
C H A P T E R 1

GETTING STARTED
The longest journey begins with a single step.

1

CHAPTER OBJECTIVES

In this chapter, you will learn about:

✔ Compiling and Running a Java Program Page 2

To attain proficiency with a computer programming language, you
must get your hands dirty. In order to get your hands dirty, you must

have appropriate tools at your disposal. Within this chapter, we will in-
troduce the tools needed to create and run Java programs, and show you
how to obtain and configure these tools on your system.

With these tools installed on your computer, this interactive workbook
offers you the opportunity to both read about Java programming and be-
come an active participant in your Java education as well. There is no
substitute for experience, so let’s hit the ground running!

ch01 11/17/99 9:16 AM Page 1

L A B 1 . 1

COMPILING AND
RUNNING A JAVA

PROGRAM

2 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

LAB OBJECTIVES

After this lab, you will be able to:

• Install and Configure the Java Development Kit
• Compile and Run a Java Program
• Compile and Run a Java Applet

Before the introduction of the Java programming language, most soft-
ware development was done in a platform-specific manner. Programs
written in languages such as Fortran, C, and C++ were run through com-
pilers to generate platform-specific executables. PCs, Macintoshes, and
UNIX workstations all required their own version of an executable and
often the programs would have to be specifically tailored for each plat-
form.

Java programs must be run through a compiler as well. However, the Java
compiler does not generate platform-specific code—it generates platform-
independent bytecodes. These bytecodes can then be executed by a Java
Virtual Machine (JVM). Strictly speaking, Java is not “Write Once, Run
Anywhere” as claimed by Sun; realistically, it is “Write Once, Run on Any
System With a JVM.” Because JVMs are available for most interesting
platforms (and even a few not-so-interesting ones), the language has ful-
filled its promise of cross-platform compatibility.

ch01 11/17/99 9:16 AM Page 2

To foster development with the Java programming language, Sun Mi-
crosystems provides a free software development kit (SDK), which in-
cludes a compiler, virtual machine, debugger, and a host of other useful
development tools. This is called the Java Development Kit, or JDK, and
the latest Windows and Solaris versions are always available from the Sun
Web site at:

http://java.sun.com/products/jdk/1.2/index.html

If you are developing on a platform other than Windows or Solaris (good
for you!), you can find information regarding JDKs for other platforms on
the Web at:

http://java.sun.com/cgi-bin/java-ports.cgi

The JDK is free of charge and free of frills. There is no graphical user inter-
face provided to these tools, so you can only use them from a command-
line interface such as a DOS window or UNIX shell. The benefit of the
JDK is that it is a reference implementation—if you can successfully com-
pile and run programs using Sun’s JDK, you can be sure your programs
will run under any compatible JVM. If you have done previous software
development with an integrated development environment (IDE), you
may find this adjustment difficult. Many commercial Java IDEs are avail-
able, and there are even a few free IDEs (like Sun’s Java Workshop prod-
uct), but they will not be addressed within this text—use them at your
own peril.

Do not confuse the JDK with the Java Runtime Environment (JRE). The
JRE contains only the virtual machine and supporting code necessary to
run (not develop) Java programs. The computer industry has an affinity
for ambiguous acronyms, and if you install the JRE instead of the JDK
you will find yourself DOA without an SDK.

LAB 1.1 EXERCISES

1.1.1 INSTALL AND CONFIGURE THE JAVA DEVELOPMENT KIT

The latest version of Sun’s Java2 JDK can be found on the Web at:

http://java.sun.com/products/jdk/1.2/index.html

Lab 1.1: Compiling and Running a Java Program 3

LAB
1.1

ch01 11/17/99 9:16 AM Page 3

Download the JDK version appropriate for your platform and install it. The
Windows version will attempt to install itself into C:\JDK1.2.x, where x indi-
cates the dot-version of the current JDK. The Solaris version will attempt to
install itself into your current working directory.

The JDK documentation, known as the Java API documentation or “Javadocs,”
can be downloaded from the same Web site. Download the HTML-formatted
documentation and install it. The Javadocs are an excellent example of docu-
mentation done right, and we will be referring to this documentation through-
out the text.

You didn’t neglect to install the documentation, did you? Consider it a re-
quirement for learning the language.

As you will shortly discover, Javadocs will become your second-best friend
during your forray into the depths of Java. Your best friend, of course, is
this interactive workbook!

Once the JDK is installed on your system, you must modify your PATH envi-
ronment variable to include the location of your development tools. For those
unfamiliar with the PATH variable, it tells your operating system where to
look within your filesystem for programs.

ON WINDOWS 95, 98 OR NT . . .
If you are running Windows 95 or 98, you can modify your PATH within
the autoexec.bat file in a manner similar to the following. Be sure to change
the JDK1.2.x in the following line to match the location where you installed the
JDK on your system.

PATH=%PATH%;C:\JDK1.2.x\Bin

This change will take effect next time you reboot Windows—like that is news
to any Windows user.

Users of WindowsNT can make this modification within the Console applica-
tion available within the Control Panel.

