accessible only by different
groups of users. All of this built-in functionality means that developers
focus more of their effort on their system’s functionality and less on
complex technical details.

Evolution of Database Management Systems 5

With today’s RDBMSs, the simple Employees table we introduced in
Listing 1–1 is more usually defined as shown in Listing 1–2.

CREATE TABLE Employees (

FirstName VARCHAR(32) NOT NULL,

Surname VARCHAR(64) NOT NULL,

DOB DATE NOT NULL,

Salary DECIMAL(10,2) NOT NULL

CHECK (Salary > 0.0),

Address_1 VARCHAR(64) NOT NULL,

Address_2 VARCHAR(64) NOT NULL,

City VARCHAR(48) NOT NULL,

State CHAR(2) NOT NULL,

ZipCode INTEGER NOT NULL,

PRIMARY KEY (Surname, FirstName, DOB)

);

Listing 1–2. Regular SQL-92 Version of the Employees Table

Today the global market for RDBMS software, services, and applica-
tions that use relational databases exceeds $50 billion annually. SQL-92
databases remain a simple, familiar, and flexible model for managing
most kinds of business data. The engineering inside modern relational
database systems enables them to achieve acceptable performance lev-
els in terms of both data throughput and query response times over very
large amounts of information.

Problems with RDBMSs

Starting in the late 1980s, several deficiencies in relational DBMS
products began receiving a lot of attention. The first deficiency is
that the dominant relational language, SQL-92, is limiting in several
important respects. For instance, SQL-92 supports a restricted set of
built-in types that accommodate only numbers and strings, but
many database applications began to include deal with complex
objects such as geographic points, text, and digital signal data.
A related problem concerns how this data is used. Conceptually sim-
ple questions involving complex data structures turn into lengthy
SQL-92 queries.

The second deficiency is that the relational model suffers from cer-
tain structural shortcomings. Relational tables are flat and do not pro-
vide good support for nested structures, such as sets and arrays. Also,
certain kinds of relationships, such as subtyping, between database

6 Chapter One • Introduction to Object-Relational Database Development

objects are hard to represent in the model. (Subtyping occurs when we
say that one kind of thing, such as a SalesPerson, is a subtype of
another kid of thing, such as an Employee.) SQL-92 supports only
independent tables of rows and columns.

The third deficiency is that RDBMS technology did not take
advantage of object-oriented (OO) approaches to software engineer-
ing which have gained widespread acceptance in industry. OO tech-
niques reduce development costs and improve information system
quality by adopting an object-centric view of software development.
This involves integrating the data and behavior of a real-world
entity into a single software module or component. A complex data
structure or algorithmically sophisticated operation can be hidden
behind a set of interfaces. This allows another programmer to make
use of the complex functionality without having to understand how
it is implemented.

The relational model did a pretty good job handling most informa-
tion management problems. But for an emerging class of problems
RDBMS technology could be improved upon.

Object-Oriented DBMS
Object-Oriented Database Management Systems (OODBMS) are an extension
of OO programming language techniques into the field of persistent data
management. For many applications, the performance, flexibility, and
development cost of OODBMSs are significantly better than RDBMSs or
ORDBMSs. The chief advantage of OODBMSs lies in the way they can
achieve a tighter integration between OO languages and the DBMS.
Indeed, the main standards body for OODBMSs, the Object Database
Management Group (ODMG) defines an OODBMS as a system that inte-
grates database capabilities with object-oriented programming language
capabilities.

The idea behind this is that so far as an application developer is
concerned, it would be useful to ignore not only questions of how an
object is implemented behind its interface, but also how it is stored
and retrieved. All developers have to do is implement their applica-
tion using their favorite OO programming language, such as C++,
Smalltalk, or Java, and the OODBMS takes care of data caching, con-
currency control, and disk storage.

In addition to this seamless integration, OODBMSs possess a num-
ber of interesting and useful features derived mainly from the object
model. In order to solve the finite type system problem that constrains
SQL-92, most OODBMSs feature an extensible type system. Using this
technique, an OODBMS can take the complex objects that are part of

Evolution of Database Management Systems 7

the application and store them directly. An OODBMS can be used to
invoke methods on these objects, either through a direct call to the
object or through a query interface. And finally, many of the structural
deficiencies in SQL-92 are overcome by the use of OO ideas such as
inheritance and allowing sets and arrays.

OODBMS products saw a surge of academic and commercial interest
in the early 1990s, and today the annual global market for OODBMS
products runs at about $50 million per year. In many application
domains, most notably computer-aided design or manufacturing
(CAD/CAM), the expense of building a monolithic system to manage
both database and application is balanced by the kinds of perfor-
mance such systems deliver.

Problems with OODBMS
Regrettably, much of the considerable energy of the OODBMS commu-
nity has been expended relearning the lessons of twenty years ago.
First, OODBMS vendors have rediscovered the difficulties of tying
database design too closely to application design. Maintaining and
evolving an OODBMS-based information system is an arduous under-
taking. Second, they relearned that declarative languages such as
SQL-92 bring such tremendous productivity gains that organizations
will pay for the additional computational resources they require. You
can always buy hardware, but not time. Third, they re-discovered the
fact that a lack of a standard data model leads to design errors and
inconsistencies.

In spite of these shortcomings OODBMS technology provides effec-
tive solutions to a range of data management problems. Many ideas
pioneered by OODBMSs have proven themselves to be very useful and
are also found in ORDBMSs. Object-relational systems include features
such as complex object extensibility, encapsulation, inheritance, and
better interfaces to OO languages.

Object-Relational DBMS
ORDBMSs synthesize the features of RDBMSs with the best ideas of
OODBMSs.

• Although ORDBMSs reuse the relational model as SQL interprets it,
the OR data model is opened up in novel ways. New data types and
functions can be implemented using general-purpose languages
such as C and Java. In other words, ORDBMSs allow developers to
embed new classes of data objects into the relational data model
abstraction.

8 Chapter One • Introduction to Object-Relational Database Development

• ORDBMS schema have additional features not present in RDBMS
schema. Several OO structural features such as inheritance and
polymorphism are part of the OR data model.

• ORDBMSs adopt the RDBMS query-centric approach to data manage-
ment. All data access in an ORDBMS is handled with declarative SQL
statements. There is no procedural, or object-at-a-time, navigational
interface. ORDBMSs persist with the idea of a data language that is fun-
damentally declarative, and therefore mismatched with procedural OO
host languages. This significantly affects the internal design of the
ORDBMS engine, and it has profound implications for the interfaces
developers use to access the database.

• From a systems architecture point of view, ORDBMSs are implemented
as a central server program rather than as a distributed data architec-
tures typical in OODBMS products. However, ORDBMSs extend the
functionality of DBMS products significantly, and an information sys-
tem using an ORDBMS can be deployed over multiple machines.

To see what this looks such as, consider again the Employees exam-
ple. Using an ORDBMS, you would represent this data as shown in
Listing 1–3.

CREATE TABLE Employees (
Name PersonName NOT NULL,
DOB DATE NOT NULL,
Salary Currency NOT NULL,
Address StreetAddress NOT NULL

PRIMARY KEY (Name, DOB)
);

Listing 1–3. Object-Relational Version of Employees Table

For readers familiar with relational databases, this CREATE TABLE
statement should be reassuringly familiar. An object-relational table is
structurally very similar to its relational counterpart and the same data
integrity and physical organization rules can be enforced over it. The
difference between object-relational and relational tables can be seen in
the section stipulating column types. In the object-relational table,
readers familiar with RDBMSs should recognize the DATE type, but the
other column types are completely new. From an object-oriented point
of view, these types correspond to class names, which are software mod-
ules that encapsulate state and (as we shall see) behavior.

As another example of the ORDBMS data model’s new functionality,
consider a company supplying skilled temporary workers at short
notice. Such a company would need to record each employee’s
resumes, the geographic location where they live, and a set of Periods
(fixed intervals in the time line) during which they are available, in

Evolution of Database Management Systems 9

addition to the regular employee information. Listing 1–4 illustrates
how this is done.

CREATE TABLE Temporary_Employees (
Resume DOCUMENT NOT NULL,
LivesAt GEOPOINT NOT NULL,
Booked SET(Period NOT NULL)

) UNDER Employees;

Listing 1–4. Object-Relational Version of the Temporary_Employees Table1

Readers familiar with earlier RDBMS releases of Informix Dynamic
Server (IDS) will also be struck by the use of the UNDER keyword.
UNDER signifies that the Temporary_Employees table inherits from the
Employees table. All the columns in the Employee table are also in the
Temporary_Employees table, and the rows in the Temporary_Employees
table can be accessed through the Employee table.

Answering business questions about temporary employees requires
that the information system be able to support concepts such as “Is
Point in Circle,” “Is Word in Document,” and “Is some Period Available
given some set of Booked Periods.” In the IDS product such behaviors
are added to the query language. In Listing 1–5, we present a query
demonstrating OR-SQL.

