
����������	
�	���	�����	
�	������ 		

Content provided in partnership with Addison Wesley, from the book XQuery from the Experts: A Guide to the W3C
XML Query Language by Howard Katz.

About Us | Advertise On InformIT | Contact US |Site Map | Book Registration © 2003 Pearson Education, Inc. InformIT Division. All rights reserved. Legal Notice���Privacy Policy

����������	
���������������	������������	���
���������

����������		
���	����	���

The emergence of the World Wide Web in the 1990s was a seminal
event in human culture. Suddenly, as if overnight, a significant frac-

tion of the world’s computers were connected, not only by a physical net-
work but also by a common protocol for exchanging information. The
Web offered an unprecedented opportunity to make information truly
ubiquitous. It seemed to promise that people would no longer need to
move physically to places and times where information was available,
since all information would be everywhere, all the time.

Realizing this promise required some organizing principle for the
exchange of information. This principle had to be independent of any
particular language or application and easily extensible to new and unan-
ticipated kinds of information. At present, the leading candidate for this
organizing principle is the Extensible Markup Language, XML [XML].
XML provides a neutral notation for labeling the parts of a body of infor-
mation and representing the relationships among these parts. Since
XML does not attach any semantic meaning to its labels, applications are
free to interpret them as they see fit. Applications that agree on a com-
mon vocabulary can use XML for data interchange. Since XML does not
mandate any particular storage technique, it can be used as a common
interchange format among systems that store data in file systems, rela-
tional databases, object repositories, and many other storage formats.

Since XML is emerging as a universal format for data interchange among
disparate applications, it is natural for queries that cross application
boundaries to be framed in terms of the XML representation of data. In

http://www.informit.com/isapi/authorid~{4D76A744-680E-4B3A-AC1D-67E52DEA54B4}/authors/author.asp
http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://www.awprofessional.com/
http://www.awprofessional.com/
http://www.informit.com/about/
http://www.informit.com/about/mediakit/index.asp
http://www.informit.com/about/contact_us/index.asp
http://www.informit.com/
http://www.informit.com/sitemap/index.asp
http://www.informit.com/member/titles.asp
http://www.informit.com/about/legal.asp
http://www.informit.com/about/privacy.asp

other words, if an application is viewed as a source of information in
XML format, it is logical to pose queries against that XML format. This
is the basic reason why a query language for XML data is extremely
important in a connected world.

Recognizing the importance of an XML query language, the World
Wide Web Consortium (W3C) [W3C] organized a query language
workshop called QL’98 [QL98], which was held in Boston in December
1998. The workshop attracted nearly a hundred participants and fostered
sixty-six papers investigating various aspects of querying XML data. One
of the long-term outcomes of the workshop was the creation of a W3C
working group for XML Query [XQ-WG]. This working group, chaired
by Paul Cotton, met for the first time in September 1999. Its initial char-
ter called for the specification of a formal data model and query language
for XML, to be coordinated with existing W3C standards such as XML
Schema [SCHEMA], XML Namespaces [NAMESP], XML Information
Set [INFOSET], and XSLT [XSLT]. The purpose of the new query lan-
guage was to provide a flexible facility to extract information from real and
virtual XML documents. Approximately forty participants became mem-
bers of the working group, representing about twenty-five different com-
panies, along with a W3C staff member to provide logistical support.

One of the earliest activities of the Query working group was to draw up
a formal statement of requirements for an XML query language [XQ-
REQ]. This document was quickly followed by a set of use cases [XQ-
UC] that described diverse usage scenarios for the new language,
including specific queries and expected results. The XML Query Work-
ing Group undertook to define a language with two alternative syntaxes:
a keyword-based syntax called XQuery [XQ-LANG], optimized for
human reading and writing, and an XML-based syntax called XQueryX
[XQ-X], optimized for machine generation. This chapter describes only
the keyword-based XQuery syntax, which has been the major focus of the
working group.

Creating a new query language is a serious business. Many person-years
have been spent in defining XQuery, and many more will be spent on its
implementation. If the language is successful, developers of web-based
applications will use it for many years to come. A successful query language

82 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 82

can enhance productivity and serve as a unifying influence in the growth of
an industry. On the other hand, a poorly designed language can inhibit the
acceptance of an otherwise promising technology. The designers of
XQuery took their responsibilities very seriously, not only in the interest of
their individual companies but also in order to make a contribution to the
industry as a whole.

The purpose of this chapter is to discuss the major influences on the design
of the XQuery language. A tutorial introduction to XQuery appears in
Chapter 1. Some of the influences on XQuery were principles of computer
language design. Others were related languages, interfaces, and standards.
Still others were “watershed issues” that were debated by the working
group and resolved in ways that guided the evolution of the language. We
discuss several of these watershed issues in detail, including the alternatives
that were considered and the reasons for the final resolution.

This chapter is based on the most recent XQuery specification at the
time of publication. At this time, the broad outline of the language can be
considered to be reasonably stable. However, readers should be cau-
tioned that XQuery is still a work in progress, and the design choices dis-
cussed here are subject to change until the language has been approved
and published as a W3C recommendation.

The Need for an XML Query Language

Early in its history, the XML Query Working Group confronted the
question of whether XML is sufficiently different from other data for-
mats to require a query language of its own. The SQL language [SQL99]
is a very well established standard for retrieving information from rela-
tional databases and has recently been enhanced with new facilities called
“structured types” that support nested structures similar to the nesting
of elements in XML. If SQL could be further extended to meet XML
query requirements, developers could leverage their considerable invest-
ment in SQL implementations, and users could apply the features of
these robust and mature systems to their XML databases without learn-
ing a completely new language.

THE NEED FOR AN XML QUERY LANGUAGE 83

Katz_C02.qxd 7/23/03 2:46 PM Page 83

Given these incentives, the working group conducted a study of the dif-
ferences between XML data and relational data from the point of view of
a query language. Some of the significant differences between the two
data models are summarized below.

� Relational data is “flat”—that is, organized in the form of a two-
dimensional array of rows and columns. In contrast, XML data is
“nested,” and its depth of nesting can be irregular and unpre-
dictable. Relational databases can represent nested data structures
by using structured types or tables with foreign keys, but it is diffi-
cult to search these structures for objects at an unknown depth of
nesting. In XML, on the other hand, it is very natural to search for
objects whose position in a document hierarchy is unknown. An
example of such a query might be “Find all the red things,” repre-
sented in the XPath language [XPATH1] by the expression
//*[@color = "Red"]. This query would be much more difficult
to represent in a relational query language.

� Relational data is regular and homogeneous. Every row of a table
has the same columns, with the same names and types. This allows
metadata—information that describes the structure of the data—
to be removed from the data itself and stored in a separate catalog.
XML data, on the other hand, is irregular and heterogeneous.
Each instance of a web page or a book chapter can have a different
structure and must therefore describe its own structure. As a
result, the ratio of metadata to data is much higher in XML than
in a relational database, and in XML the metadata is distributed
throughout the data in the form of tags rather than being sepa-
rated from the data. In XML, it is natural to ask queries that span
both data and metadata, such as “What kinds of things in the 2002
inventory have color attributes,” represented in XPath by the
expression /inventory[@year = "2002"]/*[@color]. In a rela-
tional language, such a query would require a join that might span
several data tables and system catalog tables.

� Like a stored table, the result of a relational query is flat, regular,
and homogeneous. The result of an XML query, on the other
hand, has none of these properties. For example, the result of the
query “Find all the red things” may contain a cherry, a flag, and a

84 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 84

stop sign, each with a different internal structure. In general, the
result of an expression in an XML query may consist of a heteroge-
neous sequence of elements, attributes, and primitive values, all of
mixed type. This set of objects might then serve as an intermediate
result used in the processing of a higher-level expression. The het-
erogeneous nature of XML data conflicts with the SQL assump-
tion that every expression inside a query returns an array of rows
and columns. It also requires a query language to provide construc-
tors that are capable of creating complex nested structures on the
fly—a facility that is not needed in a relational language.

� Because of its regular structure, relational data is “dense”—that is,
every row has a value in every column. This gave rise to the need
for a “null value” to represent unknown or inapplicable values in
relational databases. XML data, on the other hand, may be
“sparse.” Since all the elements of a given type need not have the
same structure, information that is unknown or inapplicable can
simply not appear. This gives an XML query language additional
degrees of freedom for dealing with missing data. The XQuery
approach to representing unknown or inapplicable data is dis-
cussed in Issue 2 under “Watershed Issues” below.

� In a relational database, the rows of a table are not considered to
have an ordering other than the orderings that can be derived
from their values. XML documents, on the other hand, have an
intrinsic order that can be important to their meaning and cannot
be derived from data values. This has several implications for the
design of a query language. It means that queries must at least
provide an option in which the original order of elements is pre-
served in the query result. It means that facilities are needed to
search for objects on the basis of their order, as in “Find the fifth
red object” or “Find objects that occur after this one and before
that one.” It also means that we need facilities to impose an order
on sequences of objects, possibly at several levels of a hierarchy.
The importance of order in XML contrasts sharply with the
absence of intrinsic order in the relational data model.

The significant data model differences summarized above led the working
group to decide that the objectives of XML queries could best be served by

THE NEED FOR AN XML QUERY LANGUAGE 85

Katz_C02.qxd 7/23/03 2:46 PM Page 85

designing a new query language rather than by extending a relational lan-
guage. Designing a query language for XML, however, is not a small task,
precisely because of the complexity of XML data. An XML “value,” com-
puted by a query expression, may consist of zero, one, or many items, each
of which may be an element, an attribute, or a primitive value. Therefore,
each operator in an XML query language must be well defined for all these
possible inputs. The result is likely to be a language with a more complex
semantic definition than that of a relational language such as SQL.

Basic Principles

The XML Query Working Group did not draw up a formal list of the
principles that guided the design of XQuery. Nevertheless, throughout
the design process, a reasonably stable consensus existed in the working
group about at least some of the principles that should underlie the
design of an XML query language. Some of these principles were man-
dated by the charter of the working group, and others arose from
strongly held convictions of its members. The following list is my own
attempt to enumerate the basic ideas and principles that were most influ-
ential in shaping the XQuery language. Tension exists among some of
these principles, and several design decisions were the result of an
attempt to find a reasonable compromise among conflicting principles.

� Compositionality: Perhaps the longest-standing principle in the
design of XQuery is that XQuery should be a functional language
incorporating the principle of compositionality. This means that
XQuery consists of several kinds of expressions, such as path
expressions, conditional expressions, and element constructors,
that can be composed with full generality. The result of any
expression can be used as the operand of another expression. No
syntactic constraints are imposed on the ways in which expres-
sions can be composed (though the language does have some
semantic constraints). Each expression returns a value that
depends only on the operands of the expression, and no expres-
sion has any side effects. The value returned by the outermost
expression in a query is the result of the query.

86 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 86

� Closure: XQuery is defined as a transformation on a data model
called the Query data model. The input and output of every
query or subexpression within a query each form an instance of
the Query data model. This is what is meant by the statement that
XQuery is closed under the Query data model. The working group
spent considerable time on the definition of the Query data model
and on how instances of this model can be constructed from input
XML documents and/or serialized in the form of output XML
documents.

� Schema conformance: Since XML Schema has recently been adopted
as a W3C Recommendation, the working group considered it
highly desirable for XQuery to be based on the type system of
XML Schema. This constraint strongly influenced the design of
XQuery by providing a set of primitive types, a type-definition
facility, and an inheritance mechanism. The validation process
defined by XML Schema also strongly influenced the XQuery
facilities for constructing new elements and assigning their types.
Nevertheless, members of the working group attempted to modu-
larize the parts of the language that are related to type definition
and validation, so that XQuery could potentially be used with an
alternative schema language at some future time.

� XPath compatibility: Because of the widespread usage of XPath in
the XML community, a strong effort was made to maintain com-
patibility between XQuery and XPath Version 1.0. Despite the
importance of this goal, it was necessary in a few areas to compro-
mise compatibility in order to conform to the type system of XML
Schema, because the design of XPath Version 1.0 was based on a
much simpler type system.

� Simplicity: Many members of the working group considered sim-
plicity of expression and ease of understanding to be primary goals
of our language design. These goals were often in conflict with
other goals, resulting in some painful compromises.

� Completeness: The working group attempted to design a language
that would be complete enough to express a broad range of queries.
The existence of a well-motivated use case was considered a strong
argument for inclusion of a language feature. The expressive power

BASIC PRINCIPLES 87

Katz_C02.qxd 7/23/03 2:46 PM Page 87

of XQuery is comparable to the criterion of “relational complete-
ness” defined for database query languages [CODD], though no
such formal standard has been defined for an XML data model.
Informally, XQuery is designed to be able to construct any XML
document that can be computed from input XML documents using
the power of the first-order predicate calculus. In addition, recur-
sive functions add significant expressive power to the language.

� Generality: XQuery is intended for use in many different environ-
ments and with many kinds of input documents. The language
should be applicable to documents that are described by a schema,
or by a Document Type Definition [XML], or by neither. It
should be usable in strongly typed environments where input and
output types are well known and rigorously enforced, as well as in
more dynamic environments where input and output types may
be discovered at execution time and some data may be untyped. It
should accommodate input documents from a variety of sources,
including XML files discovered on the Web, repositories of pre-
validated XML documents, streaming data sources such as stock
tickers, and XML data synthesized from databases.

