
1

c h a p t e r

1
Introduction

to Linux Shells

1.1 Why Linux?

In 1991, Linus Torvalds, a Finnish college student, developed a UNIX-compatible operat-
ing system kernel at the University of Helsinki, Finland. It was designed to be UNIX on a
PC. What started as one man’s hobby has become a full-fledged 32-bit operating system
installed worldwide on an estimated 10 million computers. And the number of users is
growing at a phenomenal rate. At first, Linux appealed to hackers who wanted an operating
system that allowed them the freedom to get down to the kernel level, to tweak and probe
at the code with the same freedom and enthusiasm shown by the UNIX hackers of the early
’80s. Now, as with UNIX, Linux is no longer associated solely with college hackers and
“geeks” but has exploded in popularity worldwide for both personal and professional use,
often serving systems with large networks of computers. For many, Linux is an alternative
to Windows, and a large Linux culture has evolved sponsoring consortiums, conventions,
expos, newgroups, and publications in a new revolution to rival Window’s dominance in the
PC world.

With the help of many system programmers and developers, Linux has grown into
today’s full-fledged UNIX- and POSIX-compatible operating system. In 1992, the Free
Software Foundation added its Gnu software to the Linux kernel to make a complete oper-
ating system and licensed the Linux source code under its General Public License. Hun-
dreds of Gnu utilities were provided by the Free Software Foundation, including
improvements to the standard UNIX Bourne shell. The Bourne Again shell, the Linux
default shell, is an enhanced Bourne shell, not only at the programming level, but also when
used interactively, allowing the user to tailor his working environment and create shortcuts
to improve efficiency. The Gnu tools, such as grep, sed, and gawk, are similar to their UNIX
namesakes, but have also been improved and designed for POSIX1 compliancy. The com-
bination of the kernel and the Gnu tools and the fact that Linux could run on PCs, made

1. The requirements for shell functionality are defined by the POSIX (Portable Operating System Interface)
standard, POSIX 1003.2.

1471A-c.fm Page 1 Thursday, April 27, 2000 8:54 AM

2 Chapter 1 • Introduction to Linux Shells

Linux a viable alternative to the proprietary UNIX and Microsoft operating systems, not to
mention the fact that Linux is free to anyone who wants it, with all its source code, and a
number of office suites and software packages. Whether you download Linux from the
Internet, or buy a version distributed on a CD, Linux is portable, stable, and secure. It gives
your PC the power of a workstation.

1.1.1 What Is POSIX?

In order to provide software standards for different operating systems and their programs,
the POSIX (also referred to as the Open Systems Standards) evolved, consisting of partic-
ipants from the Institute of Electrical and Electronics Engineering (IEEE) and the Interna-
tional Organization for Standardization (ISO). Their goal was to supply standards that
would promote application portability across different platforms, to provide a UNIX-like
computing environment; i.e., new software written on one machine that would compile and
run on another machine with different hardware. For example, a program written for a BSD
UNIX machine will run on Solaris, Linux, and HpUX machines. In 1988 the first standard
was adopted, called POSIX 1003.1. Its purpose was to provide a C language standard. In
1992, the POSIX group established standards for the shell and utilities to define the terms
for developing portable shell scripts, called the IEEE 1003.2 POSIX shell standard and gen-
eral utility programs. Although there is no strict enforcement of these standards, most
UNIX vendors try to comply with the POSIX standard. The term “POSIX compliancy”
when discussing shells and their general UNIX utilities, is an attempt to comply to the stan-
dards presented by the POSIX committee, when writing new utilities or adding enhance-
ments to the existing ones. For example, the Bourne Again shell is a shell that is almost
100% compliant and gawk is a user utility that can operate in strict POSIX mode.

1.2 Definition and Function of a Shell

The shell is a special program used as an interface between the user and the heart of the
operating system, a program called the kernel, as shown in Figure 1.1. The kernel is loaded
into memory at boot time, and manages the system until shutdown. It creates and controls
processes, manages memory, file systems, communications, and so forth. All other pro-
grams, including shell programs, reside on the disk. The kernel loads programs from the
disk into memory, executes them, and cleans up the system when they terminate. The shell
is a utility program that starts up when you log on. It allows users to interact with the kernel
by interpreting commands that are typed either at the command line or in a script file.

When you log on, an interactive shell starts up and prompts you for input. After you type
a command, it is the responsibility of the shell to: (a) parse the command line; (b) handle
wildcards, redirection, pipes, and job control; and (c) search for the command, and if found,
execute that command. When you first learn Linux, you spend most of your time executing
commands from the prompt. You will be using the shell interactively.

If you type the same set of commands on a regular basis, you may want to automate
those tasks. To do so, you place each command in an executable file, called a shell script.

1471A-c.fm Page 2 Thursday, April 27, 2000 8:54 AM

1.2 Definition and Function of a Shell 3

A shell script is much like a batch file. More sophisticated scripts contain programming
constructs for making decisions, looping, file testing, and so forth. Writing scripts not only
requires learning programming constructs and techniques, but also assumes that you have
a good understanding of Linux utilities and how they work. There are some utilities, such
as grep, sed, and gawk, that are extremely powerful when used in scripts for the manipula-
tion of command output and files. After you have become familiar with these tools and the
programming constructs for your particular shell, you will be ready to start writing useful
scripts. When executing commands from within a script, you will be using the shell as a
programming language.

Figure 1.1 The kernel, the shell, and you.

1.2.1 The Three Major UNIX Shells

The three prominent and supported shells on most UNIX systems are the Bourne shell
(AT&T shell), the C shell (Berkeley shell), and the Korn shell (superset of the Bourne
shell). All three of these shells behave pretty much the same way when running interac-
tively, but have some differences in syntax and efficiency when used as scripting languages.

The Bourne shell is the standard UNIX shell, and the shell used to administer the system.
Most of the system administration scripts, such as the rc start and stop scripts and shut-
down, are Bourne shell scripts, and when in single-user mode, this is the shell commonly
used by the administrator when running as root (superuser). This shell was written at AT&T
and is known for being concise, compact, and fast. The default Bourne shell prompt is the
dollar sign ($).

The C shell, developed at Berkeley, added a number of features, such as command line
history, aliasing, built-in arithmetic, filename completion, and job control. The C shell has
been favored over the Bourne shell by users running the shell interactively, but administra-
tors prefer the Bourne shell for scripting, because Bourne shell scripts are simpler and faster
than the same scripts written in C shell. The default C shell prompt is the percent sign (%).

% you

shell

who
rm mv

wc Is cat
at

lpr
rsh more

awk
pwd

csh
bc

finger
w

cp dd

sh ps
sed

cal lp

cc

yp
vi

date

ksh

find

grep

pg

kernel

1471A-c.fm Page 3 Thursday, April 27, 2000 8:54 AM

4 Chapter 1 • Introduction to Linux Shells

The Korn shell is a superset of the Bourne shell written by David Korn at AT&T. A num-
ber of features were added to this shell above and beyond the enhancements of the C shell.
Korn shell features include an editable history, aliases, functions, regular expression wild-
cards, built-in arithmetic, job control, coprocessing, and special debugging features. The
Bourne shell is almost completely upward-compatible with the Korn shell, so older Bourne
shell programs run fine in this shell. The default Korn shell prompt is the dollar sign ($).

1.2.2 The Major Linux Shells

The shells used by Linux do not exclusively belong to the Linux operating system. They are
freely available and can be compiled on any UNIX system. But when you install Linux, you
will have access to the Gnu shells and tools, not the standard UNIX shells and tools.
Although Linux supports a number of shells, the Bourne Again shell (bash) and the TC
shell (tcsh) are by far the most popular. The Z shell is another Linux shell that incorporates
a number of features from the Bourne Again shell, the TC shell, and the Korn shell. The
Public Domain Korn shell (pdksh) a Korn shell clone, is also available, and for a fee you
can get AT&T’s Korn shell, not to mention a host of other unknown smaller shells.

To see what shells are available under your version of Linux, look in the file, /etc/shell.