“Show me the names of Temporary Employees living within 60 miles of the
coordinates (-122.514, 37.221), whose resumes include references to both
INFORMIX and ‘database administrator,’ and who are not booked for the
period between today and seven days ahead.”

SELECT Print(E.Name)

FROM Temporary_Employees E

WHERE Contains (GeoCircle('(-122.514, 37.221)',

'60 miles')),

E.LivesAt)

AND DocContains (E.Resume,

'INFORMIX and Database Administra-

tor')

AND NOT IsBooked (Period(TODAY, TODAY + 7),

E.Booked);

Listing 1–5. Object-Relational Query against the Employees Table

10 Chapter One • Introduction to Object-Relational Database Development

1 Note that this is illegal syntax. This figure is intended to illustrate a data mod-
eling principle, rather than to demonstrate a use of OR-SQL. Refer to Chapter 2
for more details.

Again, many readers will be familiar with the general form of this
SELECT statement. But this query contains no expressions that are
defined in the SQL-92 language standard. In addition to accommo-
dating new data structures, an ORDBMS can integrate logic imple-
menting the behavior associated with the objects. Each expression, or
function name, in this query corresponds to a behaviorial interface
defined for one of the object classes mentioned in the table’s creation.
Developing an object-relational database means integrating whatever
the application needs into the ORDBMS.

The examples in Listings 1–5 and 1–6 are both obvious extensions of
SQL. But an ORDBMS is extensible in other ways too. Tables in an object-
relational database can be more than data storage structures. They can
be active interfaces to external data or functionality. This allows you, for
example, to integrate software that interfaces with a paging system
directly into the ORDBMS, and use it as shown in Listing 1–6.

“Send a page to all Temporary_Employees living within 60 miles of the coordi-
nates (-122.514, 37.221), whose resumes includes references to both
INFORMIX and ‘database administrator,’ and who are not booked for the
period between today and seven days ahead.”

INSERT INTO SendPage

(Pager_Number, Pass_Code, Message)

SELECT E.Pager_Number,

E.Pass_Code,

Print(E.Name) ||

': Call 1-800-TEMPS-R-US for immediate INFORMIX DBA

job'

FROM Temporary_Employees E

WHERE Contains (GeoCircle('(-122.514, 37.221)',

'60 miles')),

E.LivesAt)

AND DocContains (E.Resume,

'INFORMIX and Database

Administrator')

AND NOT IsBooked (Period(TODAY, TODAY + 7),

E.Booked);

Listing 1–6. Object-Relational Query Illustrating External Systems Integration

In a SQL-92 DBMS, SendPage could be only a table. The effect of
this query would then be to insert some rows into the SendPage table.
However, in an ORDBMS, SendPage might actually be an active table,
which is an interface to the communications system used to send elec-

Evolution of Database Management Systems 11

tronic messages. The effect of this query would then be to communi-
cate with the matching temporary workers!

Object-Relational DBMS Applications
Extensible databases provide a significant boost for developers build-
ing traditional business data processing applications. By implementing
a database that constitutes a better model of the application’s problem
domain the information system can be made to provide more flexibil-
ity and functionality at lower development cost. Business questions
such as the one in Listing 1–6 might be answered in systems using an
SQL-92 and C. Doing so, however, involves a more complex imple-
mentation and requires considerably more effort.

The more important effect of the technology is that it makes it possi-
ble to build information systems to address data management prob-
lems usually considered to be too difficult. In Table 1–1, we present a
list of applications that early adopters of ORDBMS technology have
built successfully. Other technology changes are accelerating demand
for these kinds of systems.

One way to characterize applications in which an object-relational
DBMS is the best platform is to focus on the kind of data involved. For
thirty years, software engineers have used the term “data entry” to
describe the process by which information enters the system. Human
users enter data using a keyboard. Today many information systems
employ electronics to capture information. Video cameras, environ-
mental sensors, and specialized monitoring equipment record data in
rich media systems, industrial routing applications, and medical
imaging systems. Object-relational DBMS technology excels at this
kind of application.

It would be a mistake to say that ORDBMSs are only good for digital
content applications. As we shall see in this book OR techniques provide
considerable advantages over more low-level RDBMS approaches even
in traditional business data processing applications. But as other tech-
nology changes move us towards applications in which data is recorded
rather than entered, ORDBMSs will become increasingly necessary.

ORDBMS Concepts and Terminology

In this section, we introduce some of the terminology used to describe
extensible database technology. For reference purposes, this book also

12 Chapter One • Introduction to Object-Relational Database Development

includes a glossary that defines much of the language you will
encounter. Subject areas corresponding to each heading in this section
are covered in much more detail in later chapters. Note that this book
goes beyond merely describing ORDBMS technology. It also contains
chapters dealing with subjects such as OR database analysis and
schema design, as well as the detailed ins and outs of writing your
own user-defined extensions.

ORDBMS Concepts and Terminology 13

Application Domain Description
Complex data analysis You can integrate sophisticated statistical and special purpose

analytic algorithms into the ORDBMS and use them in
knowledge discovery or data mining applications. For example,
it is possible to answer questions such as “Which attribute of
my potential customers indicates most strongly that they will
spend money with me?”

Text and documents Simple cases, such as Listing 1–5, permit you to find all
documents that include some word or phrase. More complex
uses would include creating a network that reflected similarity
between documents.

Digital asset management The ORDBMS can manage digital media such as video, audio,
and still images. In this context, manage means more than
store and retrieve. It also means “convert format,” “detect scene
changes in video and extract first frame from new scene,” and
even “What MP3 audio tracks do I have that include this
sound?”

Geographic data For traditional applications, this might involve “Show me the
lat/long coordinates corresponding to this street address.” This
might be extended to answer requests such as “Show me all
house and contents policy holders within a quarter mile of a
tidal water body.” For next-generation applications, with a GPS
device integrated with a cellular phone, it might even be able to
answer the perpetual puzzler “Car 54, where are you?”

Bio-medical Modern medicine gathers lots of digital signal data such as CAT
scans and ultrasound imagery. In the simplest case, you can
use these images to filter out “all cell cultures with probable
abnormality.” In the more advanced uses, you can also answer
questions such as “show me all the cardiograms which are ‘like’
this cardiogram.”

Table 1–1. Extensible Database Problem Domains

Data Model
A data model is a way of thinking about data, and the object-relational
data model amounts to objects in a relational framework. An ORDBMS’s
chief task is to provide a flexible framework for organizing and manip-
ulating software objects corresponding to real-world phenomenon.

14 Chapter One • Introduction to Object-Relational Database Development

The object-relational data model can be broken into three areas:

• Structural Features. This aspect of the data model deals with how a
database’s data can be structured or organized.

• Manipulation. Because a single data set often needs to support mul-
tiple user views, and because data values need to be continually
updated to reflect the state of the world, the data model provides a
means to manipulate data.

• Integrity and Security. A DBMS’s data model allows the developers
to declare rules that ensure the correctness of the data values in the
database.

In the first two chapters of this book, we introduce and describe the
features of an ORDBMS that developers use to build information systems.
We then spend two chapters describing the second important aspect of
the ORDBMS data model: user-defined type and function extensibility.

Enhanced Table Structures
An OR database consists of group a of tables made up of rows. All rows
in a table are structurally identical in that they all consist of a fixed
number of values of specific data types stored in columns that are
named as part of the table’s definition. The most important distinction
between SQL-92 tables and object-relational database tables is the way
that ORDBMS columns are not limited to a standardized set of data
types. Figure 1–2 illustrates what an object-relational table looks like.

The first thing to note about this table is the way that its column
headings consist of both a name and a data type. Second, note how
several columns have internal structure. In a SQL-92 DBMS, such
structure would be broken up into several separate columns, and oper-

ORDBMS Concepts and Terminology 15

People
Name::PersonName DOB::date
(Grossmann , Marcel)
(Millikan , Robert)
(Mach , Ernst)
(Ishiwara , Jun)

Employees
Name::PersonName DOB::date Salary::Currency Address::MailAddress LivesAt::GeoPoint Resume::Document
(Einstein , Albert) 03-14-1879 DM125,000 (12 Gehrenstrasse . .) () Physics, theoretical . . .
(Curie , Marie) F125,000 (19a Rue de Seine . .) () Physics, experimental . . .
(Planck , Max) DM115,000 (153 Volkenstrasse .) () Physics, experimental . .
(Hilbert , David) SF210,000 (10 Geneva Avenue .) () Mathematics, politics. . .

Figure 1–3. Inheritance in an Object-Relational Database

ations over a data value such as Employee’s Name would need to list
every component column. Third, this table contains several instances
of unconventional data types. LivesAt is a geographic point, which is a
latitude/longitude pair that describes a position on the globe. Resume
contains documents, which is a kind of Binary Large Object (BLOB).

