
3

C H A P T E R 1

Markup Laid Down

This chapter covers the most basic of basic concepts in any book about
displaying information on the Web: What is a markup language, and why use one
at all? You’ll also be introduced to the general characteristics of documents
marked up in XML as opposed to other members of its family, and in particular
to the ideas that underlie FlixML—this book’s customized “language” for
describing less-than-blockbuster motion pictures.

If you’re familiar with other markup languages, notably HTML, feel free to
bound exuberantly over the chapter’s first section (Revealing Codes) to the sec-
ond (The XML Difference), which introduces XML itself.

Revealing Codes
Creating a document via computer was at first no different from creating one
with a typewriter: you just pounded away at a keyboard. (Perhaps you began by
drafting your words in pencil, then transcribed them into electronic form. I
wrote my first book that way, in 1991.)

Even if you’re completely new to computers, it should be obvious that the
plain old 26 letters of the Roman alphabet (or however many there are in your
own language) are inadequate for many purposes. The meaning of your words,
not just the words themselves, is what is important to your readers. Even if you
dress things up with exclamation points and underlining, the most you can hope

Ch01.fm Page 3 Tuesday, July 18, 2000 10:39 AM

4 Chapter 1 • Markup Laid Down

to communicate in straight, unadorned print is a vague excitement that quickly
ceases to hold the reader’s attention.

Newspaper and magazine designers have known this for a long time, and
augment their plain text with headlines, callouts, and similar devices to empha-
size important ideas and to impose a structure to the printed page that would be
otherwise lacking.

Shades of meaning
Imagine that you’re a late nineteenth-century newspaper publisher. Shortly
before election day, you come across a juicy scandal about your biggest competi-
tor, who’s running for office. How do you “play” the story?

If you’re of the old-fashioned school, you dump the story on the front page
with all the other news of the day. It’s all set in the same typeface, with only slight
variations in size. After all, your words are the important things, right? Responsi-
ble readers will read all the news you print, and judge for themselves what’s
important, right? Well, maybe all that was right in earlier times. But with the
newspaper industry booming, you know that you’ve got to do something to catch
the eyes of an ever-busier reading public. (It wouldn’t hurt if you could stick it to
your competitor at the same time.)

So you use all the same words in the story itself. But across the full width of
the front page, you shout (with your street-corner newsboys):

Candidate Kane Caught in Love Nest with “Singer”

Ooooh yes. That will get everyone’s attention, won’t it?
Aside from the size of the type and its placement on the front page, note

one other thing about this example (which, by the way, comes from Orson
Welles’ 1939 classic, Citizen Kane1): the quotation marks around the last word. A
sophisticated reader wouldn’t just read the words in the headline; he or she
would also catch the added nuance supplied by the punctuation—that the singer
in question is really not much of a singer.

Those quotation marks (and most other punctuation) are in fact an elemen-
tary form of markup. They alter the text, introducing to it a layer of meaning or
structure that you can’t get from the text alone. Furthermore, in this case, note

1. Decidedly not a B movie, although it’s got a lot in common with them.

Ch01.fm Page 4 Tuesday, July 18, 2000 10:39 AM

Revealing Codes 5

also that the “markup” clearly indicates where the affected text begins and where
it ends, and that an opening quotation mark is very similar to, but subtly different
from, a closing one. (My sixth-grade teacher called them sixes and nines.)

Markup—whether just in the form of punctuation or on a grander scale, as
I’ll discuss in a moment—is the simplest way to add layers of meaning to comput-
erized text. But it can do lots of other things, too.

A good illustration of this is the way that the WordPerfect word-processing
software keeps track of display styles, fonts, paragraph and document formats,
and so on. Yes, now that WYSIWYG displays—fonts, embedded images, all the
rest—are universal, WordPerfect does depict a page’s visual appearance. But
underlying the way the page looks onscreen or on paper, WordPerfect embeds in
each document hundreds of bits of information that say, for example, “Begin a
left-justified paragraph here, indented a half-inch…beginning here, set the font
size to 11 points and italicize it…turn the italicization off here…resume normal
font size…end the paragraph here.” You can see all these underlying instructions
simply by toggling a function key.

Figure 1.1 shows WordPerfect’s “reveal codes” window as it depicts a section
of the preceding page.

The little pushbutton-like markers within the text can be “edited,” after a
fashion, by doubleclicking on them. A font marker, for instance, has various
attributes (in standard Microsoft Windows terminology, “properties”) that can be
adjusted through a dialog box that shows a generic sample of how the marked-
up text will appear.

Figure 1.1 WordPerfect (version 7) Reveal Codes window

Ch01.fm Page 5 Tuesday, July 18, 2000 10:39 AM

6 Chapter 1 • Markup Laid Down

Simplify, simplify, simplify
WordPerfect and similar word processors provide good examples of markup in
general, and how it can be used to fancy-up a document so much that—if you’re
so inclined—the true meaning of the words themselves can be nearly obscured
by the way in which the words are displayed. But there are a few problems with
these programs—problems that became especially obvious when the Internet
started to take off.