� Conciseness: In the interest of conciseness, the semantics of the
XQuery operators were defined to include certain implicit opera-
tions. For example, arithmetic operators such as +, when applied to
an element, automatically extract the numeric value of the ele-
ment. Similarly, comparison operators such as =, when applied to
sequences of values, automatically iterate over the sequences, look-
ing for a pair of values that satisfies the comparison (this process is
called existential quantification). These implicit operations are
consistent with XPath Version 1.0 and were preferred over a
design that would require each operation to be explicitly specified
by the user.

� Static analysis: From the beginning, the processing of a query was
assumed to consist of two phases, called query analysis and query
evaluation (roughly corresponding to compilation and execution
of a program.) The analysis phase was viewed as an opportunity to
perform optimization and to detect certain kinds of errors. A
great deal of effort went into defining the kinds of checks that
could be performed during the analysis phase and in deciding
which of these checks should be required and which should be
permitted.

88 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 88

The Query Data Model

The first step in designing XQuery was to specify the data model on which
the language operates. The Query data model [XQ-DM] represents XML
data in the form of nodes and values, which serve as the operands and
results of the XQuery operators. XQuery is closed under the Query data
model, which means that the result of any valid XQuery expression can be
represented in this model. Since all the operators and expressions of
XQuery are defined in terms of the Query data model, understanding this
model is the key to understanding the language.

In defining the Query data model, the working group did not intend to
deviate from existing standards, but to conform to them wherever possible.
Therefore, the Query data model draws from several previously existing
specifications. The information that results from parsing an XML docu-
ment is specified by the XML Information Set [INFOSET], in the form
of a collection of information items. The XML Information Set (or
Infoset) contains no type information, and it represents data at a very prim-
itive level—for example, every character has its own information item.
XML Schema specifies an augmented form of the XML Infoset called the
Post-Schema Validation Infoset, or PSVI. In the PSVI, information
items that represent elements and attributes have type information and
normalized values that are derived by a process called schema validation.
The PSVI contains all the information about an XML document that is
needed for processing a query, and the Query data model is based on the
information contained in the PSVI.

For reasons described in the next section, the working group decided
early to include the existing language XPath [XPATH1] as a subset of
XQuery. XPath provides a notation for selecting information within an
existing XML document, but it does not provide a way to construct new
XML elements. Section 5 of the XPath specification shows how to repre-
sent the information in the XML Infoset in terms of a tree structure con-
taining seven kinds of nodes. The operators of XPath are defined in
terms of these seven kinds of nodes. In order to retain the original XPath
operators and still take advantage of the richer type system of XML
Schema, the XQuery designers decided to augment the XPath data
model with the additional type information contained in the PSVI. The
result of this process is the Query data model. The Query data model can
be thought of as representing the PSVI in the form of a node hierarchy,

THE QUERY DATA MODEL 89

Katz_C02.qxd 7/23/03 2:46 PM Page 89

much as the XPath data model represents the XML Infoset in the form of
a node hierarchy.

In the Query data model, every value is an ordered sequence of zero or
more items. An item can be either an atomic value or a node. An atomic
value has a type, which is one of the atomic types defined by XML Schema
or is derived from one of these types by restriction. A node is one of the
seven kinds of node defined by XPath, called document, element, attrib-
ute, text, comment, processing instruction, and namespace nodes. Nodes
have identity, and an ordering called document order is defined among all
the nodes that are in scope.

An instance of the Query data model may contain one or more XML
documents or fragments of documents, each represented by its own tree
of nodes. The root node of the tree that represents an XML document is
a document node. Each element in the document is represented by an
element node, which may be connected to attributes (represented by
attribute nodes) and content (represented by text nodes and nested ele-
ment nodes). The primitive data in the document is represented by text
nodes, which form the leaves of the node tree.

Figure 2.1 illustrates the Query data model representation of a simple
XML document. Nodes are represented by circles labeled D for docu-
ment nodes, E for element nodes, A for attribute nodes, and T for text
nodes. The XML document represented by Figure 2.1 is shown in List-
ing 2.1:

Listing 2.1 XML Document Represented by Figure 2.1

<?xml version="1.0" ?>
<procedure title="Removing a light bulb">

<time unit="sec">15</time>
<step>Grip bulb.</step>
<step>

Rotate it
<warning>slowly</warning>
counterclockwise.

</step>
</procedure>

90 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 90

Figure 2.1 Example of the Query Data Model

In the Query data model, each element or attribute node has a name, a
string value, a type annotation, and a typed value. These properties are
not independent. The type annotation of an element represents its type as
determined by the schema validation process. An element that has not
been validated, or for which no more specific type is known, has the type
annotation xs:anyType, where xs: is a prefix representing the namespace
of XML Schema. If an element has no descendant elements, then its typed
value can be derived from its string value and its type annotation.

Bear in mind that the type of an element describes the potential content
of the element and does not depend on the name of the element. For
example, two elements named cost and price could both have the type
annotation decimal because they both require decimal content. Simi-
larly, two elements named shipto and billto could both have the type
annotation address, which might be a complex type defined in a schema
that describes the potential content of the elements.

XQuery is defined as a transformation from one instance of the Query
data model to another instance of the Query data model. This simplifies
the definition of XQuery but leaves open the issues of where input data

D

E A

E

T T

E

E

T

T

AE

T

procedure

step
step

warning

time

title="Removing a light bulb"

Grip bulb. Rotate it counterclockwise.

slowly

unit="sec"

15

THE QUERY DATA MODEL 91

Katz_C02.qxd 7/23/03 2:46 PM Page 91

comes from and how output data is delivered to applications. A query
gains access to input data by calling an XQuery input function such as
doc or collection, or by referencing some part of the external context
(such as a prebound variable or “current node”). Each of these input
methods is defined to return a Query data model instance in the form of
one or more node hierarchies. One way in which a node hierarchy could
be created is by parsing an XML document, validating it against a known
or default schema, and converting the resulting PSVI into the Query data
model as described in [XQ-DM]. Another way is for a system to store
XML documents in a pre-validated form so that their Query data model
representation can be materialized quickly on demand. A third way is for
the Query data model to be synthesized directly from some data source
such as a relational database, deriving its type information from “meta-
data” in the database catalog.

The process of serializing a Query data model instance as a linear XML
document remains unspecified at present. All XML documents can be
represented using the Query data model, but not all instances of the
Query data model are valid XML documents. For example, the result of a
query might be a sequence of atomic values, or an attribute that is not
attached to any element. Mechanisms for serializing these values and for
binding them to variables in a host programming language remain to be
specified.

Related Languages and Standards

The designers of XQuery did not begin with a completely blank slate. The
design of XQuery was strongly constrained by the requirement for com-
patibility with established standards and was also influenced by the design
of other query languages with which the members of the working group
were familiar. This section describes some of the ways in which XQuery
was influenced by related languages and standards.

XML and Namespaces

Since XQuery is a query language for XML data sources, it is obvious that
the language must be strongly influenced by the structure of XML itself

92 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 92

[XML]. From XML comes the notion that information is represented as a
hierarchy of elements that have names, optional attributes, and optional
content. The content of an element may consist of text, nested elements,
or some mixture of these. The content of an XML document has an
intrinsic order, and it is often important to preserve this order.

XQuery was also influenced by some of the lexical conventions of
XML. Since XML is a case-sensitive language, it was decided that
XQuery should be case-sensitive also. Since XML allows a hyphen to
be used as part of a name, XQuery adopted the same convention. A con-
sequence of this convention is that whitespace is sometimes significant
in XQuery expressions. For example, spaces are used to distinguish the
arithmetic expression a – b from the name a-b.

One important feature of an XML query language is the ability to con-
struct an element with a given name and content. One of the ways in
which XQuery supports element construction is by using XML notation.
An XQuery element constructor can consist of a start tag and an end tag,
enclosing character data that is interpreted as the content of the element,
as illustrated in the following example:

<price>15.99</price>

Within an element constructor, curly braces are used to enclose expres-
sions that are to be evaluated rather than treated as text, as in the follow-
ing example, which computes a price from two variables named
$regprice and $discount:

<price>{$regprice - $discount}</price>

Namespaces are very important to XML because they define the struc-
ture of an XML name. Namespaces provide a way for XML applications
to be developed independently while avoiding the risk of name collisions.
Qualified names (QNames), as defined in the XML Namespaces specifi-
cation [NAMESP], are used as the names of XML elements and attrib-
utes. XQuery also uses QNames as the names of functions, types, and
variables. A QName consists of two identifiers, called the namespace prefix
and the local part, separated by a colon. The namespace prefix and colon
are optional. If present, the namespace prefix must be bound to a Uni-
form Resource Identifier (URI) that uniquely identifies a namespace.

RELATED LANGUAGES AND STANDARDS 93

Katz_C02.qxd 7/23/03 2:46 PM Page 93

As an example, suppose that the namespace prefix student is bound to
the URI http://example.org/student, and the namespace prefix
investment is bound to the URI http://example.org/investment.
Then the QNames student:interest and investment:interest are
recognized as distinct names even though their local parts are the same.

XQuery provides two ways of binding a namespace prefix to a URI. The
first of these is by a declaration in the prolog, a part of a query that sets
up the environment for query execution. Namespace prefixes declared in
the prolog remain in scope throughout the query. This method of declar-
ing a namespace prefix is illustrated by the following example:

declare namespace student = "http://example.org/student"

The second way to bind a namespace prefix to a URI in XQuery can be
used when an element is constructed and defines a namespace prefix for
use within the scope of the element. This method relies on an attribute
with the prefix xmlns, which indicates that the attribute is binding a
namespace prefix. For example, in the following start tag, the attribute
named xmlns:student binds the namespace prefix student to a given
URI within the scope of a constructed element named school:

<school xmlns:student = "http://example.org/student">

XQuery allows a user to specify, in the prolog, default namespace URIs to
be associated with QNames that have no namespace prefix. Separate
default namespaces can be specified for names of functions and for names
of elements and types.

XQuery also provides a set of predefined namespace prefixes that can be
used in any query without an explicit declaration. For example, the prefix
xs is automatically bound to the namespace of XML Schema, so it is easy
to refer to the names of built-in schema types such as xs:integer. Simi-
larly, the prefix fn is automatically bound to the namespace of the
XQuery core function library [XQ-FO], so it is easy to refer to the names
of built-in XQuery functions such as fn:max and fn:string. If a query
does not declare otherwise, the default namespace for function names is
the namespace of the XQuery core function library (also bound to the
prefix fn.)

94 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 94

XML Schema

As noted earlier, one of the major goals of the XML Query Working
Group has been to define a query language based on the type system of
XML Schema. This goal was made more difficult by the fact that XML
Schema was designed to support validation of documents rather than to
serve as the type system for a query language.

XML Schema has had a strong impact on XQuery because its type system
is quite complex and includes some unusual features. The influences of
XML Schema on the design of XQuery include the following:

� In XQuery, there is no distinction between a single value and a
sequence of length one. To state this rule in another way, all
XQuery values are sequences of length zero, one, or more. This
rule arises from the XML Schema “facets” named minOccurs
and maxOccurs, which can be attached to a part of a schema in
order to constrain its number of occurrences. For example, in a
schema, an element declaration without any occurrence con-
straints is considered identical to an element declaration with
the facets minOccurs="1" and maxOccurs="1"; both declara-
tions specify a sequence of elements of length one. Since all
XQuery values are sequences, each parameter of a function can
potentially accept a sequence of multiple items. For example, the
function call foo(1, (2, 3), ()) invokes a function with
three arguments: the first argument is a sequence of length one,
the second argument is a sequence of length two, and the third
argument is a sequence of length zero.

� In XQuery, there is no notion of nested sequences—that is, a
sequence directly containing another sequence as one of its mem-
bers. The members of an XQuery sequence are always nodes or
atomic values. A node, however, may in turn have another
sequence as its content. These rules are derived from XML
Schema, in which the content of an element is always a “flat”
sequence of atomic values and other elements (which may, in turn,
have content of their own).

� In XQuery, sequences may be heterogeneous—that is, a sequence
may contain mixtures of nodes and atomic values, and may contain

RELATED LANGUAGES AND STANDARDS 95

Katz_C02.qxd 7/23/03 2:46 PM Page 95

atomic values of different types. Again, these rules are derived from
XML Schema, in which the content of an element can be declared
to be “mixed” (that is, consisting of a mixture of text and nested
elements), and a sequence can contain values that conform to a
“choice” of types.

� The working group chose to rely on the features of XML Schema
for defining and naming complex types. As a result, XQuery
depends on the conventions of XML Schema for associating
names with types. Unfortunately, in XML Schema, some types
have no name, and many types may have the same name. XML
Schema does not, in general, provide a unique way to refer to a
user-defined type. The impact on XQuery of the XML Schema
naming system is discussed under Issue 3 (“What Is a Type?”) in
the “Watershed Issues” part of this chapter.

� XML Schema defines two different forms of type inheritance,
called derivation by extension and derivation by restriction,
and also introduces the concept of a substitution group, which can
allow one kind of element to substitute for another kind of ele-
ment based on its name. This combination of features has added a
considerable amount of complexity to the syntax of XQuery. For
example, as a step in a path expression, the name frog refers to an
element whose name is exactly frog, but the notation
element(frog) refers to an element that is either named frog or
is in the same substitution group as the element named frog.

XML Schema defines a large set of built-in primitive types and an addi-
tional set of built-in derived types. In general, XQuery operators are
defined on the primitive types of XML Schema, and operators on derived
types are defined to promote their operands to the nearest primitive type.
However, an exception to this rule was made for the type integer.
Although integer is considered by most languages to be a primitive type,
XML Schema considers it to be derived from decimal. If the general rule
of promoting derived types to their primitive base types were applied to
integers, arithmetic operations on integers such as 2 + 2 would return
decimal results. As a consequence, an expression such as 2 + 2 would raise
a type error when used in a function call where an integer is expected. In
order to avoid these type errors, operations on integers in XQuery are

96 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 96

defined to return integers even though XML Schema considers integer
to be a derived type.

