THE ADDISON-WESLEY MICROSOFT TECHNOLOGY EERIEE)

“Welcome to one of the most venerable and trusted
Jranchises you could dream of in the world
of C# books—and probably far beyond!”

— From the Foreword by Mads Torgersen,
Principal Architect, Microsoft

MARK MICHAELIS

with

KEVIN BOST, fechnical Editor

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138219512
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138219512
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138219512

:'_'- Essential
."C# 12.0

Mark Michaelis

with Kevin Bost,
Technical Editor

v Addison-Wesley

Hoboken, New Jersey

Cover image: lam_Anuphone/Shutterstock

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks
or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all

capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of

the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023941980

Copyright © 2024 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
WWw.pearson.com/permissions/.

ISBN-13: 978-0-13-821951-2
ISBN-10: 0-13-821951-6
$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

To my family: Elisabeth, Benjamin, Hanna, and Abigail. You
have sacrificed a husband and daddy for countless hours of
writing, frequently at times when he was needed most.

Thanks!

Also, to my friends and colleagues at Intellilect. Thanks for
filling in for me when I was writing rather than doing my job
and for helping with the myriad of details to improve the
content and keep a code base like this running smoothly.
Thanks especially for making the Essential CSharp.com
website a reality.

http://EssentialCSharp.com

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobility.
As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As the
world’s leading learning company, we have a duty to help drive change and live up to
our purpose to help more people create a better life for themselves and to create a
better world.

Our ambition is to purposefully contribute to a world where:

* Everyone has an equitable and lifelong opportunity to succeed through
learning.

* Our educational products and services are inclusive and represent the rich
diversity of learners.

* Our educational content accurately reflects the histories and experiences of the
learners we serve.

* Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

* Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Contents at a Glance

Contents vii

Foreword xv

Preface xvii

Acknowledgments xxxi

About the Author xxxiii

Introducing C# 1

Data Types 49

More with Data Types 93
Operators and Control Flow 137
Parameters and Methods 217
Classes 293

Inheritance 385

Interfaces 443

Introducing Structs and Records 487

© 00 N OO b~ ODN =

10 Well-Formed Types 547

11 Exception Handling 601

12 Generics 623

13 Delegates and Lambda Expressions 683

14 Events 727

15 Collection Interfaces with Standard Query Operators 755
16 LINQ with Query Expressions 809

17 Building Custom Collections 833

Vi

"= Contents at a Glance

18
19
20
21
22
23
24

Reflection, Attributes, and Dynamic Programming 881
Introducing Multithreading 933

Programming the Task-Based Asynchronous Pattern 975
Iterating in Parallel 1021

Thread Synchronization 1041

Platform Interoperability and Unsafe Code 1077

The Common Language Infrastructure 1107

Index 1131

Index of 8.0 Topics 1187
Index of 9.0 Topics 1190
Index of 10.0 Topics 1191
Index of 11.0 Topics 1192
Index of 12.0 Topics 1193

Contents

Foreword xv

Preface xvii

Acknowledgments xxxi
About the Author xxxiii

1

Introducing C# 1

Hello, World 2

C# Syntax Fundamentals 12
Working with Variables 24

Console Input and Output 28
Managed Execution and the Common Language Infrastructure 38
Multiple .NET Frameworks 44
Summary 48

Data Types 49

Type Name Forms 50

Fundamental Numeric Types 52
More Fundamental Types 63
Conversions between Data Types 84
Summary 92

More with Data Types 93
Categories of Types 93

Declaring Types That Allow null 96
Implicitly Typed Local Variables 102
Tuples 103

Arrays 112

" vii

viii "= Contents

Summary 134

4 Operators and Control Flow 137
Operators 137
Introducing Flow Control 156
Code Blocks ({}) 161
Code Blocks, Scopes, and Declaration Spaces 164
Boolean Expressions 166
Programming with null 173
Bitwise Operators (<<, >>, |, §, *, ~) 181
Control Flow Statements, Continued 187
Jump Statements 200
C# Preprocessor Directives 206
Summary 215

5 Parameters and Methods 217
Calling a Method 218
Declaring a Method 225
Local Functions 232
Using Directives 233
Returns and Parameters on Main Method 242
Top-Level Statements 246
Advanced Method Parameters 247
Recursion 261
Method Overloading 264
Optional Parameters 267
Basic Error Handling with Exceptions 272
Summary 291

6 Classes 293
Declaring and Instantiating a Class 298
Instance Fields 302
Instance Methods 305
Using the this Keyword 306
Access Modifiers 314
Properties 316

Contents "=

Constructors 333

Non-Nullable Reference Type Properties with Constructors 346
Nullable Attributes 354

Deconstructors 357

Static Members 359

Extension Methods 370

Encapsulating the Data 372

Nested Classes 376

Partial Classes 379

Summary 384

Inheritance 385

Derivation 386

Overriding the Base Class 397

Abstract Classes 410

All Classes Derive from System.0Object 417

Type Checking 419

Pattern Matching 423

Avoid Pattern Matching When Polymorphism Is Possible 438
Summary 440

Interfaces 443

Introducing Interfaces 444

Polymorphism through Interfaces 446

Interface Implementation 451

Converting between the Implementing Class and Its Interfaces 457
Interface Inheritance 458

Multiple Interface Inheritance 461

Extension Methods on Interfaces 461

Versioning 464

Extension Methods versus Default Interface Members 480
Interfaces Compared with Abstract Classes 482

Interfaces Compared with Attributes 484

Summary 484

Introducing Structs and Records 487

ix

x "= Contents

10

1"

12

Reference Equality versus Value Equality 493
Structs 494

Record Classes 500

Record Class Inheritance 503

Records 504

Overriding object Members 513
Customizing Record Behavior 521
Boxing 523

Enums 532

Summary 544

Well-Formed Types 547

Operator Overloading 548
Referencing Other Assemblies 557
Encapsulation of Types 564

Defining Namespaces 567

XML Comments 571

Garbage Collection and Weak References 576
Resource Cleanup 580

Lazy Initialization 596

Summary 598

Exception Handling 601

Multiple Exception Types 601
Catching Exceptions 604

Rethrowing an Existing Exception 607
General Catch Block 609

Guidelines for Exception Handling 610
Defining Custom Exceptions 614
Rethrowing a Wrapped Exception 618
Summary 622

Generics 623

C# without Generics 624

Introducing Generic Types 630
Constraints 646

13

14

15

16

17

Contents "= xi

Generic Methods 663

Covariance and Contravariance 669

Generic Internals 676

Summary 681

Delegates and Lambda Expressions 683
Introducing Delegates 684

Declaring Delegate Types 688

Lambda Expressions 698

Statement Lambdas 699

Expression Lambdas 702

Anonymous Methods 705

Delegates Do Not Have Structural Equality 707
Outer Variables 710

Static Anonymous Functions 712

Expression Trees 716

Summary 724

Events 727

Coding the Publish—Subscribe Pattern with Multicast Delegates 728
Understanding Events 743

Summary 753

Collection Interfaces with Standard Query Operators 755
Collection Initializers 756

What Makes a Class a Collection: IEnumerable 759
Standard Query Operators 766

Anonymous Types with LINQ 796

Summary 806

LINQ with Query Expressions 809
Introducing Query Expressions 810

Query Expressions Are Just Method Invocations 829
Summary 831

Building Custom Collections 833

More Collection Interfaces 834

Primary Collection Classes 837

Xii

" Contents

18

19

20

21

Providing an Indexer 859

Returning null or an Empty Collection 862

Iterators 863

Summary 879

Reflection, Attributes, and Dynamic Programming 881
Reflection 881

nameof Operator 894

Attributes 895

Programming with Dynamic Objects 920

Summary 931

Introducing Multithreading 933

Multithreading Basics 935

Asynchronous Tasks 943

Canceling a Task 965

Working with System.Threading 972

Summary 973

Programming the Task-Based Asynchronous Pattern 975
Synchronously Invoking a High-Latency Operation 975
Asynchronously Invoking a High-Latency Operation Using the TPL 979
The Task-Based Asynchronous Pattern with async and await 984
Introducing Asynchronous Return of valueTask<T> 991
Asynchronous Streams 994

IAsyncDisposable and the await using Declaration and Statement 998
Using LINQ with IAsyncEnumerable 999

Returning void from an Asynchronous Method 1001
Asynchronous Lambdas and Local Functions 1006

Task Schedulers and the Synchronization Context 1013
async/await with the Windows UI 1015

Summary 1019

Iterating in Parallel 1021

Executing Loop Iterations in Parallel 1021

Running LINQ Queries in Parallel 1032

Summary 1039
22 Thread Synchronization 1041
Why Synchronization? 1042
Timers 1073
Summary 1076
23 Platform Interoperability and Unsafe Code 1077
Platform Invoke 1078
Pointers and Addresses 1093
Executing Unsafe Code via a Delegate 1104
Summary 1105
24 The Common Language Infrastructure 1107
Defining the Common Language Infrastructure 1107
CLI Implementations 1109
NET Standard 1113
Base Class Library 1113
C# Compilation to Machine Code 1114
Runtime 1116
Assemblies, Manifests, and Modules 1121
Common Intermediate Language 1124
Common Type System 1125
Common Language Specification 1125
Metadata 1126
.NET Native and Ahead of Time Compilation 1127
Summary 1128
Index 1131
Index of 8.0 Topics 1187
Index of 9.0 Topics 1190
Index of 10.0 Topics 1191
Index of 11.0 Topics 1192
Index of 12.0 Topics 1193

Contents ™ xiii

This page intentionally left blank

Foreword

Welcome to one of the most venerable and trusted franchises you could dream of in
the world of C# books—and probably far beyond! Mark Michaelis’s Essential C#
book has been a classic for years, but it was yet to see the light of day when I first got
to know Mark.

In 2005, when LINQ (Language Integrated Query) was disclosed, I had only just
joined Microsoft, and I got to tag along to the PDC conference for the big reveal.
Despite my almost total lack of contribution to the technology, I thoroughly enjoyed
the hype. The talks were overflowing, the printed leaflets were flying off the tables
like hotcakes: It was a big day for C# and .NET, and I was having a great time.

It was pretty quiet in the hands-on labs area, though, where people could try out
the technology preview themselves with nice scripted walkthroughs. That’s where |
ran into Mark. Needless to say, he wasn’t following the script. He was doing his own
experiments, combing through the docs, talking to other folks, busily pulling together
his own picture.

As a newcomer to the C# community, I may have met a lot of people for the first
time at that conference—people with whom I have since formed great relationships.
But to be honest, I don’t remember them—it’s all a blur. The only one I remember
is Mark. Here is why: When I asked him if he was liking the new stuff, he didn’t just
join the rave. He was totally level-headed: “I dont know yet. I haven't made up my
mind about it.” He wanted to absorb and understand the full package, and until then
he wasn’t going to let anyone tell him what to think.

So instead of the quick sugar rush of affirmation I might have expected, I got to
have a frank and wholesome conversation, the first of many over the years, about
details, consequences, and concerns with this new technology. And so it remains:
Mark is an incredibly valuable community member for us language designers to
have, because he is super smart, insists on understanding everything to the core, and
has phenomenal insight into how things affect real developers. But perhaps most of
all, he is forthright and never afraid to speak his mind. If something passes the Mark
Test, then we know we can start feeling pretty good about it!

XV

xvi "m Foreword

These are the same qualities that make Mark such a great writer. He goes right to
the essence and communicates with great integrity, no sugarcoating, and a keen eye
for practical value and real-world problems. Mark has a great gift of providing clarity
and elucidation, and no one will help you get C# 12.0 like he does.

Enjoy!

—Mads Torgersen
Principal Architect, Microsoft

Preface

Throughout the history of software engineering, the methodology used to write
computer programs has undergone several paradigm shifts, each building on the
foundation of the former by increasing code organization and decreasing complexity.
This book takes you through these same paradigm shifts.

The beginning chapters take you through sequential programming structure, in
which statements are executed in the order in which they are written. The problem
with this model is that complexity increases exponentially as the requirements
increase. To reduce this complexity, code blocks are moved into methods, creating a
structured programming model. This allows you to call the same code block from
multiple locations within a program, without duplicating code. Even with this
construct, however, programs quickly become unwieldy and require further
abstraction. Object-oriented programming, introduced in Chapter 6, was the
response. In subsequent chapters, you will learn about additional methodologies,
such as interface-based programming, LINQ (and the transformation it makes to the
collection API), and eventually rudimentary forms of declarative programming (in
Chapter 18) via attributes.

This book has three main functions.

* It provides comprehensive coverage of the C# language, going beyond a
tutorial and offering a foundation upon which you can begin effective software
development projects.

* For readers already familiar with C#, this book provides insight into some of
the more complex programming paradigms and provides in-depth coverage of
the features introduced in the latest version of the language, C# 12.0 and
NET 8.

* It serves as a timeless reference even after you gain proficiency with the
language.

"= xvii

Xviii

" Preface

The key to successfully learning C# is to start coding as soon as possible. Don’t
wait until you are an “expert” in theory; start writing software immediately. As a
believer in iterative development, I hope this book enables even a novice
programmer to begin writing basic C# code by the end of Chapter 2.

Many topics are not covered in this book. You won’t find coverage of topics such
as ASP.NET, Entity Framework, Maui, smart client development, distributed
programming, and so on. Although these topics are relevant to .NET, to do them
justice requires books of their own. Fortunately, Essential C# 12.0 focuses on C# and
the types within the Base Class Library. Reading this book will prepare you to focus
on and develop expertise in any of the more advanced areas, given a strong
foundation in the C# langauge.

Target Audience for This Book

My challenge with this book was to keep advanced developers awake while not
abandoning beginners by using words such as assembly, link, chain, thread, and
fusion, as though the topic was more appropriate for blacksmiths than for
programmers. This book’s primary audience is experienced developers looking to
add another language to their quiver. However, I have carefully assembled this book

to provide significant value to developers at all levels.

* Beginners: If you are new to programming, this book serves as a resource to
help transition you from an entry-level programmer to a C# developer who is
comfortable with any C# programming task that’s thrown your way. This book
not only teaches you syntax but also trains you in good programming practices
that will serve you throughout your programming career.