Employees

Name::PersonName DOB::date Address::MailAddress LivesAt::Point Resume::Document

(‘Einstein’,’Albert’) 03-14-1879 (’12 Gehrenstrasse . .) ‘(-127.4, 45.1)’ ‘Physics, theoretical

(‘Curie’,’Marie’) 11-07-1867 (‘19a Rue de Seine . .) ‘(-115.3, 27.5)’ ‘Physics, experimental

(‘Planck’,’Max’) 04-23-1858 (‘153 Volkenstrasse .) ‘(-121.8, 31.1)’ ‘Physics, experimental

(‘Hilbert’,’David’) 01-23-1862 (’10 Geneva Avenue .) ‘(-119.2,37.81)’ ‘Mathematics, politics

Figure 1–2. Structure and Data for an Object-Relational Table

In addition to defining the structure of a table, you can include
integrity constraints in its definition. Tables should all have a key,
which is a subset of attributes whose data values can never be
repeated in the table. Keys are not absolutely required as part of the
table’s definition, but they are a very good idea. A table can have sev-
eral keys, but only one of these is granted the title of primary key. In
our example table, the combination of the Name and DOB columns
contains data values that are unique within the table. On balance, it
is far more likely that an end user made a data entry mistake than
two employees share names and dates of birth.

Object-Oriented Schema Features
Another difference between relational DBMSs and ORDBMSs is the
way in which object-relational database schema supports features
co-opted from object-oriented approaches to software engineering.
We have already seen that an object-relational table can contain

16 Chapter One • Introduction to Object-Relational Database Development

Temporary_Employees

Name::PersonName DOB::date Booked::SET(Period NOT NULL)

(‘Szilard’,’Leo’) ‘2/11/1898’ { ‘[6/15/1943 – 6/21/1943]’,’[8/21/1943 – 9/22/1943]’}

(‘Fermi’,’Enrico’) ‘9/29/1901’ { ‘[6/10/1938 – 10/10/1939]’,‘[6/15/1943 – 12/1/1945]’,
‘[9/15/1951 – 9/21/1951]’ }

Figure 1–4. Non-First Normal Form (nested Relational) Table Structure

exotic data types. In addition, object-relational tables can be orga-
nized into new kinds of relationships, and a table’s columns can
contain sets of data objects.

In an ORDBMS, tables can be typed; that is, developers can create a
table with a record structure that corresponds to the definition of a data
type. The type system includes a notion of inheritance in which data
types can be organized into hierarchies. This naturally supplies a mech-
anism whereby tables can be arranged into hierarchies too. Figure 1–3
illustrates how the Employees table in Figure 1–2 might look as part of
such a hierarchy.

In most object-oriented development environments, the concept of
inheritance is limited to the structure and behavior of object classes.
However, in an object-relational database, queries can address data
values through the hierarchy. When you write an OR-SQL statement
that addresses a table, all the records in its subtables become involved
in the query too.

Another difference between ORDBMSs and traditional relational
DBMSs can be seen in the Booked column of the Temporary_Employees
table. The table in Figure 1–4 illustrates how this might look.

SQL-92 DBMS columns can contain at most one data value. This is
called the first normal form constraint. In a traditional RDBMS, situa-
tions in which a group of values are combined into a single data
object, are handled by creating an entirely separate table to store the
group. In an ORDBMS this group of values can be carried in rows
using a COLLECTION, which can contain multiple data values.

In Chapter 2 we explain how to create table hierarchies and tables
with COLLECTION columns. In Chapter 3 we explain how they are
integrated into the query language, and in Chapter 4, we explain the
part they play in the extensible type system.

ORDBMS Concepts and Terminology 17

Data Type: GeoQuad

Expression: Explanation: Example Query:

(continued)

INSERT INTO QuadTable
VALUES
(GeoQuad (‘(0,0)’,
’(10,10)’));

Constructor function. Takes
two corner points and
produces a new
Quadrilateral data type
instance.

GeoQuad(GeoPoint,
GeoPoint)

Table 1–2. Data Type Extensibility: Partial List of Functions for
Geographic Quadrilateral Data Type

The ORDBMS data model is considerably richer than the RDBMS
data model. Unfortunately, this new richness complicates database
design. There are more alternative designs that can be used to repre-
sent a particular situation, and it is not always obvious which to pick.
Unthinkingly applying some of these features, such as the COLLEC-
TION columns, creates problems. However there are data modeling
problems for which a COLLECTION is an elegant solution. An impor-
tant objective of this book is to provide some guidance on the subject
of object-relational database design. Chapters 8 and 9 are devoted to
questions of analysis and design.

18 Chapter One • Introduction to Object-Relational Database Development

Data Type: GeoQuad

Expression: Explanation: Example Query:

Used to convert literal
strings in queries into the
internal format for the type.

Constructor function. Creates
new GeoQuad using the
string. A symmetric function
implements the reverse.

GeoQuad (String)

Used to convert literal
strings in queries into the
internal format for the type.

Constructor function. Creates
new GeoQuad using the
string. A symmetric function
implements the reverse.

GeoQuad (String)

Used internally by the
ORDBMS as part of R-Tree
indexing.

Support function that
computes a new quadrilateral
based on the furthest corners
of the two quadrilaterals
inputs.

Union (GeoQuad,
GeoQuad)

SELECT COUNT(*)
FROM QuadTable T

WHERE Contains(
‘(5,5)’,

T.Quad);

Operator function. Returns
true if the first point falls
within the geographic extent
of the quadrilateral.

Contains (GeoPoint,
GeoQuad)

SELECT GeoQuad (MIN(X),
MIN(Y),
MAX(X),
MAX(Y)

)
FROM Locations;

Constructor function. Takes
four doubles that correspond
to the X and Y values of the
lower left and upper right
corner.

GeoQuad (double,
double,
double,
double)

Table 1–2. Data Type Extensibility: Partial List of Functions for
Geographic Quadrilateral Data Type (continued)

Extensibility: User-Defined Types
and User-Defined Functions
The concept of extensibility is a principal innovation of ORDBMS technol-
ogy. One of the problems you encounter developing information systems
using SQL-92 is that modeling complex data structures and implementing
complex functions can be difficult. One way to deal with this problem is
for the DBMS vendor to build more data types and functions into their
products. Because the number of interesting new data types is very large,
however, this is not a reasonable solution. A better approach is to build
the DBMS engine so that it can accept the addition of new, application-
specific functionality.

Developers can specialize or extend many of the features of an
ORDBMS: the data types, OR-SQL expressions, the aggregates, and so
on. In fact, it is useful to think of the core ORDBMS as being a kind of
software backplane, which is a framework into which specialized soft-
ware modules are embedded.

Data Types
SQL-92 specifies the syntax and behavior for about ten data types.
SQL-3, the next revision of the language, standardizes perhaps a hun-
dred more, including geographic, temporal, text types, and so on. Sup-
port for these common extensions is provided in the form of
commercial DataBlade™ products. A separate tutorial in this book
described the range of currently shipping DataBlade™ products.

However, relying on the DBMS vendor to supply all of the innova-
tion does not address the fundamental problem. Reality is indifferent
to programming language standards. With an object-relational DBMS
developers can implement their own application specific data types
and the behavior that goes with them. Table 1–2 lists some of the
expressions added to the OR-SQL language to handle a geographic
quadrilateral data type (an object with four corner points and parallel
opposite edges).

To extend the ORDBMS with the GeoQuad type introduced in
Table 1–2, a programmer would:

1. Implement each function in one of the supported procedural lan-
guages: C, Java, or SPL.

2. Compile those programs into runnable modules (shared executable
libraries or Java JAR files) and place the files somewhere that the
ORDBMS can read them.

3. Declare them to the database using the kind of syntax shown in
Listing 1–7.

ORDBMS Concepts and Terminology 19

CREATE OPAQUE TYPE GeoQuad (
internallength = 32

);
--
CREATE FUNCTION GeoQuad (lvarchar)
RETURNING GeoQuad
WITH (NOT VARIANT,

PARALLELIZABLE)
EXTERNAL NAME
"$INFORMIXDIR/extend/2DSpat/2DSpat.bld(GeoQuadInput)"
LANGUAGE C;
--
CREATE CAST (lvarchar AS GeoQuad WITH GeoQuad);
--
CREATE FUNCTION GeoQuad (double precision,

double precision,
double precision,
double precision)

RETURNING GeoQuad
WITH (NOT VARIANT,

PARALLELIZABLE)
EXTERNAL NAME
"$INFORMIXDIR/extend/2DSpat/2DSpat.bld(GeoQuadFromDoubles
)"
LANGUAGE C;

Listing 1–7. Data Type Extensibility: Partial SQL Declaration of User-Defined
Data Type with External Implementation in C

In Chapters 4 and 5, we describe the extent of this functionality, and
in Chapter 10, we spend considerable time on the question of how to
use C to implement the fastest possible data type extensions. A special
Java tutorial explores how to achieve the same thing using the Java™
language, and the SQL-J standard.