XML Schema defines a duration type, which consists of six components
named year, month, day, hour, minute, and second. This definition
ignores the experience of the relational database community, which has
discovered that neither comparison nor arithmetic operators can be sup-
ported by a duration type defined in this way. The following questions
illustrate the problems encountered by operations on the duration type
of XML Schema: Which is greater, one month or thirty days? What is
the result of dividing one month by two? To deal with these problems,
the SQL Standard in 1992 [SQL92] introduced two datatypes called a
“year-month interval” and a “day-time interval.” Each of these supports a
well-defined set of arithmetic and comparison operators, but they cannot
be mixed in a single expression. In order to facilitate arithmetic and com-
parison operations on dates, times, and durations, XQuery followed the
practice of SQL in defining subtypes of duration called
xdt:yearMonthDuration and xdt:dayTimeDuration (xdt is a prede-
fined namespace prefix that represents the namespace containing all new
datatypes defined by the XQuery specification).

Following the mandate of its charter, the working group designed XQuery
to be fully compatible with XML Schema. At the same time, the group
attempted to design XQuery in a way that would not preclude its adapta-
tion to alternative schema definition languages. XQuery might be viewed
as relying on an external schema facility for defining types and type hierar-
chies and for determining the type of a given element (in XML Schema,
this process is called validation). To the extent that a schema facility meets
these requirements, it can be considered compatible with XQuery.

XPath

Comparable to XML Schema in its influence on the design of XQuery is
XPath [XPATH1], which has been a W3C Recommendation since
November 1999. XPath is widely used in the XML community as a com-
pact notation for navigating inside XML documents, and it is an integral
part of other standards, including XSLT [XSLT] and XPointer [XPTR].

RELATED LANGUAGES AND STANDARDS 97

Katz_C02.qxd 7/23/03 2:46 PM Page 97

The functionality of XPath is clearly needed as part of an XML query
language, and there is a clear precedent that this functionality should be
expressed using the syntax of XPath Version 1. Therefore, from the
beginning, compatibility with XPath Version 1 was a major objective and
constraint on the design of XQuery.

Initially, the Query working group considered using the path expres-
sion of XPath as a “leaf expression” in the XQuery syntax—that is, as a
primitive form of expression that could be used as an operand in
higher-level XQuery expressions but could not in turn contain other
XQuery operators. However, at the same time that XQuery was being
designed, the XSLT working group had collected a set of requirements
for new functionality in XPath [XPATH2REQ], and these require-
ments overlapped substantially with the functionality proposed for
XQuery. As a result, it was decided that a new version of XPath would
be developed jointly by the XSLT and Query working groups. The
new version, to be called XPath Version 2 [XPATH2], would be a syn-
tactic subset of XQuery, would be backward-compatible with XPath
Version 1, and would be available for use in XSLT and other standards.
XPath Version 2 would include many of the features of XQuery and
would be fully integrated with the rest of the XQuery syntax rather
than serving as a non-decomposable “leaf expression.”

Types in XPath

For XPath to be used in a query language based on the type system of
XML Schema, its own type system had to be revised. XPath Version 1 rec-
ognized only four types: Boolean, string, “number” (a double-precision,
floating numeric type), and “node-set” (an unordered collection of nodes).
XPath Version 1 was designed with a very permissive view of types, in
which conversions of one type to another could be done with very few lim-
itations. For example, if a node-set is encountered where a number is
expected, the string value of the first node in the node-set (in document
order) is extracted and cast into a number. These permissive rules were
deliberately designed to minimize the likelihood of non-recoverable
errors during the processing of path expressions, which are often used in
rendering web pages by a browser or in other contexts where run-time
errors are unwelcome.

98 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 98

From a type system based on only four types, XPath had to be adapted to
the type system of XML Schema, which included forty-four built-in types
and a complex set of rules for defining additional types, encompassing
atomic, simple, complex, primitive, derived, list, union, and anonymous
types, as well as two forms of inheritance, twelve “constraining facets,”
substitution groups, and various other features. Also, from a very permis-
sive set of type-conversion rules, XPath had to be adapted to a philosophy
of strict typing, including both static and dynamic type-checking. Users of
XPath were assured that these changes constituted an improvement.
Adaptation of XPath to the XML Schema type system also provided an
opportunity to make a very small number of incompatible changes to the
semantics of the language.

Syntax and Semantics

The adoption of XPath as a subset had significant effects on both the syn-
tax and semantics of XQuery, including the following:

� Since XPath uses the symbol / in path expressions, it is not avail-
able for use as a division operator. XQuery adopted the XPath
operator div for division, supplemented by a new idiv operator
for division of integers, returning an integer.

� XPath has a few keywords, such as and, or, div, and mod, but none
of these keywords are reserved words. This means that the
XPath grammar is defined in such a way that an XPath expression
can search for an element named (for example) mod, without con-
fusing the element name with the keyword. It is obviously desir-
able to avoid any limitation on names that can be searched for in
documents. One way to accomplish this would be to require a spe-
cial “escape” syntax to be used with names that are the same as
keywords (one alternative that was considered was to prefix these
names with a colon). But for compatibility with XPath Version 1,
it was decided that XQuery should have no reserved keywords and
no special syntax for names. This was accomplished by careful
grammar design and by defining some rules for “lookahead” dur-
ing the process of converting a query from a stream of characters
into grammatical tokens.

RELATED LANGUAGES AND STANDARDS 99

Katz_C02.qxd 7/23/03 2:46 PM Page 99

� The concept of document order is very important to the definition
of several XPath operators, and as a result it also plays an impor-
tant role in XQuery semantics, as described below.

Document order is an ordering that is defined among all the nodes in the
Query data model representation of a document. As defined in XPath, doc-
ument order corresponds to the order in which the XML representations
of the various nodes would be encountered if the document were to be seri-
alized in XML format. In other words, each element node is followed by its
namespace nodes, its attribute nodes, and its children (text, element, com-
ment, and processing instruction nodes) in the order in which they natu-
rally appear in the document. Reverse document order is defined as the
reverse of document order.

One of the defining features of XPath is the path expression, which con-
sists of a series of steps, each of which selects a set of nodes. In the set of
nodes selected by a step, each node has a position based on its relation-
ship to the other nodes in (forward or reverse) document order. In
effect, the set of nodes resulting from each step must be sorted on the
basis of document order, a potentially expensive process. The idea of
sorting intermediate results was particularly unfamiliar to people with a
background in relational databases, in which sets of data values have no
intrinsic order. The working group briefly considered relaxing this
requirement and allowing the nodes selected by each step to remain in
the order in which they were generated (based on iterating over the
nodes selected by the previous step). This idea was put to rest by an
example suggested by Michael Kay. The example is based on the fol-
lowing input document:

<warning>
<p>
Do <emph>not </emph> touch the switch.
The computer will <emph>explode!</emph>
</p>
</warning>

The representation of this input document in the Query data model is
shown in Figure 2.2, in which element nodes are represented as circles
labeled E, and text nodes are represented as circles labeled T.

100 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 100

Figure 2.2 Query Data Model Representation of “Warning” Document

Against this input document we wish to execute the following path
expression:

/warning//text()

In XPath Version 1, this path expression would return all the text nodes
that are descendants of the warning element, in document order. The
concatenated content of these nodes is as follows:

Do not touch the switch. The computer will explode!

It is interesting to consider how the result of this path expression would
change if each step in the path preserved the order of nodes generated by
the previous step rather than sorting its results in document order. Under
these rules, the path expression would be executed as follows:

1. The first step, /warning, returns the top-level element node,
which has the name warning.

2. The notation // is an abbreviation for a second step, which in
fully expanded form might be written as /descendant-or-
self::node()/. This step returns the warning element node

E

E

T E

T

E

T

p

emphemph

explode!

touch the switch. The computer will

not

warning

T

Do

RELATED LANGUAGES AND STANDARDS 101

Katz_C02.qxd 7/23/03 2:46 PM Page 101

returned by the previous step, and all its descendants—in other
words, all eight of the nodes shown in Figure 2.2, in document
order.

3. The third step, text(), uses the default child axis of XPath to
return text nodes that are children of the nodes returned by the
previous step. Only element nodes have children that are text
nodes. Processing the element nodes returned by the previous
step, in order, leads to the following result (ignoring some subtle
issues relating to the handling of whitespace):

The first element node to be processed is named p and has two
text node children, containing the strings "Do" and "touch the
switch. The computer will".
The second element node to be processed is named emph and has
one text node child, containing the string "not".
The third element node to be processed is named emph and has
one text node child, containing the string "explode!".

The concatenated contents of the text nodes returned by the final step is
as follows:

Do touch the switch. The computer will not explode!

This example is a good illustration of how processing documents places
some requirements on a query language that are beyond the scope of a
traditional database query language. The Query working group included
representatives from both the database and document processing com-
munities, and these individuals had much to learn from each other during
the process of designing XQuery.

Predicates

XPath has several kinds of predicates, which are tests that are used to filter
sequences of nodes. All of these predicates have the general form E1[E2],
in which the expression E2 is used to filter the items in the sequence gen-
erated by expression E1. The different kinds of XPath predicates are illus-
trated by the following examples:

102 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 102

� /employee[salary > 1000] selects employee elements that have
a salary subelement with value greater than 1000.

� /employee[5] selects the fifth employee element in a sequence.
� /employee[secretary] selects employee elements that have a
secretary subelement.

For XQuery, it was necessary to preserve all these kinds of predicates, but
to generalize their definitions so that the value of an expression (either E1
or E2 in the above format) could be a heterogeneous sequence of nodes
and atomic values. In XQuery, E1[E2] is defined as follows: For each item
e1 in the sequence returned by E1, the expression E2 is evaluated with e1
as the context item (the context item serves as the “starting point” for a
path expression). For a given e1, if E2 returns a number n, the value e1 is
retained only if its ordinal position in the E1-sequence is equal to n. Oth-
erwise, e1 is retained only if the Effective Boolean Value of E2 is true.
Effective Boolean Value is defined to be false for an empty sequence and
for the following single atomic values: the Boolean value false, a numeric
or binary zero, a zero-length string, or the special float value NaN. Any
other sequence has an Effective Boolean Value of true. Note especially
that the Effective Boolean Value of any node is true, regardless of its con-
tent, and the Effective Boolean Value of any sequence of length greater
than one is true, regardless of its content.

This definition of Effective Boolean Value is used not only in predicates
but also in other parts of XQuery where it is necessary to reduce a gen-
eral sequence to a Boolean value (for example, in conditional expressions
and quantified expressions). The definition was arrived at by considera-
tions of XPath Version 1 compatibility, logical consistency, and perform-
ance. This definition has the desirable property that the Effective
Boolean Value of a sequence of arbitrary length depends only on the
value of the first item in the sequence and the existence (but not the val-
ues) of additional items. It also has the surprising property that an ele-
ment with the Boolean content false has an Effective Boolean Value of
true (as required for compatibility with XPath Version 1). Another sur-
prising property of this definition is that a sequence of atomic values, all
of which are false, has the Effective Boolean Value of true (because it
contains more than one item).

RELATED LANGUAGES AND STANDARDS 103

Katz_C02.qxd 7/23/03 2:46 PM Page 103

Implicit Operations and Transitivity

XPath Version 1 is defined to perform many implicit conversions during
the processing of an expression. Some of these conversions are illustrated
by the following example:

//book[author = "Mark Twain"]

On the left side of the = operator, we find author, which denotes a
sequence of zero or more element nodes. On the right side of the = oper-
ator, we find "Mark Twain", which is a string. Since a sequence of zero or
more nodes is not the same thing as a string, these expressions are made
comparable by the following implicit actions:

� The values of the author nodes are extracted and treated as
atomic values.

� Since these atomic values are being compared with a string, they
are treated as strings.

� If there is more than one author value, an implied existential
quantifier is inserted, so the predicate is considered to be true if
any author value is equal to the string "Mark Twain".

These implicit actions make the above expression equivalent to the fol-
lowing expression in which the same actions are represented explicitly:

//book[some $a in ./author satisfies string(data($a)) = "Mark Twain"]

In keeping with the basic principle of conciseness as well as the principle
of backward compatibility, XQuery preserved these implicit XPath con-
versions and in fact extended them in a uniform way to apply to other parts
of the XQuery language. The extraction of atomic values from nodes is
called atomization in XQuery, and is applied to sequences as well as to indi-
vidual nodes. For example, the expression avg(/employee/salary)
extracts numeric values from a sequence of salary nodes before applying
the avg function.

The implicit conversions described above led to a serious concern for the
designers of XQuery: They caused the comparison operators such as =
and > to lack the transitivity property. Thus, if $book1/author =

$book2/author is true, and $book2/author = $book3/author is true,
it is not possible to conclude that $book1/author = $book3/author is

104 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 104

true. For example, this inference would fail if $book1/author has the
value (“Billy”, “Bonnie”), $book2/author has the value (“Bonnie”,
“Barry”), and $book3/author has the value (“Barry”, “Benny”).