First—and perhaps least obvious—there’s a problem for the developers of
the specific program (like a word processor). A given piece of code in program-
ming language X will almost never run, unchanged, under a different operating
system (sometimes even on simply a different computer) than the one on which
it was developed. Different computers differ not only in their underlying hard-
ware, but also in their user interfaces. A fully responsible software vendor there-
fore must commit to developing a version for the Macintosh, as well as a version
for the Apple II, a separate version for older MS-DOS computers, one for Win-
dows 3.x computers, one for Windows 95, one for Windows NT, one for Win-
dows 98, one for generic UNIX, one for Sun’s SunOS, one for the Amiga, and
so on. It’s a nightmare, and at the very least, drives up the cost of purchasing soft-
ware for everyone.

Second, there’s a problem for users of these programs’ output: Typical
word-processing files can be significantly bigger than their contents would
appear to warrant. The formatting and other style instructions embedded in
such a file, even if invisible to a user of the software, of course take up space of
their own. These instructions are in so-called binary form—machine-readable,
not human-intelligible. It’s possible (and common) to use compression software
to reduce the sizes of files needing to be shipped around the Internet, but the
specific problem in the case of binary files is that they simply don’t compress very
well. Depending on its contents, a straight text file might be squeezed to ten per-
cent of its original size; the same contents in a word-processing file format, to no
less than forty percent or so.

A final significant problem is for developers of content: writers, journalists,
corporate public relations staff, and so on. It’s one thing to prepare a company
newsletter, for example, using Microsoft Word, then e-mail a copy to all the com-
pany’s employees; after all, the information systems (IS) department requires all
company-bought computers to have a copy of Word installed. But what if you
want to distribute, say, an electronic sales brochure on the Web? Will all your cus-
tomers have the same word processor, let alone the same version of the same
word processor? Can you afford to write off the potential customers who don’t?

Ch01.fm Page 6 Tuesday, July 18, 2000 10:39 AM

Revealing Codes 7

A possible solution for everyone is just to use plain old text files. That’s not
a very satisfactory answer, though—it puts us right back to the invention of the
printing press.

The technology underlying Web-based documents popularized a wonder-
fully simple solution all around: include markup with plain text content (just like
WordPerfect’s Reveal Codes mode), and put the markup in plain text as well.

If you think about it, there’s one potential danger in this solution, however.
Consider this bit of a document marked up in a hypothetical language:

BOLDITALICSNowENDITALICSENDBOLD is the time for all. . .

In this hypothetical language—let’s call it ACML, for All-Caps Markup Lan-
guage—obviously, the markup is simply expressed in all capital letters. When the
ACML browser hits such a string of characters, it knows it must treat the enclosed
text differently from “normal” text (and, incidentally, not display the markup
with the text). But how do you include content that is itself in all uppercase? If
you’re writing a story in which a character says, “I cannot BELIEVE you’d be so
BOLD. Didn’t your mother teach you any manners?” how do you keep the
browser from boldfacing the entire second sentence, let alone from choking on
the BELIEVE because it doesn’t know how to display “believed” text?

There’s a simple—though not 100% foolproof—answer to this riddle: You
design your markup language so that the presence of markup is signaled by spe-
cial characters that are very unlikely ever to appear in real content.

The first widely successful, nonproprietary markup language, Standardized
General Markup Language (SGML), followed this approach. SGML tags (as the
markup devices are called) begin and end with angle brackets, the < and > char-
acters respectively. This SGML convention has been carried forward in both of
SGML’s two popular offspring, HyperText Markup Language (HTML) and now
the Extensible Markup Language (XML).

Ta g s v s . w h a t t h e y t a g

The discussion that immediately follows this sidebar speaks specifically
of tags. In common parlance, you will likely hear the term “tag” used
interchangeably with another: “element.” We’ll see much more about
the latter term, throughout Just XML, but now might be a good time to
give you a quick picture of the differences.

Ch01.fm Page 7 Tuesday, July 18, 2000 10:39 AM

8 Chapter 1 • Markup Laid Down

The rules of the markup game
Here’s an HTML version of the above ACML passage:

<i>Now</I> is the time for all. . .

Notice the features of the tags in this example:

1. Capitalization is not important at all. This was true of HTML, but is completely
changed in XML. In XML, if there’s a <boldface> tag, a reference to a
<BOLDface> tag won’t be recognized as the same thing at all.

Strictly speaking, a tag is not an element. A tag is a physical, typo-
graphic “marker” that indicates the presence of an element. An element
is everything from the opening angle bracket of a start-tag to the clos-
ing angle bracket of the end-tag (which might be the same physical tag
as the start, if the element is empty). An element may contain other
elements (delimited by their own tags), which may contain other ele-
ments (and so on), and may also contain text content and other forms
of markup.

If you really want to get precise, you might want to be aware of two
other terms. An element type is the overall class to which a particular ele-
ment belongs; that is, an element is a specific occurrence, in a specific
document, of its element type. For example, an XML-based language
might include a paragraph element type that may be used in documents
based on that language, whereas a given document may contain one or
many paragraph elements.