* Structured programmers: Just as it’s best to learn a foreign language through
immersion, learning a computer language is most effective when you begin
using it before you know all the intricacies. In this vein, the book begins with a
tutorial that will be comfortable for those familiar with structured
programming, and by the end of Chapter 5, developers in this category should
feel at home writing basic control flow programs. However, the key to
excellence for C# developers is not memorizing syntax. To transition from
simple programs to enterprise development, the C# developer must think
natively in terms of objects and their relationships. To this end, Chapter 6’s

http://ASP.NET

Preface ™= xix

Beginner Topics introduce classes and object-oriented development. The role
of historically structured programming languages such as C, COBOL, and
FORTRAN is still significant but shrinking, so it behooves software engineers
to become familiar with object-oriented development. C# is an ideal language
for making this transition because it was designed with object-oriented
development as one of its core tenets.

Object-based and object-oriented developers: C++, Java, Python, TypeScript,
and Visual Basic programmers fall into this category. Many of you are already
completely comfortable with semicolons and curly braces. A brief glance at the
code in Chapter 1 reveals that, at its core, C# is like other C- and C++-style
languages that you already know.

C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Furthermore, it
provides insight into language details and subtleties that are seldom addressed.
Most important, it presents the guidelines and patterns for programming robust
and maintainable code. This book also aids in the task of teaching C# to others.
With the emergence of C# 3.0 through 12.0, some of the most prominent
enhancements are

1. String interpolation (see Chapter 2)

2. Implicitly typed variables (see Chapter 3)

3. Tuples (see Chapter 3)

4. Nullable reference types (see Chapter 3)

5. Pattern matching (see Chapter 4)

6. Extension methods (see Chapter 6)

7. Partial methods (see Chapter 6)

8. Default interface members (see Chapter 8)

9. Anonymous types (see Chapter 12)

10.Generics (see Chapter 12)

XX

"s Preface

11.Lambda statements and expressions (see Chapter 13)
12.Expression trees (see Chapter 13)

13.Standard query operators (see Chapter 15)

14.Query expressions (see Chapter 16)

15.Dynamic programming (Chapter 18)

16.Multithreaded programming with the Task Programming Library and
async (Chapter 20)

17.Parallel query processing with PLINQ (Chapter 21)

18.Concurrent collections (Chapter 22)

These topics are covered in detail for those not already familiar with them. Also
pertinent to advanced C# development is the subject of pointers, covered in Chapter

23. Even experienced C# developers often do not understand this topic well.

Features of This Book

Essential C# 12.0 is a language book that adheres to the core C# Language
Specification. To help you understand the various C# constructs, it provides
numerous examples demonstrating each feature. Accompanying each concept are
guidelines and best practices, ensuring that code compiles, avoids likely pitfalls, and
achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are outlined

using mind maps.

Website

The interactive website for the book, available at https://essentialcsharp.com,
provides the online chapters, which allows full text search. Shortly after this writing,
I expect the website to provide interactive code editing and client-side compilation of

https://essentialcsharp.com

Preface "= xxi

many of the code listings. This will allow you to focus on the language rather than
getting distracted by installations or dotnet setup issues.

Source Code Download

In addition to the EssentialCSharp.com website, all the source code is available on
GitHub at https://github.com/IntelliTect/Essential CSharp so it can be downloaded
or cloned locally to your computer. This enables you to work through the code
samples as is or modify them and see the effects. This is a great way to learn the
intricacies of the language.

C# Coding Guidelines

One of the more significant enhancements included in Essential C# 12.0 is the C#
coding guidelines, as shown in the following example taken from Chapter 17:

[|
Guidelines

DO ensure that equal objects have equal hash codes.

DO ensure that the hash code of an object never changes while
it is in a hash table.

DO ensure that the hashing algorithm quickly produces a well-
distributed hash.

DO ensure that the hashing algorithm is robust in any possible
object state.

These guidelines are the key to differentiating a programmer who knows the syntax
from an expert who can discern the most effective code to write based on the
circumstances. Such an expert not only gets the code to compile but does so while
following best practices that minimize bugs and enable maintenance well into the
future. The coding guidelines highlight some of the key principles that readers will
want to be sure to incorporate into their development. Visit https://intellitect.com/
Guidelines for a current list of all the guidelines.

http://EssentialCSharp.com
https://github.com/IntelliTect/EssentialCSharp
https://intellitect.com/Guidelines
https://intellitect.com/Guidelines

xxii

" Preface

Code Samples

The code snippets in most of this text can run on most implementations of the
Common Language Infrastructure (CLI), but the focus is on the .NET
implementation. Platform- or vendor-specific libraries are seldom used except when
communicating important concepts relevant only to those platforms (e.g.,
appropriately handling the single-threaded user interface of Windows). Any code that
specifically relates to C# 8.0, 9.0, 10.0, 11.0, or 12.0 is called out in the C# version
indexes at the end of the book.

Here is a sample code listing.

LISTING 1.21: Commenting Your Code

public class CommentSamples

{
public static void Main()
{
string firstName; // Variable for storing the first name
string lastName; // Variable for storing the last name
Console.WriteLine("Hey you!");
Console.Write /* No new line =/ ("Enter your first name: ");
firstName = Console.ReadLine();
Console.Write /* No new line */ ("Enter your last name: ");
lastName = Console.ReadlLine();
/* Display a greeting to the console
using composite formatting. */
Console.WriteLine("Your full name is {1}, {o}.",
firstName, lastName);
// This is the end
// of the program listing
}
}

The formatting is as follows:

* Comments are shown in italics.

/* Display a greeting to the console */

Preface ™n xxiii

Console.Write /* No new line */ ("Enter your first name: ");
* Keywords are shown in bold.
static void Main() { }

* Highlighted code calls out specific code snippets that may have changed from
an earlier listing, or demonstrates the concept described in the text.

LISTING 2.23: Error; string Is Inmutable

Console.Write("Enter text: ");
string text = Console.ReadLine();

// UNEXPECTED: Does not convert text to uppercase
text.ToUpper();

Console.WritelLine(text);

* Incomplete listings contain an ellipsis to denote irrelevant code that has been
omitted.

/s

OuTPUT 1.7

Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

Your full name is Inigo Montoya.

* Console output is the output from a particular listing that appears following the
listing. User input for the program appears in boldface.

Although it might have been convenient to provide full code samples that you
could copy into your own programs, doing so would detract from your learning a
particular topic. Therefore, you need to modify the code samples before you can

incorporate them into your programs. The core omission is error checking, such as

xxiv "m Preface

exception handling. Also, code samples do not explicitly include using System

statements. You need to assume the statement throughout all samples.

Mind Maps

Each chapter’s introduction includes a mind map, which serves as an outline that

provides an at-a-glance reference to each chapter’s content. Here is an example
(taken from Chapter 6).

15. Partial Classes

14. Nested Classes

1. Declaring and

Instantiating
13. Encapsulating a Class
the Data
12. Extension 2. Instance Fields
Static Fields Methods
. 3. Instance
Static Methods Methods
. : Classes
Static Constructors 11. Static Members Introduction 4. Using the
; ; this
Static Properties
E Keyword
Static Classes
10. Deconstructors 5. Access
9. Nullable Attributes Lz
8. Non-Nullable
Declaring a Reference Type
Constructor Properties with
Constructors
Default and Copy :
Constructors 6. Properties
7. Constructors
Overloading
Constructors
Constructor
Chaining

Declaring an
Instance Field

Accessing an
Instance Field

Declaring a Property
Guidlines

Using Properties
with Validation

Read-Only
and Write-Only
Properties

Access Modifiers
on Getters
and Setters

Properties
and Method Calls
Not Allowed as ref or out
Parameter Values

The theme of each chapter appears in the mind map’s center. High-level topics

spread out from the core. Mind maps allow you to absorb the flow from high-level to

more detailed concepts easily, with less chance of encountering very specific

knowledge that you might not be looking for.

Helpful Notes

Depending on your level of experience, special features will help you navigate

through the text.

Preface "s xxv

* Beginner Topics provide definitions or explanations targeted specifically
toward entry-level programmers.

* Advanced Topics enable experienced developers to focus on the material that
is most relevant to them.

* Callout notes highlight key principles in boxes so that readers easily recognize
their significance.

* Language Contrast sidebars identify key differences between C# and its
predecessors to aid those familiar with other languages.

How This Book Is Organized

At a high level, software engineering is about managing complexity, and it is toward
this end that I have organized Essential C# 12.0. Chapters 1-5 introduce structured
programming, which enable you to start writing simple functioning code
immediately. Chapters 6—10 present the object-oriented constructs of C#. Novice
readers should focus on fully understanding this section before they proceed to the
more advanced topics found in the remainder of this book. Chapters 12—14 introduce
additional complexity-reducing constructs, handling common patterns needed by
virtually all modern programs. This leads to dynamic programming with reflection
and attributes, which is used extensively for threading and interoperability in the
chapters that follow.

The book ends with Chapter 24 on the Common Language Infrastructure, which
describes C# within the context of the development platform in which it operates.
This chapter appears at the end because it is not C# specific and it departs from the
syntax and programming style in the rest of the book. However, this chapter is
suitable for reading at any time, perhaps most appropriately immediately following
Chapter 1.

Here is a description of each chapter (in this list, chapter numbers shown in bold

indicate the presence of C# 10.0-12.0 material).

* Chapter 1, Introducing C#: After presenting the C# “Hello World” program,
this chapter proceeds to dissect it. This should familiarize readers with the look
and feel of a C# program and provide details on how to compile and debug

XXVi

"= Preface

their own programs. It also touches on the context of a C# program’s execution
and its intermediate language.

Chapter 2, Data Types: Functioning programs manipulate data, and this
chapter introduces the primitive data types of C#.

Chapter 3, More with Data Types: This chapter includes coverage of two type
categories: value types and reference types. From there, it delves into
implicitly typed local variables, tuples, the nullable modifier, and the C#
8.0—introduced feature, nullable reference types. It concludes with an in-depth
look at a primitive array structure.

Chapter 4, Operators and Control Flow: To take advantage of the iterative
capabilities in a computer, you need to know how to include loops and
conditional logic within your program. This chapter also covers the C#
operators, data conversion, and preprocessor directives.

Chapter 5, Methods and Parameters: This chapter investigates the details of
methods and their parameters. It includes passing by value, passing by
reference, and returning data via an out parameter. In C# 4.0, default parameter
support was added, and this chapter explains how to use default parameters.

Chapter 6, Classes: Given the basic building blocks of a class, this chapter
combines these constructs to form fully functional types. Classes form the core
of object-oriented technology by defining the template for an object.

Chapter 7, Inheritance: Although inheritance is a programming fundamental
to many developers, C# provides some unique constructs, such as the new
modifier. This chapter discusses the details of the inheritance syntax, including
overriding.

Chapter 8, Interfaces: This chapter demonstrates how interfaces are used to
define the versionable interaction contract between classes. C# includes both
explicit and implicit interface member implementation, enabling an additional
encapsulation level not supported by most other languages. With the
introduction of default interface members, there is a section on interface
versioning in C# 8.0.

Chapter 9, Introducing Structs and Records: C# 9.0 introduced the concepts
of records for structs and expanded it to reference types in C# 10. Although not
as prevalent as defining reference types, it is sometimes necessary to define
value types that behave in a fashion similar to the primitive types built into C#.
In defining how to create custom structures, this chapter also describes the
idiosyncrasies they may introduce.

Preface "= xxvii

Chapter 10, Well-Formed Types: This chapter discusses more advanced type
definition. It explains how to implement operators, such as + and casts, and
describes how to encapsulate multiple classes into a single library. In addition,
the chapter demonstrates defining namespaces and XML comments and
discusses how to design classes for garbage collection.

Chapter 11, Exception Handling: This chapter expands on the
exception-handling introduction from Chapter 5 and describes how exceptions
follow a hierarchy that enables creating custom exceptions. It also includes
some best practices on exception handling.

Chapter 12, Generics: Generics are perhaps the core feature missing from C#
1.0. This chapter fully covers this 2.0 feature. In addition, C# 4.0 added
support for covariance and contravariance—something covered in the context
of generics in this chapter.

Chapter 13, Delegates and Lambda Expressions: Delegates begin clearly
distinguishing C# from its predecessors by defining patterns for handling
events within code. This virtually eliminates the need for writing routines that
poll. Lambda expressions are the key concept that make C# 3.0’s LINQ
possible. This chapter explains how lambda expressions build on the delegate
construct by providing a more elegant and succinct syntax. This chapter forms
the foundation for the collection API discussed next.

Chapter 14, Events: Encapsulated delegates, known as events, are a core
construct of the Common Language Runtime. Anonymous methods, another
C# 2.0 feature, are also presented here.

Chapter 15, Collection Interfaces with Standard Query Operators: The simple
and yet elegantly powerful changes introduced in C# 3.0 begin to shine in this
chapter as we take a look at the extension methods of the Enumerable class.
This class makes available a collection API known as the standard query
operators, which is discussed in detail here.

Chapter 16, LINQ with Query Expressions: Using standard query operators
alone results in some long statements that are hard to decipher. However,
query expressions provide an alternative syntax that matches closely with
SQL, as described in this chapter.

Chapter 17, Building Custom Collections: In building custom APIs that work
against business objects, it is sometimes necessary to create custom
collections. This chapter details how to do this and in the process introduces
contextual keywords that make custom collection building easier.

XXViii

"s Preface

Chapter 18, Reflection, Attributes, and Dynamic Programming:
Object-oriented programming formed the basis for a paradigm shift in program
structure in the late 1980s. In a similar way, attributes facilitate declarative
programming and embedded metadata, ushering in a new paradigm. This
chapter looks at attributes and discusses how to retrieve them via reflection. It
also covers file input and output via the serialization framework within the
Base Class Library. In C# 4.0, a new keyword, dynamic, was added to the
language. This removed all type checking until runtime, a significant
expansion of what can be done with C#.