To change to one of the shells listed in /etc/shell, type the chsh command and the name of
the shell. For example, to change permanently to the TC shell, use the chsh command. At
the prompt, type:

chsh /bin/tcsh

EXAMPLE 1.1

$ cat /etc/shell
/bin/bash
/bin/sh
/bin/ash
/bin/bsh
/bin/tcsh
/bin/csh
/bin/ksh
/bin/zsh

EXPLANATION

1 The /etc/shell file contains a list of all shell programs available on your version of
Linux. The most popular versions are bash (Bourne Again shell), tcsh (TC shell), and
ksh (Korn shell).

1471A-c.fm Page 4 Thursday, April 27, 2000 8:54 AM

1.2 Definition and Function of a Shell 5

1.2.3 History of the Shells

The first significant, standard UNIX shell was introduced in V7 (seventh edition of AT&T)
UNIX in late 1979, and was named after its creator, Stephen Bourne. The Bourne shell as
a programming language is based on a language called Algol, and was primarily used to
automate system administration tasks. Although popular for its simplicity and speed, it
lacks many of the features for interactive use, such as history, aliasing, and job control.
Enter bash, the Bourne Again shell, which was developed by Brian Fox of the Free Soft-
ware Foundation under the Gnu copyleft license and is the default shell for the very popular
Linux operating system. It was intended to conform to the IEEE POSIX P1003.2/ISO
9945.2 Shell and Tools standard. Bash also offers a number of new features (both at the
interactive and programming level) missing in the original Bourne shell (yet Bourne shell
scripts will still run unmodified). It also incorporates the most useful features of both the C
shell and Korn shell. It’s big. The improvements over Bourne shell are: command line his-
tory and editing, directory stacks, job control, functions, aliases, arrays, integer arithmetic
(in any base from 2 to 64), and Korn shell features, such as extended metacharacters, select
loops for creating menus, the let command, etc.

The C shell, developed at the University of California at Berkeley in the late 1970s, was
released as part of 2BSD UNIX. The shell, written primarily by Bill Joy, offered a number
of additional features not provided in the standard Bourne shell. The C shell is based on the
C programming language, and when used as a programming language, it shares a similar
syntax. It also offers enhancements for interactive use, such as command line history,
aliases, and job control. Because the shell was designed on a large machine and a number
of additional features were added, the C shell has a tendency to be slow on small machines
and sluggish even on large machines when compared to the Bourne shell.

 The TC shell is an expanded version of the C shell. Some of the new features are: com-
mand line editing (emacs and vi), scrolling the history list, advanced filename, variable, and
command completion, spelling correction, scheduling jobs, automatic locking and logout,
time stamps in the history list, etc. It’s also big.

With both the Bourne shell and the C shell available, the UNIX user now had a choice,
and conflicts arose over which was the better shell. David Korn, from AT&T, invented the
Korn shell in the mid-1980s. It was released in 1986 and officially became part of the SVR4
distribution of UNIX in 1988. The Korn shell, really a superset of the Bourne shell, runs
not only on UNIX systems, but also on OS/2, VMS, and DOS. It provides upward-compat-
ibility with the Bourne shell, adds many of the popular features of the C shell, and is fast
and efficient. The Korn shell has gone through a number of revisions. The most widely used
version of the Korn shell is the 1988 version, although the 1993 version is gaining popular-
ity. Linux users may find they are running the free version of the Korn shell, called The Pub-
lic Domain Korn shell, or simply pdksh, a clone of David Korn’s 1988 shell. It is free and
portable and currently work is underway to make it fully compatible with its namesake,
Korn shell, and to make it POSIX compliant. Also available is the Z shell (zsh), another
Korn shell clone with TC shell features, written by Paul Falsted, and freely available at a
number of Web sites.

1471A-c.fm Page 5 Thursday, April 27, 2000 8:54 AM

6 Chapter 1 • Introduction to Linux Shells

1.2.4 What Shells This Book Covers

Due to the great number of new features provided in the Bourne Again shell and TC shell,
this book will concentrate on those two popular shells. The Korn shell, as well as Bourne
and C shell, were presented in UNIX Shells by Example2, and will not be covered again
here. The Bourne Again shell, as of Release 2.0, is very similar in functionality to the Korn
shell as a programming language, with many of the features of the C shell when used inter-
actively. The TC shell, likewise, is almost identical to the C shell when used as a program-
ming language, but has many new features for interactive use.

1.2.5 Uses of a Shell

One of the major uses of a shell is to interpret commands entered at the prompt. The shell
parses the command line, breaking it into words (called tokens), separated by white space,
i.e., tabs, spaces, or a newline. If the words contain special metacharacters, the shell evalu-
ates them. The shell handles file I/O and background processing. After the command line
has been processed, the shell searches for the command and starts its execution.

Another important function of the shell is to customize the user’s environment, normally
done in shell initialization files. These files contain definitions for setting terminal keys and
window characteristics; setting variables that define the search path, permissions, prompts,
and the terminal type; and setting variables that are required for specific applications such
as windows, text-processing programs, and libraries for programming languages. The
Bourne Again and the TC shells also provide further customization with the addition of his-
tory and aliases, filename and command completion, spell checking, help features, built-in
variables set to protect the user from clobbering files, inadvertently logging out, and to
notify the user when a job has completed, etc.

The shell can also be used as an interpreted programming language. Shell programs, also
called scripts, consist of commands listed in a file. The programs are created in an editor
(although online scripting is permitted). They consist of Linux commands interspersed with
fundamental programming constructs, such as variable assignment, conditional tests, and
loops. You do not have to compile shell scripts. The shell interprets each line of the script
as if it had been entered from the keyboard. Because the shell is responsible for interpreting
commands, it is necessary for the user to have an understanding of what those commands
are. Appendix A of this book contains a list of useful commands and how they work.

1.2.6 Responsibilities of the Shell

The shell is ultimately responsible for making sure that any commands typed at the prompt
get properly executed. Included in those responsibilities are:

1. Reading input and parsing the command line.
2. Evaluating special characters.

2. Quigley, Ellie. UNIX Shells by Example, 2nd Edition. Upper Saddle River, NJ: Prentice Hall, 1999.

1471A-c.fm Page 6 Thursday, April 27, 2000 8:54 AM

1.3 System Startup and the Login Shell 7

3. Setting up pipes, redirection, and background processing.
4. Handling signals.
5. Setting up programs for execution.

Each of these topics is discussed in detail as it pertains to a particular shell.

1.3 System Startup and the Login Shell

When you start up your system, the first process is called init. Each process has a process
identification number associated with it, called the PID. Because init is the first process, its
PID is 1. The init process initializes the system and then starts another process to open ter-
minal lines, and sets up the standard input (stdin), standard output (stdout), and standard
error (stderr), which are all associated with the terminal. The standard input normally
comes from the keyboard; the standard output and standard error go to the screen. At this
point, a login prompt (Login:) appears at your console. After you type your login name, you
are prompted for a password (you will be given up to 10 chances to enter the correct pass-
word). The /bin/login program then verifies your identity by checking the first field in the
/etc/passwd file. If your username is there, the next step is to run the password you typed
through an encryption program to determine if it is indeed the correct password. Once your
password is verified, the login program sets up an initial environment consisting of vari-
ables that define the working environment that will be passed to the shell. The HOME,
SHELL, USER, and LOGNAME variables are assigned values extracted from information
in the /etc/passwd file. The HOME variable is assigned your home directory; the SHELL
variable is assigned the name of the login shell, the last entry in the passwd file. The USER
and/or LOGNAME variables are assigned your login name. A PATH variable to help the
shell find commonly used utilities is located in specified directories. It is a colon separated
list initially set to: /usr/local/bin:/bin:/usr/bin. When login has finished, it will execute the
program found in the last entry of the /etc/passwd file. Normally, this program is a shell. If
the last entry in the /etc/passwd file is /bin/tcsh or bin/csh, the TC shell program is executed.
If the last entry in the /etc/passwd file is /bin/bash, /bin/sh, or is null, the Bourne Again shell
starts up. If the last entry is /bin/pdksh, the Public Domain Korn shell is executed. This shell
is called the login shell.

After the shell starts up, it checks for any systemwide initialization files and then checks
your home directory to see if there are any shell-specific initialization files there. If any of
these files exist, they are executed. The initialization files are used to further customize the
user environment. After the commands in those files have been executed, a shell prompt
appears on your console, unless a windowing program, such as X Windows or Gnome is
launched, at which point a number of xterm or visual shell windows will appear. When you
see the shell prompt, either at the console or in an xterm or other desktop window, the shell
program is now waiting for your input.