The other term—not very widely used, but you may encounter it,
usually undefined, on XML mailing lists—is GI. This is an abbreviation
for generic identifier; an element’s GI is just its name, the “word” that fol-
lows the opening < in the tag.

Strung together, these four terms make up a general-to-specific con-
tinuum: element type, element, tag, and GI.

Throughout Just XML, I’ll use the term “tag” when referring to the
actual markup device. There’s a formal difference between “element”
and “element type” that is important to preserve in some cases, and I’ll
note those cases when covering them; however, by far most usage on
the Internet, even among people who know better, is to use “element”
for both. That’s the convention I’ll follow. I don’t expect you to come
across “GI” again in these pages.

Ch01.fm Page 8 Tuesday, July 18, 2000 10:39 AM

Revealing Codes 9

2. In this case, there are both start-tags and end-tags, such as the and .
The only difference between them is that the end tag includes an extra
character, a slash (/). Again, a difference: Not all HTML tags require an
end-tag, while in XML all “normal” tags always come in pairs. (Special allow-
ances are made, as we’ll see, for tags that don’t need to enclose anything. A
good example from HTML is the tag for specifying a graphic that’s to
be inserted inline—all the information is within the tag itself. XML has spe-
cial provisions for dealing with such so-called empty tags.)

3. The separate tag pairs are nested. That is, the “italicize this” markup is fully
enclosed within the “bold this” markup. (Actually, that’s not always required
of HTML documents; browsers can cover for many of a Web-page devel-
oper’s human failings, such as improper nesting of tags.) In this example,
the word “Now” could be just as well specified with italics first, then bold—
the order of the nesting (at least in this case) isn’t particularly important.

4. Unless you’re a supernaturally smooth typist, markup can be a real pain to
add to content. Not only is it physically cumbersome to type the < and >
symbols, it’s also mentally challenging to keep focused on producing the
content and not the markup in which it’s contained.

Do you need to know anything about SGML or HTML to start working with
XML immediately? No. Much of the background (historical and technological)
will be useful for you to know, but none of it is required.

T h e d e v i l i n t h e d e t a i l s

I mentioned above that this convention of “all markup is contained in
the special characters < and >” isn’t entirely foolproof. It’s true that
these special characters are seldom used in normal text; it’s equally
true that they’re on the keyboard for a reason—they are sometimes used
in normal text.

So when a browser encounters a “real” < symbol without a matching
>, how does it know not to keep scanning the document all the way to
the end, looking for the missing > symbol? There are ways around this
dilemma too, and we’ll see some of them later in this book. Ultimately,
though, it’s a real hall of mirrors; you just have to throw up your hands
at some point and say, “I don’t care about further exceptions to the
exceptions to the exceptions.”

Ch01.fm Page 9 Tuesday, July 18, 2000 10:39 AM

10 Chapter 1 • Markup Laid Down

The XML Difference

A markup cartoon
Editorial cartoons use a common convention to help make their metaphors
easily grasped by their audience: Any object in the drawing that’s not obviously
a caricature of a familiar personage, a famous building, or a standard editorial-
cartoon symbol (such as donkeys for Democrats, Uncle Sam for the USA, and
so on) is labeled. I want you now to picture yourself in such a cartoon, an ani-
mated one.

You’re in the lobby of the Ritz-Markup Hotel, standing before an elevator
whose doors part to reveal three passengers. Their gender doesn’t matter at all,
but let’s assume for the sake of illustration that they’re men. (Cartoonists do
everything for the sake of illustration.) You get on the elevator. And as you usu-
ally do, you peek discreetly at the three guys sharing your space.

Passenger #1 is apparently an employee of this tony establishment, the ele-
vator operator. The man has the posture of a drill sergeant and radiates an aura
of someone who goes about his business with supreme confidence. You observe
that he is dressed immaculately—not in a uniform, as you might expect an eleva-
tor operator to be—but in a dark, pin-striped three-piece suit. His vest is made of
fine silk; a watch chain runs across the front of it. At least you thought it was a
watch chain, but then you notice that every time the elevator stops at a floor, the
man pulls from the watch pocket of his vest a Swiss army knife and unfolds a dif-
ferent blade, which he then inserts into a slot in the elevator control panel and
turns, causing the doors to open, pause, and close. Rather oddly, he has an
umbrella hooked over one wrist. (Well, who knows? It might rain in an elevator.)
There’s a sign hanging on this man’s chest; it reads “SGML.”

Passenger #2 could, in a dim room, be mistaken for the elevator operator.
Maybe they’re related; they share the same cheekbones, the same eyes, and are
about the same height. But there’s something just a little off-kilter about this fel-
low. He’s not wearing a suit, for starters, but a sport coat and slacks. He slouches
against the back wall of the elevator. He’s wearing sunglasses, and his left and
right socks are of slightly different shades (although they could be mistaken for
identical). He bends down to tie a shoe, giving you a good glance at the sign on
his back—“HTML,” it reads—and also at the shirt tail inelegantly protruding
from beneath the hem of his jacket.