Transitivity is a useful property for comparison operators. For example,
transitivity of equality comparisons is required for certain kinds of query
transforms that are useful in optimization. Transitivity of a comparison
operator is also required if the operator is to serve as the basis for impos-
ing a global ordering on a sequence of values. Since the six general com-
parison operators (=, !=, >, >=, <, and <=) lack transitivity, the designers of
XQuery decided to supplement them with six more primitive value com-
parison operators (eq, ne, gt, ge, lt, and le) that have the transitivity
property. These primitive comparison operators can be used to compare
single atomic values, but they raise an error if either of the operands to be
compared is not a single value. The value comparison operators always
treat an untyped operand as a string.

Incompatible Changes

Despite the general objective of backward compatibility, a small num-
ber of XPath Version 1 features remained unacceptable to the designers
of XQuery. Some of these features were considered important for other
usages of XPath, such as XSLT style sheets that had been written to
exploit these features. To deal with this problem, an “XPath Version 1
compatibility mode” was defined for XPath Version 2. When embed-
ded in XQuery, XPath Version 2 will not run in compatibility mode,
and the semantics of certain operators will be different from those of
XPath Version 1. Other host environments of XPath Version 2, such as
XSLT, are free to interpret XPath Version 2 in compatibility mode to
preserve the semantics expected by existing applications. The cases in
which compatibility mode influences the semantics of XPath Version 2
include the following:

� In XPath Version 1, if an operand of an arithmetic operator such
as + is a sequence containing more than one node, the numeric
value of the first node in the sequence is extracted and used as the
operand. In XQuery, this case is treated as an error.

� In XPath Version 1, inequality operators on strings cast their
operands to double, but the equality operator on two strings per-
forms a string comparison. This leads to the surprising result that

RELATED LANGUAGES AND STANDARDS 105

Katz_C02.qxd 7/23/03 2:46 PM Page 105

"4" <= "4.0" and "4" >= "4.0" are both true, but "4" = "4.0"
is false. In XQuery, all comparison operators on strings perform
string comparisons without attempting to convert their operands
to numbers.

� In XPath Version 1, arithmetic operators can be applied to strings
and implicitly convert their operands to double. For example, the
expression "1" + "2" returns 3.0E0. In XQuery, arithmetic on
strings is treated as an error.

� In XPath Version 1, the = operator on two elements compares
their string values, ignoring nested markup. For example, a book
with title "Tom Sawyer" and author "Mark Twain" is considered
to be equal (by the = operator) to a book with author "Tom
Sawyer" and title "Mark Twain". In XQuery, applying the = oper-
ator to two elements whose content consists entirely of subele-
ments is treated as an error. However, XQuery provides several
functions, such as fn:deep-equal, that can be used to perform
various kinds of comparisons between element nodes. Compari-
son of the string values of two element nodes can be done by
extracting their string values, using the fn:string function, as in
fn:string($node1) = fn:string($node2).

Other Query Languages

The influence of other languages on XQuery is not limited to directly
related standards such as XPath and XML Schema. XQuery has also been
strongly influenced by other query languages used in both the database
and information retrieval communities. In several cases, designers of
these precursor languages have also contributed to the design of XQuery.

The immediate ancestor of XQuery is Quilt [QUILT], a language pro-
posal submitted to the XML Query Working Group by three of its partic-
ipants in June 2000. Quilt provided the basic framework of XQuery as a
functional language based on several types of composable expressions,
including an iterative expression and an element constructor. The
FLWOR expression, one of the most important of the XQuery expression
types, was adopted from Quilt (though the original Quilt version did not
have an order-by clause). From its origin in the Quilt proposal, XQuery
has evolved by changing the syntax for element constructors, adding a
more complex syntax for declaring the types of function parameters, and

106 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 106

adding some new kinds of expressions, such as validate, instance-of,
and typeswitch. The XQuery specification is also much more complete
and rigorous than the original Quilt proposal in formally specifying the
semantics of various kinds of expressions, as described in Chapter 4.

The Quilt proposal, in turn, reflects the influence of several other query lan-
guages. In fact, the name “Quilt” was intended to suggest that features had
been patched together from a variety of sources to form a new language.

From SQL [SQL99] and from the relational database community in gen-
eral, XQuery adopted an English-keyword notation and a rich collection
of use cases. Many SQL facilities such as grouping and outer join have
their counterparts in XQuery, though they are often expressed in different
ways. The select-from-where query block of SQL has a rough analogy
in the for-let-where-order-return (FLWOR) expression of XQuery,
in the sense that both kinds of expression are used for both selection (retain-
ing certain items while discarding others) and projection (retaining certain
properties of the selected items while discarding others.) Some features
of SQL, however, such as a special null value and three-valued logic for
the and and or operators, were considered unnecessary in the XML con-
text and were not duplicated in XQuery.

From XML-QL [XML-QL], Quilt (and hence XQuery) adopted the
approach of binding variables to sequences of values and then construct-
ing new output elements based on the bound variables. An XML-QL
query consists of a WHERE clause followed by a CONSTRUCT clause. The
result of the WHERE clause is a stream of tuples of bound variables. The
CONSTRUCT clause is executed once for each of these tuples, generating a
stream of output elements. As in XQuery, the combination of WHERE and
CONSTRUCT is a nestable unit from which queries can be constructed. The
creation of an ordered stream of tuples, and iteration over these tuples to
generate output, have direct counterparts in the FLWOR expression of
XQuery. XQuery also adopted from XML-QL the convention of prefix-
ing variable names with a $ sign.

From OQL [OQL], Quilt (and hence XQuery) adopted the approach of
designing the language around a fully composable set of expressions, all of
which use a common data model for their operands and results. The
select-from-where expression of OQL, rather than providing a frame-

RELATED LANGUAGES AND STANDARDS 107

Katz_C02.qxd 7/23/03 2:46 PM Page 107

work for the whole language, as in SQL, is simply one of several independ-
ent expressions that include arithmetic and set operators, function calls,
and universal and existential quantifiers. Similarly, in XQuery, the
FLWOR expression is simply one of many types of expressions that can be
combined in various ways. The atoms, structures, and collections in the
OQL data model are suggestive of the atomic values, elements, and
sequences in the Query data model (though the Query data model supports
only one kind of collection). Interestingly, OQL (like Quilt) has a fully
independent sort-by operator that can be applied to any sequence of val-
ues, whereas in XQuery the sorting facility is supported only as a clause
inside the FLWOR expression, for reasons described under Issue 8
(“Ordering Operators”) in the following section.

Watershed Issues

A large fraction of the total effort invested in the design of XQuery by the
working group has been focused on a relatively small number of “water-
shed issues.” These are issues whose resolution had a significant global
impact on the language by influencing a number of related decisions. All
of these issues are complex, and some of them were quite contentious.
Eight of these watershed issues are discussed here; they are listed below.

1. Handling of untyped data. This issue deals with the kinds of opera-
tions that can be applied to data whose type is not known.

2. Unknown and inapplicable data. This issue deals with how
unknown values can be encoded in XML and how various opera-
tors should be defined on these values.

3. What is a type? This issue deals with how a datatype is specified in
XQuery.

4. Element constructors. This issue deals with the details of how to
construct a new XML element by using a query expression.

5. Static typing. This issue deals with the kinds of type-checking that
can be performed on a query independently of any input data.

6. Function resolution. This issue deals with how functions are
defined and how function calls are processed.

7. Error handling. This issue deals with the kinds of errors that can
be encountered in queries, and whether query expressions are

108 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 108

deterministic (that is, whether they always return the same result
for a given input).

8. Ordering operators. This issue deals with the kinds of operators that
are provided in the language for controlling the order of results.

Issue 1: Handling of Untyped Data

Despite publication of XML Schema as a W3C Recommendation in
May 2001, a great many XML documents exist that are not described by
a schema. Some of these documents have Document Type Definitions
(DTDs), and some do not have a formal description of any kind. In the
absence of a schema, the character data in an XML document does not
have a well-defined type. A DTD might describe this data as CDATA
(“character data”) or PCDATA (“parsed character data”), but in fact it
might represent either text or numeric data.

Many of the operators of XQuery require data of a particular type—for
example, the arithmetic operators are defined on numeric data. It is
highly desirable that these operators be usable for querying schema-less
documents, even though the data in these documents is not explicitly
declared to be of any particular type. The approach of requiring all
untyped data to be explicitly cast into a specific type whenever it is
referred to in a query was rejected as putting an unreasonable burden on
the query writer. Instead, the designers of XQuery attempted to define a
set of rules that allow types to be inferred for input data based on the con-
text in which the data is used.

Consider the following fragment of an input document:

<employee>
<name>Fred</name>
<salary>5000</salary>
<bonus>2000</bonus>

</employee>

The process of representing this input data in the Query data model
causes each element node to receive a type annotation. If the input docu-
ment is validated against a schema, the employee node might receive a
type annotation of employee-type, and the salary and bonus nodes
might receive a type annotation of xs:decimal.

WATERSHED ISSUES 109

Katz_C02.qxd 7/23/03 2:46 PM Page 109

Suppose that a query binds a variable named $fred to the employee ele-
ment, and evaluates the expression $fred/salary + $fred/bonus. Each
of the operands of the + operator evaluates to an element node whose
type annotation is xs:decimal. The + operator extracts the decimal val-
ues from the nodes and adds them together. The result of the expression
is an atomic value of type xs:decimal.

Now consider the following similar fragment from an input document
that has no schema:

<a>
5
<c>17</c>

Syntactically, this fragment consists of an element containing two nested
elements. In the absence of a schema, the elements are given the generic
type annotation xs:anyType, which indicates that no type information is
available. An atomic value occurring inside an untyped element, such as 5 or
17 in the above example, is given the type annotation xdt:untypedAtomic,1
which denotes an atomic value for which no type is available.

In the above example, suppose that a query binds a variable named $a to the
outer element, and executes the expression $a/b + $a/c. Looking at the
input document, we see that the nested elements b and c contain numbers,
and it seems reasonable that these numbers should be added together.
But it is necessary to define the rules under which this operation is per-
formed. As in the earlier example, the + operator extracts the typed values
from the b and c nodes. The value of the b node is 5, and the value of the
c node is 17, and the type of both values is xdt:untypedAtomic. Each
operator in XQuery has a rule for how it handles values of type
xdt:untypedAtomic. In the case of arithmetic operators such as +, the
rule states that any operand of type xdt:untypedAtomic is cast to the

110 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

1 The type xdt:untypedAtomic is closely related to the type xs:anySimpleType, which is the root
of the simple type hierarchy in XML Schema [SCHEMA]. The type xdt:untypedAtomic is differ-
ent from xs:anySimpleType in two ways: (1) xs:anySimpleType includes non-atomic values such
as lists that are considered to be “simple” by XML Schema, whereas xdt:untypedAtomic includes
only atomic values; and (2) xs:anySimpleType includes primitive types such as xs:string and
xs:decimal as subtypes, whereas xdt:untypedAtomic has no subtypes. In general, an atomic value
in a PSVI whose type property is xs:anySimpleType is represented in the Query data model with
the type annotation xdt:untypedAtomic.

Katz_C02.qxd 7/23/03 2:46 PM Page 110

type xs:double before the addition is performed. If a value of type
xdt:untypedAtomic cannot be successfully cast to the type xs:double,
the arithmetic operator raises an error. In our example expression, the
operands are successfully cast to the double-precision values 5.0E0 and
1.7E1, and the result of the expression is 2.2E1.

Various operators in XQuery have different rules for handling of values
of type xdt:untypedAtomic. As we have seen, arithmetic operators cast
xdt:untypedAtomic values to xs:double. General comparison opera-
tors such as = and >, on the other hand, cast operands of type
xdt:untypedAtomic to the type of the other operand, and if both
operands are of type xdt:untypedAtomic, they are both cast to the type
xs:string. These rules reflect the facts that addition is defined only for
numbers, but comparison can be defined for any string value. Casting
xdt:untypedAtomic values into numbers before comparing them would
preclude comparison of non-numeric strings.

Suppose that, instead of $a/b + $a/c, our example expression had been
$a/b > $a/c. Since the type of both operands is xdt:untypedAtomic,
$a/b is cast to the string "5" and $a/c is cast to the string "17", and the
strings are compared using a default collation order. The result depends
on the default collation, but the expression is likely to return the value
true since in most collations the string "5" is greater than the string "17".

Each XQuery operator has its own rule for processing operands based on
their types. For some operators, such as the general comparison operators,
the rule depends on the dynamic types of both operands. These rules
make XQuery by definition a dynamically dispatched language, meaning
that, in general, the semantics of an operation are determined at run-time.
However, the rules are such that, when operating on well-typed data that
is described by a schema, static analysis can often determine the semantics
of an operation at compile type and can use this information to execute the
query efficiently (avoiding run-time branching).

The working group considered the alternative of treating all untyped data as
strings. In the example $a/b + $a/c above, this design would have resulted
in the + operator having strings as its operands. In order for this useful
example to work, it would have been necessary for arithmetic operators to
cast their string operands into a numeric type (say, double). Then 5 + "7"
would no longer be a type error, even though it adds a number to a string.

WATERSHED ISSUES 111

Katz_C02.qxd 7/23/03 2:46 PM Page 111

Similarly, if untyped data were to be treated as strings, comparison
operators between numbers and strings would need to be defined. For
example, consider the expression age > 40. In the absence of a schema,
age is untyped. If untyped data is treated as a string, age > 40 will give
the expected result only if its string operand is cast to a number. But
then 5 = "5" and 5 = "05" would be true rather than type errors (but
"5" = "05" would be false). Also, then 5 > 17 and "5" > 17 would be
false but "5" > "17" would be true. It was felt that these rules would
generate confusion and would compromise the strong typing of the lan-
guage. Therefore, the working group chose to treat untyped data
according to its context rather than always treating it as a string.