SQL-92 includes some general-purpose analytic features through its
aggregates (MIN, MAX, COUNT, AVG, and so on). Aggregate functions
can be used in conjunction with other aspects of SQL-92 to answer
questions about groups of data. For example, the query in Listing 1–8
uses the SQL-92 table to find out what is the mean salary of each
group of Employees in different cities.

“What is the average salary of Employees for each of the cities where they live?”

SELECT E.City,

AVG(E.Salary)

FROM Employees E

GROUP BY E.City;

20 Chapter One • Introduction to Object-Relational Database Development

Listing 1–8. Simple Analysis Query Using a SQL-92 Aggregate Function

The range of aggregates in SQL-92 is limited. In data mining, and
in the larger field of statistical analysis, researchers have described a
tremendous number of useful analytic algorithms. For example, it
might make more sense to calculate the median salary, rather than
the mean salary, in the query above. Or it might be more useful to cre-
ate a histogram showing how many employees fall into certain ranges
of salaries. SQL-92 does not provide the means to answer such analytic
questions directly. With the ORDBMS, however, these algorithms can
be integrated into the server and used in the same way as built-in
aggregates.

The OR-SQL query in Listing 1–9 uses the Employees table defined
in Listing 1– 4. It calculates the correlation between the number of
words in an Employees resume and his or her salary.

“What is the correlation coefficient between Employee salaries and the number
of words in their resumes?”

SELECT Correlation (E.Salary, WordCount(E.Resume

))

FROM Employees E;

Listing 1–9. Analysis Query with a User-Defined Aggregate (Correlation)

In this book we take the view that an aggregate is a special kind of
function, so we introduce the idea in Chapter 6. However, much of the
detailed material external C description in Chapter 10 is also relevant
to user-defined aggregates.

Database Stored Procedures
Almost all RDBMSs allow you to create database procedures that
implement business processes. This allows developers to move consid-
erable portions of an information system’s total functionality into the
DBMS. Although centralizing CPU and memory requirements on a sin-
gle machine can limit scalability, in many situations it can improve
the system’s overall throughput and simplify its management.

By implementing application objects within the server, using Java,
for examples, it becomes possible, though not always desirable, to
push code implementing one of an application-level object’s behaviors
into the ORDBMS. The interface in the external program simply passes
the work back into the IDS engine. Figure 1–5 represents the contrast-
ing approaches. An important point to remember is that with Java,
the same logic can be deployed either within the ORDBMS or within

ORDBMS Concepts and Terminology 21

an external program without changing the code in any way, or even
recompiling it.

In Chapter 6, we introduce the novel idea that the ORDBMS can be
used to implement many of the operational features of certain kinds of
middleware. Routine extensibility, and particularly the way it can pro-
vide the kind of functionality illustrated in Figure 1–5, is a practical
application of these ideas. But making such system scalable requires
using other features of the ORDBMS: the distributed database functional-
ity, commercially available gateways, and the open storage manager
(introduced below). Combining these facilities provides the kind of loca-
tion transparency necessary for the development of distributed informa-
tion systems.

Storage Management
Traditionally the main purpose of a DBMS was to centralize and
organize data storage. A DBMS program ran on a single, large
machine. It would take blocks of that machine’s disk space under its
control and store data in them. Over time, RDBMS products came to
include ever more sophisticated data structures and ever more effi-
cient techniques for memory caching, data scanning, and storage of
large data objects.

In spite of these improvements, only a fraction of an organization’s
data can ever be brought together into one physical location. Data is
often distributed among many systems, which is the consequence of

22 Chapter One • Introduction to Object-Relational Database Development

ORDBMS

Data Processing

User Interface

Data Processing

User Interface

OR-SQL
Queries

DBMS Data

SQL Queries

DBMS Data

Message

Response

Message

Response

Message

Response

Database
Stored
Procedure

Figure 1–5. Routine Extensibility and the ORDBMS as the Object-Server Architecture

autonomous information systems development using a variety of
technologies, or through organizational mergers, or because the data
is simply not suitable for storage in any DBMS. To address this, the
IDS product adds a new extensible storage management facility. In
Figure 1–6, we illustrate this Virtual Table Interface concept.

ORDBMSs possess storage manager facilities similar to RDBMSs.
Disk space is taken under the control of the ORDBMS, and data is
written into it according to whatever administrative rules are speci-
fied. All the indexing, query processing, and cache management tech-
niques that are part of an RDBMS are also used in an ORDBMS.
Further, distributed database techniques can be adapted to incorpo-
rate user-defined types and functions. However, all of these mecha-
nisms must be re-implemented to generalize them so that they can
work for user-defined types. For example, page management is gener-
alized to cope with variable length OPAQUE type objects.

You can also integrate code into the engine to implement an entirely
new storage manager. Developers still use OR-SQL as the primary inter-
face to this data, but instead of relying on internal storage, the ORDBMS
can use the external file system to store data. Any data set that can be
represented as a table can be accessed using this technique.

ORDBMS Concepts and Terminology 23

User Interface

Queries against
ORDBMS “Tables”

External Data Source:
File-System, Pager

Interface, etc.

ORDBMS

Built-in Storage
Structures

Extended Access
Method Functions

Conventional
DBMS Table

Table Created Using
User-Defined Access

Method

Built-In Data
Management

Facilities

Figure 1–6. Extensible Storage Manager

Developers can also use this technique to get a snapshot of the
current state of live information. It is possible to represent the cur-
rent state of the operating system’s processes or the current state
of the file system as a table. You can imagine, for example, an
application intended to help manage a fleet of trucks and employees
servicing air conditioners or elevators. Each truck has a device
combining a Global Positioning System (GPS) with a cellular phone
that allows a central service to poll all trucks and to have them
“phone in” their current location. With the ORDBMS, you can
embed Java code that activates the paging and response service to
implement a virtual table, and then write queries over this new
table, as shown in Listing 1–10.

“Find repair trucks and drivers within ’50 miles’ of ‘Alan Turing’ who are quali-
fied to repair the ‘T-20’ air conditioning unit.”

SELECT T.Location, T.DriversName

FROM Trucks T, Customers C

WHERE Distance (T.Location, C.Location) < '50 miles'

AND C.Name = 'Alan Turing'

AND DocContains (T.DriverQualifications,

'Repair for T-20');

Listing 1–10. Query Reaching to Data Outside the ORDBMS

This functionality should fundamentally change the way you think
about a DBMS. In an object-relational DBMS, SQL becomes the
medium used to combine components to perform operations on data.
Most data will be stored on a local disk under the control of the DBMS,
but that is not necessarily the case.

The Virtual Table Interface tutorial describes these features in more
detail.

Distributed Deployment
Often the volume of data in a single information system, or the work-
load imposed by its users, is too much for any one computer. Storing
shared data, and providing efficient access to it, requires that the sys-
tem be partitioned or distributed across several machines. Combining

24 Chapter One • Introduction to Object-Relational Database Development

2 It is worth noting that whether this turns them into object-relational systems is
still an open question. The internal design of an ORDBMS is greatly influenced
by the need to support declarative operations in a transactional system. Retro-
fitting either of these functions to a system that was not designed primarily to
support them has been shown to be extremely difficult.

extensibility with distributed database features makes new system
architectures possible. This concept is illustrated in Figure 1–7.

This figure illustrates a Web site configuration. A large central
machine contains canonical copies of all data. Surrounding it is a
cloud of other, smaller installations. These might cache replicated
(read only) copies of a sub-set of the total data. All this data and all
the modules of logic implementing the various extended types and
functions can be queried from everywhere. The effect of this kind of
architecture is to distribute the load across several machines, without
compromising from data integrity.

In Chapter 6, we discuss the distributed query and replication fea-
tures that make this kind of deployment possible.

Ad-Hoc Query Language
You manipulate data stored in an ORDBMS using an extended
version of the SQL declarative data language that we call OR-SQL.
OR-SQL is a reasonably complete implementation of a declarative
relational language. We say it is declarative because OR-SQL expres-

ORDBMS Concepts and Terminology 25

HTTP
 Messages

Web
 Server

Centralized
Data Repository

Distributed
 ORDBMS
 Nodes

Figure 1–7. Distributed Information System Deployment

sions describe what it is that is wanted, rather than a procedural,
step-by-step algorithm defining how the task is to be accomplished.
OR-SQL expressions are strings that the ORDBMS can parse, opti-
mize, and execute at runtime.