Like the second passenger, the third shares certain of Passenger #1’s fea-
tures, the same eyes and cheekbones. This one—the youngest of the three—

Ch01.fm Page 10 Tuesday, July 18, 2000 10:39 AM

The XML Difference 11

stands as erect as the first, though, and also wears a dark suit. But it’s a two-piece,
sans vest, and consequently he has no Swiss army knife on a chain. No umbrella,
either. And unlike passenger #2, there are no shirt tails hanging out, and no
untied shoes. At one point on the long ride, passenger #3 removes from his
jacket pocket a pair of nail scissors, trims off a jagged edge, then puts the scissors
back in his pocket and removes an emery board with which he smoothes the
trimmed edge. One separate tool for each separate task. Looking more closely—
you really are a snoop—you see that on each of his sleeves is a label: “XML.”

Meanwhile, back in the real world…
The differences among SGML, HTML, and XML are like those among the three
guys in the elevator.

SGML calls the shots for all three, deciding where they will stop and how
they will stop there. SGML is ready for every eventuality it might face, even the
most unlikely (the thunderstorm in the elevator car). It is formal, rigorous, pre-
cise, and darned near complete.

Second-generation markup—HTML—shares a number of its daddy’s fea-
tures. It’s very well-suited for casual purposes. You can bring HTML to a business
meeting, but it will always look a bit déclassé. The freedom to have loose ends dan-
gling here and there means that HTML can get ready for work a lot faster than
either SGML or XML, but it also means that on the way out of the elevator door,
things have a tendency to snag.

Finally, XML. Its general form and shape are those of SGML. But unless it’s
raining, it doesn’t bring an umbrella along; and if it needs to attend to some
personal grooming, it’s got the tool that does exactly that (and no more). Its
middle-of-the-road attire means that you can bring it along for just about any
business need.

As you’ll see in Chapter 2, an XML document doesn’t look all that different
from its SGML or HTML counterparts. Both the minor differences and more
numerous similarities are a direct result of the XML framers' experiences with
the two earlier markup languages. From the start, the XML specification has
included the following ten design principles; the headings are taken straight
from the specification document itself:

XML should be straightforwardly usable over the Internet.
This requirement seems almost to go without saying; of course you’d want a new
markup language to be usable on the Internet, particularly the World Wide Web.

Ch01.fm Page 11 Tuesday, July 18, 2000 10:39 AM

12 Chapter 1 • Markup Laid Down

But “straightforwardly” adds a subtle extra layer of meaning: like HTML, XML is
not rocket science. Furthermore—perhaps less obviously—delivering XML doc-
uments does not require any change to the network itself, or to its supporting
software and protocols.

XML shall support a wide variety of applications.
Again, this seems like an obvious goal. It marks a radical departure for XML ver-
sus its HTML cousin, however. The latter’s design supports on its own just a sin-
gle (albeit powerful) application: Web browsing. All the other stuff that occurs
on the Web—Java and ECMAScript, Common Gateway Interface (CGI) forms
and database processing, animated images, and audio and video playback—
occurs inside simple or exotic add-ons to the core HTML specification itself.

Note that the XML spec does not say what other applications will be sup-
ported. The XML FAQ, in a favorite burst of encyclopedic whimsy, mentions
“music, chemistry, electronics, hill-walking, finance, surfing, petroleum geology,
linguistics, cooking, knitting, stellar cartography, history, engineering, rabbit-
keeping, mathematics, etc.” as possible applications of XML. All of those can be
“supported” by HTML as well, of course, but the difficulty is that HTML forces
them all into clothing cut from the same fabric.

XML shall be compatible with SGML.
The intention here is to capitalize on the success of SGML. While it has not been
trumpeted in the popular media nearly as much (or as loudly) as HTML, SGML
is a critical technological weapon in the arsenal of many industries, from newspa-
pers to banking. If XML can take advantage of the embedded base of SGML
authors and—especially—software, it will speed the acceptance of the new
markup language by those important customers.

Aside from the existing SGML tools and expertise that can be readily
adapted to XML, there is much inherent power in SGML that was not carried
forward into the HTML specification. In HTML, for example, you can’t deviate
from the set of element types that are specified for the language. XML’s ability to
include any element types that a particular purpose requires—the “Extensible”
in the name—is a direct descendant of SGML’s.

Ch01.fm Page 12 Tuesday, July 18, 2000 10:39 AM

The XML Difference 13

It shall be easy to write programs which process
XML documents.

Note that here we’re not talking about coding XML documents themselves,
but rather about the programs which process XML documents. This objective says
that the rules of the language should be simple, not just for humans but for
machines as well.

Simple examples abound in HTML of how markup languages can be diffi-
cult for software to process, while easy for humans to interpret. For example, the
“forgivingness” of the HTML specification—or rather of the way in which it’s
interpreted by Web browsers—allows many elements to be sloppily nested within
one another. This is a generous gift to fumble-fingered Webmasters, but can
complicate a software developer’s life enormously, especially when there are ele-
ments within elements within elements: How does the program know when to
“turn off” italics that are signified by a <bold> tag, which in turn overlaps a par-
ticular font specification, which sort of but not quite exactly falls within the
scope of a bulleted list item? All the exception handling—the need to deal intel-
ligently with all those dangling shirt tails—can give a programmer fits.