Chapter 19, Introducing Multithreading: Most modern programs require the
use of threads to execute long-running tasks while ensuring active response to
simultaneous events. As programs become more sophisticated, they must take
additional precautions to protect data in these advanced environments.
Programming multithreaded applications is complex. This chapter introduces
how to work with tasks, including canceling them, and how to handle
exceptions executing in the task context.

Chapter 20, Programming the Task-Based Asynchronous Pattern: This chapter
delves into the task-based asynchronous pattern with its accompanying async/
await syntax. It provides a significantly simplified approach to multithreaded
programming. In addition, the C# 8.0 concept of asynchronous streams is
included.

Chapter 21, Iterating in Parallel: One easy way to introduce performance
improvements is by iterating through data in parallel using a Parallel object or
with the Parallel LINQ library.

Chapter 22, Thread Synchronization: Building on the preceding chapter, this
chapter demonstrates some of the built-in threading pattern support that can
simplify the explicit control of multithreaded code.

Chapter 23, Platform Interoperability and Unsafe Code: Given that C# is a
relatively young language, far more code is written in other languages than in
C#. To take advantage of this preexisting code, C# supports interoperability—
the calling of unmanaged code—through P/Invoke. In addition, C# provides
for the use of pointers and direct memory manipulation. Although code with
pointers requires special privileges to run, it provides the power to interoperate
fully with traditional C-based application programming interfaces.

Chapter 24, The Common Language Infrastructure: Fundamentally, C# is the
syntax that was designed as the most effective programming language on top
of the underlying Common Language Infrastructure. This chapter delves into
how C# programs relate to the underlying runtime and its specifications.

Preface "™s xxix

* Indexes of C# 8.0-12.0: These indexes provide quick references for the
features added in C# 8.0 through 12.0. They are specifically designed to help
programmers quickly update their language skills to a more recent version.

I hope you find this book to be a great resource in establishing your C# expertise
and that you continue to reference it for those areas that you use less frequently well
after you are proficient in C#.

—Mark Michaelis
IntelliTect.com/mark, mark.michaelis.net
X (formerly Twitter): @Intellitect, @MarkMichaelis

Register your copy of Essential C# 12.0 on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780138219512) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to
be notified of exclusive offers on new editions and updates, please check the box

to receive email from us.

http://IntelliTect.com/mark
http://mark.michaelis.net
http://informit.com/register

This page intentionally left blank

Acknowledgments

No book can be published by the author alone, and I am extremely grateful for the
multitude of people who helped me with this one. The order in which I thank people
is not significant, except for those who come first. Given that this is now the eighth
edition of the book, you can only imagine how much my family has sacrificed to
allow me to write over the last 18 years (not to mention the books before that).
Benjamin, Hanna, and Abigail often had a Daddy distracted by this book, but
Elisabeth suffered even more so. She was often left to take care of things, holding the
family’s world together on her own. (While on vacation in 2017, I spent days indoors
writing while they would much have preferred to go to the beach.)

In writing Essential C# 12.0, 1 am very grateful that Pearson gave permission for
IntelliTect to host the manuscript on the website, essentialcsharp.com. I could never
have done this without the IntelliTect team, however. I am so grateful to be
surrounded by such amazing software engineers who produce such excellence
autonomously from me. Many, many hours were spent parsing the manuscript,
formatting it, editing the content, and creating both the website output and the
manuscript for print. Thanks so much to the following contributors that made this
edition possible: Benjamin Michaelis, Kevin Bost, Daniel Olvera, Jenny Curry,
Mikaella Croskrey, Grant Woods, Zack Ward, Josh Willis, Andrew Scott, Anré “Ray”
Tanner, Artem Chetverikov, Casey White, Austen Frostad, Tom Clark, Joseph
Riddles, John Evans, Kelsey McMahon, Casey Schadewitz, Cameron J. Osborn,
Nicole Glidden, and Elizabeth Pauley. Special thanks to Kevin Bost and my son
Benjamin Michaelis. In addition to their code contributions, they helped manage the
entire web tooling project, making the website a reality.

I have worked with Kevin Bost at IntelliTect since 2013, and he continues to
surprise me with his incredible aptitude for software development. Not only is the
depth of his C# knowledge phenomenal, but he is a level-10 expert in so many
additional development technologies. For all this and more, I asked Kevin Bost to
review the book as an official technical editor this year, and I am truly grateful. He

brought insights and improvements to content that has been in the book since the

" xxxi

http://essentialcsharp.com

xxxii "= Acknowledgments

early editions, which no one else thought to mention. This attention to detail,
combined with his unswerving demand for excellence, truly establishes Essential C#
12.0 as a quintessential C# book for those looking to focus on the language.

Of course, Eric Lippert is no less amazing as well. His grasp of C# is truly
astounding, and I am very appreciative of his edits, especially when he pushed for
perfection in terminology. His improvements to the C# 3.0 chapters were incredibly
significant, and in the second edition my only regret was that I didn’t have him
review all the chapters. However, that regret has since been mitigated: Eric
painstakingly reviewed every Essential C# 4.0 chapter and even served as a
contributing author for Essential C# 5.0 and Essential C# 6.0. I am extremely
grateful for his role as a technical editor in the editions leading up to Essential C#
12.0. Thanks, Eric! I can’t imagine anyone better for the job. You deserve all the
credit for raising the bar from good to great.

As is the case with Eric and C#, there are fewer than a handful of people who
know .NET multithreading as well as Stephen Toub. Accordingly, Stephen
concentrated on the two rewritten (for a third time) multithreading chapters and their
new focus on async support in C# 5.0. Thanks, Stephen!

Over the years, many other technical editors have reviewed each chapter in
minute detail to ensure technical accuracy. I was often amazed by the subtle errors
these folks still managed to catch: Paul Bramsman, Kody Brown, Andrew Comb, Ian
Davis, Doug Dechow, Gerard Frantz, Dan Haley, Thomas Heavey, Anson Horton,
Brian Jones, Shane Kercheval, Angelika Langer, Neal Lundby, John Michaelis, Jason
Morse, Nicholas Paldino, Jason Peterson, Jon Skeet, Michael Stokesbary, Robert
Stokesbary, and John Timney.

Thanks to everyone at Pearson/Addison-Wesley for their patience in working
with me in spite of my frequent focus on everything else except the manuscript.
Thanks also to Malobika Chakraborty and Julie Nahil for helping me through the

entire process from proposal to production.

About the Author

Mark Michaelis is the founder of IntelliTect, an innovative software architecture and
development firm where he serves as the chief technical architect and trainer. Mark
leads his successful company while flying around the world delivering conference
sessions on leadership or technology and conducting speaking engagements on
behalf of Microsoft or other clients. He has also written numerous articles and books,
and is an adjunct professor at Eastern Washington University, founder of the Spokane
NET Users Group, and co-organizer of the annual TEDx Coeur d’Alene events.

A world-class C# expert, Mark has been a Microsoft Regional Director since
2007 and a Microsoft MVP for more than 25 years.

Mark holds a bachelor of arts in philosophy from the University of Illinois and a
master’s degree in computer science from the Illinois Institute of Technology.

When not bonding with his computer, Mark is busy showing his kids real life in
other countries or playing racquetball (having suspended competing in Ironman
competitions back in 2016). Mark lives in Spokane, Washington, with his wife,
Elisabeth, and three children, Benjamin, Hanna, and Abigail.

About the Technical Editor

Kevin Bost is a successful Microsoft MVP and senior software architect at
IntelliTect. He has been instrumental in building several innovative products,
including System.CommandLine, Moq.AutoMocker, and ShowMeTheXAML.
When not at work, Kevin can be found online, mentoring other developers on
YouTube (youtube.keboo.dev) and maintaining the popular Material Design in
XAML toolkit (http://materialdesigninxaml.net/). He also enjoys board games,
Ultimate Frisbee, and riding his motorcycle.

" xxxiii

http://materialdesigninxaml.net/

This page intentionally left blank

I S»

Parameters and Methods

From what you have learned about C# programming so far, you should be able to
write straightforward programs consisting of a list of statements, similar to the way
programs were created in the 1970s. Programming has come a long way since the
1970s, however; as programs have become more complex, new paradigms have
emerged to manage that complexity. Procedural or structured programming provides
constructs by which statements are grouped together to form units. Furthermore, with
structured programming, it is possible to pass data to a group of statements and then
have data returned once the statements have executed.

10. Basic Error Handling

with Exceptions Namespaces
9. Optional Parameters 1. Calling a Method Type Name
8. Method Overloading Scope
7. Recursion Method Name
Value Parameters
Methods and Parameters
Reference Parameters Parameters

(ref)

2. Declaring a Method Method Return

Output Parameters 6. Advanced Method 3. Using Directives Aliasing
(out) Parameters
P 4. Returns and
HEE 5. Top-Level Statements Parameters on
(params) Main Method

"= 217

218 "= Chapter 5: Parameters and Methods

Besides the basics of calling and defining methods, this chapter covers some
slightly more advanced concepts—namely, recursion, method overloading, optional
parameters, and named arguments. All method calls discussed so far and through the
end of this chapter are static (a concept that Chapter 6 explores in detail).

Even as early as the HelloWorld program in Chapter 1, you learned how to
define a method. In that example, you defined the Main() method. In this chapter,
you will learn about method creation in more detail, including the special C#
syntaxes (ref and out) for parameters that pass variables rather than values to

methods. Lastly, we will touch on some rudimentary error handling.

Calling a Method

" BEGINNER TOPIC

What Is a Method?
Up to this point, almost all of the statements in the programs you have written

have appeared together in a list without any grouping outside of what the statement
or code block provided. When programs become any more complex, this approach
quickly becomes difficult to maintain and complicated to read through and
understand.

A method is a means of grouping together sequence a of statements to perform a
particular action or compute a particular result. This provides greater structure and
organization for the statements that compose a program. Consider, for example, a
Main() method that counts the lines of source code in a directory. Instead of having
one large Main() method, you can provide a shorter version that allows you to hone
in on the details of each method implementation as necessary. Listing 5.1 shows an

example.

LISTING 5.1: Grouping Statements into Methods

public class Program

{
public static void Main()
{

int lineCount;

Calling a Method "= 219
string files;

DisplayHelpText();

files = GetFiles();

lineCount = CountLines(files);
DisplayLineCount(lineCount);

Zane
Zane

Instead of placing all of the statements into Main(), the listing breaks them into
groups called methods. The System.Console.WritelLine() statements that
display the help text have been moved to the DisplayHelpText() method. All of
the statements used to determine which files to count appear in the GetFiles()
method. To actually count the lines, the code calls the CountLines() method
before displaying the results using the DisplayLineCount() method. With a
quick glance, it is easy to review the code and gain an overview, because the method

name describes the purpose of the method.

" BEGINNER TOPIC

What Is a Function?
Functions are virtually identical to methods, used for grouping together a

sequence of statements to perform a particular action or compute a particular result.
In fact, frequently, method and function are used interchangably. Technically,
however, methods are always associated with a type—such as Program in Listing
5.1. In contrast, functions have no such association. A function doesn’t necessarily

have an owning type.

Guidelines

DO give methods names that are verbs or verb phrases.

220 "= Chapter 5: Parameters and Methods

A method provides a means of grouping related code together. Methods can
receive data via arguments that are passed to the method parameters. Parameters
are variables used for passing data from the caller (the code containing the method
call or invocation) to the called or invoked method (Write(), WriteLine(),
GetFiles(), CountLines(), and so on). In Listing 5.1, files and
lineCount are examples of arguments passed to the CountlLines() and
DisplayLineCount() methods via their parameters. Methods can also return data
to the caller via a return value (in Listing 5.1, the GetFiles() method call has a
return value that is assigned to files).

To begin, we reexamine System.Console.Write(), System.Console
.WriteLine(), and System.Console.ReadLine() from Chapter 1. This
time we look at them as examples of method calls in general instead of looking at the
specifics of printing and retrieving data from the console. Listing 5.2 shows each of
the three methods in use.

LISTING 5.2: A Simple Method Call

public static void Main()
{

string? firstName;
string? lastName;

Console.WriteLine("Hey you!");

Console.Write("Enter your first name: ");
firstName = Console.ReadLine();

Console.Write("Enter your last name: ");
lastName = Console.ReadLine();

Console.WritelLine(
$"Your full name is { firstName } { lastName }.");

The parts of the method call include the method name, argument list, and returned
value. A fully qualified method name includes a namespace, type name, and method
name; a period separates each part of a fully qualified method name. As we saw in
type names (https://essentialcsharp.com/type-name-forms) in Chapter 2, methods
may also be called with only the last part of their fully qualified name.

https://essentialcsharp.com/type-name-forms

Calling a Method "= 221

Namespaces

Namespaces are a categorization mechanism for grouping all types related to a
particular area of functionality. Namespaces are hierarchical and can have arbitrarily
many levels in the hierarchy, though namespaces with more than half a dozen levels
are rare. Typically, the hierarchy begins with a company name, and then a product
name, and then the functional area. For example, in Microsoft
.Win32.Networking, the outermost namespace is Microsoft, which contains
an inner namespace Win32, which in turn contains an even more deeply nested
Networking namespace.

Namespaces are primarily used to organize types by area of functionality so that
they can be more easily found and understood. However, they can also be used to
avoid type name collisions. For example, the compiler can distinguish between two
types with the name Button as long as each type has a different namespace. Thus
you can disambiguate types System.Web.UI.WebControls.Button and
System.Windows.Controls.Button.

In Listing 5.2, the Console type is found within the System namespace. The
System namespace contains the types that enable the programmer to perform many
fundamental programming activities. Almost all C# programs use types within the

System namespace. Table 5.1 provides a listing of other common namespaces.

TABLE 5.1: Common Namespaces

Namespace Description

System Contains the fundamental types and types for
conversion between types, mathematics, program
invocation, and environment management.

System.Collections.Generics Contains strongly typed collections that use generics.

System.Data.Entity A framework designed to store and retrieve data from
a relational database through code generation that
maps entities into tables.

System.Drawing Contains types for drawing to the display device and
working with images. Note, however, it is mostly
Windows specific.

