Home > Articles > Programming > Java

Enterprise Testing in Java

Cédric Beust and Hani Suleiman explain just what is meant by "enterprise," then go on to examine a number of enterprise components and patterns, and outline the testing techniques and approaches that can be used to ensure a growing library of tests, both unit and functional.
This chapter is from the book

Before we delve into the issues surrounding enterprise testing in Java, it's important to define exactly what we mean by enterprise.

It's hard to conceive of a word with as many meanings and connotations (and misconceptions!) as enterprise in Java. For many, this word is tied to the usage of the Java Enterprise Edition (J2EE, or its current incarnation, Java EE), whose APIs enable us to bless our applications with the enterprise stamp. For others, enterprise applications have specific features regardless of what APIs or even specific languages are used.

An example of using the enterprise API is an intranet application that manages a fixed set of entities, with its own backing store. It is likely that this application has a Web-based UI and that it uses some combination of servlets, JSP pages, and a persistence mechanism. In this example, the use of the ubiquitous term refers only to the API usage, and it is a relatively simple matter to ensure that this application can be tested easily, if one uses the right tools for the job.

Another example is an integration project in which a new middle tier is being added between two existing legacy systems, with the hope of slowly phasing out the old back end. This new layer has to be able to encapsulate the mapping between the two legacy systems, but more often than not, it is not allowed to modify either of the legacy systems. The mapping will likely be complex and require orchestration between a number of other external systems. In this case, we are much less likely to achieve our ideal of easy, quick-to-run unit tests and are far more likely to benefit from integration and functional tests.

That is not to say that enterprise projects cannot benefit from unit tests. It is also almost always possible to break down components into small enough pieces that meaningful unit tests can be derived, and all three types of tests go together hand in hand.

This chapter and the following one discuss testing issues with both definitions of enterprise. We need to be aware of a number of key concepts and issues when testing enterprise applications. These issues are not concerned with APIs but rather with the very nature of enterprise systems: complex integration issues, legacy system support, black-box testing, and so on. Generally, the assumption is that we have either a body of existing code that we need to integrate with or a system that is already in use but needs tests. Once we've established this foundation, the following chapter will discuss how to test specific J2EE or Java EE components.

Before we start, here's a brief recap of the different types of tests.

  • Unit tests: A unit test tests an individual unit in the system in isolation. Unit tests run very quickly since they have little to no start-up costs, and almost no external dependencies.
  • Functional tests: A functional test focuses on one piece of functionality. This usually involves interactions between different components.
  • Integration tests: An integration test is an end-to-end test that exercises the entire stack, including any external dependencies or systems.

A Typical Enterprise Scenario

To illustrate the concepts around enterprise integration and functional testing, it's helpful to examine a real-world example. Let's say that we're consulting for a financial institution that has a legacy back-end database that houses most of its financial data. This database is one of the major bottlenecks of the system. The database is the central point for all financial trade information and is directly read by a number of front- and back-office applications.

In addition to that, some of the newer applications talk to a recently implemented abstraction layer. The abstraction layer grew organically based on the needs of specific applications and was not designed up front to be a middle tier. It has many idiosyncrasies and is so convoluted and complicated right now that it is no longer possible for new applications to easily use it.

The company decides that it is time to revamp the system. The goal is to introduce a middle tier designed from the outset to service most if not all applications that need data from the database. The database is split into a number of smaller instances and the data partitioned according to business requirements.

After the new system is implemented, it quickly proves itself profitable. Due to the phased approach of development, some applications still talk to the old legacy database, but a number have been ported over to the new system. The new system acts as a mediator between the various components and includes transformation components to ensure the correct data is still fed to legacy systems that expect the old formats and schemas.