At one time, XML’s developers reportedly asserted that writing an XML
application program should be at most a “two-week” project for graduate stu-
dents. This didn’t make it into the specification (maybe they floated it among
some graduate students, who threatened a walkout), but the philosophy behind
that specific target remains very much a part of XML as formally defined.

One important reason why XML programs need to be simple to write lies in
the very extensibility of the language. If you’ve got a particular XML flavor that
has been tailored specifically for genealogical records, for example, it would be
great to have a “genealogical XML browser” that knows—far more than a
generic Web browser could—exactly where on the user’s screen to place birth-
dates, photos of family members, and so on. The requirements for such a
browser would be very different from those for a browser of library catalog
entries. If you want to encourage the development of such special-purpose
browsers, you’ve got to keep their requirements simple.

The number of optional elements in XML is to be kept to the
absolute minimum, ideally zero.

While XML is a direct descendant of SGML (much more so than HTML), it does
away with hundreds of optional “features” added to its parent over the course of

Ch01.fm Page 13 Tuesday, July 18, 2000 10:39 AM

14 Chapter 1 • Markup Laid Down

many years. (One common way of thinking of XML is as “SGML Lite”—or, as
one reference says, “SGML--” rather than “HTML++.”)

Note that the “optional features” referred to here are those in the language
specification itself. Individual XML document types—the genealogical one I
mentioned above, FlixML, the Chemical Markup Language, and so on—can be
as baroque and fully featured as their designers desire, including many optional
element types within each document type.

XML documents should be human-legible and
reasonably clear

This, again, is partially a matter of processing efficiency as well as human comfort.
It’s important, yes, that you and I be able to read a Triffids.xml file in its

“naked,” raw-text form, without any fancy software, and figure out what a
reviewer of Day of the Triffids has to say about the movie, who its cast was, what stu-
dio produced it, how likely it is that the Earth would be overrun by hordes of
carnivorous ferns, and so on. (If we’re writing the review ourselves, it may be
equally important to see all the nuts-and-bolts of the markup should the review
not “behave” exactly as we’d expected in our FlixML browser.)

But as I mentioned earlier in this chapter, putting not only the content but
also the markup itself in plain text form makes the resulting document not only
smaller, but more portable across computing platforms. This is a wonderful by-
product of using plain text.

The XML design should be prepared quickly
Internet time, they say, is faster than real time. I don’t think I’ve ever heard an
estimate of how much faster. Even the seven-times-faster of dog years doesn’t seem
fast enough, though. A new technology crops up for performing Task X, and a
week later three or four competitors appear; the next week, there’s a new tech-
nology for performing the same task, plus Y and Z.

On the Web, what was about to happen was that large enterprises—corpora-
tions, banks, the government, and all the rest of the usual suspects—were start-
ing to wonder if they should bail out of the whole standards process. HTML can
do quite a bit, especially with the use of browser plug-ins and the like; but the
Web was in danger of collapsing under the combined weight of all the things
that HTML can’t do (or do easily), and of all the proprietary software needed to
make HTML stand on its head and do the required backflips.

Ch01.fm Page 14 Tuesday, July 18, 2000 10:39 AM

The XML Difference 15

“Quickly” was never defined, but a sense of urgency underlay the prepara-
tion of the XML specification. Logistics could have complicated matters fur-
ther—people working on the spec were widely separated geographically, and
most had other commitments to their employers, schools, and so on (to say noth-
ing of their personal lives). Fortunately they all were able to take advantage of
advanced technology to communicate with one another, in e-mail, video, and
phone conferences. Within about a year of their first “meeting,” the next-to-final
version of the language spec had been posted on the site of the World Wide Web
Consortium. (The consortium, known as the W3C, is an arbiter of specifications
and standards for new Internet technologies.) Given the complexities they were
dealing with, this was remarkable.

The design of XML shall be formal and concise
Okay, here’s this new markup language. Its stated goal is, in brief, to simplify the
task of delivering complex content over the Web. How embarrassing it would
have been if the design of the new language were more complicated and ambig-
uous than the language itself!

The XML specification is both formal and concise because it is written in
something called Extended Backus-Naur Format, or EBNF. EBNF, a common
tool for declaring the syntax of new programming languages, will probably never
win any prizes for aesthetic appeal, except among people who appreciate engi-
neering beauty. For example, if you asked a fairly simple question such as,
“What’s the formal definition of the XML term ‘children’?,” the spec would
answer you as follows:

[47] children ::= (choice | seq) ('?' | '*' | '+')?

To say that this is alarming doesn’t begin to do justice to the term “alarm.”
But it’s undeniably efficient, unambiguous, and yes, even beautiful (in the same
way that the interior of Arnold Schwarzenneger’s forearm was in The Terminator).