Issue 2: Unknown and Inapplicable Data

In the real world, data is sometimes unknown or inapplicable. Any data
model needs to have a way to represent these states of knowledge.

In the relational data model, data is represented in a uniform way using
rows and columns. Every row in a given table has the same columns, and
there is exactly one value in every column. For example, if a table describ-
ing cars has a mileage column containing information about the
expected miles per gallon of each car, then every row in that table must
have some value in the mileage column, including rows that describe
cars whose mileage is unknown and rows that describe electric cars for
which the concept of mileage is inapplicable. This requirement gave rise
to the “null” value in relational databases, an “out-of-range” value that is
used to represent unknown or inapplicable data. In the relational query
language SQL, arithmetic and comparison operators always return the
null value if any of their operands is null. Since logical operators such as
and and or must deal with the null value as well as the Boolean values
true and false, SQL is said to use three-valued logic.

XML is considerably more flexible than the relational model when it
comes to representing unknown or inapplicable data. In an XML
Schema, a car element might be defined to contain make and year ele-
ments and an optional mileage element. The mileage element in turn
might be defined to contain an optional decimal value. Then, any of the
following is a valid XML representation of a car element:

112 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 112

The mileage element could be present and have a value:

<car><make>Toyota</make><year>2002</year><mileage>26</mileage></car>

The mileage element could be present but empty:

<car><make>Ford</make><year>2002</year><mileage/></car>

The mileage element could be absent:

<car><make>Porsche</make><year>2002</year></car>

XQuery leaves it up to the application to define the mapping of states of
knowledge about cars onto various XML representations. For example,
the absence of a mileage element might be used to represent the absence
of any knowledge about mileage, whereas the presence of an empty
mileage element might be used to represent the knowledge that mileage
is inapplicable for the given car.

Because XML already provides a way to represent various states of
knowledge about data, including unknown and inapplicable data, the
designers of XQuery saw no need to introduce a special “out-of-range”
value (which, in any case, would not have been consistent with XML
Schema). Instead, XQuery focuses on defining the operators of the lan-
guage in such a way that they return a reasonable and useful result for all
of the possible syntactic states of their operands. This approach provides
application developers with the tools they need to represent various
knowledge states as they see fit.

The main operators of XQuery that operate on scalar values are arith-
metic, comparison, and logical operators. These operators are also
defined on nodes, but always begin by reducing their operands to scalar
values by a process called atomization. The result of atomization on an
absent or empty element is an empty sequence.

If arithmetic is performed on unknown or inapplicable data (for example,
mileage div cost where mileage is unknown), the result should be
unknown or inapplicable. Therefore, the arithmetic operators of XQuery
are defined in such a way that if either of their operands (after atomiza-
tion) is an empty sequence, the operator returns an empty sequence.

WATERSHED ISSUES 113

Katz_C02.qxd 7/23/03 2:46 PM Page 113

XQuery provides two sets of comparison operators. The general compari-
son operators, =, !=, >, >=, <, and <=, which are inherited from XPath Ver-
sion 1, have an implied existential quantifier on both operands. For
example, the expression A = B, if A and B are sequences of multiple values,
returns true if some item in sequence A is equal to some item in sequence
B. If either of their operands is an empty sequence, the general comparison
operators return false. These operators (as in XPath Version 1) have the
interesting property that the predicates length > width, length <

width, and length = width can all be simultaneously true (if length or
width contains multiple values), and can also all be simultaneously false
(if length or width contains no values).

As noted earlier, XQuery also provides a set of value comparison opera-
tors, eq, ne, gt, ge, lt, and le, which require both of their operands to
consist of exactly one atomic value. These operators raise an error if either
of their operands is an empty sequence. These operators are designed to
be “building blocks” with well-defined mathematical properties that can
serve as the basis for defining more complex logical operations.

Some consideration was given to defining three-valued comparison oper-
ators that return an empty sequence (representing the unknown truth
value) if either of their operands is an empty sequence. This approach was
rejected because such operators would not be transitive. For example,
consider the expression salary eq 5 and bonus eq salary. A query
optimizer might wish to transform this expression by adding an addi-
tional predicate bonus eq 5, deduced by the transitivity property. This
transformation is valid under two-valued logic but not under three-val-
ued logic. For example, under three-valued logic, if salary is empty
(unknown) and bonus has the value 7, then the truth value of salary eq
5 and bonus eq salary would be unknown, but the truth value of
bonus eq 5 would be false. Since transitive comparisons were consid-
ered necessary for defining other operations, such as sorting and group-
ing, the value comparison operators were defined using two-valued logic.

The semantics of the logical operations and, or, and not in the presence of
empty sequences are constrained by compatibility with XPath Version 1. In
XPath, a predicate expression that returns an empty sequence is interpreted
as false (as a failed test for the existence of something). For example, the

114 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 114

query //employee[secretary] searches for employee elements that have a
secretary subelement; if the predicate expression secretary returns an
empty sequence, the predicate is considered to be false. For compatibility
with XPath Version 1, the and and or operators of XQuery (and the not
function) treat the empty sequence as having a Boolean value of false.

In languages such as SQL that are based on three-valued logic, queries do
not generally return data for which the search-condition evaluates to the
unknown truth value. Therefore, the distinction between two-valued and
three-valued logic is somewhat subtle. The difference can be illustrated
by a query that performs negation on an intermediate result. Consider
how the following two queries would operate on a car element that has
no mileage subelement:

Query: Find cars whose mileage is less than or equal to 25.

//car[mileage <= 25]

Query: Find cars for which it is not true that mileage is greater than 25.

//car[not(mileage > 25)]

In SQL, if the value of mileage is null, the predicates mileage <= 25
and mileage > 25 both return the unknown truth value. The inverted
predicate not(mileage > 25) also returns the unknown truth value.
According to this logic, the car with no mileage subelement would not
be returned by either query.

In XQuery, if mileage is an empty sequence, the predicates mileage <=
25 and mileage > 25 both return false, and not(mileage > 25) is
true. Therefore the car with no mileage subelement would be returned
by the second query above but not by the first query.

A language that wishes to define three-valued and, or, and not operators
needs to specify the truth tables for these operators. One approach is to
adopt the rule that and, or, and not return the unknown truth value if any
of their operands is the unknown truth value. SQL, however, adopts a
different approach, represented by the truth tables in Figure 2.3.

WATERSHED ISSUES 115

Katz_C02.qxd 7/23/03 2:46 PM Page 115

Figure 2.3 Truth Tables in SQL

If an XQuery application needs three-valued logic, it can easily be simu-
lated by writing functions that use the built-in XQuery operators. The
value comparison operator eq can be supplemented by a function, possibly
named eq3, that returns the empty sequence if either of its operands is
empty. This function, and functions that implement the SQL truth tables
of Figure 2.3, are illustrated in Listing 2.2.

Listing 2.2 Defined Function eq3 and Others Implementing the Truth Tables of Figure 2.3

define function eq3($a as xdt:anyAtomicType?, $b as
xdt:anyAtomicType?)

as xs:boolean?
{
if (empty($a) or empty($b)) then ()
else ($a eq $b)
}

define function not3($a as xs:boolean?)
as xs:boolean?
{
if (empty($a)) then ()
else not($a)
}

define function and3($a as xs:boolean?, $b as xs:boolean?)
as xs:boolean?
{
if ($a and $b) then true()
else if (not3($a) or not3($b)) then false()
else ()
}

define function or3($a as xs:boolean?, $b as xs:boolean?)
as xs:boolean?
{
if ($a or $b) then true()
else if (not3($a) and not3($b)) then false()
else ()
}

 AND T F ?
 T T F ?
 F F F F
 ? ? F ?

 OR T F ?
 T T T T
 F T F ?
 ? T ? ?

 NOT
 T F
 F T
 ? ?

116 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 116

It is worth mentioning that XML Schema defines a special attribute
named xsi:nil. This attribute affects only the process of Schema valida-
tion. It permits an element to be accepted as valid with no content, even
though the element has a declared type that requires content. The
xsi:nil attribute is treated by XQuery as an ordinary attribute. Its pres-
ence or absence does not affect the semantics of XQuery operators.

Issue 3: What Is a Type?

Query languages use types to check the correctness of queries and to
ensure that operations are being applied to data in appropriate ways. The
specification and handling of types has been one of the most complex and
contentious parts of the XQuery design.

XML Schema provides a set of built-in types and a facility for defining and
naming new types. In XML Schema, the name of an element or attribute
is distinguished from the name of its type. For example, a schema might
define an element named shipto with the type address. This means that
the content of the shipto element is determined by the declaration of the
address type—possibly consisting of subelements such as street, city,
state, and zipcode. However, not all elements have a named type. For
example, a schema might define an element named offering to contain
subelements named product and price without giving a name to the type
of the offering element. In this case, the offering element is said to
have an anonymous type. Furthermore, an offering element might be
defined to have different types in different contexts—for example, an
offering in a university might be different from an offering in a cat-
alog. XML Schema also allows an element, an attribute, and a type all to
have the same name, so it is necessary to distinguish somehow among dif-
ferent usages of a name (for example, to distinguish an element named
price from an attribute named price). All the names defined in a schema
belong to an XML namespace called the target namespace of the schema.

XQuery allows the names of elements, attributes, and types that are
defined in a schema to be used in queries. The prolog of a query explicitly
lists the schemas to be imported by the query, identifying each schema by
its target namespace. Importing a schema makes all the names defined in
that schema available for use in the query. An error results if two or more
imported schemas define the same name with conflicting meanings. The

WATERSHED ISSUES 117

Katz_C02.qxd 7/23/03 2:46 PM Page 117

prolog of a query can also bind a namespace prefix to the target namespace
of an imported schema. For example, the following statement imports a
schema and assigns the namespace prefix po to its target namespace:

import schema namespace po = "http://example.org/purchaseOrder"

As noted earlier, each element or attribute node in the Query data model
has a type annotation that identifies the type of its content. For example,
a salary element might have the type annotation xs:decimal, indicat-
ing that it contains a decimal number. A type annotation identifies either
a built-in Schema type, such as xs:decimal, or a type that is defined in
some imported schema. For example, a schema might define the type
hatsize to be derived from xs:integer by restricting its values to a
certain range. Element and attribute nodes acquire their type annotation
through a process called schema validation, which involves comparing the
content of the node to the schema declaration for nodes with that name.
For example, the element named hat might be declared in a schema to
have the type hatsize. If the content of a given element node with the
name hat conforms to the definition of the type hatsize, the element
node receives the type annotation hatsize during schema validation;
otherwise, schema validation fails, and an error is reported. Schema vali-
dation may be performed on input documents before query processing,
and on newly constructed elements and attributes during query process-
ing. Validation of nodes against user-provided schemas is an optional
feature of an XQuery implementation. In an implementation that does
not support this feature, all element nodes have the generic type annota-
tion xs:anyType.

Several places in the XQuery syntax call for a reference to a type. One of
these is a function definition, which specifies the types of the function
parameters and result. Other XQuery expressions that require type refer-
ences include instance-of, typeswitch, and cast expressions. In these
expressions, it is not always sufficient to refer to a type simply by its
name. For example, when declaring the type of a function parameter, the
user may wish to specify an element with a particular name, or with a par-
ticular type annotation, or both. Alternatively, the type of a function
parameter might be an unrestricted element node, or some other kind of
node such as an attribute or text node, or an unrestricted atomic value.
Furthermore, since all XQuery values are sequences, we may want a type

118 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 118

reference to indicate a permissible number of occurrences, such as exactly
one, zero or one, zero or more, or one or more.

Specifying the syntax of a type reference in XQuery was a difficult and
important part of the language design. Although XML Schema itself has
all the necessary features, embedding fragments of XML Schema lan-
guage in a query was not considered appropriate, because Schema syntax
is quite verbose and is inconsistent in style with XQuery. The working
group considered inventing a new type-definition syntax with power
comparable to that of XML Schema, but rejected this approach because it
would have added a great deal of complexity to XQuery and would have
duplicated the features of an existing W3C recommendation.

In the end, the working group defined a type reference syntax containing
a few keywords and symbols to give users a limited degree of flexibility in
defining types. The main features of this type reference syntax are listed
below:

� An atomic type is referred to simply by its QName, such as
xs:integer or po:price. The generic name xdt:anyAtomic-
Type refers to a value of any atomic type.

� Element nodes can be referred to in any of the following ways:
ⓦ element(N, T) denotes an element with name N and type

annotation T. For example, element(shipto, address)

denotes an element named shipto whose type annotation is
address.

ⓦ element(N, *) denotes an element with name N, regardless
of its type annotation.

ⓦ element(*, T) denotes an element with type annotation T,
regardless of its name.

ⓦ element(N) denotes an element whose name is N and whose
type annotation is the (possibly anonymous) type declared in
the imported schema for elements named N.

ⓦ element(P), where P is a valid schema “path” beginning with
the name of a global element or type and ending with one of its
component elements, denotes an element whose name and type
annotation conform to that schema path. For example, element
(order/shipto/zipcode) denotes an element named zipcode

WATERSHED ISSUES 119

Katz_C02.qxd 7/23/03 2:46 PM Page 119

that has been validated against the type definition in the schema
context order/shipto.

ⓦ element() denotes any element, regardless of its name or type
annotation.

� Attribute nodes can be referred to in a similar way to element
nodes, except that attribute names are prefixed by an @ sign. For
example, attribute(@N, T) denotes an attribute node with
name N and type annotation T, and attribute() denotes any
attribute node, regardless of its name or type annotation.