1471A-c.fm Page 7 Thursday, April 27, 2000 8:54 AM

8 Chapter 1 • Introduction to Linux Shells

1.3.1 Parsing the Command Line

When you type a command at the prompt, the shell reads a line of input and parses the com-
mand line, breaking the line into words, called tokens. Tokens are separated by spaces or
tabs, and the command line is terminated by a newline.3 The shell then checks to see
whether the first word is a built-in command or an executable program stored on disk. If it
is built-in, the shell will execute the command internally. Otherwise, the shell will search
the directories listed in the PATH variable to find out where the program resides. If the pro-
gram is found, the shell will fork a new process and then execute the program. The shell
will sleep (or wait) until the program finishes execution and then, if necessary, will report
the status of the exiting program. A prompt will appear and the whole process will start
again. The order of processing the command line is as follows:

1. History substitution (if set).
2. Command line is broken up into tokens (words).
3. History is updated.
4. Quotes are processed.
5. Alias substitution and functions are defined (if applicable).
6. Redirection, background, and pipes are set up.
7. Variable substitution ($user, $name, etc.) is performed.
8. Command substitution (echo for today is ‘date‘) is performed.
9. Filename substitution, called globbing (cat abc.??, rm *.c, etc.) is performed.

10. Program execution.

1.3.2 Types of Commands

When a command is executed, it is an alias, a function, a built-in command, or an execut-
able program on disk. Aliases are abbreviations (nicknames) for existing commands and
apply to the C, TC, Bash, and Korn shells. Functions apply to the Bourne (introduced with
AT&T System V, Release 2.0), Bash, and Korn shells. They are groups of commands orga-
nized as separate routines. Aliases and functions are defined within the shell’s memory.
Built-in commands are internal routines in the shell, and executable programs reside on
disk. The shell uses the path variable to locate the executable programs on disk and forks a
child process before the command can be executed. This takes time. When the shell is ready
to execute the command, it evaluates command types in the following order:4

1. Aliases
2. Keywords
3. Functions (bash)
4. Built-in commands
5. Executable programs

3. The process of breaking the line up into tokens is called lexical analysis.
4. Numbers 3 and 4 are reversed for Bourne and Korn(88) shells. Number 3 does not apply for C and TC shells.

1471A-c.fm Page 8 Thursday, April 27, 2000 8:54 AM

1.4 Processes and the Shell 9

If, for example, the command is “xyz,” the shell will check to see if “xyz” is an alias. If
not, is it a built-in command or a function? If neither of those, it must be an executable com-
mand residing on the disk. The shell then must search the path for the command.

1.4 Processes and the Shell

1.4.1 What Is a Process?

A process is a program in execution and can be identified by its unique PID (process iden-
tification) number. The kernel controls and manages processes. A process consists of the
executable program, its data and stack, program and stack pointer, registers, and all the
information needed for the program to run. When you log in, the process running is nor-
mally a shell (bash)5, called the login shell. The shell belongs to a process group identified
by the group’s PID. Only one process group has control of the terminal at a time and is said
to be running in the foreground. When you log on, your shell is in control of the terminal
and waits for you to type a command at the prompt. On Linux systems, the shell will nor-
mally start up another process, xinit, to launch the X Windowing system. After X Windows
starts, a window manager process (twm, fvwm, etc.) is executed, providing a virtual desk-
top.6 Then from a pop-up menu, you can start up a number of other processes, such as xterm
(gets a terminal), xman (provides manual pages), or emacs (starts a text editor). Multiple
processes are running and monitored by the Linux kernel, allocating each of the processes
a little slice of the CPU in a way that is unnoticeable to the user.

1.4.2 What Is a System Call?

The shell can spawn (create) other processes. In fact, when you enter a command at the
prompt or from a shell script, the shell has the responsibility of finding the command either
in its internal code (built-in) or out on the disk, and then arranging for the command to be
executed. This is done with calls to the kernel, called system calls. A system call is a request
for kernel services and the only way a process can access the system’s hardware. There are
a number of system calls that allow processes to be created, executed, and terminated. (The
shell provides other services from the kernel when it performs redirection and piping, com-
mand substitution, and the execution of user commands.) The system calls used by the shell
to cause new processes to run are discussed in the following sections. See Figure 1.2.

5. The default Linux shell is bash, the Bourne Again shell.
6. A number of desktop environments come with Linux, including Gnome, KDE, X, etc.

1471A-c.fm Page 9 Thursday, April 27, 2000 8:54 AM

10 Chapter 1 • Introduction to Linux Shells

Figure 1.2 The shell and command execution.

yes

display prompt
read next command

shell searches
for a command

No

fork a child
process

No

Is it the
end of a script

program?

execute the command

parent shell
waits

Kernal loads new program
into memory and overlays
(execs) it in child process

new process
runs and terminates

exit

Is it a
built-in command?

Is it a
compiled executable

program?

No

parent wakes up

yes

yes

1471A-c.fm Page 10 Thursday, April 27, 2000 8:54 AM

1.4 Processes and the Shell 11

1.4.3 What Processes Are Running?

The ps Command. The ps command with its many options displays a list of the pro-
cesses currently running in a number of formats. The following example shows all pro-
cesses that are running by users on a Linux system. (See Appendix A for ps and its options.)

The pstree Command. Another way to see what processes are running and what pro-
cesses are child processes is to use the Linux pstree command. The pstree command dis-
plays all processes as a tree with its root being the first process that runs, called init. If a
user name is specified, then that user’s processes are at the root of the tree. If a process
spawns more than one process of the same name, pstree visually merges the identical

EXAMPLE 1.2

$ ps au (Linux ps)
USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
ellie 456 0.0 1.3 1268 840 1 S 13:23 0:00 -bash
ellie 476 0.0 1.0 1200 648 1 S 13:23 0:00 sh
/usr/X11R6/bin/sta
ellie 478 0.0 1.0 2028 676 1 S 13:23 0:00 xinit
/home/ellie/.xi
ellie 480 0.0 1.6 1852 1068 1 S 13:23 0:00 fvwm2
ellie 483 0.0 1.3 1660 856 1 S 13:23 0:00
/usr/X11R6/lib/X11/fv
ellie 484 0.0 1.3 1696 868 1 S 13:23 0:00
/usr/X11R6/lib/X11/fv
ellie 487 0.0 2.0 2348 1304 1 S 13:23 0:00 xclock -bg
#c0c0c0 -p
ellie 488 0.0 1.1 1620 724 1 S 13:23 0:00
/usr/X11R6/lib/X11/fv
ellie 489 0.0 2.0 2364 1344 1 S 13:23 0:00 xload -
nolabel -bg gr
ellie 495 0.0 1.3 1272 848 p0 S 13:24 0:00 -bash
ellie 797 0.0 0.7 852 484 p0 R 14:03 0:00 ps au
root 457 0.0 0.4 724 296 2 S 13:23 0:00
/sbin/mingetty tty2
root 458 0.0 0.4 724 296 3 S 13:23 0:00
/sbin/mingetty tty3
root 459 0.0 0.4 724 296 4 S 13:23 0:00
/sbin/mingetty tty4
root 460 0.0 0.4 724 296 5 S 13:23 0:00
/sbin/mingetty tty5
root 461 0.0 0.4 724 296 6 S 13:23 0:00
/sbin/mingetty tty6
root 479 0.0 4.5 12092 2896 1 S 13:23 0:01 X :0
root 494 0.0 2.5 2768 1632 1 S 13:24 0:00 nxterm
-ls -sb -fn

1471A-c.fm Page 11 Thursday, April 27, 2000 8:54 AM

12 Chapter 1 • Introduction to Linux Shells

branches by putting them in square brackets and prefixing them with the number of times
the processes is repeated. To illustrate, in the following example, the httpd server process
has started up 10 child processes. (See Appendix A for list of pstree options.)

1.4.4 System Calls for Creating and Terminating Processes

The fork System Call. A new process is created with the fork system call. The fork sys-
tem call creates a duplicate of the calling process. The new process is called the child and
the process that created it is called the parent. The child process starts running right after
the call to fork, and both processes initially share the CPU. The child process has a copy of
the parent’s environment, open files, real and user identifications, umask, current working
directory, and signals.