222 "= Chapter 5: Parameters and Methods

TABLE 5.1: Common Namespaces (continued)

Namespace Description

System.IO Contains types for working with directories and
manipulating, loading, and saving files.

System.Ling Contains classes and interfaces for querying data in
collections using a Language Integrated Query.

System.Text Contains types for working with strings and various
text encodings and for converting between those
encodings.

System.Text.RegularExpressions Contains types for working with regular expressions.

System.Threading Contains types for multithreaded programming.
System.Threading.Tasks Contains types for task-based asynchrony.
System.Windows Contains types for creating rich user interfaces when

working with UI technologies such as Windows
Presentation Foundation (WPF), or Windows Ul
Library (WinUI), leveraging Extensible Application
Markup Language (XAML) for declarative design of
the UL

System.Xml.Ling Contains standards-based support for XML
processing using an object query language called
LINQ (See Chapter 15).

It is not always necessary to provide the namespace when calling a method. For
example, if the call expression appears in a type in the same namespace as the called
method, the compiler can infer the namespace to be the namespace that contains the
type. Later in this chapter, you will see how the using directive eliminates the need
for a namespace qualifier as well.

|
Guidelines
DO use PascalCasing for namespace names.

CONSIDER organizing the directory hierarchy for source code
files to match the namespace hierarchy.

Calling a Method "= 223

Type Name

Calls to static methods require the type name qualifier as long as the target method is
not within the same type.! (As discussed later in the chapter, a using static directive
allows you to omit the type name.) For example, a call expression of Console
.WriteLine() found in the method HelloWorld.Main() requires the type,
Console, to be specified. However, just as with the namespace, C# allows the
omission of the type name from a method call whenever the method is a member of
the type containing the call expression. (Examples of method calls such as this
appear in Listing 5.4.) The type name is unnecessary in such cases because the
compiler infers the type from the location of the call. If the compiler can make no
such inference, the name must be provided as part of the method call.

At their core, types are a means of grouping together methods and their
associated data. For example, Console is the type that contains the Write(),
WriteLine(), and ReadLine() methods (among others). All of these methods
are in the same group because they belong to the Console type.

Scope

In Chapter 4, you learned that the scope of a program element is the region of text in
which it can be referred to by its unqualified name. A call that appears inside a type
declaration to a method declared in that type does not require the type qualifier
because the method is in scope throughout its containing type. Similarly, a type is in
scope throughout the namespace that declares it; therefore, a method call that appears
in a type in a particular namespace need not specify that namespace in the method

call name.

Method Name

Every method call contains a method name, which might or might not be qualified
with a namespace and type name, as we have discussed. After the method name
comes the argument list, which is a parenthesized, comma-separated list of the values

that correspond to the parameters of the method.

1. Or base class.

224 "= Chapter 5: Parameters and Methods

Parameters and Arguments

A method can take any number of parameters, and each parameter is of a specific
data type. The values that the caller supplies for parameters are called the
arguments; every argument must correspond to a particular parameter. For example,
the following method call has three arguments:

System.I0.File.Copy(
oldFileName, newFileName, false)

The method is found on the class File, which is in the namespace System.IO.
It is declared to have three parameters, with the first and second being of type
string and the third being of type bool. In this example, we use variables
(oldFileName and newFileName) of type string for the old and new
filenames, and then specify false to indicate that the copy should fail if the new
filename already exists.

Method Return Values

In contrast to Console.WritelLine(), the method call Console.ReadLine()
in Listing 5.2 does not have any arguments because the method is declared to take no
parameters. However, this method happens to have a method return value. The
method return value is a means of transferring results from a called method back to
the caller. Because Console.ReadlLine() has a return value, it is possible to
assign the return value to the variable firstName. In addition, it is possible to pass
this method return value itself as an argument to another method call, as shown in
Listing 5.3.

LISTING 5.3: Passing a Method Return Value as an Argument to Another Method Call

public static void Main()

{

Console.Write("Enter your first name: ");
Console.WritelLine($"Hello { Console.ReadLine() }!");

Instead of assigning the returned value to a variable and then using that variable
as an argument to the call to Console.WriteLine(), Listing 5.3 calls the
Console.ReadLine() method within the call to Console.WriteLine(). At

Declaring a Method "= 225

execution time, the Console.ReadlLine() method executes first, and its return
value is passed directly into the Console.WriteLine() method, rather than into
a variable.

Not all methods return data. Both versions of Console.Write() and
Console.WriteLine() are examples of such methods. As you will see shortly,
these methods specify a return type of void, just as the HelloWorld declaration
of Main returned void.

Statement versus Method Call

Listing 5.3 provides a demonstration of the difference between a statement and a
method call. Although Console.WriteLine($"Hello { System.Console
.ReadLine()}!"); is a single statement, it contains two method calls. A statement
often contains one or more expressions, and in this example, two of those
expressions are method calls. Therefore, method calls form parts of statements.
Although coding multiple method calls in a single statement often reduces the
amount of code, it does not necessarily increase the readability and seldom offers a
significant performance advantage. Developers should favor readability over brevity.

"= NOTE

In general, developers should favor readability over brevity. Readability is

critical to writing code that is self-documenting and therefore more

maintainable over time.

Declaring a Method

This section expands on the explanation of declaring a method to include parameters
or a return type. Listing 5.4 contains examples of these concepts, and Output 5.1
shows the results.

LISTING 5.4: Declaring a Method

public class IntroducingMethods
{

public static void Main()

226 "s Chapter 5: Parameters and Methods

{
string firstName;
string lastName;
string fullName;
string initials;
Console.WriteLine("Hey you!");
firstName = GetUserInput("Enter your first name: ");
lastName = GetUserInput("Enter your last name: ");
fullName = GetFullName(firstName, lastName);
initials = GetInitials(firstName, lastName);
DisplayGreeting(fullName, initials);

}

static string GetUserInput(string prompt)

{
Console.Write(prompt);
return Console.ReadLine() ?? string.Empty;

}

static string GetFullName(
string firstName, string lastName) =>
$"{ firstName } { lastName }";

static void DisplayGreeting(string fullName, string initials)

{
Console.WritelLine(
$"Hello { fullName }! Your initials are { initials }");
return;
1
static string GetInitials(string firstName, string lastName)
{
return $"{ firstName[0] }. { lastName[0] }.";
}
}
OuTpPuT 5.1
Hey you!

Enter your first name: Inigo

Declaring a Method "= 227

Enter your last name: Montoya
Hello Inigo Montoya! Your initials are I. M.

Listing 5.4 declares five methods. From Main() the code calls
GetUserInput(), followed by a call to GetFullName() and GetInitials().
All of the last three methods return a value and take arguments. In addition, the
listing calls DisplayGreeting(), which doesn’t return any data.

|
Language Contrast: C++/Visual Basic—Global
Methods

C# provides no global method support; everything must appear within a type
declaration. This is why the Main() method was marked as static—the C#
equivalent of a C++ global and Visual Basic “shared” method. The statements
that appear independent from a method and the methods that appear
independent from a class are even conforming to this rule because the C#
complier generates the surrounding method and class for these seemingly
independent constructs. For more information, see “Top-Level Statements” later
in this chapter.

" BEGINNER TOPIC

Refactoring into Methods
Moving a set of statements into a method instead of leaving them inline within a

larger method is a form of refactoring. Refactoring reduces code duplication,
because you can call the method from multiple places instead of duplicating the
code. Refactoring also increases code readability. As part of the coding process, it is
a best practice to continually review your code and look for opportunities to refactor.
This involves looking for blocks of code that are difficult to understand at a glance
and moving them into a method with a name that clearly defines the code’s behavior.
This practice is often preferred over adding comments to a block of code, because the
method name serves to describe what the implementation does. Listing 5.4 is easy to
grasp at a glance by just viewing the Main() method and not worrying about the

details of each called method’s implementation.

228 "= Chapter 5: Parameters and Methods

Visual Studio allows you to right-click on a block of code within a method and
click Quick Actions and Refactorings... (Ctrl+.) to extract the block into its own
method, automatically inserting code to call the new method from the original
location.

Formal Parameter Declaration

Consider the declarations of the DisplayGreeting(), GetFullName(), and
the GetInitials() methods. The text that appears between the parentheses of a
method declaration is the formal parameter list. (As we will see when we discuss
generics, methods may also have a type parameter list. When it is clear from the
context which kind of parameters we are discussing, we simply refer to them as
parameters in a parameter list.) Each parameter in the parameter list includes the
type of the parameter along with the parameter name. A comma separates each
parameter in the list.

Behaviorally, most parameters are virtually identical to local variables, and the
naming convention of parameters follows accordingly. Therefore, parameter names
use camelCase. Also, it is not possible to declare a local variable (a variable declared
inside a method) with the same name as a parameter of the containing method,

because this would create two local variables of the same name.

[|
Guidelines

DO use camelCasing for parameter names.

Method Return Type Declaration

In addition to GetUserInput(), GetFullName(), and the GetInitials()
methods requiring parameters to be specified, each of these methods includes a
method return type. You can tell that a method returns a value because a data type
appears immediately before the method name in the method declaration. Each of
these method examples specifies a string return type. Unlike parameters, of which
there can be any number, only one method return type is allowable.

Declaring a Method "= 229

As with GetUserInput() and GetInitials(), methods with a return type
almost always? contain one or more return statements that return control to the
caller. A return statement consists of the return keyword followed by an
expression that computes the value the method is returning. For example, the
GetInitials() method’s return statement is return $"{ firstName[0]
}. { lastName[0] }.";. The expression (an interpolated string in this case)
following the return keyword must be compatible with the stated return type of the
method.

If a method has a return type, the block of statements that makes up the body of
the method must not have an unreachable end point. That is, there must be no way
for control to “fall off the end” of a method without returning a value. Often the
easiest way to ensure that this condition is met is to make the last statement of the
method a return statement. However, return statements can appear in locations
other than at the end of a method implementation. For example, an if or switch
statement in a method implementation could include a return statement within it;

see Listing 5.5 for an example.

LISTING 5.5: A return Statement before the End of a Method

public class Program

{
/Ay
public static bool MyMethod()
{
string command = ObtainCommand();
switch(command)
{
case "quit":
return false;
// ... omitted, other cases
default:
return true;
}
}

2. For example, you could throw an exception instead.

230 "= Chapter 5: Parameters and Methods

7

(Note that a return statement transfers control out of the switch, so no break
statement is required to prevent illegal fall-through in a switch section that ends with
a return statement.)

In Listing 5.5, the last statement in the method is not a return statement; it is a
switch statement. However, the compiler can deduce that every possible code path
through the method results in a return, so that the end point of the method is not
reachable. Thus, this method is legal even though it does not end with a return
statement.

If particular code paths include unreachable statements following the return,
the compiler will issue a warning that indicates the additional statements will never
execute.

Though C# allows a method to have multiple return statements, code is
generally more readable and easier to maintain if there is a single exit location rather
than having multiple returns sprinkled through various code paths of the method.

Specifying void as a return type indicates that there is no return value from the
method. As a result, a call to the method may not be assigned to a variable or used as
a parameter type at the call site. A void method call may be used only as a
statement. Furthermore, within the body of the method the return statement
becomes optional, and when it is specified, there must be no value following the
return keyword. For example, the return of Main() in Listing 5.4 is void, and
there is no return statement within the method. However, DisplayGreeting()
includes an (optional) return statement that is not followed by any returned result.

Although, technically, a method can have only one return type, the return type
could be a tuple. As a result, starting with C# 7.0, it is possible to return multiple
values packaged as a tuple using C# tuple syntax. For example, you could declare a
GetName() method, as shown in Listing 5.6.

LISTING 5.6: Returning Multiple Values Using a Tuple

public class Program

{
static string GetUserInput(string prompt)

{

Declaring a Method "= 231

Console.Write(prompt);
return Console.ReadlLine() ?? string.Empty;

}

static (string First, string Last) GetName()

{
string firstName, lastName;
firstName = GetUserInput("Enter your first name: ");
lastName = GetUserInput("Enter your last name: ");
return (firstName, lastName);

}

static public void Main()

{
(string First, string Last) name = GetName();
Console.WriteLine($"Hello { name.First } { name.Last }!");

}

Technically, we are still returning only one data type, a ValueTuple<string,
string>. However, effectively, you can return any (preferably reasonable) number

you like using each item within the tuple.

Expression Bodied Methods

To support the simplest of method declarations without the formality of a method
body, C# 6.0 introduced expression bodied methods, which are declared using an
expression rather than a full method body. Listing 5.4’s GetFullName() method

provides an example of the expression bodied method:

static string GetFullName(string firstName, string lastName) =>

In place of the curly brackets typical of a method body, an expression bodied method
uses the “goes to” operator (fully introduced in Chapter 13), for which the resulting
data type must match the return type of the method. In other words, even though
there is no explicit return statement in the expression bodied method
implementation, it is still necessary that the return type from the expression match
the method declaration’s return type.

Expression bodied methods are syntactic shortcuts to the fuller method body
declaration. As such, their use should be limited to the simplest of method
implementations—generally expressible on a single line.

232 "= Chapter 5: Parameters and Methods

[|
Language Contrast: C++—Header Files

Unlike in C++, C# classes never separate the implementation from the
declaration. In C#, there is no header (.h) file or implementation (.cpp) file.
Instead, declaration and implementation appear together in the same file. (C#
does support an advanced feature called partial methods, in which the method’s
defining declaration is separate from its implementation, but for the purposes of
this chapter, we consider only nonpartial methods.) The lack of a separate
declaration and implementation in C# removes the requirement to maintain
redundant declaration information in two places found in languages that have
separate header and implementation files, such as C++.

Local Functions

C# 7.0 introduced the ability to declare functions within methods. In other words,
rather than always declaring a method within a class, the method (technically a

function) could be declared within another method (see Listing 5.7).