� Other kinds of nodes can be referred to by keywords that indicate
the kind of node, followed by empty parentheses. For example,
text(), document(), comment(), and processing-instruction()
refer to any node of the named kind; node() refers to a node of any
kind; and item() refers to either a node or an atomic value.

� Any type reference may be followed by one of the following
occurrence indicators: * denotes a sequence of zero or more occur-
rences of the given type; + represents one or more occurrences;
and ? represents zero or one occurrence. The absence of an
occurrence indicator denotes exactly one occurrence of the given
type. For example, xs:integer? denotes an optional integer
value, and element(hatsize)* denotes a sequence of zero or
more elements named hatsize.

Occurrence indicators are often useful in defining the parameter types of
functions. For example, consider a function that classifies jobs into cate-
gories such as “Professional,” “Clerical,” and “Sales,” based on criteria
such as job title and salary. The definition of this function might be writ-
ten as follows, indicating that the function accepts an element named job
and returns a string:

define function job-category($j as element(job)) as xs:string

The job-category function defined above will raise an error if its argu-
ment is anything other than exactly one job element. This error might be
encountered by the following query:

for $p in //person return $p/name, job-category($p/job)

120 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 120

For any person in the input stream that has no job or more than one
job, this query will invoke the job-category function with an invalid
argument. This error could be avoided by making the job-category
function more flexible. The following definition uses the occurrence
indicator * on the function parameter, allowing the function to accept a
sequence of zero or more job elements:

define function job-category($j as element(job)*) as xs:string

Of course, the body of the job-category function must be written in
such a way that it returns an appropriate result for any argument that
matches the declared parameter type in the function definition.

If a function parameter is specified as an element node with a particular
name, such as element(shipto), the actual argument passed to the func-
tion can be an element that is in the substitution group of the named ele-
ment. Similarly, if a function parameter is specified as an element node
with a particular type, such as element(*, address), the actual argu-
ment passed to the function can be an element whose type is derived (by
restriction or by extension) from the named type.

Type references in XQuery are designed to be compatible extensions of
the node tests that are defined in XPath Version 1. For example, in
XPath Version 1, text() and comment() are valid node tests that can be
used in path expressions to select text nodes or comment nodes. The fol-
lowing path expression, valid in XPath Version 1, finds all text nodes
that are descendants of a particular contract element node:

/contract[id="123"]//text()

In XQuery, the following path expression uses an extended node test to
find all element nodes of type address that are descendants of a particu-
lar contract element node. Note that the type reference syntax in
XQuery is an extension of the node test syntax of XPath Version 1, and
that XQuery allows a type reference to serve as a node test in a path
expression.

/contract[id="123"]//element(*, address)

WATERSHED ISSUES 121

Katz_C02.qxd 7/23/03 2:46 PM Page 121

Issue 4: Element Constructors

One of the strengths of XQuery is its ability to construct new XML
objects such as elements and attributes. The syntax used to do this has
evolved considerably during the design of the language.

In the original Quilt proposal, a constructed element was denoted simply
by an XML start tag and end tag, enclosing an expression that repre-
sented the content of the element. The expression enclosed between the
tags was evaluated in the same way as any other Quilt expression. This
design was criticized because it resembled XML notation but was not
interpreted in the same way as XML notation, as illustrated by the fol-
lowing examples:

� <greeting>Hello</greeting>. In XML this is an element con-
taining character content. But in Quilt, Hello would be inter-
preted as a path expression and evaluated, unless it were denoted
as a string by enclosing it in quotes as follows:
<greeting>"Hello"</greeting>

� <animal>A <color>black</color> cat</animal>. In XML this
is an element with mixed content. But in Quilt it would be a syntax
error because the sequence of values inside the animal element is
not separated by commas. The Quilt equivalent of the given XML
expression would be as follows:
<animal>"A ", <color>"black"</color>, " cat"</animal>.

The working group decided that XQuery should provide a form of ele-
ment constructor that conforms more closely to XML notation. How-
ever, in the content of an element, it is necessary to distinguish literal text
from an expression to be evaluated. Therefore, in an XQuery element
constructor, an expression to be evaluated must be enclosed in curly
braces. For example:

� <price>123.45</price> is a constructed element named price,
containing a literal value.

� <price>{$retail * 0.85}</price> is a constructed element
whose content is computed by evaluating an expression.

122 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 122

The syntax described above is not identical to XML notation because it
uses the left-curly-brace character { to denote the beginning of an evalu-
ated expression, whereas in XML { is an ordinary character. If a left-
curly-brace is intended to be interpreted as an ordinary character in the
content of a constructed element, XQuery requires it to be doubled ({{).

In addition to an XML-like syntax for constructing elements, XQuery
provides an alternative syntax called a computed constructor that can be
used to construct elements with computed names as well as other kinds of
nodes. The use of computed constructors is illustrated by the following
examples:

� element {$name} {$content} constructs an element node with
a given name and content (of course, $name and $content can be
replaced by any valid XQuery expression).

� attribute {$name} {$content} constructs an attribute node
with a given name and content.

� document {$content} constructs a document node with a given
content.

� text {$content} constructs a text node with a given content.

The most complex and difficult issue in the design of XQuery construc-
tors turned out to be determining the type of a constructed element.
Since every node in the Query data model has a type annotation, it is nec-
essary to attach a type annotation to the node produced by an element
constructor. Since the type annotation of an element node indicates the
type of the element’s content, the first approach investigated by the work-
ing group was to derive the type annotation of the constructed node from
the type of its content. For example, the following element constructor
contains an integer-valued expression, so it seems natural to annotate the
resulting element node with the type xs:integer:

<a>{8}

The problem with this approach is that, by definition, elements are
assigned their type annotations by the process of schema validation. The
type assigned by schema validation may not be the same as the type of the

WATERSHED ISSUES 123

Katz_C02.qxd 7/23/03 2:46 PM Page 123

data from which the element was constructed. For example, if the element
in the above example were validated against a schema, it might receive an
annotation that is more specific than xs:integer, such as hatsize.

In some cases, the type assigned to an element by schema validation is
guaranteed to be different from the original type of its content. As an
example, consider the following element constructor:

<a>{1, "2"}

This element constructor contains an expression whose value is a
sequence of an integer followed by a string. However, XML provides no
way to represent this element in such a way that, after validation, its con-
tent is typed as an integer followed by a string. The XML representation
of this element is as follows:

<a>1 2

Depending on its definition in the relevant schema, this XML element
might be validated as containing one string, or two integers, or possibly a
more specific user-defined type such as two hatsizes. But there is no pos-
sible schema definition that will cause this element to be validated as con-
taining an integer followed by a string.

The designers of XQuery were confronted with the fact that a type anno-
tation based on the content of a constructed element is never guaranteed
to be correct after validation of the element, and in some cases is guaran-
teed to be incorrect. The working group tried hard to find a reasonable
rule by which the type of a constructed element could be derived from its
content in “safe and obvious” cases. After much study and debate, the
group found it impossible to define such a rule that satisfied everyone. As
a result, they decided that each constructed element in XQuery should be
automatically schema-validated as part of the construction process.

In order to perform schema validation on a constructed element, a valida-
tion mode must be specified. Validation mode can have one of the follow-
ing three values:

� strict requires that the given element name must be declared in
an imported schema and that the content of the element must
comply with its schema declaration.

124 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 124

� skip indicates that no validation is attempted for the given ele-
ment. In this mode, constructed elements are given the type anno-
tation xs:anyType, and constructed attributes are given the type
annotation xs:anySimpleType.

� lax behaves like strict if the element name is declared in an
imported schema, and like skip otherwise.

XQuery allows a query writer to specify the validation mode for a whole
query or for any expression nested within a query. By specifying lax vali-
dation, a user can allow the construction of ad hoc elements that are not
declared in any schema, and by specifying skip validation, a user can
avoid the performance overhead of validating constructed elements
entirely.

In addition to a validation mode, the process of schema validation for
an element requires a validation context. Validation context controls how
the name of the given element is matched against declarations in the
imported schemas. If the context is global, the element name is
matched against global (topmost) schema declarations. Alternatively,
the context may specify a path, beginning with a global element or type
declaration, within which the given element name is to be interpreted.
For example, the element zipcode might not match a global schema
declaration, but might match an element declaration within the context
PurchaseOrder/customer/shipto.

The outermost element constructor in a query is validated in the global
context unless the user specifies a different context. Each element con-
structor then adds the name of its element to the validation context for
nested elements. For example, if the outermost constructed element in a
query is named PurchaseOrder, then the immediate children of this ele-
ment have a validation context of PurchaseOrder.

Issue 5: Static Typing

As noted earlier, one of the basic principles of XQuery design is that the
processing of a query can include a static analysis phase in which some
error checking and optimization can be performed. By definition, static
analysis is performed on the query only and is independent of input data.
Some kinds of static analysis are clearly essential, such as parsing and

WATERSHED ISSUES 125

Katz_C02.qxd 7/23/03 2:46 PM Page 125

finding syntax errors. In addition, the working group saw some value in
taking advantage of schema information to infer the types of query
expressions at query analysis time. This kind of type inference is called
static typing. Chapter 4, “Static Typing in XQuery,” looks at this subject in
some depth.

Static typing offers the following advantages: (1) It can guarantee in some
cases that a query, if given valid input data, will generate a result that con-
forms to a given output schema; (2) It can be helpful in early detection of
certain kinds of errors such as calling a function with the wrong type of
parameter; (3) It can produce information that may be helpful in optimiz-
ing the execution of a query—for example, it may be possible to prove by
static analysis that the result of some expression is an empty sequence.

The static type of an expression is defined as the most specific type that
can be deduced for that expression by examining the query only, in the
absence of input data. The dynamic type of a value is the most specific type
assigned to that value as the query is executed. Note that static type is a
compile-time property of an expression, whereas dynamic type is a run-
time property of a value.

Static typing in XQuery is based on a set of inference rules that are used to
infer the static type of each expression, based on the static types of its
operands. Some kinds of expressions have requirements for the types of
their operands (for example, arithmetic operators are defined for numeric
operands but not for strings). Static analysis starts with the static types of
the “leaves” of the expression tree (simple constants and input data whose
type can be inferred from the schema of the input document). It then uses
inference rules to infer the static types of more complex expressions in
the query, including the query itself. If, during this process, it is discov-
ered that the static type of some expression is not appropriate for the con-
text where it is used, a type error is raised.

Type-inference rules are written in such a way that any value that can be
returned by an expression is guaranteed to conform to the static type
inferred for the expression. This property of a type system is called type
soundness. A consequence of this property is that a query that raises no
type errors during static analysis will also raise no type errors during execu-
tion on valid input data. The importance of type soundness depends some-
what on which errors are classified as “type errors,” as we will see below.

126 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 126

Figure 2.4 A Typical Type-Inference Rule

Figure 2.4 illustrates a type-inference rule used in XQuery.

Some inference rules use a notation (Type1 | Type2) to denote a type
that includes all the instances of type Type1 as well as all the instances of
type Type2. This inferred type has no name. It is an example of the fact
that, in many cases, the inferred static type of an expression can be given
only a structural description. XQuery 1.0 Formal Semantics [XQ-FS] uses
its own notation for the structural description of types, using operators
such as | (or), & (and), “,” (sequence), and ? (optional).

XML Schema also includes a notation for structural description of types.
The working group decided not to use the notation of XML Schema in
the type-inference rules in the XQuery formal semantic specification
because XML Schema notation is very verbose, and because not all types
inferred by the XQuery type inference rules are expressible in XML
Schema notation. For example, the rule named “Schema Component
Constraint: Element Declarations Consistent” [SCHEMA] prevents an
XML Schema type from containing two subelements with the same name
but different types. Similarly, the rule named “Schema Component Con-
straint: Unique Particle Attribution” prevents the definition of an XML
Schema type that cannot be validated without lookahead. The XQuery
type system does not have these constraints. As a result, unlike XML
Schema, the XQuery type system has the closure property (any type
inferred by the XQuery type inference rules is a valid type).

The structural type notation used in [XQ-FS] is used only in the formal
semantic specification and is not part of the syntax of XQuery as seen by
users. This decision was made to avoid adding complexity to the query
language, and because the working group did not wish to introduce a
user-level syntax that duplicated the facilities of XML Schema.

The working group spent considerable time on the issue of whether static
typing should be based on validated type annotations or on structural

statEnv � Expr0 : Type0

statEnv + varType(Var : Type0) � Expr1 : Type1

statEnv � let $Var := Expr0 return Expr1 : Type1
(LET-STATIC)

WATERSHED ISSUES 127

Katz_C02.qxd 7/23/03 2:46 PM Page 127

comparison. As an illustration of this issue, consider a function named
surgery that expects as one of its parameters an element of type sur-
geon. Suppose the type surgeon is defined to consist of a name and a
schedule. Is it an error if the surgery function is invoked on an element
that contains a name and a schedule but has not been schema-validated
as a surgeon? The working group decided that this should be a type
error. In addition to assigning a specific type annotation to an element,
schema validation may perform processing steps that are not otherwise
supported in the XQuery type system, such as checking pattern facets and
providing default attribute values.

Another question closely related to the preceding one is this: Is it a type
error if the surgery function is invoked on an element that has been
schema-validated as having the type brainSurgeon? In XQuery, this
function call is valid if the type brainSurgeon is declared in an imported
schema to be a subtype of (derived from) the type surgeon. In other
words, static type-checking in XQuery is based on validated type names
and on the type hierarchy declared in imported schemas.