We say OR-SQL is relational because it expresses operations over
relational schema objects such as tables and views. OR-SQL state-
ments are value-oriented. Queries make no reference to physical data
management details, such as pointers, or to memory management.
In fact, the same OR-SQL statement can be processed internally by
the ORDBMS in many different ways. The actual operational sched-
ule depends on factors such as the physical configuration of the
database, the presence of indices on certain columns, the number of
rows the ORDBMS needs to manage at various stages of the query
processing, and so on.

Using declarative, value-oriented interfaces to database data dis-
tinguishes ORDBMSs from most OODBMSs. OODBMSs traditionally
rejected query-centric interfaces as being too cumbersome. Recently,
the OODBMS community has moved to embrace the Object Query
Language (OQL) as a standard declarative interface to their
systems.2 But OR-SQL is such likely to be the dominant language
because SQL is “inter-galactic database speak.”

The OR-SQL implemented in IDS is a very different language from
what is described in the SQL-92 language standard. The SQL-92 standard
provides a definition for an entire language: a grammar, keywords, a set
of data types, and a list of language expressions that can be used with
these types. The OR-SQL philosophy is somewhat different. Although the
same four basic data operations present in SQL-92—INSERT, DELETE,
UPDATE and SELECT—form the basis of OR-SQL, the rest of the language
is left “as an exercise for the implementor.”

Listings 1–5 and 1–10 show examples of ORDBMS SELECT queries.
In Listing 1–11, we introduce several queries that manipulate data.

“Delete the record associated with Employee Marie Curie.”
DELETE FROM Employees
WHERE Name = PersonName('Curie','Marie')

AND DOB = '11-07-1866';

“Update Albert Einstein’s Employee record with a new resume taken from the
supplied file.”
UPDATE Employees

SET Resume = GetDocument('C:\temp\Albert.doc',
'client')

WHERE Name = PersonName('Einstein','Albert')
AND DOB = '03-14-1879';

26 Chapter One • Introduction to Object-Relational Database Development

“Insert an Employee record for ‘Ernst Mach’.”
INSERT INTO Employees
(Name, DOB, Salary, Address, Resume, LivesAt, Booked)
VALUES
(PersonName('Mach','Ernst'),

'03-18-1838',
Currency(120000.00,'DM'),
Address('123 Gehrenstrasse',

'Berlin','GERMANY', 8485),
GetDocument('C:\temp\Albert.doc','client'),
'(11.54, 47.6722)'::GeoPoint,
SET()

);

Listing 1–11. SQL Write Queries

Chapter 2 and Chapter 3 describe OR-SQL in detail. Numerous exam-
ples throughout this book illustrate different kinds of query expressions.
Readers wanting more information on how to write OR-SQL are advised
to consult the many books on SQL-92. Obviously, these books overlook
OR-SQL specific issues, but the way they generally talk about using SQL
remains valid.

Application Programming Interfaces
There is always more to an information system than a database.
Other, external programs are responsible for communication and for
managing user interfaces. An information system will use a variety
of languages to implement the non-DBMS parts of the final system.
Consequently, there are several mechanisms for handling applications
programming interfaces (API).

OR-SQL queries can be embedded into external programs and then
passed into the ORDBMS at runtime. In return, the ORDBMS sends
result data to the external program. Another, very powerful way to use
SQL is to write logic that actually creates SQL queries based on end-
user input. Tools such as Microsoft Access, although they do not take
advantage of many of the innovative features described in this book,
epitomize this approach.

The most traditional API approach involves embedding OR-SQL
statements directly into C programs and using a pre-parser to turn
embedded OR-SQL into a procedural program. More recent approaches
involve functional interfaces such as ODBC and the JDBC standard for
Java programs. For Web applications, you can use mark-up tags that
convey to the Web server that a OR-SQL query needs to be executed
and its results formatted according to a set of mark-up rules.

ORDBMS Advantages 27

We describe three of these interfaces, ESQL/C, JDBC and the Web
Blade, in detail in Chapter 7. Another interface—the Server API, or
SAPI—is used by C logic executing within the ORDBMS. We do not
cover the SAPI OR-SQL facilities in this book.

ORDBMS Advantages

Why is all of this useful? What advantages does this give you?
ORDBMS technology improves upon what came before it in three ways.

The first improvement is that can enhance a system’s overall perfor-
mance. The IDS product can achieve higher levels of data throughput or
better response times than is possible using RDBMS technology and
external logic because ORDBMS extensibility makes it possible to move
logic to where the data resides, instead of always moving data to where
the logic is running. This effect is particularly pronounced for data-
intensive applications such as decision support systems and in situa-
tions in which the objects in your application are large, such as digital
signal or time series data. But in general, any application can benefit.

The second improvement relates to the way that integrating func-
tional aspects of the information system within the framework provided
by the ORDBMS improves the flexibility of the overall system. Multiple

28 Chapter One • Introduction to Object-Relational Database Development

 Data
 Storage

 Data
 Storage

SQL-92 DBMS Object-Relational DBMS

ClientClient Client

Middle-Ware

Logic

Logic

ClientClient Client

Middle-Ware

Logic

Figure 1–8. Alternative Extensible Architectures

unrelated object definitions can be combined within a single ORDBMS
database. At runtime, they can be mingled within a query expression
created to answer some high-level question. Such flexibility is very
important because it reduces the costs associated with information
system development and ongoing maintenance.

The third benefit of an ORDBMS relates to the way information sys-
tems are built and managed. An ORDBMS’s system catalogs become a
metadata repository that records information about the modules of
programming logic integrated into the ORDBMS. Over time, as new
functionality is added to the application and as the programming staff
changes, the system’s catalogs can be used to determine the extent of
the current system’s functionality and how it all fits together.

The fourth benefit is that the IDS product’s features makes it possi-
ble to incorporate into the database data sets that are stored outside it.
This allows you to build federated databases. From within single
servers, you can access data distributed over multiple places.

In this section of the chapter, we explain each advantage in detail
and in turn.

Performance
It is important to understand that in a well-implemented extensible
DBMS, the code you embed within it does not run on a client machine
or in a middle-ware layer wrapped around the database core. Rather,
the code runs inside the ORDBMS engine, as close as possible to where
the data is stored. Figure 1–8 illustrates the difference.

ORDBMS Advantages 29

Operation Typical Mechanism Involved ~Latency (secs)
Random disk read or write fopen(), read(), write(), seek(), 0.01

and so on

Local area network (LAN) Sockets 0.000 1

Interprocess communication pipes and shared
memory 0.000 001

Block memory copy Memcpy 0.000 000 01

Table 1–3. Latency Timings for Low-Level Data Movement Operations

3 Register caching on modern CPUs is adding another level of performance differ-
ence. In general it can be 10 to 100 times as expensive to read data from RAM
than from a register.

The diagram on the left illustrates how procedural logic and rela-
tional databases are deployed today. Consider what happens when you
need to apply some kind of complex logic to distinguish interesting
rows in a table from uninteresting ones. Achieving this with SQL-92
requires that each row retrieved from the DBMS be filtered using logic
in the middle-ware. On the right, the OR approach is presented. Here,
the filtering logic is embedded within the ORDBMS and invoked as part
of query processing.

Moving logic into the ORDBMS can have significant performance
benefits. To explain why, we first need to introduce some of the basic
performance properties of computer systems. Table 1–3 lists the
approximate latencies of several common, low-level operations. Each
row of this table corresponds to a data movement operation, and each
latency time reflects the average amount of time taken to perform the
operation on 1 K of data. You can think of these as per-operation taxes
paid to the operating environment and computer hardware.

Some of these numbers are fairly obvious and are included as refer-
ences. Their relative sizes are due to the fundamental physics involved.
The reason that it takes such an enormous amount of time (relatively
speaking) to move data from magnetic disk into physical memory is
because this is the only stage in the data management food chain that
involves mechanical movement. At the other extreme, mempy() com-
piles down to a handful of low-level instructions that are executed very
quickly.3

Between these extremes, moving data across a local-area network
requires that you involve your computer’s operating system, which in
turn needs to interact with the networking hardware, and then the
remote computer’s operating system, often many times. Similarly, the
time taken even to move data between two processes running on the
same computer is significantly longer than the memcpy(). This is due
to the operating system’s mediation of the exchange. Such a transfer
involves many more instructions and necessitates several process con-
text switches.

The implication of this is obvious: the less you move data, the less
overhead you incur, and the better your overall system performs. Of
course, some data movement is unavoidable. Data must travel from its
disk storage to where the user’s eyeballs can see it. A good design prin-
ciple to adopt, however, is to position the functional modules of your
system in such a way that you minimize the volume of data being
moved about by the information system’s workload.

By providing the ability to host more procedural logic adjacent to
the data, the ORDBMS opens up new possibilities, especially in the
newer kinds of applications.

30 Chapter One • Introduction to Object-Relational Database Development

Working an Example

A major financial customer saw the performance possibilities of
ORDBMSs early. Their problem was in calculating the value of certain
complex financial instruments. Slightly simplified, the data they were
dealing with was stored as shown in Listing 1–12.