EXAMPLE 1.3

pstree
init---4*[getty]
init-+-atd
 |-bash---startx---xinit-+-X
 | ‘-fvwm2-+-FvwmButtons
 | |-FvwmPager
 | ‘-FvwmTaskBar
 |-cardmgr
 |-crond
 |-gpm
 |-httpd---10*[httpd]
 |-ifup-ppp---pppd---chat
 |-inetd
 |-kerneld
 |-kflushd
 |-klogd
 |-kswapd
 |-lpd
 |-2*[md_thread]
 |-5*[mingetty]

 |-nmbd
 |-nxterm---bash---tcsh---pstree
 |-portmap
 |-sendmail
 |-smbd
 |-syslogd
 |-update
 |-xclock
 ‘-xload

1471A-c.fm Page 12 Thursday, April 27, 2000 8:54 AM

1.4 Processes and the Shell 13

When you type a command, the shell parses the command line and determines whether
or not the first word is a built-in command or an executable program. If the command is
built-in, the shell handles it, but if not, the shell invokes the fork system call to make a copy
of itself (see Figure 1.3). Its child will search the path to find the command, as well as set
up the file descriptors for redirection, pipes, command substitution, and background pro-
cessing. While the child shell works, the parent normally sleeps. (See “The wait System
Call” below.)

Figure 1.3 The fork system call.

The wait System Call. The parent shell is programmed to go to sleep (wait) while the
child takes care of details such as handling redirection, pipes, and background processing.
The wait system call causes the parent process to suspend until one of its children termi-
nates. If wait is successful, it returns the PID of the child that died and the child’s exit status.
If the parent does not wait and the child exits, the child is put in a zombie state (suspended
animation) and will stay in that state until either the parent calls wait or the parent dies.7 If
the parent dies before the child, the init process adopts any orphaned zombie process. The
wait system call, then, is not just used to put a parent to sleep, but to ensure that the process
terminates properly.

The exec System Call. After you enter a command at the terminal, the shell normally
forks off a new shell process: the child process. As mentioned earlier, the child shell is
responsible for causing the command you typed to be executed. It does this by calling the
exec system call. Remember, the user command is really just an executable program. The
shell searches the path for the new program. If it is found, the shell calls the exec system
call with the name of the command as its argument. The kernel loads this new program into
memory in place of the shell that called it. The child shell, then, is overlaid with the new
program. The new program becomes the child process and starts executing. Although the
new process has its own local variables, all environment variables, open files, signals, and
the current working directory are passed to the new process. This process exits when it has
finished, and the parent shell wakes up.

7. To remove zombie processes, the system must be rebooted.

Parent Process

ENV

435

Child Process

ENV

436

0 stdin terminal

1 stdout terminal

2 stderr terminal

0 stdin terminal

1 stdout terminal

2 stderr terminal

fork

1471A-c.fm Page 13 Thursday, April 27, 2000 8:54 AM

14 Chapter 1 • Introduction to Linux Shells

The exit System Call. A program can terminate at any time by executing the exit call.
When a child process terminates, it sends a signal (sigchild) and waits for the parent to
accept its exit status. The exit status is a number between 0 and 255.8 An exit status of zero
indicates that the program executed successfully, and a nonzero exit status means that the
program failed in some way.

For example, if the command ls had been typed at the command line, the parent shell
would fork a child process and go to sleep. The child shell would then exec (overlay) the ls
program. The ls program would run in place of the child, inheriting all the environment vari-
ables, open files, user information, and state information. When the process (ls) finished exe-
cution, it would exit and the parent shell would wake up. A prompt would appear on the
screen, and the shell would wait for another command. If you are interested in knowing how
a command exited, each shell has a special built-in variable that contains the exit status of the
last command that terminated. (All of this will be explained in detail in the individual shell
chapters.) See Figure 1.4 on page 15 for an example of process creation and termination.

8. If the program is terminated by a signal, its return value is 128 + n, where n is the signal number.

EXAMPLE 1.4

(C and TC Shell)
1 > cp filex filey

> echo $status
0

2 > cp xyz
Usage: cp [-ip] f1 f2; or: cp [-ipr] f1 ... fn d2
> echo $status
1
(Tcsh, Bourne, Korn, and Bash Shells)

3 $ cp filex filey
$ echo $?
0
$ cp xyz
Usage: cp [-ip] f1 f2; or: cp [-ipr] f1 ... fn d2
$ echo $?
1

EXPLANATION

1 The cp (copy) command is entered at the TC shell command line prompt (>). After
the command has made a copy of filex called filey, the program exits and the prompt
appears. The tcsh status variable contains the exit status of the last command that was
executed. If the status is zero, the cp program exited with success. If the exit status
is nonzero, the cp program failed in some way.

1471A-c.fm Page 14 Thursday, April 27, 2000 8:54 AM

1.4 Processes and the Shell 15

Figure 1.4 The fork, exec, wait, and exit system calls. See following Explanation.

2 When entering the cp command, the user failed to provide two filenames: the source
and destination files. The cp program sent an error message to the screen, and exited,
with a status of one. That number is stored in the tcsh status variable. Any number
other than zero indicates that the program failed.

3 The Tcsh, Bourne, Bash, and Korn shells process the cp command as the TC shell
did in the first two examples. The only difference is that the Bourne and Korn shells
store the exit status in the ? variable, rather than the status variable. a

a. The TC shell provides both the status and ? variables for holding exit status.

EXPLANATION

1 The parent shell creates a copy of itself with the fork system call. The copy is called
the child shell.

2 The child shell has a new PID and is a copy of its parent. It will share the CPU with
the parent.

3 The kernel loads the grep program into memory and executes (exec) it in place of the
child shell. The grep program inherits the open files and environment from the child.

4 The grep program exits, the kernel cleans up, and the parent is awakened.

EXPLANATION (CONTINUED)

124

Step 1

0 stdin

1 stdout

2 stderr

ENV

Parent Shell

PID

wait

125

Step 2

0 stdin

1 stdout

2 stderr

ENV

Child Shell

PID

fork

125

Step 3

0 stdin

1 stdout

2 stderr

ENV

New Program – grep

PID

exec
(overly

new
program
on child)

exit

1471A-c.fm Page 15 Thursday, April 27, 2000 8:54 AM

16 Chapter 1 • Introduction to Linux Shells

1.5 The Environment and Inheritance

When you log on, the shell starts up and inherits a number of variables, I/O streams, and
process characteristics from the /bin/login program that started it. In turn, if another shell
is spawned (forked) from the login or parent shell, that child shell (subshell) will inherit cer-
tain characteristics from its parent. A subshell may be started for a number of reasons: for
handling background processing; for handling groups of commands; or for executing
scripts. The child shell inherits an environment from its parent. The environment consists
of process permissions (who owns the process), the working directory, the file creation
mask, special variables, open files, and signals.

1.5.1 Ownership

When you log on, the shell is given an identity. It has a real user identification (UID), one
or more real group identifications (GID), and an effective user identification and effective
group identification (EUID and EGID). The EUID and EGID are initially the same as the
real UID and GID. These ID numbers are found in the passwd file and are used by the sys-
tem to identify users and groups. The EUID and EGID determine what permissions a pro-
cess has access to when reading, writing, or executing files. If the EUID of a process and
the real UID of the owner of the file are the same, the process has the owner’s access per-
missions for the file. If the EGID and real GID of a process are the same, the process has
the owner’s group privileges.

The UID, found in the /etc/passwd file, is called the real UID. Its value is a positive inte-
ger that is associated with your login name. The real UID is the third field in the password
file. When you log on, the login shell is assigned the real UID and all processes spawned
from the login shell inherit its permissions. Any process running with a UID of zero belongs
to root (the superuser) and has root privileges. The real group identification, the GID, asso-
ciates a group with your login name. It is found in the fourth field of the password file.

The EUID and EGID can be changed to numbers assigned to a different owner. By
changing the EUID (or EGID9) to another owner, you can become the owner of a process
that belongs to someone else. Programs that change the EUID or EGID to another owner
are called setuid or setgid programs. The /bin/passwd program is an example of a setuid
program that gives the user root privileges. Setuid programs are often sources for security
holes. The shell allows you to create setuid scripts, and the shell itself may be a setuid pro-
gram.