LISTING 5.7: Declaring a Local Function

public static void Main()
{
string GetUserInput(string prompt)
{
string? input;
do
{
Console.Write(prompt + ": ");
input = Console.ReadLine();
}
while(string.IsNullOrWhiteSpace(input));
return input!;

g

string firstName = GetUserInput("First Name");
string lastName = GetUserInput("Last Name");
string email = GetUserInput("Email Address");

Console.WriteLine($"{firstName} {lastName} <{email}>");

e

Using Directives "= 233

This language construct is called a local function. The reason to declare it like this is
that the function’s scope is limited to invocation from within the method where it is
declared. Outside of the method’s scope, it is not possible to call the local function.
In addition, the local function can access local variables in the method that are
declared before the local function. Alternatively, this can explicitly be prevented by
adding the static to the beginning of the local function declaration (see “Static

Anonymous Functions” (https://essentialcsharp.com/outer-variables) in Chapter
13).

Using Directives

Fully qualified namespace names can become quite long and unwieldy. It is possible,
however, to import all the types from one or more namespaces so that they can be
used without full qualification.

Using Directive Overview

Rather than a declarative that applies to the entire project, C# includes a using
directive that applies only to the current file. For example, Listing 5.8 (with Output
5.2) doesn’t prefix RegEx with System.Text.RegularExpressions. The
namespace may be omitted because of the wusing System.Text
.RegularExpressions directive that appears at the top of the listing.

LisTING 5.8: Using Directive Example

// The using directive imports all types from the
// specified namespace into the entire file
using System.Text.RegularExpressions;

public class Program

{
public static void Main()
{
const string firstName = "FirstName";
const string initial = "Initial";
const string lastName = "LastName";

// Explaining regular expressions is beyond the
// scope of this book.

https://essentialcsharp.com/outer-variables

234 "s Chapter 5: Parameters and Methods

// See https://www.regular-expressions.info/ for

// more information.

const string pattern = $"""
(?2<{firstName}>\w+)\s+((?<{
initial}>\w)\.\s+)?2(?<{
lastName}>\w+)\s*

nun,
’

Console.WriteLine(
"Enter your full name (e.g. Inigo T. Montoya): ");
string name = Console.ReadlLine()!;

// No need to qualify RegEx type with

// System.Text.RegularExpressions because
// of the using directive above

Match match = Regex.Match(name, pattern);

if (match.Success)

{
Console.WritelLine(
$"{firstName}: {match.Groups[firstName]}");
Console.WriteLine(
$"{initial}: {match.Groups[initiall}");
Console.WritelLine(
$"{lastName}: {match.Groups[lastName]}");
}
1
}
OuTPuT 5.2

Hello, my name is Inigo Montoya

A using directive such as using System.Text does not enable you to omit
System.Text from a type declared within a nested namespace such as System
.Text.RegularExpressions. For example, if your code accessed the RegEx
type from the System.Text.RegularExpressions namespace, you would
have to either include an additional using System.Text
.RegularExpressions directive or fully qualify the type as System.Text
.RegularExpressions.RegEx, not just RegularExpressions.RegEx. In
short, a using directive does not import types from any nested namespaces. Nested

https://www.regular-expressions.info/

Using Directives "= 235

namespaces, which are identified by the period in the namespace, always need to be

imported explicitly.

|
Language Contrast: Java—Wildcards in the import
Directive

Java enables importing namespaces using a wildcard such as the following:
import javax.swing.x;

In contrast, C# does not support a wildcard using directive but instead requires
each namespace to be imported explicitly.

Frequent use of types within a particular namespace implies that the addition of a
using directive for that namespace is a good idea, instead of fully qualifying all types
within the namespace. Accordingly, almost all C# files include the using System
directive at the top. Throughout the remainder of this book, code listings often omit
the using System directive from the manuscript. Other namespace directives are
generally included explicitly, however.

One interesting effect of the using System directive is that the string data type
can be identified with varying case: String or string. The former version relies
on the using System directive, and the latter uses the string keyword. Both are
valid C# references to the System.String data type, and the resultant Common

Intermediate Language (CIL) code is unaffected by which version is chosen.

" BEGINNER TOPIC

Namespaces
As described earlier, namespaces are an organizational mechanism for

categorizing and grouping together related types. Developers can discover related
types by examining other types within the same namespace as a familiar type.
Additionally, through namespaces, two or more types may have the same name as

long as they are disambiguated by different namespaces.

236 "m Chapter 5: Parameters and Methods

Begin 10.0

Implicit Using Directives
Readers will recall from Chapter 1 there was an ImplicitUsings element within
the . csproj file for C# 10.0 and later:

<ImplicitUsings>enable</ImplicitUsings>

In addition, the source code consistently refers to things like Console, even though
the fully qualified name is System.Console. The ability to abbreviate is
afforded by the ImplicitUsings element, which tells the compiler to infer the
namespace automatically rather than require the programmer to provide it. Using
directives, therefore, allows the use of type identifiers without specifying their fully
qualified name. To accomplish this, the complier generates global using directives
whenever the ImplicitUsings element is set to enable.

Global Using Directives

If you search the subdirectory of a C# 10.0 (or higher) project, you will notice there
is a file with the extension .GlobalUsing.g.cs, generally found in an obj
folder subdirectory, and it contains multiple global using directives such as those
found in Listing 5.9.

LisTING 5.9: Implicit Usings Generated Global Using Declaratives3

// <auto-generated/>

global using global::System;

global using global::System.Collections.Generic;
global using global::System.IO;

global using global::System.Ling;

global using global::System.Net.Http;

global using global::System.Threading;

global using global::System.Threading.Tasks;

3. Although removed from this listing for elucidation purposes, the generated global using
statements prefix the namespace with “global::” as in global using global::System.
Discussion of namespace alias qualifiers appears later in the section.

Using Directives "= 237

Each of these lines* is a global using directive that tells the compiler to imply the
namespace qualifier for any type that appears within the namespace specified. For
example, global using global::System allows implicit using directives like
Console.WriteLine("Hello! My name is Inigo Montoya!") rather than
the fully qualified name System.Console.WriteLine(...) because
Conso'le is defined in the System namespace.

Of course, you can provide your own global using declaratives. Say, for example,
you frequently are using the System.Text.StringBuilder class (initially
introduced in Chapter 2). Instead of always referring to it by the fully qualified
name, you can provide a global using directive for the System.Text namespace
and then just refer to the type using the abbreviation StringBuilder (see Listing
5.10), also still relying on implicit usings for System.Console.

LisTING 5.10: Implicit Using Directives with StringBuilder

// The global using directive imports all types from
// the specified namespace into the project
global using System.Text;
VZare
public class Program
{
public static void Main()
{
// See Chapter 6 for explanation of new();
StringBuilder name = new();

Console.WriteLine("Enter your first name: ");
name.Append(Console.ReadLine()!.Trim());

Console.WriteLine("Enter your middle initial: ");
name.Append($" { Console.ReadLine()!.Trim('."').Trim() }.");

Console.WriteLine("Enter your last name: ");
name.Append($" { Console.ReadLine()!.Trim() }");

Console.WriteLine($"Hello {name}!");

4. Ignoring the comment that shows the code was generated by the compiler.

238 "= Chapter 5: Parameters and Methods

The global using directives applies to the entire project regardless of in which file
it appears. And, although C# allows the same global using declarative multiple times,
doing so is redundant. For this reason, it is preferable to place all the global using
directives into a single file named Usings.cs by convention. Collocating them here
also provides a well-known location to place them or remove such declaratives.

While global using directives apply to the entire project, C# also supports using
directives that apply only to the current file. The global using declarative, however,
must appear before any other (non-global) using directives, which we cover after the

.csproj using element.

csproj Using Element

It is also possible to specify global using declaratives within your project

(.csproj) file with a Using element, as shown in Listing 5.11

LisTING 5.11: Sample .NET Console Project File with Using Element

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net7.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<Using Include="System.Net" />
<Using Static="true" Include="System.Console"/>
</ItemGroup>
</Project>

The important thing to note is that unlike the ImplicitUsings element, the Using
element is a subelement to the ItemGroup element rather than the PropertyGroup
element. And, given the Using element for System.Net specified, it is no longer
necessary to fully qualify HttpClient, which is part of the System.Net
namespace. Instead, the compiler will generate a global using System.Net
directive when building the project. There is also another Using statement that

includes a Static attribute on it, which we will explain further in the next section.

Using Directives "= 239

" ADVANCED TOPIC

Nested Using Directives

Not only can you have using directives at the top of a file, but you can also
include them at the top of a namespace declaration. For example, if a new
namespace, EssentialCSharp, were declared, it would be possible to add a using

declarative at the top of the namespace declaration (see Listing 5.12).

LISTING 5.12: Specifying the using Directive inside a Namespace Declaration

// The using directive imports all types from the
// specified namespace into the entire file
using System.Text.RegularExpressions;

public class Program

{
public static void Main()
{
/Ay
// No need to qualify RegEx type with
// System.Text.RegularExpressions because
// of the using directive above
Match match = Regex.Match(name, pattern);
YAy
}
}

The difference between placing the using directive at the top of a file and placing
it at the top of a namespace declaration is that the directive is active only within the
namespace declaration. If the code includes a new namespace declaration above or
below the EssentialCSharp declaration, the using System directive within a
different namespace would not be active. Code seldom is written this way, especially
given the standard practice of providing a single type declaration per file.

Using Static Directive

The using directive allows you to abbreviate a type name by omitting the namespace
portion of the name—such that just the type name can be specified for any type

within the stated namespace. In contrast, the using static directive allows you to omit

End 10.0

240 "= Chapter 5: Parameters and Methods

both the namespace and the type name from any static member of the stated type. A
using static System.Console directive, for example, allows you to specify
WriteLine() rather than the fully qualified method name of System.Console
.WriteLine(). Continuing with this example, we can update Listing 5.2 to
leverage the using static System.Console directive to create Listing 5.13.

LiISTING 5.13: Using Static Directive

using static System.Console;

public class HeyYou

{
public static void Main()
{
string firstName;
string lastName;
WriteLine("Hey you!");
Write("Enter your first name: ");
firstName = ReadLine() ?? string.Empty;
Write("Enter your last name: ");
lastName = ReadlLine() ?? string.Empty;
WriteLine(
$"Your full name is { firstName } { lastName }.");
}
}

In this case, there is no loss of readability of the code: WriteLine(),
Write(), and ReadLine() all clearly relate to a console directive. In fact, one
could argue that the resulting code is simpler and therefore clearer than before.

However, sometimes this is not the case. For example, if your code uses classes
that have overlapping behavior names, such as an Exists() method on a file and
an Exists() method on a directory, then a using static directive would reduce
clarity when you invoke Exists(). Similarly, if the class you were writing had its
own members with overlapping behavior names—for example, Display() and
Write()—then clarity would be lost to the reader.

Using Directives "= 241

This ambiguity would not be allowed by the compiler. If two members with the
same signature were available (through either using static directives or separately
declared members), any invocation of them that was ambiguous would result in a

compile error.
Note that C# 10 or later also support global static using directives such as:

global using static System.Console;
Similarly, a global using static directive can be configured in the csproj file:
<Using Static="true" Include="System.Console"/>

This is also shown in Listing 5.11.

Aliasing
Starting in C# 12.0, the using directive also allows aliasing a namespace or any type

including tuples, pointers (Chapter 23), array types, and generic types (Chapter 12).
An alias is an alternative name that you can use within the text to which the using
directive applies. The two most common reasons for aliasing are to disambiguate two
types that have the same name and to abbreviate a long name. In Listing 5.14, for
example, the CountDownTimer alias is declared as a means of referring to the type
System.Timers.Timer. Simply adding a using System.Timers directive
will not sufficiently enable the code to avoid fully qualifying the Timer type. The
reason is that System.Threading also includes a type called Timer; therefore,
using just Timer within the code will be ambiguous.

LISTING 5.14: Declaring a Type Alias

using CountDownTimer = System.Timers.Timer;
using StartStop = (DateTime Start, DateTime Stop);

public class HelloWorld
{

public static void Main()
{
CountDownTimer timer;
StartStop startStop;

242 "s Chapter 5: Parameters and Methods

End 12.0

Begin 10.0

End 10.0

e

Listing 5.14 uses an entirely new name, CountDownTimer, as the alias. It is
possible, however, to specify the alias as Timer, as shown in Listing 5.15.

LisTING 5.15: Declaring a Type Alias with the Same Name

// Declare alias Timer to refer to System.Timers.Timer to

// avoid code ambiguity with System.Threading.Timer
using Timer = System.Timers.Timer;

public class HelloWorld

{
public static void Main()
{
Timer timer;
VA
}
}

Because of the alias directive, “Timer” is not an ambiguous reference. Furthermore,

to refer to the System.Threading.Timer type, you will have to either qualify
the type or define a different alias.

Of course, C# 10 and later also support global aliasing using directives such as:

global using Timer = Timers.Timer;

And like with all other global using directives, a global using alias directive can be
configured in the csproj file:

<Using Include=" System.Timers.Timer" Alias="Timer"/>

Returns and Parameters on Main Method

So far, declaration of an executable’s Main method has been the simplest declaration

possible. You have not included any parameters or non-void return type in your

Returns and Parameters on Main Method ™ 243

Main method declarations. However, C# supports the ability to retrieve the
command-line arguments when executing a program, and it is possible to return a
status indicator from the Main method.

The runtime passes the command-line arguments to Main() using a single
string array parameter—named args by convention. All you need to do to
retrieve the parameters is to access the array, as demonstrated in Listing 5.16 with
Output 5.3. The output shows a run with no parameters and a second run with two
parameters. The purpose of this program is to download a file whose location is
specified by a URL. The first command-line argument identifies the URL, and the
second argument is the filename to which to save the file. The listing begins with a
switch statement that evaluates the number of parameters (args.Length) as

follows:

1. If there are not two parameters, display an error indicating that it is necessary
to provide the URL and filename.

2. The presence of two arguments indicates the user has provided both the URL of
the resource and the download target filename.