CREATE TABLE Instruments (

ID INTEGER NOT NULL

PRIMARY KEY,

Portfolio INTEGER NOT NULL,

Issuer VARCHAR(32) NOT NULL,

Issuer_Class CHAR(4) NOT NULL,

Principal MONEY NOT NULL,

Issue_Date DATE NOT NULL,

Rate FLOAT NOT NULL

);

Listing 1–12. Table for Financial Instrument Data

The primary purpose of the application was to how much a particu-
lar portfolio (a set of instruments) was worth. Calculating this value
required figuring out the value of each instrument in the portfolio on
some date, and then adding up all the values. To solve this problem,
they wrote the program in Listing 1–13.

dec_t *
CalculatePortfolioValue (
EXEC SQL BEGIN DECLARE SECTION;
PARAMATER integer Portfolio_Argument;

EXEC SQL END DECLARE SECTION;
{

EXEC SQL BEGIN DECLARE SECTION;
dec_t * decTotal;

EXEC SQL BEGIN DECLARE SECTION;
DecTotal = malloc(sizeof(dec_t));

EXEC SQL DECLARE Curs1 CURSOR FOR
SELECT Issuer_Class,

Principal,
Issue_Date,
Rate

FROM Instruments

ORDBMS Advantages 31

4 For the record, these were linear algebra operations: find the dot product of
a matrix of correlation coefficients and a vector of values supplied with the
instrument.

WHERE Portfolio = :Portfolio_Argument;

EXEC SQL OPEN UpdCurs1 Curs;
while(1)
{

EXEC SQL FETCH Upd_Curs INTO
:chIssuer,:decPrincipal, :nIssueDate, :fRate;
if ((ret = exp_chk("fetch", 1)) == 100)

break;
decTotal = decadd (decTotal,

CalcValue (chIssuer, decPrincipal,
nIssueDate, fRate));

}
EXEC SQL Close Curs1;
return decTotal;
}

Listing 1–13. External Code for Portfolio Calculation

Figuring out how much something is worth is never simple. The most
valuable part of this program was the CalcValue() function, which we
do not show here. CalcValue() was quite complex (and secret) because
the firm had figured out how to incorporates the risk of the issuer
defaulting into its calculations of an instrument’s value. Government
instruments, having no risk of default, generate predictable income. On
the other hand, debt issued by riskier organizations tends to have
higher nominal returns, but sometimes the lender may go broke. Intu-
itively, you consider money deposited in a bank account quite differ-
ently from money lent to an unreliable relative.

Internally, CalcValue() used a number of rather sophisticated math-
ematical procedures. These made it extremely difficult to implement
the calculation using the stored procedure language.4

The financial firm’s idea was to take that CalcValue() function
and to integrate it into IDS. This reduced the whole code fragment
in Listing 1–13 to what is shown in Listing 1–14.

“What is the total value of Instruments in portfolio X?”

SELECT SUM (CalcValue (Issuer_Class,

Principal,

Issue_Date,

Rate

))

FROM Instruments

WHERE Portfolio =:Portfolio_Argument;

32 Chapter One • Introduction to Object-Relational Database Development

Listing 1–14. Object-Relational SQL for Portfolio Calculation

The performance improvement was spectacular. Calculating a port-
folio’s value was reduced from about two hours to about ten minutes.
The difference was entirely due to the reduction in data movement,
and also to the way that the ORDBMS could take advantage of paral-
lelism while processing this query. Instead of moving all the matching
rows from the Instruments table out of the DBMS, the calculation was
instead performed “in place.”

Flexibility and Functionality
Explaining flexibility is more difficult because the advantages of flexi-
bility are harder to quantify. But it is probably more valuable than
performance over the long run. To understand why, let’s continue with
the financial company example.

As it turned out, the more profound result of the integration effort
undertaken by our financial firm was that the CalcValue() operation
was liberated from its procedural setting. Before, developers had to
write and compile (and debug) a procedural C program every time
they wanted to use CalcValue() to answer a business question. With
the ORDBMS, they found that they could simply write a new OR-SQL
query instead. For example, the query in Listing 1–15 is a join involv-
ing a table that, while in the database, was beyond the scope of the
original (portfolio) problem.

“What is the SUM() of the values of instruments in our portfolio grouped by
region and sector?”

SELECT IS.Country,

IS.Region,

SUM(CalcValue (I.Issuer_Class,

I.Principal,

I.Issue_Date,

I.Rate

))

FROM Instruments I, Issuers IS

WHERE I.Portfolio = :Portfolio_Argument

AND I.Issuer = IS.Name

GROUP BY IS.Country, IS.Region;

Listing 1–15. Object-Relational SQL for Portfolio Calculation

ORDBMS Advantages 33

With the addition of a small Web front end, end users could use the
database to find out which was the most valuable instrument in their
portfolio or which issuer’s instruments performed most poorly, and so
on. It was known that the system had the data necessary to answer all
these questions before. The problem was that the cost of answering
them using C and SQL-92 was simply too high.

Maintainability
After some investigation, the developers discovered that, over time,
there had been several versions of the CalcValue() function. Also, once
the CalcValue() algorithm was explained to end users, they had sug-
gestions that might improve it. With the previous system, such specu-
lative changes were extremely difficult to implement. They required a
recode-recompile-relink-redistribute cycle. But with the ORDBMS, the
alternative algorithms could be integrated with ease. In fact, none of
the components of the overall information system had to be brought
down. The developers simply wrote the alternative function in C, com-
piled it into a shared library, and dynamically linked it into the engine
with another name.

What all of this demonstrates is that the ORDBMS permitted the
financial services company to react to changing business requirements
far more rapidly than it could before. By embedding the most valuable
modules of logic into a declarative language, they reduced the amount
of code they had to write and the amount of time required to imple-
ment new system functionality. None of this was interesting when
viewed through the narrow perspective of system performance. But is
made a tremendous difference to the business’s operational efficiency.

Systems Architecture Possibilities
Having implemented several such functions, the next problem con-
fronting the development team was that although their system worked
fine, it would be more useful to include data that was stored in another
database. In fact, because their operations were international, they
needed to transfer data across significant distances and convert data
along the way. Bulk copy and load was considered unfeasible, because
the remote data was volatile, and although intersite queries were rare,
accurate answers were critical.

None of the other groups wanted to migrate off their efficient and
stable production systems. The basic problem was that the data lived
“out there” in flat files, in another information system, or in another
DBMS. Nonetheless, the local business users still wanted to access it.

34 Chapter One • Introduction to Object-Relational Database Development

As an experiment, the developers decided to use the external data
access features of the ORDBMS to turn it into a federated database sys-
tem. Achieving this required a mix of technologies. First, simply getting
to the data was a problem. In one case, the data lived in an RDBMS.
Fortunately the ORDBMS product possessed a gateway to the other
RDBMS. However, the more difficult problem was currency conversion,
which was achieved by including routines to perform the translation in
the ORDBMS.

Another data set was stored in a text file and manipulated by a set
of Perl programs. Incorporating this into the database was harder. You
might move the flat-file implementation entirely into the ORDBMS,
but that would require a rewrite of the Perl scripts. In the end, the
developers wrote a very simple interface that created a new storage
manager to understand the external file’s format and to make its data
available through OR-SQL within the ORDBMS. Once this develop-
ment was complete, the final system looked something like Figure 1–5.

ORDBMS Engineering

Another way to answer the question “What is an ORDBMS?” is to
describe how an OR engine is constructed. An ORDBMS is an example
of what is known as a component-centric software system. It works by
allowing developers to combine many different extensions within the
framework it provides. In this section, we explain how an ORDBMS
works by describing how it processes a query. Along the way, we show
you how integrated extensions are managed.

Processing an Object-Relational Query
When it receives an OR-SQL query, the ORDBMS breaks it up into a
series of smaller, simpler operations. Each simple operation corre-
sponds to an algorithm that manipulates a set of row data in some
way. An important part of what the ORDBMS does is optimizing these
operations. Optimization involves ordering the sequence to minimize
the total amount of computer resources needed to resolve the query.
Consider the query in Listing 1–16.

“Show me the names of Employees born on January 1st, 1967, and print the
list in name order.”

SELECT E.Name
FROM Employees E

ORDBMS Engineering 35

WHERE E.DOB = '01-01-1967'
ORDER BY E.Name;

Listing 1–16. SQL Example

A ORDBMS query processor parses this query and converts it inter-
nally into a series of steps, as shown in Listing 1–17.

1. TABLESCAN(Employees,
(DOB = '01-01-1967))

2. PROJECT(1., Name)

3. SORT(2., Name)

Listing 1–17. Query Plan

In Step 1 of the series, the ORDBMS scans all records in the Employ-
ees table. If the record satisfies the predicate that is supplied as the sec-
ond argument to the TABLESCAN operation (DOB = '01-01-1967'),
the matching record is passed into Step 2. In Step 2 the Name column
is stripped out of the record and a list consisting of just the names of
matching employees is passed into Step 3. In this final step, the names
are sorted. The ordered result, the consequence of three separate opera-
tions, is returned to the user who submitted the query in the first place.