1.5.2 The File Creation Mask

When a file is created, it is given a set of default permissions. These permissions are deter-
mined by the program creating the file. Child processes inherit a default mask from their

9. The setgid permission is system-dependent in its use. On some systems, the setgid on a directory may cause
files created in that directory to belong to the same group that is owned by the directory. On others, the EGID
of the process determines the group that can use the file.

1471A-c.fm Page 16 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 17

parents. The user can change the mask for the shell by issuing the umask command at the
prompt or by setting it in the shell’s initialization files. The umask command is used to
remove permissions from the existing mask.

Initially, the umask is 000, giving a directory 777 (rwxrwxrwx) permissions and a file
666 (rw-rw-rw-) permissions as the default. On most systems, the umask is assigned a value
of 022 by the /bin/login program or the /etc/profile initialization file.

 The umask value is subtracted from the default settings for both the directory and file
permissions as follows:

777 (Directory) 666 (File)
–022 (umask value) –022 (umask value)
------- ---------

755 644

Result: drwxr-xr-x -rw-r--r--

After the umask is set, all directories and files created by this process are assigned the
new default permissions. In this example, directories will be given read, write, and execute
for the owner; read and execute for the group; and read and execute for the rest of the world
(others). Any files created will be assigned read and write for the owner, and read for the
group and others. To change permissions on individual directories and permissions, the
chmod command is used.

1.5.3 Changing Ownership and Permissions

The chmod Command. The chmod command changes permissions on files and directo-
ries. Every Linux file has a set of permissions associated with it to control who can read,
write, or execute the file. There is one owner for every Linux file and only the owner or the
superuser can change the permissions on a file or directory. A group may have a number of
members, and the owner of the file may change the group permissions on a file so that the
group can enjoy special privileges. To see what permissions a file has, type at the shell
prompt:

ls -l filename

A total of nine bits constitutes the permissions on a file. The first set of three bits controls
the permissions of the owner of the file, the second set controls the permissions of the
group, and the last set controls the permissions for everyone else. The permissions are
stored in the mode field of the file’s inode. The user must own the files to change permis-
sions on them.10

10.The caller’s EUID must match the owner’s UID of the file, or the owner must be superuser.

1471A-c.fm Page 17 Thursday, April 27, 2000 8:54 AM

18 Chapter 1 • Introduction to Linux Shells

Table 1.1 illustrates the eight possible combinations of numbers used for changing per-
missions.

Table 1.1 Permission Modes

Decimal Binary Permissions

0 000 none

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

The symbolic notation for chmod is as follows:
r = read; w = write; x = execute; u = user; g = group; o = others; a = all.

EXAMPLE 1.5
1 $ chmod 755 file

$ ls –l file
–rwxr–xr–x 1 ellie 0 Mar 7 12:52 file

2 $ chmod g+w file
$ ls -l file
–rwxrwxr-x 1 ellie 0 Mar 7 12:54 file

3 $ chmod go-rx file
$ ls -l file
–rwx-w---- 1 ellie 0 Mar 7 12:56 file

4 $ chmod a=r file
$ ls -l file
–r--r--r-- 1 ellie 0 Mar 7 12:59 file

EXPLANATION

1 The first argument is the octal value 755. It turns on rwx for the user, r and x for the
group, and others for file.

2 In the symbolic form of chmod, write permission is added to the group.

3 In the symbolic form of chmod, read and execute permission are subtracted from the
group and others.

4 In the symbolic form of chmod, all are given only read permission. The = sign causes
all permissions to be reset to the new value.

1471A-c.fm Page 18 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 19

The chown Command. The chown command changes the owner and group on files and
directories. On Linux, only the superuser, root, can change ownership. To see the usage and
options for chown, use the chown command with the --help option as shown in Example
1.6. Example 1.7 demonstrates how to use chown.

EXAMPLE 1.6

(The Command Line)
chown --help
Usage: chown [OPTION]... OWNER[.[GROUP]] FILE...
 or: chown [OPTION]... .[GROUP] FILE...
Change the owner and/or group of each FILE to OWNER and/or GROUP.

 -c, --changes be verbose whenever change occurs
 -h, --no-dereference affect symbolic links instead of any
 referenced file
 (available only on systems with lchown
 system call)
 -f, --silent, --quiet suppress most error messages
 -R, --recursive operate on files and directories recursively
 -v, --verbose explain what is being done
 --help display this help and exit
 --version output version information and exit

Owner is unchanged if missing. Group is unchanged if missing, but
changed to login group if implied by a period. A colon may replace
the period.

Report bugs to fileutils-bugs@gnu.ai.mit.edu

EXAMPLE 1.7

(The Command Line)
1 $ ls -l filetest
 -rw-rw-r-- 1 ellie ellie 0 Jan 10 12:19 filetest
2 $ chown root filetest
 chown: filetest: Operation not permitted
3 $ su root
 Password:
4 # ls -l filetest
 -rw-rw-r-- 1 ellie ellie 0 Jan 10 12:19 filetest
5 # chown root filetest
6 # ls -l filetest
 -rw-rw-r-- 1 root ellie 0 Jan 10 12:19 filetest
7 # chown root:root filetest
8 # ls -l filetest
 -rw-rw-r-- 1 root root 0 Jan 10 12:19 filetest

1471A-c.fm Page 19 Thursday, April 27, 2000 8:54 AM

20 Chapter 1 • Introduction to Linux Shells

1.5.4 The Working Directory

When you log on, you are given a working directory within the file system, called the home
directory. The working directory is inherited by processes spawned from this shell. Any
child process of this shell can change its own working directory, but the change will have
no effect on the parent shell.

 The cd command, used to change the working directory, is a shell built-in command.
Each shell has its own copy of cd. A built-in command is executed directly by the shell as
part of the shell’s code; the shell does not perform the fork and exec system calls when exe-
cuting built-in commands. If another shell (script) is forked from the parent shell, and the
cd command is issued in the child shell, the directory will be changed in the child shell.
When the child exits, the parent shell will be in the same directory it was in before the child
started.

1.5.5 Variables

The shell can define two types of variables: local and environment. The variables contain
information used for customizing the shell, and information required by other processes so
that they will function properly. Local variables are private to the shell in which they are
created and not passed on to any processes spawned from that shell. Environment variables,
on the other hand, are passed from parent to child process, from child to grandchild, and so
on. Some of the environment variables are inherited by the login shell from the /bin/login
program. Others are created in the user initialization files, in scripts, or at the command line.
If an environment variable is set in the child shell, it is not passed back to the parent.

EXPLANATION

1 The user and group ownership of filetest is ellie.

2 The chown command will only work if you are the superuser, i.e., user root.

3 The user changes identity to root with the su command.

4 The listing shows that user and group are ellie for filetest.

5 Only the superuser can change the ownership of files and directories. Ownership of
filetest is changed to root with the chown command. Group ownership is still ellie.

6 Output of ls shows that root now owns filetest.

7 The colon (or a dot) is used to indicate that owner root will now change the group
ownership to root. The groupname is listed after the colon. There can be no spaces.

8 The user and group ownership for filetest now belongs to root.

1471A-c.fm Page 20 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 21

1.5.6 Redirection and Pipes

File Descriptors. All I/O, including files, pipes, and sockets, are handled by the kernel
via a mechanism called the file descriptor. A file descriptor is a small unsigned integer, an
index into a file-descriptor table maintained by the kernel and used by the kernel to refer-
ence open files and I/O streams. Each process inherits its own file-descriptor table from its
parent. The first three file descriptors, 0, 1, and 2, are assigned to your terminal. File

EXAMPLE 1.8

1 > cd /

2 > pwd
/

3 > bash

4 $ cd /home

5 $ pwd
/home

6 $ exit

7 > pwd
/

>

EXPLANATION

1 The > prompt is a TC shell prompt. The cd command changes directory to /.
The cd command is built into the shell’s internal code.

2 The pwd command displays the present working directory, /.

3 The Bash shell is started.

4 The cd command changes directories to /home. The dollar sign ($) is the
Bash prompt.

5 The pwd command displays the present working directory, /home.

6 The Bash shell is exited, returning to the TC shell.

7 In the TC shell, the present working directory is still /. Each shell has its own copy
of cd.

1471A-c.fm Page 21 Thursday, April 27, 2000 8:54 AM

22 Chapter 1 • Introduction to Linux Shells

descriptor 0 is standard input (stdin), 1 is standard output (stdout), and 2 is standard error
(stderr). When you open a file, the next available descriptor is 3, and it will be assigned to
the new file. If all the available file descriptors are in use,11 a new file cannot be opened.