To double-check that your PATH modification has been successful, you can
input the following from an MS-DOS Prompt window:

C:\WINDOWS>path

4 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

ch01 11/17/99 9:16 AM Page 4

If your PATH was modified successfully, you should see the location of the Bin
subdirectory of your JDK installation, similar to the following:

PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\JDK12~1.2\BIN

ON SOLARIS, UNIX OR LINUX OS . . .
If your default shell is a Bourne-shell derivative, you can modify your PATH
similar to the following in your .profile file. Modify the /usr/local/jdk1.2.x/bin
below to reflect the bin subdirectory where you installed the JDK.

PATH=$PATH:/usr/local/jdk1.2.x/bin
export PATH

To double-check your modification, open a new shell and input the following:

echo $PATH

If the modification was successful, you should see the location of the bin subdi-
rectory of your JDK installation, similar to the following:

/bin:/usr/bin:/usr/local/bin:/usr/local/jdk1.2.x/bin

IF YOU HAVE ALREADY INSTALLED A PREVIOUS VERSION
OF THE JDK ON EITHER PLATFORM . . .
Similar to the PATH environment variable used by your operating system, Java
uses another environment named CLASSPATH. The CLASSPATH environ-
ment variable informs the JVM where it should look for Java program files
(classes). If you do not have this defined on your system, don’t worry about it.
If you do have this defined on your system, be sure to remove an entry for
classes.zip if it is present—this entry is needed for older Java1.1 releases, but
will only confuse matters with Java2. Use the same steps as outlined previously
for your PATH environment variable.

CONGRATULATIONS!
You have just installed and configured the JDK. Answer the following ques-
tions:

From an MS-DOS prompt or UNIX shell, type the following:

java –version

Lab 1.1: Compiling and Running a Java Program 5

LAB
1.1

ch01 11/17/99 9:16 AM Page 5

a) What was displayed?

1.1.2 COMPILE AND RUN A JAVA PROGRAM

Java source code can be written with whatever editor you are most comfort-
able. On Windows systems this might be notepad, edit, or brief. On UNIX sys-
tems this is probably vi, emacs, or pico.

Java source code files adhere to a strict naming convention. This will be dis-
cussed in following chapters, but it is important to know that filenames are
case-sensitive (MyApp is not the same as myapp) and all end with a .java ex-
tension.

Create your first Java program by firing-up your favorite editor and entering
the following code exactly as it is written. Save this file as Welcome.java:

import javax.swing.*;
public class Welcome
{

public static void main(String[] argv)
{

JOptionPane.showMessageDialog(
null,
"Welcome to the wonderful world of

Java!",
"Welcome, new Programmer",
JOptionPane.PLAIN_MESSAGE);

System.exit(0);
}

}

Once the file is saved, start up an MS-DOS Prompt or UNIX shell. Navigate to
the directory that contains Welcome.java and run the following command:

javac Welcome.java

6 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

ch01 11/17/99 9:16 AM Page 6

a) What were your results from running this command?

Without changing directories, run the following command:

java Welcome

b) What were your results from running this command?

1.1.3 COMPILE AND RUN A JAVA APPLET

Fire up your favorite editor and create the following file, named Welcome-
Applet.java:

import java.awt.*;
import java.applet.*;
public class WelcomeApplet extends Applet
{

Label textLabel;
public void init()
{

textLabel = new Label(
"Welcome to the wonderful world of Java!");

textLabel.setAlignment(Label.CENTER);
this.add(textLabel);

}
}

Start an MS-DOS Prompt or UNIX shell and navigate to the directory that
contains WelcomeApplet.java. Run the following command:

javac WelcomeApplet.java

a) What were your results from running this command?

Lab 1.1: Compiling and Running a Java Program 7

LAB
1.1

ch01 11/17/99 9:16 AM Page 7

Once again, start an editor and create the following file named Welcome-
Applet.html:

<HTML>
<TITLE>Welcome</TITLE>
<APPLET CODE="WelcomeApplet.class" WIDTH=400
HEIGHT=200>
If you can read this, your browser does not support
Java!
</APPLET>
</HTML>

From within the same directory, run the following command:

appletviewer WelcomeApplet.html

b) What were your results from running this command?

LAB 1.1 EXERCISE ANSWERS

1.1.1 ANSWERS

From an MS-DOS prompt or UNIX shell, type the following:

java –version

a) What was displayed?

Answer: If everything worked properly, you should have seen output similar to the fol-
lowing:

java version "1.2.2"
Classic VM (build JDK-1.2.2-W, native threads,
symcjit)

The java program is responsible for starting a JVM. The argument
–version indicates that you are only interested in the version of the JVM,
and do not care to run a Java program.

8 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

ch01 11/17/99 9:16 AM Page 8

Depending upon the current version of the JDK, you may be running a
slightly newer version than shown in the output above. So long as your
version string is of the format 1.2.x, where x represents the dot-release of
the JDK, you are doing well. If by some chance an older version was dis-
played, such as 1.0.x or 1.1.x, you may have an old version of Java on
your system. If you do not wish to remove the old version of Java, you
should modify your PATH environment variable so that the 1.2 JDK
entry is placed before any other JDK entries.