Clearly, there are many opportunities for optimizations here. For
example, if an index existed on the Employees.DOB column, the
database may elect to use an INDEXSCAN rather than the TABLESCAN.
Also, it might be advantageous to use a slightly different plan that
strips out Name and DOB query processing before checking if the date-
of-birth matches.

The complete list of operations—TABLESCAN, INDEXSCAN, PRO-
JECT, JOIN, SORT, UNION, and so on—is quite extensive, and the
IDS product includes several different algorithms for performing the
same logical operation. Consider the sorting operation, for example.
In Don Knuth’s The Art of Computer Programming Vol. 3: Sorting and
Searching, the author describes over a dozen sorting algorithms, each
with slightly different properties. Some work better when the data
fits into main memory and others are more efficient when the data
must be written to disk. One of the query planner’s tasks is to figure
out which of the alternate algorithms is the best one in any given
circumstance.

ORDBMS Evolution from RDBMS
Let’s look at sorting in more detail. One of the most popular sort algo-
rithms is a called insertion sort. Insertion sort is an O (N2) algorithm.

36 Chapter One • Introduction to Object-Relational Database Development

Roughly speaking, the time it takes to sort an array of records
increases with the square of the number of records involved, so it
should only be used for record sets containing less than about 25 rows.
But insertion sort is extremely efficient when the input is almost in
sorted order, such as when you are sorting the result of an index scan.

Listing 1–18 presents an implementation of the basic insertion sort
algorithm for an array of integers.

InsertSort(integer arTypeInput[])
{

integer nTypeTemp;
integer InSizeArray, nOuter, nInner;

nSizeArray = arTypeInput[].getSize();

for (nOuter = 2; nOuter <= nSizeArray; nOuter ++)
{

vTypeTemp = arTypeInput[nOuter];
nInner = nOuter - 1;

while ((nInner > 0) &&
(arTypeInput[nInner] > vTypeTemp)) {
arTypeInput[nInner+1] =

arTypeInput[nInner];
nInner--;

}

arTypeInput[nInner+1] = vTypeTemp;
}
}

Listing 1–18. Straight Insertion Sort Algorithm

Sorting algorithms such as this can be generalized to make them
work with any data type. A generalized version of this insert sort
algorithm appears in Listing 1–19. All this algorithm requires is logic
to compare two type instances. If one value is greater, the algorithm
swaps the two values.

In the generalized version of the algorithm, a function pointer is
passed into the sort as an argument. A function pointer is simply a ref-
erence to a memory address where the Compare() function’s actual
implementation can be found. At the critical point, when the algo-
rithm decides whether to swap two values, it passes the data to this
function and makes its decision based on the function’s return result.

InsertSort(Type arTypeInput[],
(int) Compare(Type, Type))

{

ORDBMS Engineering 37

Type vTypeTemp;
integer InSizeArray, nOuter, nInner;

nSizeArray = arTypeInput[].getSize();

for (nOuter = 2; nOuter <= nSizeArray; nOuter ++)
{
vTypeTemp = arTypeInput[nOuter];
nInner = nOuter - 1;
while ((nInner > 0) &&

Compare(arTypeInput[nInner],vTypeTemp) > 0)
{

Swap(arTypeInput[nInner+1],arTypeInput[nInner]);
nInner--;

}
Swap(arTypeInput[nInner+1], vTypeTemp);
}

}

Listing 1–19. Generalized Sort Algorithm

Note how the functionality of the Swap() operation is something that
can be handled by IDS without requiring a type specific routine. The
ORDBMS knows how big the object being swapped is, and whether the
object is in memory or is written out to disk. To use the generalized
algorithm in Listing 1–19, all that IDS needs is the Compare() logic.
The ORDBMS handles the looping, branching, and exception handling.

Almost all sorting algorithms involve looping and branching
around a Compare(), as does B-Tree indexing and aggregate algo-
rithms such as MIN() and MAX(). Part of the process of extending the
ORDBMS framework with new data types involves creating functions
such as Compare() that IDS can use to manage instances of the type.

All data management operations implemented in the ORDBMS are
generalized in this way. In an RDBMS, the number of data types was
small so that the Compare() routines for each could be hard-coded
within the engine. When a query such as the one in Listing 1–16 was
received, Step 3 of the query execution plan would involve a call to a
function that looked like that which is contained in Listing 1–20.

The first two arguments to this function are a pointer to the records
to be sorted and a pointer to a structure that specifies that part of the
records should be sorted. Within this function, the engine calls the
InsertSort routine introduced above, and passes in the same array of
records it received. In addition, however, it passes a pointer to the
appropriate compare function for the built-in type.

Sort(void ** parRecords, IFX_TYPE * pRecKey ...)

38 Chapter One • Introduction to Object-Relational Database Development

{

switch(pRecKey->typenum)

{

case IFX_INT_TYPE:

case IFX_CHAR_TYPE:

InsertSort(parRecords, IntCompare);

break;

case IFX_FLOAT_TYPE:

InsertSort(parRecords, DoubleCompare);

break;

// etc for each SQL-92 type

default:

ifx_internal_raiseerror('No Such Type');

break;

}

}

Listing 1–20. SQL-92 Sort Utility

How does an ORDBMS know what to pass into the InsertSort() rou-
tine? To turn an RDBMS into an ORDBMS, you need to modify the
code shown in Listing 1–20 to allow the engine to access Compare()
routines other than the ones it has built-in. If the data type passed as
the second argument is one of the SQL-92 types, the sorting function
proceeds as it did before. But if the data type is not one of the SQL-92
types, the ORDBMS assumes it is being asked to sort an extended type.

Every user-defined function embedded within the ORDBMS is
recorded in its system catalogs, which are tables that the DBMS uses to
store information about databases. When asked to sort a pile of
records using a user-defined type, the ORDBMS looks in these system
catalogs to find a user-defined function called compare that takes two
instances of the type and returns an INTEGER. If such a function
exists, the ORDBMS uses it in place of a built-in logic. If the function is
not found, IDS generates an exception. Listing 1–21 shows the modi-
fied sorting facility.

Sort(void ** parRecords, IFX_TYPE * pRecKey . . .)

{

switch(pRecKey->typenum)

{

case IFX_INT_TYPE:

case IFX_CHAR_TYPE:

InsertSort(parRecords, IntCompare);

break;

case IFX_FLOAT_TYPE:

ORDBMS Engineering 39

InsertSort (parRecords, DoubleCompare);

break;

// etc for each SQL-92 type

. .

default: // ah! Not SQL-92. Must be user-defined.

if((pUDRCompare=udr_lookup(pRecKey->typenum,

"Compare")) ==NULL)

ifx_internal_error("No Such Function.');

else

InsertSort (parRecords, pUDRCompare);

break;

}

}

Listing 1–21. ORDBMS Generalization of the Sort Utility

Using the ORDBMS generalization of the sort utility has several
implications:

• When you take a database application developed to use the previ-
ous generation of RDBMS technology and upgrade to an ORDBMS,
you should see no changes at all. The size of the ORDBMS exe-

40 Chapter One • Introduction to Object-Relational Database Development

5 Actually, the ORDBMS first copies the data from the page to another memory
location. This is done for performance and reliability reasons. User-defined logic
is unable to affect what is on pages directly, and the ORDBMS would like to
minimize the amount of time a page must be kept resident in the cache.

mi_integer
Foo (Type * Arg1,
 Type * Arg2)
{
 mi_integer nRet;

 nRet = Arg1->dat *
 Arg2->dat;
 Return nRet;

}

Logic Main Memory
Page Cache Disk Storage

Figure 1–9. Overview of ORDBMS Table Data Store Management

cutable is slightly increased, and there are some new directories and
install options, but if all you do is to run the RDBMS application on
the ORDBMS, the new code and facilities are never invoked.

• This scheme implies extensive modifications to the RDBMS code. You
not only need to find every place in the engine that such modifica-
tions are necessary, but also need to provide the infrastructure in the
engine to allow the extensions to execute within it. In Chapter 10,
we go into considerable detail about this execution environment.

• Finally, you should note how general such an extensibility mecha-
nism is. As long as you can specify the structure of your data type,
and define an algorithm to compare one instance of the type with
another, you can use the engine’s facilities to sort or index
instances of the type, and you can use OR-SQL to specify how you
want this done.

In practice, renovating an RDBMS in this manner is an incredibly
complex and demanding undertaking.