Don’t panic. You don’t have to know EBNF in order to know XML. It’s true that
you can’t escape it if you want to read and understand the formal language spec-
ification; if you’re satisfied with simply using XML, though, you needn’t give
EBNF a second thought.

(By the way, none of the HTML coders I’ve ever met knows anything about
EBNF. But the HTML spec is written in EBNF, too.)

Ch01.fm Page 15 Tuesday, July 18, 2000 10:39 AM

16 Chapter 1 • Markup Laid Down

XML documents shall be easy to create
Like “quickly,” “straightforwardly,” “legible,” and so on, “easy to create” isn’t
spelled out. But I have to admit that I wouldn’t be comfortable if this wasn’t a
goal of XML, no matter how vague the term.

As I mentioned earlier in this chapter, you don’t need anything other than a
computer to “write XML”: no special word processor or other software is
required. You can even make do with pencil and paper as long as you either: (a)
don’t care to actually put your XML online; or (b) have someone else to tran-
scribe your chicken-scratchings into a text file.

Terseness in XML markup is of minimal importance
SGML and HTML both provide for omitting markup—particularly end-tags—in
some cases. One of the reasons why they permit this is that the resulting docu-
ments are shorter and more concise.

The cost of this terseness is often clarity, determining what is intended at a
given point where the optional markup might be expected. (It’s rather like one
of those ancient fortune-tellers trying to predict the future by examining a single
entrail.) And the drafters of the XML spec set clarity as one of their guiding prin-
ciples—hence, this design goal.

U l t e r i o r m o t i v e s

One of my favorite XML references is the Annotated XML Specifica-
tion, at:

www.xml.com/axml/axml.html

Written by Tim Bray, one of the spec’s coeditors, this annotated ver-
sion includes copious notes, explanations, and asides that illuminate
the official requirements in often quite wonderful ways.

In discussing the above ten design goals, Bray mentions two other
factors that motivated the spec’s writers:

Internationalization: “We bent over backward to make XML work
properly in all the world's scripts, with a fair degree of success.”

The DPH: DPH is an acronym for Desperate Perl Hacker. Perl, as you
may know, is one of the premier languages for programming the Web
(perhaps the premier language for that task). As Bray says, the DPH is
“the luckless subordinate who is informed that some global change is
required in a large, complex document inventory at short notice, and
who is able to deliver by applying a scripting facility such as Perl to
cleanly-structured data such as XML.”

Ch01.fm Page 16 Tuesday, July 18, 2000 10:39 AM

What XML Isn’t 17

What XML Isn’t
First, foremost, and maybe most confusingly, XML is not a single markup lan-
guage.

I know, I know. It’s right there in the name, isn’t it? “Extensible Markup
Language.” But despite certain general rules (the requirement that all elements
nest properly, the presence of some common conventions such as how to code
comments, and so on), there is no single, broadly useful set of markup to learn
in order to learn XML. XML is all about separate markup languages for separate pur-
poses. This is a huge departure for anyone who has spent the last several years of
his or her life memorizing the vagaries of HTML. It’s also why most books about
XML, including this one, present XML by way of “demonstrators”—customized
markup languages (like FlixML) that show the range of things possible with XML
but don’t teach you XML as such, except by example.

Second, XML is not an “all things to all people” solution. HTML will con-
tinue to grow, and it will continue to be both more convenient and more flexible
for many purposes. You don’t need to throw away everything you know (if you do
know) about the difference between the effect of HTML’s unordered list tag
 and that of the ordered list tag , for instance.

Third, XML is not in itself a display language. In HTML, tags (and the cor-
responding elements) generally serve two purposes: they both add structure to
documents and imply a certain display style. Paragraphs start on a new line;
headings vary in size; bold is, well, bold. In itself, XML is almost exclusively a lan-
guage not for defining how things look on a screen, but for defining specific
content—a language for manipulating the what rather than the how.

What XML Is
I’ll repeat the point from the last paragraph: On its own, XML is a tool for
manipulating the what rather than the how.

It’s natural for people who have used the Web at all—heck, even just read-
ers of magazines—to assume the importance of what font sizes and typefaces
headings will be displayed in, whether cells in a table will be centered or left-jus-
tified, what color the page background will be, and so on.

We’ve been spoiled by later developments in HTML, though. Originally, for
instance, there were no tags for specifying bold or italics text—there were just
 and (for emphasized) tags. It was up to a browser vendor to decide
what to do with those tags in an HTML document; if they wanted to, they could

Ch01.fm Page 17 Tuesday, July 18, 2000 10:39 AM

18 Chapter 1 • Markup Laid Down

render all text in all uppercase letters, and all as underlined. This
made page designers crazy: By God, if they meant italics, then the browser better
not display non-italicized capital letters!

So over time, HTML has drifted into a stew of combined structural and dis-
play markup. Most recently, with the introduction of the Cascading Style Sheets
standard (CSS1 originally, and since May, 1998, CSS2, with CSS3 in the works as
of this writing), a whole mechanism for controlling the how has been sort of
nailed to the side of the bubbling HTML pot. In the meantime, especially with
all the multimedia extensions to Web pages (and the resulting media hoopla),
the emphasis on document structure has been lost.