Participants

Confused yet? You shouldn't be. Chances are that most developers have been in this situation during one project or another. Is this project bizarre or extreme in its complexity? Perhaps in the details it is, but the overall issues confronting it are fairly standard and commonplace. Let us step back a bit and see if we can identify the main participants:

  • The legacy database: the source of all evil
  • The shiny new API: the source of all good
  • Dozens of legacy systems: the nature of the business, neither good nor bad
  • Transformers: a necessary evil to allow components to talk to one another

This probably is starting to sound more familiar. Most if not all enterprise applications have to deal with legacy data at some point. This could be a migration issue, it could be a transformation issue, or it could be simply the introduction of a new layer on top of existing systems.

Testing Methodology

So what testing methodology does this successful new project employ? Judging by its success, it must consist of rigorous unit tests, countless integration and functional tests, nightly builds, email notifications of test failures—all the good developer testing habits that every successful project has.

As a matter of fact, it has none of these. The testing methodology of this project consists mainly of developers writing the odd class with a main(String[] args) method, running that against their data, and eyeballing the results. If it looks good, the functionality is deemed complete, the code checked in, and that's the end of that. Before a production release, there is a one- or two-week period where a QA team goes through the application and tries to find bugs. This is a manual process, but by the time it's done, the production release is in pretty good shape. The code is deployed, and everyone is happy.

The developers involved in this project range from experienced team leads to average developers. Almost all of the developers know about unit testing and have written a unit test in the past. The project did not mandate formalized test code, so there was no requirement to develop a test harness or automated tests.

Furthermore, all the developers agreed that it does not make sense to unit test the code. It is an integration project and therefore impossible to capture the important business aspects that need to be tested in a single unit test. The tests written would violate any number of popular testing recommendations; they would take a long time to run (many seconds), have complicated setup requirements (a few more seconds), and require a specific environment in that they would be highly dependent on a specific database schema, with specific data and stored procedures.

We suspect that this conclusion is far more common than many testing advocates would like us to believe. It is tempting to dismiss developers who are not obsessive about writing tests as ignorant or incompetent. Both assumptions are rather incorrect. JUnit, for example, currently makes it difficult to think in terms of integration or functional testing; there is a stigma of sorts attached to tests that have complicated environment requirements (and as a byproduct, slow running tests). Developers shy away from them. Yet for enterprise projects, such tests are far more valuable than unit tests. An integration project, unsurprisingly one would think, is exactly what integration tests excel at.

Issues with the Current Approach

So where's the problem? The project works and is a success, and everyone is happy. As the popular saying goes, if it ain't broke, why fix it? However, it turns out that the current approach has a number of inefficiencies.

QA Cycle Is Too Long

Currently, every release requires one or two weeks of full-time testing. Bugs discovered during this testing phase are added to a list of issues that should always be tested. The testing cycle often runs late if many issues are found, as many things need to be retested once the first batch of issues has been resolved.

Poor Test Capture

Developers currently write plenty of tests that are discarded as soon as the functionality being tested starts working. The main method is simply rewritten, or code is commented out and commented back in to reconfirm a test. There is no growing body of tests, nor is there a way to automate these informal tests.

Regression Testing Effort Grows Linearly

With every QA cycle, issues found are added to a growing master list of issues that need to be tested for every release. It becomes the QA team's job to perform all regression testing. This isn't such a problem with just a handful of releases, but the new system in place is expected to have a lifetime of at least five years, with many more enhancements and changes to come in future releases. Within a year or two, the mountain of regression tests is very likely to have a significant negative impact on the manual test cycle.

Lack of Unit Tests

The developers often argue that the system is too complex to be tested usefully through unit tests. This could well be true, in the general case. However, it is highly likely that a number of components or pieces of functionality do lend themselves well to unit testing. In a large, complex system, it can be a daunting task to identify these components, so the tendency is to stick to integration and functional tests.

Once we do have integration tests, unit tests more often than not will naturally emerge. Because the testing infrastructure is already in place, debugging an integration test is quite likely to result in a unit test, simply to try to narrow the scope of the bug.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020