Although the benefits of static typing are well understood in the world of
programming languages, extending this technology to the very complex
world of XML Schema proved to be a challenging task. Many of the fea-
tures of XML Schema, such as ordered sequences, union types, substitu-
tion groups, minimum and maximum cardinalities, pattern facets, and
two different kinds of inheritance, were difficult to assimilate into a sys-
tem of type-inference rules. Even after some simplifying approximations
(such as limiting cardinalities to zero, one, or multiple), the resulting set
of rules is quite complex.

XQuery is designed to be used in a variety of environments. Static typing
of a query is of greatest benefit when the expected type of the query result
is known in advance, the input documents and expected output are both
described by schemas, and the query is to be executed repeatedly. This
represents one usage scenario for XQuery, but not the only one. Some
queries may be exploratory in nature, searching loosely structured data
sources such as web pages for information of unknown types. Many XML
documents are described by a DTD rather than by a schema, and many
have neither a DTD nor a schema. Some XML documents may be
described by structural notations other than XML Schema, such as

128 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 128

RELAX-NG [RELAXNG]. In some cases, query inputs may be synthe-
sized directly from information sources such as relational databases
rather than from serialized XML documents.

To make XQuery adaptable for many usage environments, the language
was organized as a required subset called Basic XQuery and two optional
features called Schema Import and Static Typing. This approach keeps
Basic XQuery relatively simple and lowers the implementation cost of
the language in environments where the optional features are of limited
benefit.

Basic XQuery includes all the kinds of expressions in the full language.
However, a Basic XQuery implementation is not required to deal with
user-defined types and is not required to raise static type errors. In Basic
XQuery, the only types that are recognized are the built-in atomic types
of XML Schema, such as xs:string, xs:integer, and xs:date; the
derived duration types xdt:yearMonthDuration and xdt:dayTimeDu-
ration; and predefined generic types such as xdt:untypedAtomic and
xs:anyType. Basic XQuery might be used, for example, to query data
that is exported in XML format from a relational database whose
datatypes can be mapped into built-in XML types. When a Basic XQuery
implementation is used to query a document that has been validated
against an XML schema, the type annotations in the PSVI are mapped
into their nearest built-in supertypes (complex types are mapped into
xs:anyType, and derived atomic types such as hatsize are mapped into
their built-in base types such as xs:integer).

The first optional feature, Schema Import, provides a way for a query
to import a schema and to take advantage of type definitions in the
imported schema. For example, a query might import a schema contain-
ing the definition of the user-defined type hatsize, derived from
xs:integer. This query could then define a function that accepts a
parameter of type hatsize. Under the Schema Import feature, an
attempt to call this function with an argument that has not been schema-
validated as a hatsize is an error.

The second optional feature, Static Typing, defines a specific set of type
errors and requires conforming implementations to detect and report
these errors during query analysis. An XQuery implementation that does

WATERSHED ISSUES 129

Katz_C02.qxd 7/23/03 2:46 PM Page 129

not claim conformance to this feature can still do static query analysis in
its own way, for optimization or for error detection. Also, an implementa-
tion that does not claim conformance to Static Typing is still responsible
for detecting and reporting dynamic type errors. Any condition that will
necessarily lead to a run-time error can be reported as a static error at the
discretion of the implementation.

It is important to understand that an expression that raises a static type
error may nevertheless execute successfully on a given input document.
This is because the rules for static type inference are conservative and
require a static type error to be raised whenever it cannot be proven that
no possibility of a type error exists. For example, consider the following
function definition:

define function pay($e as element(employee)) as xs:decimal?
{ $e/salary + $e/bonus }

A user may want to execute this query against an XML document con-
taining records from a department in which every employee has at most
one bonus. However, the only schema available may be a company-wide
schema in which the declaration of the employee element allows multiple
(zero or more) bonus subelements. In this case, a system that conforms to
the Static Typing feature would be required to raise a static error,
although execution of the query on the given input data would have been
successful.

Conversely, a query that passes static analysis without error may still raise
an error at run-time. For example, consider the following expression,
where the variable $c is bound to a customer element:

$c/balance + $c/address

If the customer element has no schema declaration, the typed values of
the balance and address subelements of a given customer will be of type
xdt:untypedAtomic. Addition of two values of type xdt:untypedAtomic
does not raise a static type error—instead, at execution time the values are
converted to the type xs:double. If, at run-time, the value of $c/balance
or $c/address cannot be converted to xs:double, a dynamic error is
raised. In order to preserve the claim of “type soundness,” this kind of
error is not classified as a type error.

130 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 130

Before leaving the subject of static typing, it is worth discussing the influ-
ence that static typing has had on the syntax of the XQuery language.
Two kinds of XQuery expressions are present in the language solely in
order to support better static type inference. The first kind is the type-
switch expression, which is illustrated by the example below. The
expression in this example branches on the type of a variable named
$employee, computing total pay in one of three ways depending on
whether the employee is a salesperson, a manager, or a generic employee.

typeswitch ($employee)
case $s as element(*, salesperson)

return $s/salary + $s/commission
case $m as element(*, manager)

return $m/salary + $m/bonus
default $d

return $d/salary

The dynamic behavior of a typeswitch expression can always be obtained
by using two other kinds of expression called an if-then-else expression
and an instance-of expression. For example, the typeswitch expression
in the preceding example might have been expressed as follows:

if ($employee instance of element(*, salesperson))
then $employee/salary + $employee/commission
else if ($employee instance of element(*, manager))
then $employee/salary + $employee/bonus
else $employee/salary

The dynamic (run-time) behavior of the two expressions above is identi-
cal. However, the first example will pass static type-checking because it
can be proven statically that the variable $s can only be bound to an ele-
ment of type salesperson, and therefore $s/commission will always
return a valid result. The second example, on the other hand, is consid-
ered to be a static type error because static analysis cannot predict which
branch of the conditional expression will be executed, nor can it prove
that the subexpression $employee/commission will not be evaluated for
some employee element that is not of type salesperson.

The second type of expression that was added to XQuery solely in sup-
port of static typing is the treat expression. To understand the use of
treat, consider the following expression, in which the variable $a is
bound to an element whose static type is Address:

$a/zipcode

WATERSHED ISSUES 131

Katz_C02.qxd 7/23/03 2:46 PM Page 131

Suppose that only an element of type USAddress, a subtype of Address,
is guaranteed to have a zipcode. In this case, the above expression is a
static error, since static analysis cannot guarantee that the element bound
to $a has the type USAddress. To avoid this static error, the Static Typing
feature requires this expression to be written as follows:

($a treat as element(*, USAddress))/zipcode

At query analysis time, the static type of the treat expression is ele-
ment(*, USAddress), which enables the zipcode to be extracted without
a static type error. The treat expression serves as a “promise” that the
variable $a will be bound to an element of type USAddress at execution
time. At execution time, if $a is not in fact bound to an element of type
USAddress, a dynamic error is raised.

As in the case of typeswitch, the dynamic behavior of treat can be sim-
ulated by using a combination of an if-then-else expression and an
instance-of expression. For example, the dynamic behavior of the pre-
ceding expression can be simulated as follows:

if ($a instance of element(*, USAddress))
then $a/zipcode
else error("Not a USAddress")

Although this expression simulates the dynamic behavior of the preced-
ing treat expression, it is nevertheless considered to be a static error
because the compiler cannot predict which branch of the if-then-else
expression will be executed. (Chapter 4 provides more details about static
type-checking in XQuery.)

Issue 6: Function Resolution

The signature of a function is defined by its expected number of parame-
ters and by the respective types of those parameters. Many modern query
and programming languages support function overloading, which per-
mits multiple functions to be defined with the same name but with differ-
ent signatures. The process of choosing the best function for a given
function call based on static analysis of the argument types is called func-
tion resolution. Some languages also support polymorphism, a form of
function overloading in which static analysis of a function call does not

132 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 132

necessarily choose a single function—instead, it can result in a list of
applicable functions from which the most specific function is selected at
execution time on the basis of the dynamic types of the actual arguments.

The designers of XQuery made an early decision not to support function
overloading. The reasons for this decision were as follows:

� Despite the advent of schemas, much XML data is untyped. For
the convenience of the user, XQuery automatically coerces
untyped data to a specific type based on the context where it is
used. In order for this feature to work, each function-name must
correspond to a single, well-defined signature. For example, con-
sider the untyped element <a>47. If this element is passed to
a function that expects an element, it retains its character as an
element; if it is passed to a function that expects a decimal, the
value 47 is extracted and treated as a decimal value; if it is passed
to a function that expects a string, the value 47 is extracted and
treated as a string. This flexibility in treatment of untyped data
would not be possible if three functions could have the same
name while one takes an element parameter, one takes a decimal
parameter, and one takes a string parameter.

� The type system of XQuery is based on XML Schema and is quite
complex. It has two different kinds of type inheritance: derivation
by restriction and derivation by extension. In addition, it has the
concept of substitution groups, which allow one kind of element
to be substituted for another on the basis of its name. The rules
for casting one type into another and for promotion of numeric
arguments are also complex. They are made even more complex
by XPath Version 1 compatibility rules, which come into play
when XPath Version 2 (a subset of XQuery) is used in “XPath
Version 1 Compatibility Mode” (as it is when embedded in
XSLT). The designers of XQuery were not eager to add another
increment of complexity on top of the rules they inherited from
XML Schema and XPath. In the end, it was decided that the
added complexity of function overloading outweighed its benefit,
at least for the first version of XQuery.

Despite the decision not to support function overloading, it was neces-
sary for XQuery to support the XPath Version 1 core function library,

WATERSHED ISSUES 133

Katz_C02.qxd 7/23/03 2:46 PM Page 133

which already contained some overloaded functions. Support for these
functions was reconciled with the XQuery design in the following ways:

� Some XPath Version 1 functions take an optional parameter. For
example, the name function returns the name of a node, but if
called with no argument, it returns the name of the context node.
In XQuery, this kind of function is treated as two functions with
the same name but with different arity (number of parameters).
The built-in function library of XQuery contains several sets of
functions that differ only in their arity. This form of overloading is
permitted in the built-in function library but not among user-
defined functions. It does not complicate the rules for function
resolution, since a function is always uniquely identified by its
name and its arity.

� Some XPath Version 1 functions can accept several different
parameter types. For example, the string function of XPath Ver-
sion 1 can turn almost any kind of argument into a string. In
XQuery, functions like string have a generic signature that
encompasses all their possible parameter types. For example, the
signature of the XQuery string function is string($s as

item?). The type item? denotes an optional occurrence of a node
or atomic value. The description of the string function specifies
how it operates on arguments of various types that satisfy its sig-
nature. The technique of creating a function with a generic signa-
ture is also available to users for creating user-defined functions.
The body of such a function can branch on the dynamic type of
the actual argument.

One painful consequence of the decision not to support function over-
loading was the loss of polymorphism. Polymorphism is convenient
because it facilitates introducing new subtypes of existing types that
inherit the behavior of their supertypes where appropriate and special-
ize it where necessary. A polymorphic language allows a query to iterate
over a heterogeneous sequence of items, dispatching the appropriate
function for each item based on its dynamic type. For example, in a
polymorphic language, a generic function named postage might be
defined for elements of type Address, with specialized postage func-
tions for elements of type USAddress and UKAddress that are derived
from Address.

134 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 134

Although XQuery does not support true polymorphism, the designers
wished to make it possible and reasonably convenient for users to simu-
late a form of polymorphism. This was accomplished by the following
rule: Any function can be invoked with an argument whose dynamic type
is a subtype of the expected parameter type. When this occurs, the argu-
ment retains its original dynamic type within the body of the function.

This rule makes it possible for a user to write functions such as the
postage function shown in Listing 2.3, which invokes one of several more
specialized functions depending on the dynamic type of its argument:

Listing 2.3 Function Simulating a Form of Polymorphism

define function postage($a as element(*, Address)) as xs:decimal
{
typeswitch($a)

case $usa as element(*, USAddress)
return us-postage($usa)

case $uka as element(*, UKAddress)
return uk-postage($uka)

default
return error("Unknown address type")

}

The postage function can be used in a query that iterates over a set of
addresses of mixed type. However, if a new type named GermanAddress
is introduced that is also derived from the Address type, it is necessary to
add a new case to the body of the postage function, since XQuery will
not automatically dispatch a specialized function for the new type.

It is worth considering whether function overloading could be intro-
duced in a later version of XQuery. The main barrier to the introduction
of this feature would be the implicit coercions of function parameters
that are defined in XQuery. As noted above, untyped data can be coerced
into either a string or a number, depending on context. If it were possible
to define two functions with the same name that respectively take a string
parameter and a numeric parameter, it would be necessary to define a pri-
ority order among the possible coercions, in order to resolve an ambigu-
ous function call. This could certainly be done. If function overloading is
introduced in a future version of XQuery, users will need to exercise care
in the evolution of their function libraries to ensure that existing queries
continue to run successfully.

WATERSHED ISSUES 135

Katz_C02.qxd 7/23/03 2:46 PM Page 135

Issue 7: Error Handling

In general, XQuery expressions return values and have no side effects.
However, some special consideration is needed for error cases. For
example, what should be the value of an expression that contains a divi-
sion by zero?

One approach that the working group considered was to define a special
error value in the Query data model, to be returned by all expressions that
encounter an error. The error value would have its own error type that is
different from all other types. In this approach, for example, the static
type of a double-precision arithmetic expression would be (double |
error) rather than simply double. After some study, the group decided
that including a special error value (and error type) in the Query data
model complicated the semantics of the language and made it difficult to
distinguish one kind of error from another.