But even if you’re an HTML purist who’d die before sullying your pages
with font changes, the structures possible with that language aren’t really suffi-
cient for many advanced (even simple) purposes. They’re a least-common-
denominator set of structures that could be used in documents of any kind.
There’s no difference in the meaning of the term “paragraph” as it’s used on CNN
Interactive and its meaning on a Web site of academic treatises on the genetic
manipulation of the common housefly.2

I’ll give you another analogy—this one from a different side of computing.
In everyday life I’m an application developer, specifically of small-scale net-

worked databases being used by up to about ten people at a time. One difficulty
in designing a new database always is the need to help potential users under-
stand why I don’t want to use a spreadsheet to do their work for them, but insist
on a real database instead.

First, consider the spreadsheet. Aside from its roots in accounting—the
classic row-and-column format of a ledger—every spreadsheet just makes sense to
people. They’re used to seeing printed reports, for example, with one row per
“thing” and one column for each of the thing’s characteristics.

But then I point out the variety of uses to which they propose to put their
data. They don’t just want a single report format. They sometimes want to see
everything about everything (in which case, a spreadsheet-like layout can indeed

2. There was a profile of Michael Jordan as a celebrity advertising icon a while back in
The New Yorker magazine. On the face of it, the article has nothing at all to do with
XML vs. HTML. But there’s a wonderful line by the author (Henry Louis Gates, Jr.)
that expresses this quite succinctly: “Different celebrities were repositories of differ-
ent values and associations: Sigourney Weaver didn’t mean the same thing as Loni
Anderson.”

Ch01.fm Page 18 Tuesday, July 18, 2000 10:39 AM

From the Sublime to the Ridiculous 19

make sense, even if the resulting printout is fifty yards wide and only eight inches
deep); more often, they want just to see everything about one thing (in which
case using a spreadsheet is just crazy). Sometimes they want to highlight a fea-
ture that all the things have in common. They don’t want to have to type in a
lengthy text string more than once. And so on.

It doesn’t usually take more than a half-hour of this to convince them.
HTML is like a spreadsheet. Every single HTML document is, basically, the

same structure. You can dress it up with colors, fonts, style sheets, or however you
want, but it’s still the equivalent of a mindless row-and-column design.

XML, by contrast, is like a relational database. The structure is optimized
for the particular application. The structure isn’t mindless; it’s actually mindful.

A truism of Web-page authorship is, “Content is king.” The theory is that if
you dump rich enough content into a page, the page’s value goes up proportion-
ately. But not all truisms are true, and the content-is-king theory has in my opin-
ion turned out to be one of the big lies of the technological age—because HTML
lets you emphasize style over substance.

Ain’t no such thing in XML. XML is 100% about content, and how it’s struc-
tured internally to be most useful.

From the Sublime to the Ridiculous
Well, there’s content, and there’s content.

Much of the attention paid to XML thus far has been in terms of its poten-
tial as a heavyweight application tool. If you’re a doctor (we’re told repeatedly),
you can use XML for maintaining patient records, and then you can make those
records accessible and understandable to the patients themselves simply by view-
ing the data in a “patient’s-eye view of his or her records” browser. Corporations
can develop intranet databases with <invoice>, <partnumber>, <custnumber>,
<custname>, and—who knows?—<warrantyexpirationdate> tags, and they can
easily share those databases with other corporations (such as insurance and ser-
vice companies).

Yeah, you can do all that stuff with XML. But I don’t think you need to be
totally serious about it. Commerce, after all, is long, but life is short. You can use
XML for almost anything…even a piece of fluff like a B movie database.

Ch01.fm Page 19 Tuesday, July 18, 2000 10:39 AM

20 Chapter 1 • Markup Laid Down

Just FlixML
Historically, the Bs—also called “programmers,” the implications of which we
probably don’t want to think about too much—were commonly shown as filler in
a bill with more big-ticket films. In an indoor theater, the B might have appeared
first, as a warmup for the real feature. In a drive-in theater, it might have been
shown second or third, when the audience who had stayed for it was, let’s say, less
interested in the content of what was on the screen than in the fact that it was
dark, and that they were sharing an enclosed, semi-private space with a member
of the opposite sex.

By way of analogy, think of the warmup act in a concert.3 Many in the audi-
ence will have no particular reason for hearing the warmup act, may arrive late
precisely in order to miss it, or may ignore it if present. But sometimes, even an
otherwise dreadful warmup band will come up with an absolute miracle of
music-making, one that leaves the headline group’s own performance seem pale
by comparison.

That happens with B movies, too. Most of them you’ll never be poorer for
having missed, but many are gems that went unnoticed at the time because of
their having been paired with blockbusters. They got lost in the shuffle. (And if
the A picture was itself a dog, the B was doubly damned.)

Unlike concert warmup acts, a lot of the best B movies are still accessible to
us in some way—thanks to television and videotape. But how do we know which
ones to go after? How do we tell other enlightened souls about the best ones, in
a way that’s consistent, complete, reliable, and—ideally—fun?