Redirection. When a file descriptor is assigned to something other than a terminal, it is
called I/O redirection. The shell performs redirection of output to a file by closing the stan-
dard output file descriptor, 1 (the terminal), and then assigning that descriptor to the file (see
Figure 1.5).When redirecting standard input, the shell closes file descriptor 0 (the terminal)
and assigns that descriptor to a file (see Figure 1.6). The Bourne and Korn shells handle
errors by assigning a file to file descriptor 2 (see Figure 1.7). The TC shell, on the other
hand, goes through a more complicated process to do the same thing (see Figure 1.8).

11.See the built-in commands, limit and ulimit, discussed in Table 8.32 on page 377.

EXAMPLE 1.9

1 $ who > file
2 $ cat file1 file2 >> file3
3 $ mail tom < file
4 $ find / -name file -print 2> errors
5 > (find / -name file -print > /dev/tty) >& errors

EXPLANATION

1 The output of the who command is redirected from the terminal to file. (All shells
redirect output in this way.)

2 The output from the cat command (concatenate file1 and file2) is appended to file3.
(All shells redirect and append output in this way.)

3 The input of file is redirected to the mail program; that is, user tom will be sent the
contents of file. (All shells redirect input in this way.)

4 Any errors from the find command are redirected to errors. Output goes to the termi-
nal. (The Bourne, Bash, and Korn shells redirect errors this way.)

5 Any errors from the find command are redirected to errors. Output is sent to the ter-
minal. (The C and TC shells redirect errors this way. > is the TC shell prompt.)

1471A-c.fm Page 22 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 23

Figure 1.5 Redirection of standard output.

Figure 1.6 Redirection of standard input.

fork

Parent Shell Child Shell

grep

grep Tom datafile > temp

124

keyboard

screen

screen

PID

0

1

2

125

keyboard

temp

screen

PID

0

1

2

stdin

stdout

stderr

stdin

stdout

stderr

wait
exec

stdin

stdout

stderr

125

keyboard

temp

screen

PID

0

1

2

fork

Parent Shell Child Shell

mail tom < memo

231

keyboard

screen

screen

0

1

2

stdin

stdout

stderr

wait

mail

233

memo

screen

screen

0

1

2

exec

233

memo

 screen

screen

0

1

2

1471A-c.fm Page 23 Thursday, April 27, 2000 8:54 AM

24 Chapter 1 • Introduction to Linux Shells

Figure 1.7 Redirection of standard error (Bourne, Bash, and Korn shells).

Figure 1.8 Redirection of standard error (C and TC shell).

find . -name filex 2> errors

Parent Shell Child Shell
233

0 keyboard

1 screen

2 screen

stdin

stdout

stderr

wait

235

0 keyboard

1 screen

2 errors

235

0 keyboard

1 screen

2 errors

fork

find

exec

fork

Parent Shell Child Shell

(find . -name filex > /dev/tty) >&errors

235

keyboard

screen

screen

0

1

2

236

keyboard

errors

errors

0

1

2

wait

Grandchild Shell

wait

fork

find

keyboard

screen

errors

0

1

2

exec

237

keyboard

screen

errors

0

1

2

237

1471A-c.fm Page 24 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 25

Pipes. A pipe allows processes to communicate with each other. It is a mechanism
whereby the output of one command is sent as input to another command. The shell imple-
ments pipes by closing and opening file descriptors; however, instead of assigning the
descriptors to a file, it assigns them to a pipe descriptor created with the pipe system call.
After the parent creates the pipe file descriptors, it forks a child process for each command
in the pipeline. By having each process manipulate the pipe descriptors, one will write to
the pipe and the other will read from it. The pipe is merely a kernel buffer from which both
processes can share data, thus eliminating the need for intermediate temporary files. After
the descriptors are set up, the commands are exec’ed concurrently. The output of one com-
mand is sent to the buffer, and when the buffer is full or the command has terminated, the
command on the right-hand side of the pipe reads from the buffer. The kernel synchronizes
the activities so that one process waits while the other reads from or writes to the buffer.

The syntax of the pipe command is:

who | wc

In order to accomplish the same thing without a pipe, it would take three steps:

 who > tempfile
 wc tempfil
 rm tempfile

With the pipe, the shell sends the output of the who command as input to the wc com-
mand; i.e., the command on the left-hand side of the pipe writes to the pipe and the com-
mand on the right-hand side of the pipe, reads from it. You can tell if a command is a writer
if it normally sends output to the screen when run at the command line. A reader is a com-
mand that waits for input from a file or from the keyboard or from a pipe.

Pipes are created with the pipe system call. The parent shell calls the pipe system call,
which creates two pipe descriptors, one for reading from the pipe and one for writing to it.
The files associated with the pipe descriptors are kernel-managed I/O buffers used to tem-
porarily store data, thus saving you the trouble of creating temporary files. Figures 1.9
through 1.13 illustrate the steps for implementing the pipe.

1471A-c.fm Page 25 Thursday, April 27, 2000 8:54 AM

26 Chapter 1 • Introduction to Linux Shells

Figure 1.9 The parent calls the pipe system call for setting up a pipeline.

(1) The parent shell calls the pipe system call. Two file descriptors are returned: one for
reading from the pipe and one for writing to the pipe. The file descriptors assigned are the
next available descriptors in the file-descriptor (fd) table, fd 3 and fd 4.

Figure 1.10 The parent forks two child processes, one for each command in the pipeline.

(2) For each command, who and wc, the parent forks a child process. Both child processes
get a copy of the parent’s open file descriptors.

Parent Process

ENV

435

Parent Process

ENV

435

0 stdin terminal

1 stdout terminal

2 stderr terminal

0 stdin terminal

1 stdout terminal

2 stderr terminal

3 pipereader pipe

4 pipewriter pipe

Parent Process

ENV

435

Child Process

ENV

436

0 stdin terminal

1 stdout terminal

2 stderr terminal

0 stdin terminal

1 stdout terminal

2 stderr terminal

fork

3 pipereader pipe

4 pipewriter pipe

3 pipereader pipe

4 pipewriter pipe

Child Process

ENV

436

0 stdin terminal

1 stdout terminal

2 stderr terminal

3 pipereader pipe

4 pipewriter pipe

for who for wc

fork

1471A-c.fm Page 26 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 27

Figure 1.11 The first child is prepared to write to the pipe.

(3) The first child closes its standard output. It then duplicates (the dup system call) file
descriptor 4, the one associated with writing to the pipe. The dup system call copies fd 4
and assigns the copy to the lowest available descriptor in the table, fd 1. After it makes the
copy, the dup call closes fd 4. The child will now close fd 3 because it does not need it. This
child wants its standard output to go to the pipe.

Figure 1.12 The second child is prepared to read input from the pipe.

ENV

436

First
Child Process

ENV

436

0 stdin terminal

1 CLOSED

2 stderr terminal

0 stdin terminal

1 pipewriter pipe

2 stderr terminal

3 pipereader pipe

4 pipewriter pipe

3 CLOSED

4 CLOSED

Child for who

First
Child Process

After the
dup

ENV

437

Second
Child Process

ENV

437

0 CLOSED

1 stdout terminal

2 stderr terminal

0 pipereader pipe

1 stdout terminal

2 stderr terminal

3 pipereader pipe

4 pipewriter pipe

3 CLOSED

4 CLOSED

Child for wc

Second
Child Process

After
dup

1471A-c.fm Page 27 Thursday, April 27, 2000 8:54 AM

28 Chapter 1 • Introduction to Linux Shells

(4) Child 2 closes its standard input. It then duplicates (dups) the fd 3, which is associated
with reading from the pipe. By using dup, a copy of fd 3 is created and assigned to the low-
est available descriptor. Because fd 0 was closed, it is the lowest available descriptor. Dup
closes fd 3. The child closes fd 4. Its standard input will come from the pipe.

Figure 1.13 The output of who is sent to the input of wc.