LiSTING 5.16: Passing Command-Line Arguments to a Main Method

public class Program

{
public static int Main(string[] args)
{
int result;
if(args?.Length != 2)
{

// Exactly two arguments must be specified; give an error
Console.WriteLine(
"ERROR: You must specify the "
+ "URL and the file name");
Console.WritelLine(
"Usage: Downloader.exe <URL> <TargetFileName>");
result = 1;
}
else
{
string urlString = args[0];
string fileName = args[1];

244 "s Chapter 5: Parameters and Methods

HttpClient client = new();
byte[] response =
client.GetByteArrayAsync(urlString).Result;
client.Dispose();
File.WriteAllBytes(fileName, response);
Console.WriteLine($"Downloaded '{ fileName }' from '{
ourlString }'.");
result = 0;
}

return result;

OuTPUT 5.3

>Downloader

ERROR: You must specify the URL and the file name
Usage: Downloader.exe <URL> <TargetFileName>
>Downloader https://IntelliTect.com Index.html
Downloaded ‘Index.html’ from ‘https://IntelliTect.com’.

If you were successful in calculating the target filename, you would use it to save
the downloaded file. Otherwise, you would display the help text. The Main()
method also returns an int rather than a void. This is optional for a Main method
declarations, but if it is used, the program can return an exit code to a caller (such as
a script or a batch file). By convention, a return other than zero indicates an error.

Although all command-line arguments can be passed to Main() via an array of
strings, sometimes it is convenient to access the arguments from inside a method
other than Main(). The System.Environment.GetCommandLineArgs()
method returns the command-line arguments array in the same form that
Main(string[] args) passes the arguments into the Main method except that the
first item in the array is the executable filename.

To download the file, Listing 5.16 uses a System.Net.Http.HttpClient
object but only specified HttpClient—its namespace is imported by the
ImplicitUsings element in the .csproj file.

https://IntelliTect.comIndex.html
https://IntelliTect.com�

Returns and Parameters on Main Method "= 245

" ADVANCED TOPIC

Disambiguate Multiple Main Methods
If a program includes two classes with Main methods, it is possible to specify

which one to use as the entry point. In Visual Studio, right-clicking on the project
from Solution Explorer and selecting Properties provides a user interface on top of
the project file. By selecting the Application tab on the left, you can edit the Startup
Object and select which type’s Main method will start the program. The result will be
an additional element in the PropertyGroup:
<StartupObject>AddisonWesley.Michaelis.EssentialCSharp.

Shared.Program
</StartupObject>

On the command line, you can specify the same value, setting the

StartupObject property when running a build. For example:

dotnet build /p:StartupObject=AddisonWesley.Program?2

where AddisonWesley.Program2 is the namespace and class that contains the
selected Main method. (In fact, any item in the PropertyGroup section of a csproj
file can be specified on the command line this way.)

" BEGINNER TOPIC

Call Stack and Call Site

As code executes, methods call more methods, which in turn call additional
methods, and so on. In the simple case of Listing 5.4, Main() calls GetUserInput(),
which in turn calls System.Console.ReadLine(), which in turn calls even more
methods internally. Every time a new method is invoked, the runtime creates an
activation frame that contains information about the arguments passed to the new
call, the local variables of the new call, and information about where control should
resume when the new method returns. The set of calls within calls within calls, and

so on, produces a series of activation frames that is termed the call stack.> As

5. Except for async or iterator methods, which move their activator records onto the heap.

246 "m Chapter 5: Parameters and Methods

Begin 9.0

program complexity increases, the call stack generally gets larger and larger as each
method calls another method. As calls complete, however, the call stack shrinks until
another method is invoked. The process of removing activation frames from the call
stack is termed stack unwinding. Stack unwinding always occurs in the reverse
order of the method calls. When the method completes, execution returns to the call

site—that is, the location from which the method was invoked.

Top-Level Statements

Until C# 9.0, all executable code in C# was required to appear within a type
definition and a member such as a method within a type. As we saw in Listing 1.1,
this is no longer required. Instead, it is possible for a single file to have top-level
statements, statements that appear independent of any type definition and even
without a Main method. Such statements are allowed in only one file, and they will
be the first statements to execute within the program—the equivalent of the many
statements that appear in the Main method. In fact, given top-level statements, the
compiler generates a class called Program that wraps the top-level statements and
places them into a Main method. Furthermore, the method has a contextual keyword
—args—that is the equivalent of the string[] args parameter of a Main
method.

With top-level statements, C# syntax allows the statements outside a method as a
simplification—especially for new C# developers familiar with other languages that
are less structured—but then moves these statements into the Main method at
compiler time. The end result, therefore, is that there are never any statements in the
underlying CIL that are not placed within a type definition and within a type member.

Since the C# compiler moves top-level methods into its own generated main
method that is defined within a class named Program, the compiler issues an error

if you try to define an additional class called Program.® One additional restriction

6. As the compiler warning indicates, you could define a Program class as partial, indicating that
the two definitions will be merged into the same Program class. For more information, see “Partial
Classes” in Chapter 6.

Advanced Method Parameters ™= 247

on top-level statements is that any type definition within the same file as the top-level
statements must appear after such statements.

The file with top-level statements can also contain methods, which we will call
top-level methods, and such methods can optionally appear independent of a type
definition as well.

When running some of the New Project wizards in Visual Studio, there is
frequently an option called “Do not use top-level statements” that allows you to
choose whether to go with the simpler version or to generate the structure explicitly,
resulting in code that looks more like Listing 1.1 (without a class or Main method).
Similarly, on the dotnet command line, some of the project templates (i.e., the
Console argument when running the dotnet new Console command) frequently
have a --use-program-main option. However, top-level statements are available
to only those projects that have entry points, in other words, Main methods. The
compiler doesn’t allow top-level statements on programs that do not have Main
methods (such as class libraries).

Top-level statements were mainly introduced to remove unnecessary ceremony
when writing simple programs, reducing the complexity for beginners especially.
Prior to top-level statements, a program with a single statement would require both a
type definition and a Main method just to code the single statement. With top-level
statements, this structure is optionally eliminated. In addition, top-level statements
allow for easier embedding of seemingly complete C# snippets within text like
Polyglot notebooks (https://github.com/dotnet/interactive) or the online version of
this book (https://essentialcsharp.com).

Advanced Method Parameters

So far this chapter’s examples have returned data via the method return value. This
section demonstrates how methods can return data via their method parameters and
how a method may take a variable number of arguments.

Value Parameters

Arguments to method calls are usually passed by value, which means the value of

the argument expression is copied into the target parameter. For example, in Listing

https://github.com/dotnet/interactive
https://essentialcsharp.com

248 "= Chapter 5: Parameters and Methods

5.17, the value of each variable that Main() uses when calling Combine() will be
copied into the parameters of the Combine() method. Output 5.4 shows the results
of this listing.

LISTING 5.17: Passing Variables by Value

public class Program

{
public static void Main()
{
VI
string fullName;
string drivelLetter = "C:";
string folderPath = "Data";
string fileName = "index.html";
fullName = Combine(drivelLetter, folderPath, fileName);
Console.WriteLine(fullName);
/S
}
static string Combine(
string driveletter, string folderPath, string fileName)
{
string path;
path = string.Format("{1}{0}{2}{0}{3}",
Path.DirectorySeparatorChar,
driveletter, folderPath, fileName);
return path;
}
}
OuTPuT 5.4

C:\Users\Inigo\Data\index.html

Even if the Combine() method assigned null to driveletter,
folderPath, and fileName before returning, the corresponding variables within
Main() will maintain their original values because the variables are copied when
calling a method. When the call stack unwinds at the end of a call, the copied data is

thrown away.

Advanced Method Parameters ™= 249

" BEGINNER TOPIC

Matching Caller Variables with Parameter Names
In Listing 5.17, the variable names in the caller exactly matched the parameter

names in the called method. This matching is provided simply for readability
purposes, whether names match is irrelevant to the behavior of the method call. The
parameters of the called method and the local variables of the calling method are
found in different declaration spaces and have nothing to do with each other.

" ADVANCED TOPIC

Reference Types versus Value Types
For the purposes of this section, it is inconsequential whether the parameter

passed is a value type or a reference type. Rather, the important issue is whether the
called method can write a value into the caller’s original variable. Since a copy of the
caller variable’s value is made, the caller’s variable cannot be reassigned.
Nevertheless, it is helpful to understand the difference between a variable that
contains a value type and a variable that contains a reference type.

The value of a reference type variable is, as the name implies, a reference to the
location where the data associated with the object is stored. How the runtime chooses
to represent the value of a reference type variable is an implementation detail of the
runtime; typically, it is represented as the address of the memory location in which
the object’s data is stored, but it need not be.

If a reference type variable is passed by value, the reference itself is copied from
the caller to the method parameter. As a result, the target method cannot update the
caller variable’s value, but it may update the data referred to by the reference.

Alternatively, if the method parameter is a value type, the value itself is copied
into the parameter, and changing the parameter in the called method will not affect

the original caller’s variable.

250 "= Chapter 5: Parameters and Methods

Reference Parameters (ref)

Consider Listing 5.18, which calls a function to swap two values, and Output 5.5,

which shows the results.

LISTING 5.18: Passing Variables by Reference

public class Program

{
public static void Main()
{
VAT
string first = "hello";
string second = "goodbye";
Swap(ref first, ref second);
Console.WriteLine(
$@"first = ""{ first }"", second = ""{ second }""");
/Ay
}
static void Swap(ref string x, ref string y)
{
string temp = x;
X =Y,
y = temp;
}
}
OuTPuT 5.5

first = "goodbye", second = "hello"

The values assigned to first and second are successfully switched. To do
this, the variables are passed by reference. The obvious difference between the call
to Swap() and Listing 5.17’s call to Combine() is the inclusion of the keyword
ref in front of the parameter’s data type. This keyword changes the call such that
the variables used as arguments are passed by reference, so the called method can
update the original caller’s variables with new values.

When the called method specifies a parameter as ref, the caller is required to
supply a variable, not a value, as an argument and to place ref in front of the

variables passed. In so doing, the caller explicitly recognizes that the target method

Advanced Method Parameters ™= 251

could reassign the values of the variables associated with any ref parameters it
receives. Furthermore, it is necessary to initialize any local variables passed as ref
because target methods could read data from ref parameters without first assigning
them. In Listing 5.18, for example, temp is assigned the value of first, assuming
that the variable passed in first was initialized by the caller. Effectively, a ref
parameter is an alias for the variable passed. In other words, it is essentially giving a
parameter name to an existing variable, rather than creating a new variable and
copying the value of the argument into it.

"= NOTE

The ref modifier assigns a parameter to refer to an existing variable on the

stack rather than creating a new variable and copying the argument value

into the parameters.

Output Parameters (out)

As mentioned earlier, a variable used as a ref parameter must be assigned before it
is passed to the called method, because the called method might read from the
variable. The “swap” example given previously must read and write from both
variables passed to it. However, it is often the case that a method that takes a
reference to a variable intends to write to the variable but not to read from it. In such
cases, clearly it could be safe to pass an uninitialized local variable by reference.

To achieve this, code needs to decorate parameter types with the keyword out.
This is demonstrated in the TryGetPhoneButton() method in Listing 5.19, which
returns the phone button corresponding to a character.

LISTING 5.19: Passing Variables Out Only

public static int Main(string[] args)
{
if(args.Length == 0)

Console.WriteLine(
"ConvertToPhoneNumber.exe <phrase>");
Console.WritelLine(

252 "s Chapter 5: Parameters and Methods

na

indicates no standard phone button");

return 1;
1
foreach(string word in args)
{
foreach(char character in word)
{
if (TryGetPhoneButton(character, out char button))
{
Console.Write(button);
}
else
{
Console.Write('_');
}
}
}
Console.WriteLine();
return 0;

static bool TryGetPhoneButton(char character, out char button)
{
bool success = true;
switch(char.ToLower(character))
{
case '1':
button = '1';
break;
case '2':
case 'a':
case 'b':
case '

c':
button = '2°';
break;

VAT
case '-':
button = '-';
break;
default:
// Set the button to indicate an invalid value
button = '_';
success = false;
break;

Advanced Method Parameters ™= 253

return success;

Output 5.6 shows the results of Listing 5.19.
OuTPUT 5.6

>ConvertToPhoneNumber.exe CSharpIsGood
274277474663

In this example, the TryGetPhoneButton() method returns true if it can
successfully determine the character’s corresponding phone button. The function
also returns the corresponding button by using the button parameter, which is
decorated with out.

An out parameter is functionally identical to a ref parameter; the only
difference is which requirements the language enforces regarding how the aliased
variable is read from and written to. Whenever a parameter is marked with out, the
compiler checks that the parameter is set for all code paths within the method that
return normally (i.e., the code paths that do not throw an exception). If, for example,
the code does not assign button a value in some code path, the compiler will issue
an error indicating that the code didn’t initialize button. Listing 5.19 assigns
button to the underscore character because even though it cannot determine the
correct phone button, it is still necessary to assign a value.

A common coding mistake when working with out parameters is to forget to
declare the out variable before you use it. Starting with C# 7.0, it is possible to
declare the out variable inline when invoking the function. Listing 5.19 uses this
feature with the statement TryGetPhoneButton(character, out char
button) without ever declaring the button variable beforehand. Prior to C# 7.0,
it would be necessary to first declare the button variable and then invoke the
function with TryGetPhoneButton(character, out button).

Another C# 7.0 feature is the ability to discard an out parameter entirely. If, for
example, you simply wanted to know whether a character was a valid phone button
but not actually return the numeric value, you could discard the button parameter
using an underscore: TryGetPhoneButton(character, out).

Prior to C# 7.0’s tuple syntax, a developer of a method might declare one or more

out parameters to get around the restriction that a method may have only one return

254 "s Chapter 5: Parameters and Methods

type; a method that needs to return two values can do so by returning one value
normally, as the return value of the method, and a second value by writing it into an
aliased variable passed as an out parameter. Although this pattern is both common
and legal, there are usually better ways to achieve that aim. For example, if you are
considering returning two or more values from a method and C# 7.0 is available, it is
likely preferable to use C# 7.0 tuple syntax. Prior to that, consider writing two
methods, one for each value, or still using the System.ValueTuple type but
without C# 7.0 syntax.

"= NOTE

Each and every normal code path must result in the assignment of all out
parameters.