If you received an error message similar to

Bad command or file name

or

java: command not found

your PATH environment variable may not be set correctly. Review the
Lab and double-check that the JDK bin directory is in your PATH.

1.1.2 ANSWERS

Once the file is saved, start up an MS-DOS Prompt or UNIX shell. Navigate to the
directory that contains Welcome.java and run the following command:

javac Welcome.java

a) What were your results from running this command?

Answer: If all went well, you should have received no output to your console.

The javac program is the Java compiler. It translates source code into
Java bytecodes. If the compiler was successful, it translated your
Welcome.java source code into Java bytecodes and stored them in a new
class file named Welcome.class.

If you received any error messages from the javac command, check the
source code to be sure it was input exactly as shown in the Lab. Java is
case-sensitive, so be sure you did not mix character cases.

Without changing directories, run the following command:

java Welcome

b) What were your results from running this command?

Lab 1.1: Compiling and Running a Java Program 9

LAB
1.1

ch01 11/17/99 9:16 AM Page 9

Answer: You should have been greeted by a popup window that contained the text
“Welcome to the wonderful world of Java!”.

The java command started a JVM that ran the Welcome program. This
simple program merely created a popup window that contained a
friendly welcome message similar to the following:

10 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

If you received an error from the java command similar to the following:

Exception in thread "main" java.lang.NoClass
DefFoundError: Welcome

the JVM was unable to locate the Welcome.class file. Try running the
command again, from the same directory which contains the Welcome
.class file.

1.1.3 ANSWERS

Start an MS-DOS Prompt or UNIX shell and navigate to the directory which con-
tains WelcomeApplet.java. Run the following command:

javac WelcomeApplet.java

a) What were your results from running this command?

Answer: Similar to the previous lab section, you should have received no output if all
went well.

If the WelcomeApplet.java source code compiled properly, you received
no messages from the Java compiler. If you did receive error messages
from the compiler, double-check the source code to be sure it appears ex-
actly as shown within the lab. You don’t think we made a typo, do you?!

From within the same directory, run the following command:

appletviewer WelcomeApplet.html

ch01 11/17/99 9:16 AM Page 10

b) What were your results from running this command?

Answer: You should have been greeted by an applet that displayed the text message
“Welcome to the wonderful world of Java!”

The appletviewer program is included with the JDK as an alternative to
running applets within a web browser, and provides an interface that
makes testing of applets much less cumbersome than within a web
browser.

More importantly, at the time of this writing, neither Netscape Navigator
nor Microsoft Internet Explorer include standard support for Java2. For
this reason, we will assume throughout the workbook that appletviewer
will be used to run all the example applets.

If you did not see an applet displayed, check your WelcomeApplet.html
file to be sure it does not deviate from that which is shown within the
Lab. Also, be sure that both the WelcomeApplet.html and Welcome-
Applet.class files exist within the same directory from which you ran
appletviewer.

What do you mean Java2 is not supported by my browser?!

Relax—in an effort to provide an upgrade to the JVM of your browser,
Sun has created a free browser plug-in which allows you to run the JVM
of your choice within the web browser.

Check your browser documentation to see if it supports Java2. If it does
not, check Sun’s Java Plug-In web site for details:

http://java.sun.com/products/plugin

LAB 1.1 SELF-REVIEW QUESTIONS

In order to test your progress, you should be able to answer the following ques-
tions.

1) The Java compiler transforms source code into what platform-independent for-
mat?
a) _____ opcodes
b) _____ bytecodes
c) _____ virtual machines
d) _____ applets

Lab 1.1: Compiling and Running a Java Program 11

LAB
1.1

ch01 11/17/99 9:16 AM Page 11

2) What command runs the Java compiler?
a) _____ java
b) _____ appletviewer
c) _____ jdb
d) _____ javac

3) Which of the following commands is used to run a Java application?
a) _____ java
b) _____ appletviewer
c) _____ jdb
d) _____ javac

4) Which of the following commands is used to run a Java applet?
a) _____ java
b) _____ appletviewer
c) _____ jdb
d) _____ javac

5) The freely-available collection of tools which can be used to create Java
programs is known as what?
a) _____ JRE
b) _____ JDK
c) _____ JVM
d) _____ JNI

Quiz answers appear in Appendix A, Section 1.1.

12 Lab 1.1: Compiling and Running a Java Program

LAB
1.1

ch01 11/17/99 9:16 AM Page 12

Chapter 1: Getting Started 13

C H A P T E R 1

TEST YOUR THINKING
The purpose of this chapter was just to make sure you could run a Java program.
There’s not much point in learning a computer language if you can’t use it.

1) Since you are going to be programming frequently in this book, we suggest that
you setup a “programming environment” for yourself. A programming environ-
ment is a configuration of your computer, or computer account, which allows you
to write, compile, and run computer programs. We recommend that you setup
your login environment to allow you to write, compile, and run Java programs.
Once you have successfully completed the labs of this chapter, you should “lock
in” that configuration so the next time you login to use your computer, you don’t
have to worry about the configuration again. This will save you a great deal of time
in the future.

ch01 11/17/99 9:16 AM Page 13

ch01 11/17/99 9:16 AM Page 14