(5) The who command is executed in place of Child 1 and the wc command is executed to
replace Child 2. The output of the who command goes into the pipe and is read by the wc
command from the other end of the pipe. The last command in the pipe (wc) sends output
to the standard out.

1.5.7 The Shell and Signals

A signal sends a message to a process and normally causes the process to terminate, usually
due to some unexpected event such as a hangup, bus error, or power failure, or by a program
error such as illegal division by zero or an invalid memory reference. Signals can also be
sent to a process by pressing certain key sequences. For example, you can send or deliver
signals to a process by pressing the Break, Delete, Quit , or Stop keys, and all processes
sharing the terminal are affected by the signal sent. You can kill a process with the kill com-
mand. By default, most signals terminate the program. Each process can take an action in
response to a given signal:

1. The signal can be ignored.
2. The process can be stopped.
3. The process can be continued.
4. The signal can be caught by a function defined in the program.

The Bourne, Bash, and Korn shells allow you to handle signals coming into your program,
(see “Trapping Signals” on page 459) either by ignoring the signal, by specifying some
action to be taken when a specified signal arrives, or by resetting the signal back to its

ENV

436

Child Process

ENV

437

0 stdin terminal

1 pipewriter pipe

2 stderr terminal

0 pipereader pipe

1 stdout terminal

2 stderr terminal

3 CLOSED

4 CLOSED

3 CLOSED

4 CLOSED

Child Process

Reader

who wc

Writer

1471A-c.fm Page 28 Thursday, April 27, 2000 8:54 AM

1.5 The Environment and Inheritance 29

default action. The C and TC shells are limited to handling ^C (Control-C), the interrupt
character.

Table 1.2 lists the standard signals which a process can use.

Table 1.2 Standard Signals

Number Name Description Action upon Process

0 EXIT shell exits termination

1 SIGHUP terminal has disconnected termination

2 SIGINT user presses Control-C termination

3 SIGQUIT user presses Control-\ termination

4 SIGILL illegal hardware instruction program error

5 SIGTRAP produced by debugger program error

8 SIGFPE arithmetic error; e.g., division by zero program error

9 SIGKILL cannot be caught or ignored termination

10 SIGUSR1 application-defined signal for user

11 SIGSEGV invalid memory references program error

12 SIGUSR2 application-defined signal for user

13 SIGPIPE broken pipe connection operator error

14 SIGALRM time-out alarm sent

15 SIGTERM termination of a program termination

17 SIGCHLD child process has stopped or died ignored

18 SIGCONT starts a stopped job; can’t be handled
or ignored

continue if stopped

19 SIGSTOP stops a job; can’t be handled or
ignored

stops the process

20 SIGSTP interactive stop; user presses Control-z stops the process

21 SIGTTIN a background job is trying to read from
the controlling terminal

stops the process

22 SIGTTOU a background job is trying to write to
the controlling terminal

stops the process

1471A-c.fm Page 29 Thursday, April 27, 2000 8:54 AM

30 Chapter 1 • Introduction to Linux Shells

1.6 Executing Commands from Scripts

When the shell is used as a programming language, commands and shell control constructs
are typed in an editor into a file, called a script. The lines from the file are read and executed
one at a time by the shell. These programs are interpreted, not compiled. Compiled pro-
grams must convert the program into machine language for it to be executed. Therefore,
shell programs are usually slower than binary executables, but they are easier to write and
are used mainly for automating simple tasks. Shell programs can also be written interac-
tively at the command line, and for very simple tasks, this is the quickest way. However, for
more complex scripting, it is easier to write scripts in an editor (unless you are a really great
typist). The following script can be executed by any shell to output the same results. Figure
1.14 illustrates the creation of a script called “doit” and how it fits in with already existing
Linux programs/utilities/commands.

Figure 1.14 Creating a generic shell script.

EXPLANATION
1 Go into your favorite editor and type a set of Linux commands, one per line. Indicate

what shell you want by placing the pathname of the shell after the #! on the first line.
This program is being executed by the TC shell and it is named doit.

2 Save your file and turn on the execute permissions so that you can run it.

3 Execute your program just as you would any other Linux command.

> vi doit
> chmod +x doit
> doit

#!/bin/tcsh
echo hello
ls
who
cat
date
pwd
-
-
-
-
-

shell

who
pwd

date
catls

echo
wc

lpr at

csh
rsh

bc
finger

tcsh

rm

w

cp

sh
dd

sed

ps

cal

more
awk

mv

vi

yp
cc

bash

lp

grep

pg find❤kernel doit

1471A-c.fm Page 30 Thursday, April 27, 2000 8:54 AM

1.6 Executing Commands from Scripts 31

1.6.1 Sample Scripts: Comparing Shells

At first glance, the following programs look very similar. They are. And they all do the
same thing. The main difference is the syntax. After you have worked with these shells for
some time, you will quickly adapt to the differences and start formulating your own opin-
ions about which shell is your favorite. A detailed comparison of differences among the C,
TC, Bash, Bourne, and Korn shells is found in Appendix B. Notice that the C and TC shell
scripts are identical; and that the Bash and Korn shell scripts are very similar with minor
syntax or command changes. The Bourne shell is quite different in syntax but can be run by
either the Bash or Korn shells.

The following scripts send a mail message to a list of users, inviting each of them to a
party. The place and time of the party are set in variables. The people to be invited are
selected from a file called guests. A list of foods is stored in a word list, and each person is
asked to bring one of the foods from the list. If there are more users than food items, the list
is reset so that each user is asked to bring a different food. The only user who is not invited
is the user root.

1.6.2 The TC Shell Script

EXAMPLE 1.10

1 #!/bin/tcsh –f
TC shell

2 # The Party Program––Invitations to friends from the "guest" file
3 set guestfile = ~/shell/guests
4 if (! –e "$guestfile") then

echo "$guestfile:t non–existent"
exit 1

endif
5 setenv PLACE "Sarotini's"

@ Time = ‘date +%H‘ + 1
set food = (cheese crackers shrimp drinks "hot dogs" sandwiches)

6 foreach person (‘cat $guestfile‘)
if ($person =~ root) continue

 # Start of here document
7 mail –v –s "Party" $person << FINIS
 Hi ${person}! Please join me at $PLACE for a party!

Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $food[1] and
anything else you would like to eat? Let me know if you can't
make it. Hope to see you soon.

 Your pal,
 ellie@‘hostname‘ # or ‘uname -n‘

FINIS

1471A-c.fm Page 31 Thursday, April 27, 2000 8:54 AM

32 Chapter 1 • Introduction to Linux Shells

8 shift food
 if ($#food == 0) then

 set food = (cheese crackers shrimp drinks "hot dogs"
sandwiches)

 endif
9 end

echo "Bye..."

EXPLANATION

1 This line lets the kernel know that you are running a TC shell script. The -f option is
a fast startup. It says, “Do not execute the .tcshrc file,” an initialization file that is
automatically executed every time a new tcsh program is started.

2 This is a comment. It is ignored by the shell, but important for anyone trying to un-
derstand what the script is doing.

3 The variable guestfile is set to the full path name of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script with an exit status of 1 to indicate that something
went wrong in the program.

5 Set variables are assigned the values for the place, time, and list of foods to bring.
The PLACE variable is an environment variable. The Time variable is a local vari-
able. The @ symbol tells the TC shell to perform its built-in arithmetic; that is, add
1 to the Time variable after extracting the hour from the date command. The Time
variable is spelled with an uppercase T to prevent the TC shell from confusing it with
one of its reserved words, time.

6 For each person on the guest list, except the user root, a mail message will be created
inviting the person to a party at a given place and time, and asking him or her to bring
one of the foods on the list.

7 The mail message is created in what is called a here document. All text from the user-
defined word FINIS to the final FINIS will be sent to the mail program. The foreach
loop shifts through the list of names, performing all of the instructions from the
foreach to the keyword end.

8 After a message has been sent, the food list is shifted so that the next person will get
the next food item on the list. If there are more people than food items, the food list
will be reset to ensure that each person is instructed to bring a food item.