Read-Only Pass by Reference (in)

In C# 7.2, support was added for passing a value type by reference that was read
only. Rather than passing the value type to a function so that it could be changed,
read-only pass by reference was added: It allows the value type to be passed by
reference so that not only copy of the value type occurs but, in addition, the invoked
method cannot change the value. In other words, the purpose of the feature is to
reduce the memory copied when passing a value while still identifying it as read
only, thus improving the performance. This syntax is to add an in modifier to the

parameter. For example:

int Method(in int number) { ... }

With the in modifier, any attempts to reassign number (number++, for example)

results in a compile error indicating that number is read only.

Advanced Method Parameters "= 255

Return by Reference

Another C# 7.0 addition is support for returning a reference to a variable. Consider,
for example, a function that returns the first pixel in an image that is associated with
red-eye, as shown in Listing 5.20.

LISTING 5.20: ref Return and ref Local Declaration

// Returning a reference
public static ref byte FindFirstRedEyePixel(byte[] image)

{
// Do fancy image detection perhaps with machine learning
for (int counter = 0; counter < image.Length; counter++)
{
if (image[counter] == (byte)ConsoleColor.Red)
{
return ref imagel[counter];
}
}
throw new InvalidOperationException("No pixels are red.");
}
public static void Main()
{
byte[] image = new byte[254];
// Load image
int index = new Random().Next(®, image.Length - 1);
image[index] =
(byte)ConsoleColor.Red;
Console.WritelLine(
$"image[{index}]={(ConsoleColor)image[index]}");
/Ay
// Obtain a reference to the first red pixel
ref byte redPixel = ref FindFirstRedEyePixel(image);
// Update it to be Black
redPixel = (byte)ConsoleColor.Black;
Console.WriteLine(
$"image[{index}]={(ConsoleColor)image[redPixel]l}");
}

By returning a reference to the variable, the caller is then able to update the pixel
to a different color, as shown in the highlighted lines of Listing 5.20. Checking for
the update via the array shows that the value is now black.

256 "= Chapter 5: Parameters and Methods

There are two important restrictions on return by reference, both due to object
lifetime: (1) Object references shouldn’t be garbage collected while they’re still
referenced, and (2) they shouldn’t consume memory when they no longer have any
references. To enforce these restrictions, you can only return the following from a
reference-returning function:

* References to fields or array elements
* Other reference-returning properties or functions

* References that were passed in as parameters to the by-reference-returning
function

For example, FindFirstRedEyePixel() returns a reference to an item in the
image array, which was a parameter to the function. Similarly, if the image was
stored as a field within the class, you could return the field by reference:

byte[] _Image;
public ref byte[] Image { get { return ref _Image; } }
In addition, ref locals are initialized to refer to a particular variable and can’t be

modified to refer to a different variable.
There are several return-by-reference characteristics of which to be cognizant:

* If you’re returning a reference, you obviously must return it. This means,
therefore, that in the example in Listing 5.20, even if no red-eye pixel exists,
you still need to return a reference byte. The only workaround would be to
throw an exception. In contrast, the by-reference parameter approach allows
you to leave the parameter unchanged and return a bool indicating success.
In many cases, this might be preferable.

* When declaring a reference local variable, initialization is required. This
involves assigning it a ref return from a function or a reference to a variable:

ref string text; // Error

Advanced Method Parameters ™= 257

* Although it’s possible in C# 7.0 to declare a reference local variable, declaring
a field of type ref isn’t allowed (see “Instance Fields”
(https://essentialcsharp.com/instance-fields) in Chapter 6 for more
information on declaring fields):

class Thing { ref string _Text; /% Error */ }

* You can’t declare a by-reference type for an auto-implemented property (see
“Properties” (https://essentialcsharp.com/properties) in Chapter 6 for more
information on declaring auto-properties):

class Thing { ref string Text { get;set; } /* Error =/ }

* Properties that return a reference are allowed (see ‘Properties”
(https://essentialcsharp.com/properties) in Chapter 6 for more information on
declaring properties):

class Thing { string _Text = "Inigo Montoya";
ref string Text { get { return ref _Text; } } }

* A reference local variable can’t be initialized with a value (such as null or a
constant). It must be assigned from a by-reference-returning member or a local
variable, field, or array element:

ref int number = 42; // ERROR

Parameter Arrays (params)

In the examples so far, the number of arguments that must be passed has been fixed
by the number of parameters declared in the target method declaration. However,
sometimes it is convenient if the number of arguments may vary. Consider the
Combine() method from Listing 5.17. In that method, you passed the drive letter,
folder path, and filename. What if the path had more than one folder, and the caller
wanted the method to join additional folders to form the full path? Perhaps the best

option would be to pass an array of strings for the folders. However, this would make

https://essentialcsharp.com/instance-fields
https://essentialcsharp.com/properties
https://essentialcsharp.com/properties

258 "= Chapter 5: Parameters and Methods

the calling code a little more complex, because it would be necessary to construct an
array to pass as an argument.

To make it easier on the callers of such a method, C# provides a keyword that
enables the number of arguments to vary in the calling code instead of being set by
the target method. Before we discuss the method declaration, observe the calling
code declared within Main(), as shown in Listing 5.21 with Output 5.7.

LISTING 5.21: Passing a Variable Parameter List

using System;
using System.IO;

public class Program

{
public static void Main()
{

string fullName;
/.

// Call Combine() with four parameters

fullName = Combine(
Directory.GetCurrentDirectory(),
"bin", "config", "index.html");

Console.WriteLine(fullName);

72y

// Call Combine() with only three parameters
fullName = Combine(
Environment.SystemDirectory,
"Temp", "index.html");
Console.WriteLine(fullName);

Zane

// Call Combine() with an array
fullName = Combine(
new string[] {
$"{Environment.GetFolderPath(Environment.SpecialFolder.
oUserProfile)}", "Documents",
"Web", "index.html" });
Console.WriteLine(fullName);

/.

Advanced Method Parameters ™= 259

static string Combine(params string[] paths)

{
string result = string.Empty;
foreach(string path in paths)
{

result = Path.Combine(result, path);

}
return result;

}

OuTPUT 5.7

C:\Users\Inigo\src\Chapter05.Tests\bin\Debug\net7.0\index.html
C:\WINDOWS\system32\Temp\index.html
C:\Users\Inigo\index.html

In the first call to Combine(), four arguments are specified. The second call

contains only three arguments. In the final call, a single argument is passed using an

array. In other words, the Combine() method takes a variable number of arguments

—presented either as any number of string arguments separated by commas or as a

single array of strings. The former syntax is called the expanded form of the method

call, and the latter form is called the normal form.

To allow invocation using either form, the Combine() method does the

following:

1. Places params immediately before the last parameter in the method declaration
2. Declares the last parameter as an array

With a parameter array declaration, it is possible to access each corresponding

argument as a member of the params array. In the Combine() method

implementation, you iterate over the elements of the paths array and call System

.I0.Path.Combine(). This method automatically combines the parts of the

path, appropriately using the platform-specific directory separator character. Note

that PathEx.Combine() is for demonstration only as it provides a rough

implementation of what System.I0.Path.Combine() does already.

There are a few notable characteristics of the parameter array:

260 "= Chapter 5: Parameters and Methods

* The parameter array is not necessarily the only parameter on a method.

* The parameter array must be the last parameter in the method declaration.
Since only the last parameter may be a parameter array, a method cannot have
more than one parameter array.

* The caller can specify zero arguments that correspond to the parameter array
parameter, which will result in an array of zero items being passed as the
parameter array.

* Parameter arrays are type-safe: The arguments given must be compatible with
the element type of the parameter array.

* The caller can use an explicit array rather than a comma-separated list of
arguments.

* If the target method implementation requires a minimum number of
parameters, those parameters should appear explicitly within the method
declaration, forcing a compile error instead of relying on runtime error
handling if required parameters are missing. For example, if you have a
method that requires one or more integer arguments, declare the method as
int Max(int first, params int[] operands) rather than as int
Max(params int[] operands) so that at least one value is passed to
Max().

Using a parameter array, you can pass a variable number of arguments of the
same type into a method. The section “Method Overloading,” which appears later in
this chapter, discusses a means of supporting a variable number of arguments that are

not necessarily of the same type.

[|
Guidelines

DO use parameter arrays when a method can handle any
number—including zero—of additional arguments.

By the way, a path Combine() function is a contrived example since, in fact,
System.IO.Path.Combine() is an existing function that is overloaded to

support parameter arrays.

Recursion "= 261

Recursion

Calling a method recursively or implementing the method using recursion refers to
use of a method that calls itself. Recursion is sometimes the simplest way to
implement a particular algorithm. Listing 5.22 counts the lines of all the C# source

files (*.cs) in a directory and its subdirectory.

LISTING 5.22: Counting the Lines within . cs Files, Given a Directory

using System.IO;

public static class LineCounter

{

// Use the first argument as the directory
// to search, or default to the current directory
public static void Main(string[] args)

{
int totalLineCount = 0;
string directory;
if(args.Length > 0)
{
directory = args[0];
}
else
{
directory = Directory.GetCurrentDirectory();
}
totallLineCount = DirectoryCountlLines(directory);
Console.WriteLine(totalLineCount);
}

static int DirectoryCountlLines(string directory)
{
int lineCount = 0;
foreach(string file in
Directory.GetFiles(directory, "x.cs"))
{
lineCount += CountlLines(file);

}

foreach(string subdirectory in
Directory.GetDirectories(directory))
{

lineCount += DirectoryCountlLines(subdirectory);

262 "= Chapter 5: Parameters and Methods

return lineCount;

}

private static int CountLines(string file)
{
string? line;
int lineCount = 0;
// This can be improved with a using statement
// which is not yet described.
FileStream stream = new(file, FileMode.Open);
StreamReader reader = new(stream);
line = reader.ReadlLine();

while(line != null)
{
if(line.Trim() != "")
{
lineCount++;
}

line = reader.ReadLine();

}

reader.Dispose(); // Automatically closes the stream
return lineCount;

Output 5.8 shows the results of Listing 5.22.
OuTtPUT 5.8

104

The program begins by passing the first command-line argument to
DirectoryCountLines() or by using the current directory if no argument is
provided. This method first iterates through all the files in the current directory and
totals the source code lines for each file. After processing each file in the directory,
the code processes each subdirectory by passing the subdirectory back into the
DirectoryCountLines() method, rerunning the method using the subdirectory.
The same process is repeated recursively through each subdirectory until no more
directories remain to process.

Recursion "= 263

Readers unfamiliar with recursion may find it confusing at first. Regardless, it is
often the simplest pattern to code, especially with hierarchical type data such as the
filesystem. However, although it may be the most readable approach, it is generally
not the fastest implementation. If performance becomes an issue, developers should
seek an alternative solution to a recursive implementation. The choice generally

hinges on balancing readability with performance.

"= BEGINNER TOPIC

Infinite Recursion Error
A common programming error in recursive method implementations appears in
the form of a stack overflow during program execution. This usually happens
because of infinite recursion, in which the method continually calls back on itself,
never reaching a point that triggers the end of the recursion. It is a good practice for
programmers to review any method that uses recursion and to verify that the
recursion calls are finite.
A common pattern for recursion using pseudocode is as follows:
M(x)
{
if x is trivial
return the result
else
a. Do some work to make the problem smaller
b. Recursively call M to solve the smaller problem
c. Compute the result based on a and b
return the result
}
Things go wrong when this pattern is not followed. For example, if you don’t
make the problem smaller or if you don’t handle all possible “smallest” cases, the

recursion never terminates.

264 "s Chapter 5: Parameters and Methods

Method Overloading

Listing 5.22 called DirectoryCountLines(), which counted the lines of *.cs
files. However, if you want to count code in *.h/+.cpp files or in *.vb files,
DirectoryCountLines() will not work. Instead, you need a method that takes
the file extension but still keeps the existing method definition so that it handles
*, cs files by default.

All methods within a class must have a unique signature, and C# defines
uniqueness by variation in the method name, parameter data types, or number of
parameters. This does not include method return data types; defining two methods
that differ only in their return data types will cause a compile error. This is true even
if the return type is two different tuples. Method overloading occurs when a class
has two or more methods with the same name and the parameter count and/or data

types vary between the overloaded methods.

"« NOTE

A method is considered unique as long as there is variation in the method

name, parameter data types, or number of parameters.

Method overloading is a type of operational polymorphism. Polymorphism
occurs when the same logical operation takes on many (“poly”) forms (“morphs”)
because the data varies. For example, calling WritelLine() and passing a format
string along with some parameters is implemented differently than calling
WriteLine() and specifying an integer. However, logically, to the caller, the
method takes care of writing the data, and it is somewhat irrelevant how the internal
implementation occurs. Listing 5.23 provides an example, and Output 5.9 shows the
results.

LISTING 5.23: Counting the Lines within . cs Files Using Overloading

public static class LineCounter

{

public static void Main(string[] args)

{

int totallLineCount;

Method Overloading "= 265

if(args.Length > 1)

{
totalLineCount = DirectoryCountLines(args[0], args[1]);
}
else if(args.Length > 0)
{
totallLineCount = DirectoryCountlLines(args[0]);
}
else
{
totalLineCount = DirectoryCountLines();
}
Console.WriteLine(totalLineCount);
}
static int DirectoryCountLines()
{
return DirectoryCountLines(
Directory.GetCurrentDirectory());
}
static int DirectoryCountlLines(string directory)
{
return DirectoryCountLines(directory, "*.cs");
}

static int DirectoryCountLines(
string directory, string extension)
{
int lineCount = 0;
foreach(string file in
Directory.GetFiles(directory, extension))
{
lineCount += CountLines(file);

}

foreach(string subdirectory in
Directory.GetDirectories(directory))

{

lineCount += DirectoryCountLines(subdirectory);

}

return lineCount;

266 "= Chapter 5: Parameters and Methods

private static int CountLines(string file)
{
int lineCount = 0;
string? line;
// This can be improved with a using statement
// which is not yet described.
FileStream stream = new(file, FileMode.Open);
StreamReader reader = new(stream);
line = reader.ReadLine();
while(line is not null)
{
if(line.Trim() != "")
{
lineCount++;
}
line = reader.ReadLine();

}

reader.Dispose(); // Automatically closes the stream
return lineCount;

OuTPUT 5.9

>LineCounter.exe .\ *.cs
28

The effect of method overloading is to provide optional ways to call the method.
As demonstrated inside Main(), you can call the DirectoryCountLines()
method with or without passing the directory to search and the file extension.