The approach finally adopted for handling dynamic errors in XQuery is
to allow an expression either to return a value or to raise a dynamic error.
An expression that raises an error is not considered to return a value in
the normal sense. Therefore dynamic errors are handled outside the
scope of the type system. An error carries with it an ordinary value (of any
type) that describes the error. A function named error is provided that
raises an error and attaches the argument of the function to the error as a
descriptive value.

Propagation of dynamic errors through XQuery expressions is handled
by a general rule and some special rules that apply to specific kinds of
expressions. The general rule is that if the operands of an expression raise
one or more dynamic errors, the expression itself must also raise a
dynamic error. Which of several operand errors is propagated by an
expression is not specified. If one operand of an expression raises an error,
the expression is permitted, but is not required, to evaluate its other
operands. For example, in evaluating the expression "Hello" + (length
* width * height), an XQuery implementation can raise an error as
soon as it discovers that "Hello" is not a number.

The special error-handling rules for certain kinds of expressions are
intended to make these expressions easier to optimize and more efficient
to implement. These rules have the effect of making the result of an

136 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 136

XQuery expression non-deterministic in a certain limited sense. In some
cases, an expression may either return a result or raise an error. However,
if an expression returns a result, the result is always well defined by the
semantics of the language. The circumstances in which non-determinis-
tic handling of errors is permitted are as follows:

� If one operand of and is false and the other operand raises an
error, the and operator may either return false or raise an error.

� If one operand of or is true and the other operand raises an error,
the or operator may either return true or raise an error.

� The result of a quantified expression may depend on the order of
evaluation of its operands, which may vary from one implementa-
tion to another. As an example, consider the expression some vari-
able in range-expr satisfies test-expr. If range-expr contains a
value for which test-expr is true and another value for which test-
expr raises an error, the quantified expression may either return
true or raise an error. Similarly, in the universally quantified
expression every variable in range-expr satisfies test-expr, if
range-expr contains a value for which test-expr is false and
another value for which test-expr raises an error, the quantified
expression may either return false or raise an error.

� Since some comparison operators, such as =, are defined to
include an implicit existential quantifier, these operators are made
non-deterministic by the above rules. For example, the expression
(47, 3 div 0) = 47, which compares a sequence of two values to
a single value, might either return true or raise an error.

� The Effective Boolean Value of an expression is defined to be
true if the expression returns a sequence containing more than
one item. But if an error is raised during evaluation of the items in
such a sequence, the Effective Boolean Value computation may
either return true or raise an error.

� If a function can evaluate its body expression without evaluating
one of its arguments, the function is allowed, but not required, to
evaluate that argument. If such an argument contains an error, the
function may either raise an error or return the value of its body
expression.

An ideal language would be both deterministic and efficient in execution.
As illustrated by some of the preceding examples, the presence of

WATERSHED ISSUES 137

Katz_C02.qxd 7/23/03 2:46 PM Page 137

sequences in the Query data model leads to some tension between the
goals of determinism and efficiency in XQuery. In general, this tension
has been resolved in favor of efficiency for queries that contain errors;
however, a query that contains no errors must always return a determinis-
tic result.

Users can protect themselves against some kinds of errors by using an
if-then-else expression, which evaluates one of two subexpressions
(called “branches” here) depending on the Boolean value of a test expres-
sion. The if-then-else expression is defined in such a way that it evalu-
ates only the branch that is selected by the test expression; therefore
errors in the other branch are ignored. By using an if-then-else
expression, a query can control the value that is returned when an error
condition is encountered. For example, a user could guard against divi-
sion by zero by the following expression, which returns an empty
sequence rather than raising an error if the divisor is zero:

if ($divisor ne 0) then $dividend div $divisor else ()

The working group discussed a proposal for a “try/catch” mechanism
similar to that used in the Java language, which would have allowed
expressions at various levels of the query hierarchy to “catch” errors
raised by nested expressions. An expression might specify “handlers” for
various kinds of errors encountered in its operands, and in some cases
might be able to recover from these errors rather than propagating them.
In the end, this approach was considered to be too complex for the first
version of XQuery. The working group may revisit this proposal in a
future version of the language.

Issue 8: Ordering Operators

Since all values in XQuery are ordered sequences, operators for control-
ling the order of a sequence are of considerable importance to the language.
All of the operators of XQuery return their results in a well-defined order.
For example, path expressions and the union and intersect operators
always return sequences of nodes in document order. Of course, the
ordering of the sequences returned by various expressions in a query is not
always essential to the meaning of the query. The cost of evaluating a
sequence may depend strongly on the order in which it is evaluated, due to

138 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 138

the organization of physical storage or the availability of access aids such
as indexes. If the order of some result is not important, the query writer
should have some way to say so, thus giving the implementation the flexi-
bility to generate the result in the fastest or least expensive way.

For a time, the working group experimented with “unordered” versions
of various operators. In the end, it was decided that the XQuery function
library should include a general-purpose function named unordered.
The unordered function can be applied to any sequence, and it returns
the same sequence in a non-deterministic order. In effect, the unordered
function signals an optimizing compiler that its argument expression can
be materialized in any order that the optimizer finds convenient. Obvi-
ously, applying the unordered function to an expression E can have
implications for the ordering properties of expressions that are nested
inside E or that use E as an operand, and XQuery implementations are
free to take advantage of these implications.

XQuery also needs to provide a way for users to specify a particular
order for the items in a sequence. In fact, the result of a query may be a
hierarchy of elements in which an ordering needs to be specified at sev-
eral levels of the hierarchy. The working group explored two alternative
approaches to this problem.

The first approach was to provide a general-purpose operator called sort
by that could be applied to any expression to specify an order for the
result of the expression. This might be called the “independent sorting”
approach because sort by is an operator that can be applied to any
sequence, and is independent of any other operator. In this approach, the
meaning of E1 sort by E2 is defined as follows: For each item in the
result of expression E1, the expression E2 is evaluated with that item as
the context item. The resulting values are called sort keys. The items
returned by E1 are then arranged in an order that is controlled by their
respective sort keys. Options are provided that allow the user to specify
primary and secondary sort keys, ascending or descending order, place-
ment of items whose sort key is empty, and other details.

The independent sorting approach is illustrated by the following
example, in which a query searches its input for employees in a partic-
ular department, and returns them in alphabetical order by their

WATERSHED ISSUES 139

Katz_C02.qxd 7/23/03 2:46 PM Page 139

names. In this example, the sort by operator is applied to a path
expression.

//employee[dept = "K55"] sort by name

The independent sorting approach has two important disadvantages.
First, it can only specify an ordering for a sequence based on sort keys
that are actually present in the sequence. Suppose, for example, that a
query is intended to return the names of all employees in a particular
department, in the order of their salaries, but not to return the actual
salaries. This query, while not impossible under the independent sorting
approach, is not as straightforward as the previous example. It might be
expressed as follows:

for $e in //employee[dept = "K55"] sort by salary
return $e/name

The difficulty of expressing an ordering by the independent sorting
approach becomes greater if the sort key is computed from two or more
bound variables but is not included in the query result. As an example of
this problem, a query might need to join employee elements with their
respective department elements, and sort the result according to the
ratio between the employee’s salary and the department’s budget, but not
include this ratio in the final output. Such a query is difficult (but not
impossible) to express with an independent sort by operator.

The second disadvantage of the independent sorting approach is that it
separates iteration and ordering into two separate syntactic constructs.
The result of an iteration might be processed in various ways, combined
with other results, given a new name, and finally sorted. The most effi-
cient way to process such a query might be to perform the initial iteration
in the order required for the final result. However, the specification of
this ordering may be syntactically distant from the iteration, and it may
not be expressed in a way that is easy for an implementation to use in
optimizing the iteration.

Another ordering approach that the working group investigated and ulti-
mately adopted consists of combining the ordering expression with the
expression that controls iteration. The iteration expression in XQuery
was originally called a “FLWR” expression because of its keywords for,
let, where, and return. An order by clause was added to this expression

140 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 140

between the where and return clauses, changing the name of the expres-
sion to “FLWOR.” Positioning the order by clause inside the FLWOR
expression gives it access to the bound variables that control the iteration,
even though the values bound to these variables may not ultimately be
returned. Associating the ordering directly with the iteration also makes
it easier for a system to implement the iteration efficiently. The disadvan-
tage of this approach is that an ordering must always be expressed in the
form of a FLWOR expression, even though it would not otherwise
require an explicit iteration.

The advantages and disadvantages of the “ordered FLWOR” approach
can be illustrated by repeating the two preceding example queries. The
query that returns all the employees in a given department, sorted by
name, can be expressed as follows (note that it now requires an explicit
iteration, which was not needed in the “independent sorting” approach):

for $e in //employee[dept = "K55"]
order by $e/name
return $e

Similarly, the query that returns names of employees in a given depart-
ment, ordered by their salaries but without returning the salaries, can be
expressed as follows:

for $e in //employee[dept = "K55"]
order by $e/salary
return $e/name

The choice between the “independent sorting” approach and the
“ordered FLWOR” approach is not obvious. The working group consid-
ered including both approaches, but decided not to do this on the
grounds that the two alternatives are redundant and potentially confus-
ing. In the end, the working group decided to include only the “ordered
FLWOR” approach to control ordering of results in XQuery.

Conclusion

The design of XQuery has been a process of resolving the tensions
between conflicting goals. It has been a slow process, and compromise
has frequently been necessary.

CONCLUSION 141

Katz_C02.qxd 7/23/03 2:46 PM Page 141

The designers of XQuery did not begin with a blank slate. The Query
data model was largely dictated by XML itself and by related W3C Rec-
ommendations such as XML Namespaces. The design of the language
was also constrained by compatibility with existing standards such as
XPath and XML Schema. Reconciling these constraints was not straight-
forward—for example, XPath Version 1 has only four types and a rather
loose set of rules for type conversions, whereas XML Schema has forty-
four built-in atomic types, a complex syntax for defining new types, and a
strict set of rules for type validation.

As a general-purpose query language, XQuery needs to support a variety
of usage modes. It needs to operate on untyped documents as well as on
documents that are described by schemas and by DTDs. It needs to oper-
ate on individual XML files, on large repositories of pre-validated docu-
ments, on XML data synthesized from sources such as relational
databases, and on streaming XML data. It needs to support applications
in which all types are known and static typing guarantees are important,
as well as exploratory queries in which the expected type of the result is
not known in advance. It needs to support precise and reproducible
queries as well as approximate searches, such as searches for synonyms of
a given word. In order to span these modes of use while keeping the entry
cost of an implementation as low as possible, the working group organ-
ized XQuery as a basic language and a set of optional features.

The Query working group did not conduct its work in isolation. All
changes to XPath were discussed and approved jointly by the Query
working group and the XSLT working group, since XPath is embedded
in both the XQuery and XSLT languages. The Query working group
consulted frequently with the Schema working group on issues such as
date/time arithmetic, which required two new subtypes to be derived
from the duration type. Internationalization aspects of XQuery were
designed in cooperation with the Internationalization (I18N) working
group. Suggestions on XQuery requirements and features were received
from other working groups and individuals from time to time.

During the design of XQuery, the working group typically had a mem-
bership of between thirty and forty members, representing around
twenty-five companies. These representatives formed a diverse group,
with backgrounds ranging from relational database management to
library science, and included the designers of several query languages.

142 CHAPTER 2 � INFLUENCES ON THE DESIGN OF XQUERY

Katz_C02.qxd 7/23/03 2:46 PM Page 142

About Us | Advertise On InformIT | Contact US |Site Map | Book Registration © 2003 Pearson Education, Inc. InformIT Division. All rights reserved. Legal Notice���Privacy Policy

����������	
���������������	������������	���
���������

����������		
���	����	���

Some were theoretical in their orientation, and others were more prag-
matic. Some represented software vendors and some represented the user
community. The world’s largest software companies were represented, as
were several new startup companies.

The working group conducted weekly conference calls and held a face-
to-face meeting about every six weeks. Subgroups were formed to deal
with specialized topics such as full-text search and the core function
library. As is customary in the W3C, the working group operated by a
process of consensus building, in which design alternatives were explored
and decisions were made only after a consensus was reached (as deter-
mined by the chair). Design progress was documented in a series of work-
ing drafts that described the language in general, the data model, the
function library, the formal semantics of the language, and a set of use
cases. Each of these working drafts was republished on the working
group web page about every three months. Throughout this process,
public feedback was invited, and the members of the working group
responded to public comments in online forums. At all times, the work-
ing group maintained a prototype parser based on the latest XQuery
grammar.

At the time of this writing, the broad outline of XQuery Version 1 is rea-
sonably stable, and the working group is engaged in editing the details of
the language specification. Because of a strong desire to publish a stable
recommendation as soon as possible, it is likely that several important
features will not be included in XQuery Version 1. Examples include an
update facility, text search features such as stem-matching and relevance
ranking, a view definition facility, and bindings to specific host languages
such as Java. These features are strong candidates for inclusion in a future
version of XQuery.

The design process used by the Query working group is probably not the
fastest way to design a query language, and languages designed by large
committees are not often noted for elegance and simplicity. Nevertheless,
the members of the working group hope that their diverse backgrounds
and interests have contributed to making XQuery robust for a broad
spectrum of usage environments. Time and experience will provide a
measure of their success.

CONCLUSION 143

http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://informit.com/content/index.asp?product_id={C4E463B7-6CD6-4EA1-A920-3617A2B453A1}
http://www.informit.com/about/
http://www.informit.com/about/mediakit/index.asp
http://www.informit.com/about/contact_us/index.asp
http://www.informit.com/sitemap/index.asp
http://www.informit.com/member/titles.asp
http://www.informit.com/about/legal.asp
http://www.informit.com/about/privacy.asp