We use, of course, just FlixML.

The nature of the beast
I’ll have much more to say about why FlixML includes the specific things it does
(and leaves others out) in Part 4, “Rolling Your Own XML Application.” But here
are the general areas I want it to cover:

1. The facts: FlixML must be capable of holding as much objective informa-
tion about a B movie as possible. This stuff is pretty dry—title, year first
released, cast, crew, studio, and so on.

3. If you’re old enough, you can also think of the “flip side” of old 45-rpm records.
This was where the artist or producer dumped a second-tier song to complement
the (presumed) hit on the other side. The flip side was also called the B side.

Ch01.fm Page 20 Tuesday, July 18, 2000 10:39 AM

From the Sublime to the Ridiculous 21

2. The story: This is a little more freeform. A potential viewer of a B film needs
to know what it’s about.

3. The quality: Not all low-budget movies are created equal, even if they’re
identical in most of their objective dimensions.

So I’ve set up FlixML not just to describe a given movie in factual terms, but
also to characterize it. There are provisions for including reviews (both your own,
and those of others—including real critics).

But a markup language for describing movies in general—not just Bs—
would cover those same dimensions. What would be the additional features that
a B-movie-specific markup language should include?

To answer that question, I’ve provided for ratings that are both finer-tuned
and more subjective, culminating in a single rating on a “B-ness scale.” This B-
ness figure captures, in a nutshell, how much a film should be considered a true
B film, versus a true turkey, an A film that’s simply scarred by subpar production
values, and so on.

Which brings us to the question: What exactly are the attributes of B movies
versus all others?

I’ve talked to friends about this notion. I know that B movies, like As and
Cs, have a director, a cinematographer, and a cast; that they’re in black-and-white
or color; that they’re silent or sound—I know all that. But what are the essential
ingredients of a B movie?

Here are some of the things we’ve come up with:

• Little or no redeeming social, artistic, or intellectual value
• Lukewarm commercial success
• Cheesy or at least obvious “special” effects
• Recycled plot lines
• Don’t have sequels (although sequels to some other classifications of movies

are themselves often Bs)
• No “name” stars or directors (at least at the time the movie was made)
• TV (and later, videotape) saved them from certain oblivion
• You’ll never find a B movie’s soundtrack on CD
• There are no parodies of specific B movies
• Not shown on primetime network television
• The men wear suits 24 hours a day, the women dresses, the kids either short

pants with suspenders or pinafores
• Nobody ever eats a complete meal

Ch01.fm Page 21 Tuesday, July 18, 2000 10:39 AM

22 Chapter 1 • Markup Laid Down

• If you fall asleep during a B movie that is followed by another B movie, and
then wake up, it takes you a half-hour to realize you’re watching a different
movie

(No doubt you can come up with some of your own criteria, but this is a
good starting point.)

The key feature that distinguishes a B movie from any other can probably
be stated simply like this: It has no extrinsic qualities that would make you want to
see it. Someone might pass along a word-of-mouth recommendation, but you
otherwise probably happened on it by accident. You’ve read no reviews of it; you
don’t know any other movies by the same director; and while certain cast mem-
bers later may have become “stars,” you wouldn’t have known them at the time.
All of a B movie’s virtues, if any, are intrinsic.

So having a computer handy as you proceed through Just XML will be
important, of course…just remember to keep the VCR warmed up and ready as
well. And your tongue planted firmly in cheek (I know that’s where mine will
be).

Ch01.fm Page 22 Tuesday, July 18, 2000 10:39 AM

From the Sublime to the Ridiculous 23

B A l e r t !

Wa t c h T h i s S p a c e

Throughout Just XML, keep your eyes open for a box such as this
one.

Each B Alert! box will contain a capsule description of a classic B
film. I’ll include notes on the year the film was released, its plot,
and especially why I think it’s worth hunting down a copy of the
film for your own viewing.

As in most other such, er, artistic pursuits, there will be of
course a certain amount of subjectivity at work here. A flick I rec-
ommend may well leave you scratching your head, or—who
knows?—out-and-out repulsed. (That’s always a possibility when
looking through films that got lackluster studio support during
their making. On the other hand, it’s always a possibility when
looking through films that did receive a lot of TLC and promo-
tional attention from their studios. Go figure.) I’ll try at least,
though, to make the pitch both clear and encouraging enough
for you to make an informed judgment of your own.

A few bits of XML code in Just XML describe movies that don’t
exist. Most of them, though, are real enough. And most of those
will be honored (if that’s not stretching a term too far) with their
own B Alert! boxes.

One last thing: At my Web site, I’ve got an XML tutorial, links to
XML-related sites, information about B movies, and several exam-
ples of FlixML documents both in raw XML format and converted
into HTML for viewing. Please stop in; the address is:

www.flixml.org

Ch01.fm Page 23 Tuesday, July 18, 2000 10:39 AM

Ch01.fm Page 24 Tuesday, July 18, 2000 10:39 AM