Data Storage in an ORDBMS
Data storage in an ORDBMS is more or less unchanged from what it
was in the RDBMS. Data is organized into pages. A set of pages (possi-

bly very

ORDBMS Engineering 41

Main Memory
Page Cache

Disk Space for Table
Records

004 Fred
F

LO_HANDLE

Single Record
from Table

Handle to Large
Object Data Large Object Data

in their Own Space

Figure 1–10. ORDBMS Management of Large Object Data

many) holds all data for a particular table. Blocks of memory are
reserved by the ORDBMS for caching frequently accessed pages to
avoid the cost of going to disk each time the page is touched. As data
is accessed through queries, pages are read from disk and ejected from
the memory cache.

Figure 1–9 illustrates how IDS combines data and logic at run-time.
Whenever the ORDBMS invokes some user-defined logic (Foo() in this
example) as part of query execution it first reads relevant data pages
from disk into the memory cache. Changed pages, or infrequently
accessed pages, may be written back to disk if the cache is full. As it
invokes the logic, the ORDBMS passes pointers to the memory resident
data as arguments.5 The ORDBMS doesn’t care what the function does,
or how it does it. All it cares about is the logic’s return value.

Each time a single execution of the embedded logic is completed,
the ORDBMS is free to read more data from pages in memory and to
invoke the logic again with different arguments. The important point
is that the ORDBMS does not store the logic with the object data. It
binds them together at run-time.

Later in this book we investigate certain aspects of data storage in
considerable detail. Chapter 3, for instance, explains how new data
types can be created, in Chapter 10, we describe the low-level facilities
provided by the ORDBMS for ‘C’, and Tutorial 1 describes a number of
details about IDS physical storage.

Large Object Data Storage
Large object data presents a particular set of challenges. Because
extensible database applications tend to involve a lot of large data
objects, dealing with them efficiently is particularly important. Data
pages used for table records are relatively small: traditionally only a
few kilobytes in size. Requiring that new types fit within these pages
would be an unacceptable constraint, so IDS provides special mecha-
nisms for supporting data objects of any size.

Storing large object data, such as the polygon corresponding to a
state boundary, with table data, such as the state’s name and current
population, would result in a massive increase in the size of the table.
Assuming that fewer queries access the large object data, such a strat-
egy would dramatically increase the time taken to complete the major-
ity of queries. Therefore, the ORDBMS separates the storage of large
object data from table data. When a data object’s value is stored as a
large object only, a handle for the large object data is stored with the
row. User-defined functions implementing behavior for large objects
use this handle to open the large object and access its contents.

Figure 1–10 illustrates how the mechanism works. First, the table’s
data page is read from its storage location. If one of the table’s columns

42 Chapter One • Introduction to Object-Relational Database Development

contains a large data object, space in the record is reserved to hold a
string that uniquely identifies a large object stored elsewhere on the
local disk. Interface functions within the ORDBMS allow logic compo-
nents to use this handle like a file name and to access bytes within the
large object. This strategy makes it possible to combine large objects
with more conventional data within a table’s row and to embed logic
that manipulates large object data into OR-SQL.

Development Example

This book is intended to be a practical manual of ORDBMS develop-
ment, so throughout, we provide a great many examples. For consis-
tency, almost all are drawn from a single application: a Web site
providing information services about movies. The idea is to provide
realistic demonstrations of how to use an ORDBMS and a body of
working code to read and draw upon.

Movies-R-Us Web Site Description
This example system depicts a fairly typical electronic commerce
(e-commerce) Web site. The primary purpose of the hypothetical site is
promotional. The site contains information about the movies produced

Development Example 43

ORDBMS

 Internet:
 HTTP Messaging

Public &
Movie Club
Members

Web Site
Employees

Figure 1–11. Architecture of Movies-R-Us Web Site

by various studios for release around the world. Site employees collect
and organize marketing material, stills from the movie production
process, off-cuts from editing, interviews with stars and movie makers,
industry gossip, and so on. The site also sells promotional merchandise:
t-shirts, mugs, compact discs, posters, and so on.

The mission of the Web site is to become a single point of reference for
movie-going consumers. They can review new releases, find out about
screening times and locations, and order merchandise. For example, a
visitor to the site might begin by browsing new releases, plot synopses,
ratings, and reviews. The visitor may elect to purchase some of the movie
merchandise or ask the site for information about where and when the
movie is playing. The user may offer reviews of the movies he or she has
or join a cinema club through which the movie studio offers discounts.

Site Architecture
The Movies-R-Us Web site is split between a back-of-shop operation
and front-of-shop operation. The only component shared by both
halves of the system is the ORDBMS. The database mostly stores data
used to service the demand of people visiting the site. These public
users run a commercial browser that sends messages to the site and
accepts marked-up pages to display in return. These pages contain
content, such as digital image data and text, and sophisticated layout
instructions. The browser formats the content according to the layout
instructions. In addition, WWW technology includes support for fea-
tures that allow the public users to upload information to the site. This
data can then be inserted into the database.

Employees of the movie studio, on the other hand, use a broader
variety of interfaces. They access the public site to review and test it,
but they are heavier users of specialist tools for tasks such as multime-
dia content editing, inserting and updating material in the site, pro-
cessing merchandising orders, and analyzing usage patterns.

The way that this single database supports multiple user views is
consistent with our earlier observation of how database technology is
used. Different employees of Movies-R-Us have different tasks relating
to the site’s data. Public users, depending on their status (whether they
are members of the cinema club or have purchased merchandise in
the past, for example) get different views of the site.

This set of requirements yields a site architecture that looks like
Figure 1–11.

Included with this book is the complete set of source code used in
the example. This source code includes the following:

• About a dozen complete database extensions, which are user-

44 Chapter One • Introduction to Object-Relational Database Development

defined types and associated functions that implement various
aspects of the overall system

• A set of scripts that create the schema within the ORDBMS
• A few rows of legitimate sample data for the Web Site schema,

together with a body of reference data that populates other tables
• Scripts to create bulk data to perform scalability tests on the data-

base implementation
• A set of client-side examples that illustrate how to use the various

APIs to interact with the ORDBMS

Structure of this Book

This book is divided into two sections. In the first section, consisting of
Chapters 2 through 7, we describe the features and functionality of the
ORDBMS in some detail. We explain the ORDBMS data model, query
language, the basics of extensibility, certain ideas concerning middle-
ware and the ORDBMS, and the APIs used to integrate the ORDBMS
with other components of the overall information system.

Beginning in Chapter 8, we describe how to use these features to
build a complete system. This second section describes a semi-formal
approach or methodological road map to follow during development
and digresses into several important subject areas that are meant for
the consumption of programmers working with specialized aspects of
the technology.

Along the way there are several tutorials. These are separated from
the main body of the text because they are subjects that can stand
alone and read at any time. They are included in the book because
they cover topics of interest to both the beginning and advanced pro-
grammer. They may be skipped on a first reading.

Note on Development Philosophy
In addition to being a book about a specific software technology, this
is a book that describes a unique, interesting and hopefully useful way
of looking at the whole problem of information systems development.
In his great 1905 paper that introduced the idea that light could be
thought of as a particle, rather than a wave phenomenon, Albert Ein-
stein referred to his insight as a heuristic viewpoint. By this, he meant

Chapter Summary 45

that it was simply a different way of looking at the entire problem and
useful to the extent that it helped resolve certain inconsistencies.

The design of this book is also guided by a heuristic viewpoint. We
refer to the new idea as organic information system development.
Historically, software engineers cycled through code-compile-deploy
iterations when building information systems. Once deployed, an
information system went into “maintenance.” The problem with
looking at development this way is that “maintenance” seems to
consume the majority of development effort.

Organically developed information systems have no maintenance
mode, and they are not monolithic systems that must be shut down
when the time comes to upgrade them. Instead the approach calls for
rapid response to changing end-user requirements by either combining
pre-existing components in new ways (through OR-SQL) or adding
new components to the system (using extensibility). In general, this
can be accomplished without affecting other components or dependent
programs. The result is an information system that grows, rather than
one that is developed in the conventional sense.

Some readers will think, perhaps rightly, that this whole idea is just
full of it. It is hoped that such readers can nevertheless learn some-
thing of interest in these pages.

Chapter Summary

In this chapter we have introduced object-relational DBMS technology,
illustrated something of the role ORDBMSs will play in developing
information systems to support the modern enterprise, and briefly
described the major components of the technology. An ORDBMS

• is a data repository that can be extended to manage any kind of
data and to organize any kind of data processing,

• represents the next logical step in the evolution of DBMS technol-
ogy. It both preserves those aspects of relational DBMS technology
that proved so successful (abstraction, parallelism, and transaction
management) and augments the features with ideas, such as exten-
sibility and advanced data modeling, derived from object-oriented
approaches to software engineering,

• can be thought of as a software back plane, which is a general frame-
work within which new pieces can be integrated as occasion demands.

46 Chapter One • Introduction to Object-Relational Database Development