9 This marks the end of the looping statements.

EXAMPLE 1.10 (CONTINUED)

1471A-c.fm Page 32 Thursday, April 27, 2000 8:54 AM

1.6 Executing Commands from Scripts 33

1.6.3 The C Shell Script

EXAMPLE 1.11

1 #!/bin/csh –f
Standard Berkeley C Shell

2 # The Party Program––Invitations to friends from the "guest" file
3 set guestfile = ~/shell/guests
4 if (! –e "$guestfile") then

echo "$guestfile:t non–existent"
exit 1

endif
5 setenv PLACE "Sarotini's"

@ Time = ‘date +%H‘ + 1
set food = (cheese crackers shrimp drinks "hot dogs" sandwiches)

6 foreach person (‘cat $guestfile‘)
if ($person =~ root) continue

 # Start of here document
7 mail –v –s "Party" $person << FINIS

Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $food[1] and
anything else you would like to eat? Let me know if you can't
make it. Hope to see you soon.

 Your pal,
 ellie@‘hostname‘ # or ‘uname -n‘

FINIS
8 shift food
 if ($#food == 0) then

 set food = (cheese crackers shrimp drinks "hot dogs"
sandwiches)

 endif
9 end

echo "Bye..."

EXPLANATION

1 This line lets the kernel know that you are running a C shell script. The -f option is a
fast startup. It says, “Do not execute the .cshrc file,” an initialization file that is au-
tomatically executed every time a new csh program is started.

If you look closely, this is the only line that differs from the TC shell script, shown
in Example 1.10; therefore, lines 2 through 9 were already explained in the previous
example.

1471A-c.fm Page 33 Thursday, April 27, 2000 8:54 AM

34 Chapter 1 • Introduction to Linux Shells

1.6.4 The Bourne Again Shell Script

EXAMPLE 1.12

1 #!/bin/bash
Gnu bash versions 2.x

2 # The Party Program––Invitations to friends from the
"guest" file

3 guestfile=~/shell/guests
4 if [[! –e "$guestfile"]]

then
printf "${guestfile##*/} non–existent"
exit 1

fi
5 export PLACE="Sarotini's"

((Time=$(date +%H) + 1))
set cheese crackers shrimp drinks "hot dogs" sandwiches

6 for person in $(cat $guestfile)
do

 if [[$person = root]]
 then
 continue
 else

Start of here document
7 mail –v –s "Party" $person <<- FINIS

Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $1
and anything else you would like to eat? Let me know
if you can't make it.
 Hope to see you soon.

 Your pal,
 ellie@$(hostname)

FINIS
8 shift
 if (($# == 0))

then
 set cheese crackers shrimp drinks "hot dogs" sandwiches
fi

 fi
9 done

printf "Bye..."

1471A-c.fm Page 34 Thursday, April 27, 2000 8:54 AM

1.6 Executing Commands from Scripts 35

EXPLANATION

1 This line lets the kernel know that you are running a Bash shell (Bourne Again)
script. Any versions prior to 2.x will not support all of this syntax. Older versions of
Bash are similar to the standard Bourne shell. All versions are backward compatible.

2 This is a comment. It is ignored by the shell, but important for anyone trying to un-
derstand what the script is doing.

3 The variable guestfile is set to the full path name of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script.

5 Variables are assigned the values for the place and time. The list of foods to bring is
assigned to special variables (positional parameters) with the set command.

6 For each person on the guest list, except the user root, a mail message will be created
inviting the person to a party at a given place and time, and assigning a food from the
list to bring.

7 The mail message is sent. The body of the message is contained in a here document.

8 After a message has been sent, the food list is shifted so that the next person will get
the next food on the list. If there are more people than foods, the food list will be re-
set, ensuring that each person is assigned a food.

9 This marks the end of the looping statements.

1471A-c.fm Page 35 Thursday, April 27, 2000 8:54 AM

36 Chapter 1 • Introduction to Linux Shells

1.6.5 The Bourne Shell Script

EXAMPLE 1.13

1 #!/bin/sh
Standard AT&T Bourne Shell

2 # The Party Program––Invitations to friends from the
"guest" file

3 guestfile=/home/ellie/shell/guests
4 if [! –f "$guestfile"]

then
echo "‘basename $guestfile‘ non–existent"
exit 1

fi
5 PLACE="Sarotini's"

export PLACE
Time=‘date +%H‘
Time=‘expr $Time + 1‘
set cheese crackers shrimp drinks "hot dogs" sandwiches

6 for person in ‘cat $guestfile‘
d

 if [$person = root]
 then
 continue
 else

Start of here document
7 mail –v –s "Party" $person <<- FINIS

Hi $person! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $1
and anything else you would like to eat? Let me know
if you can't make it.
 Hope to see you soon.

 Your pal,
 ellie@‘hostname‘

FINIS
8 shift
 if [$# -eq 0]

then
 set cheese crackers shrimp drinks "hot dogs" sandwiches
fi

 fi
9 done

echo "Bye..."

1471A-c.fm Page 36 Thursday, April 27, 2000 8:54 AM

1.6 Executing Commands from Scripts 37

EXPLANATION

1 This line lets the kernel know that you are running a sh shell (Bourne) script. This is
the Bourne shell distributed with UNIX systems, such as Solaris and HP-UX. It is
the last released version from ATT, SVR4. If running Linux, this script will work fine
even if the shell is Bash.

2 This is a comment. It is ignored by the shell, but important for anyone trying to un-
derstand what the script is doing.

3 The variable guestfile is set to the full path name of a file called guests. Tilde expan-
sion is not allowed with Bourne shell. See other shell examples.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script.

5 Variables are assigned the values for the place and time. The list of foods to bring is
assigned to special variables (positional parameters) with the set command.

6 For each person on the guest list, except the user root, a mail message will be created
inviting the person to a party at a given place and time, and assigning a food from the
list to bring.

7 The mail message is sent. The body of the message is contained in a here document.

8 After a message has been sent, the food list is shifted so that the next person will get
the next food on the list. If there are more people than foods, the food list will be re-
set, ensuring that each person is assigned a food.

9 This marks the end of the looping statements.

1471A-c.fm Page 37 Thursday, April 27, 2000 8:54 AM

38 Chapter 1 • Introduction to Linux Shells

1.6.6 The Korn Shell Script

EXAMPLE 1.14

1 #!/bin/ksh
AT&T Korn Shell

2 # The Party Program––Invitations to friends from the
"guest" file
AT&T Korn Shell (1988)

3 guestfile=~/shell/guests
4 if [[! –a "$guestfile"]]

then
print "${guestfile##*/} non–existent"
exit 1

fi
5 export PLACE="Sarotini's"

((Time=$(date +%H) + 1))
set cheese crackers shrimp drinks "hot dogs" sandwiches

6 for person in $(< $guestfile)
do

 if [[$person = root]]
 then
 continue
 else

Start of here document
7 mail –v –s "Party" $person <<- FINIS

Hi ${person}! Please join me at $PLACE for a party!
Meet me at $Time o'clock.
I'll bring the ice cream. Would you please bring $1
and anything else you would like to eat? Let me know
if you can't make it.
 Hope to see you soon.

 Your pal,
 ellie@$(hostname)

FINIS
8 shift
 if (($# == 0))

then
 set cheese crackers shrimp drinks "hot dogs" sandwiches
fi

 fi
9 done

print "Bye..."

1471A-c.fm Page 38 Thursday, April 27, 2000 8:54 AM

1.6 Executing Commands from Scripts 39

EXPLANATION

1 This line lets the kernel know that you are running a Korn shell script.

2 This is a comment. It is ignored by the shell, but important for anyone trying to un-
derstand what the script is doing.

3 The variable guestfile is set to the full path name of a file called guests.

4 This line reads: If the file guests does not exist, then print to the screen “guests non-
existent” and exit from the script. The -a switch to test existence of a file is a Korn
shell option.

5 Variables are assigned the values for the place and time. The list of foods to bring is
assigned to special variables (positional parameters) with the set command.

6 For each person on the guest list, except the user root, a mail message will be created
inviting the person to a party at a given place and time, and assigning a food from the
list to bring.

7 The mail message is sent. The body of the message is contained in a here document.

8 After a message has been sent, the food list is shifted so that the next person will get
the next food on the list. If there are more people than foods, the food list will be re-
set, ensuring that each person is assigned a food.

9 This marks the end of the looping statements.

1471A-c.fm Page 39 Thursday, April 27, 2000 8:54 AM

1471A-c.fm Page 40 Thursday, April 27, 2000 8:54 AM