Notice that the parameterless implementation of DirectoryCountLines()
was changed to call the single-parameter version, int DirectoryCountlLines
(string directory). This is a common pattern when implementing overloaded
methods. The idea is that developers implement only the core logic in one method,
and all the other overloaded methods will call that single method. If the core
implementation changes, it needs to be modified in only one location rather than
within each implementation. This pattern is especially prevalent when using method
overloading to enable optional parameters that do not have values determined at

compile time, so they cannot be specified using optional parameters.

Optional Parameters "s 267

"= NOTE

Placing the core functionality into a single method that all other

overloading methods invoke means that you can make changes in

implementation in just the core method, which the other methods will
automatically take advantage of.

Optional Parameters

The C# language designers also added support for optional parameters.” By
allowing the association of a parameter with a constant value as part of the method
declaration, it is possible to call a method without passing an argument for every

parameter of the method (see Listing 5.24).

LISTING 5.24: Methods with Optional Parameters

public static class LineCounter

{
public static void Main(string[] args)
{
int totalLineCount;
if(args.Length > 1)
{
totallLineCount =
DirectoryCountLines(args[0], args[1]);
}
else if(args.Length > 0)
{
totallLineCount = DirectoryCountlLines(args[0]);
}
else
{
totalLineCount = DirectoryCountLines();
}
Console.WritelLine(totalLineCount);
}

7. Introduced in C# 4.0.

268 "= Chapter 5: Parameters and Methods

static int DirectoryCountlLines()

{
YAy
}
/*
static int DirectoryCountlines(string directory)
{ ...}
*/
static int DirectoryCountlLines(
string directory, string extension = "*.cs"
{
int lineCount = 0;
foreach(string file in
Directory.GetFiles(directory, extension))
{
lineCount += CountlLines(file);
}
foreach(string subdirectory in
Directory.GetDirectories(directory))
{
lineCount += DirectoryCountLines(subdirectory);
}
return lineCount;
}
private static int CountlLines(string file)
{
/S
}

In Listing 5.24, the DirectoryCountLines() method declaration with a
single parameter has been removed (commented out), but the call from Main()
(specifying one parameter) remains. When no extension parameter is specified in
the call, the value assigned to extension within the declaration (*.cs in this
case) is used. This allows the calling code to not specify a value if desired, and it
eliminates the additional overload that would otherwise be required. Note that

optional parameters must appear after all required parameters (those that don’t have

Optional Parameters "= 269

default values). Also, the fact that the default value needs to be a constant,

compile-time—resolved value is fairly restrictive. You cannot, for example, declare a
method like

DirectoryCountLines(

string directory = Environment.CurrentDirectory,
string extension = "x.cs")

because Environment.CurrentDirectory is not a constant. In contrast,

because "*.cs" is a constant, C# does allow it for the default value of an optional
parameter.

[|
Guidelines

DO provide good defaults for all parameters where possible.

DO provide simple method overloads that have a small number
of required parameters.

CONSIDER organizing overloads from the simplest to the most
complex.

A second method call feature is the use of named arguments.®8 With named
arguments, it is possible for the caller to explicitly identify the name of the parameter

to be assigned a value, rather than relying solely on parameter and argument order to
correlate them (see Listing 5.25).

LisTING 5.25: Specifying Parameters by Name

public static void Main()
{
DisplayGreeting(
firstName: "Inigo", lastName: "Montoya");

}

public static void DisplayGreeting(
string firstName,
string? middleName = null,
string? lastName = null

)

8. Introduced in C# 4.0.

270 "= Chapter 5: Parameters and Methods

{
/o

}

In Listing 5.25, the call to DisplayGreeting() from within Main() assigns a
value to a parameter by name. Of the two optional parameters (middleName and
lastName), only lastName is given as an argument. For cases where a method
has lots of parameters and many of them are optional,” using the named argument
syntax is certainly a convenience. However, along with the convenience comes an
impact on the flexibility of the method interface. In the past, parameter names could
be changed without causing C# code that invokes the method to no longer compile.
With the addition of named parameters, the parameter name becomes part of the
interface because changing the name would cause code that uses the named

parameter to no longer compile.

[|
Guidelines

DO treat parameter names as part of the API, and avoid
changing the names if version compatibility between APIs is
important.

For many experienced C# developers, this is a surprising restriction. However,
the restriction has been imposed as part of the Common Language Specification ever
since .NET 1.0. Moreover, Visual Basic has always supported calling methods with
named arguments. Therefore, library developers should already be following the
practice of not changing parameter names to successfully interoperate with other
NET languages from version to version. In essence, named arguments now impose
the same restriction on changing parameter names that many other .NET languages
already require.

Given the combination of method overloading, optional parameters, and named
parameters, resolving which method to call becomes less obvious. A call is
applicable (compatible) with a method if all parameters have exactly one

9. A common occurrence when accessing Microsoft COM libraries such as Microsoft Word or
Microsoft Excel.

Optional Parameters "= 271

corresponding argument (either by name or by position) that is type-compatible,
unless the parameter is optional (or is a parameter array). Although this restricts the
possible number of methods that will be called, it doesn’t identify a unique method.
To further distinguish which specific method will be called, the compiler uses only
explicitly identified parameters in the caller, ignoring all optional parameters that
were not specified at the caller. Therefore, if two methods are applicable because one
of them has an optional parameter, the compiler will resolve to the method without
the optional parameter.

" ADVANCED TOPIC

Method Resolution
When the compiler must choose which of several applicable methods is the best

one for a particular call, the one with the most specific parameter types is chosen.
Assuming there are two applicable methods, each requiring an implicit conversion
from an argument to a parameter type, the method whose parameter type is the more
derived type will be used.

For example, a method that takes a double parameter is chosen over a method
that takes an object parameter if the caller passes an argument of type int. This
is because double is more specific than object. There are objects that are not
doubles, but there are no doubles that are not objects, so double must be
more specific.

If more than one method is applicable and no unique best method can be
determined, the compiler issues an error indicating that the call is ambiguous.

For example, given the following methods

static void Method(object thing){}
static void Method(double thing){}

static void Method(long thing){}
static void Method(int thing){}

a call of the form Method(42) resolves as Method(int thing) because that is
an exact match from the argument type to the parameter type. Were that method to be
removed, overload resolution would choose the long version, because long is

more specific than either double or object.

272 "= Chapter 5: Parameters and Methods

The C# specification includes additional rules governing implicit conversion
between byte, ushort, uint, ulong, and the other numeric types. In general,
though, it is better to use a cast to make the intended target method more

recognizable.

Basic Error Handling with Exceptions

This section examines how to handle error reporting via a mechanism known as
exception handling. With exception handling, a method can pass information about
an error to a calling method without using a return value or explicitly providing any
parameters to do so. Listing 5.26 with Output 5.10 contains a slight modification to
Listing 1.16—the HeyYou program from Chapter 1. Instead of requesting the last

name of the user, it prompts for the user’s age.

LISTING 5.26: Converting a string to an int

public static void Main()
{
string? firstName;
string ageText;
int age;

Console.WritelLine("Hey you!");

Console.Write("Enter your first name: ");
firstName = Console.ReadLine();

Console.Write("Enter your age: ");
// Assume not null for clarity
ageText = Console.ReadLine()!;

age = int.Parse(ageText);

Console.WriteLine(
$"Hi { firstName }! You are { age * 12 } months old.");

OuTpPuT 5.10

Hey you!
Enter your first name: Inigo

Basic Error Handling with Exceptions "= 273

Enter your age: 42
Hi Inigo! You are 504 months old.

The return value from System.Console.ReadlLine() is stored in a variable
called ageText and is then passed to a method with the int data type, called
Parse(). This method is responsible for taking a string value that represents a

number and converting it to an int type.

" BEGINNER TOPIC

42 as a String versus 42 as an Integer
C# requires that every non-null value have a well-defined type associated with

it. Therefore, not only the data value but also the type associated with the data is
important. A string value of “42”, therefore, is distinctly different from an integer
value of 42. The string is composed of the two characters 4 and 2, whereas the int

is the number 42.

Given the converted string, the final System.Console.WritelLine()
statement will print the age in months by multiplying the age value by 12.

But what happens if the user does not enter a valid integer string? For example,
what happens if the user enters “forty-two? The Parse() method cannot handle
such a conversion. It expects the user to enter a string that contains only numerical
digits. If the Parse() method is sent an invalid value, it needs some way to report
this fact back to the caller.

Trapping Errors

To indicate to the calling method that the parameter is invalid, int.Parse() will
throw an exception. Throwing an exception halts further execution in the current
control flow and jumps into the first code block within the call stack that handles the

exception.

274 "s Chapter 5: Parameters and Methods

Since you have not yet provided any such handling, the program reports the
exception to the user as an unhandled exception. Assuming there is no registered
debugger on the system, console applications will display the error on the console
with a message such as that shown in Output 5.11.

OuTPUT 5.11

Hey you!
Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
at System.Number.ThrowOverflowOrFormatException(...)
at System.Number.ParseInt32(String s)
at ...ExceptionHandling.Main()

Obviously, such an error is not particularly helpful. To fix this, it is necessary to
provide a mechanism that handles the error, perhaps reporting a more meaningful
error message back to the user.

This process is known as catching an exception. The syntax is demonstrated in
Listing 5.27, and the output appears in Output 5.12.

LisTING 5.27: Catching an Exception

public class ExceptionHandling
{
public static int Main(string[] args)
{
string? firstName;
string ageText;
int age;
int result = 0;

Console.Write("Enter your first name: ");
firstName = Console.ReadLine();

Console.Write("Enter your age: ");
// Assume not null for clarity
ageText = Console.ReadLine()!;

try

{
age = int.Parse(ageText);
Console.WritelLine(

Basic Error Handling with Exceptions "s 275

$"Hi { firstName }! You are { age * 12 } months old.");

}
catch(FormatException)
{
Console.WritelLine(
$"The age entered, { ageText }, is not valid.");
result = 1;
}
catch(Exception exception)
{
Console.WritelLine(
$"Unexpected error: { exception.Message }");
result = 1;
}
finally
{
Console.WritelLine($"Goodbye { firstName }");
}
return result;
}
}
OuTPUT 5.12

Enter your first name: Inigo

Enter your age: forty-two

The age entered, forty-two, is not valid.
Goodbye Inigo

To begin, surround the code that could potentially throw an exception (age =
int.Parse()) with a try block. This block begins with the try keyword. It
indicates to the compiler that the developer is aware of the possibility that the code
within the block might throw an exception, and if it does, one of the catch blocks
will attempt to handle the exception.

One or more catch blocks (or the finally block) must appear immediately
following a try block. The catch block header (see “Advanced Topic: General Catch”
later in this chapter) optionally allows you to specify the data type of the exception.
As long as the data type matches the exception type, the catch block will execute. If,

however, there is no appropriate catch block, the exception will fall through and go

276 "= Chapter 5: Parameters and Methods

unhandled as though there were no exception handling. The resultant control flow
appears in Figure 5.1.

For example, assume the user enters “forty-two” for the age in the previous
example. In this case, int.Parse() will throw an exception of type System
.FormatException, and control will jump to the set of catch blocks. (System
.FormatException indicates that the string was not of the correct format to be
parsed appropriately.) Since the first catch block matches the type of exception that
int.Parse() threw, the code inside this block will execute. If a statement within
the try block threw a different exception, the second catch block would execute
because all exceptions are of type System.Exception.

If there were no System.FormatException catch block, the System
.Exception catch block would execute even though int.Parse throws a
System.FormatException. This is because a System.FormatException
is also of type System.Exception. (System.FormatException is a more
specific implementation of the generic exception, System.Exception.)

The order in which you handle exceptions is significant. Catch blocks must
appear from most specific to least specific. The System.Exception data type is
least specific, so it appears last. System.FormatException appears first because
it is the most specific exception that Listing 5.27 handles.

Regardless of whether control leaves the try block normally or because the code
in the try block throws an exception, the finally block of code executes after control
leaves the try-protected region. The purpose of the finally block is to provide a
location to place code that will execute regardless of how the try/catch blocks exit
—with or without an exception. Finally blocks are useful for cleaning up resources,
regardless of whether an exception is thrown. In fact, it is possible to have a try block
with a finally block and no catch block. The finally block executes regardless of
whether the try block throws an exception or whether a catch block is even written to
handle the exception. Listing 5.28 demonstrates the try/finally block, and Output
5.13 shows the results.

LisTING 5.28: Finally Block without a Catch Block

using System;

public class ExceptionHandling

Basic Error Handling with Exceptions "= 277

System.Console.Write ("Enter your first name: ");
firstName = System.Console.ReadLine ();

System.Console.Write ("Enter your age: ");
ageText = System.Console.ReadLine ();

Try Block:
age = int.Parse (ageText);
System.Console.WriteLine (
"Hi {@}! You are {1} months old.",
firstName, age*12);

\ 4

FormatException Catch Block:
System.Console.WriteLine (
"The age entered \"{@}\" is not valid .",
ageText);
result = 1;

FormatException
exception thrown?

Exception Catch Block:
System.Console.WriteLine (
"Unexpected error: {e}",
exception.Message);
result = 1;

Exception
exception thrown?

Yes

Finally Block:
System.Console.WriteLine (
"Goodbye {0}",
firstName);

\ 4

return result;

\ 4

(Finish)

FIGURE 5.1: Exception-handling control flow

public static int Main()

{

278 "m Chapter 5: Parameters and Methods

string? firstName;
string ageText;
int age;

int result = 0;

Console.Write("Enter your first name: ");
firstName = Console.ReadLine();

Console.Write("Enter your age: ");
// Assume not null for clarity
ageText = Console.ReadLine()!;

try
{
age = int.Parse(ageText);
Console.WritelLine(
$"Hi { firstName }! You are { age * 12 } months old.");

}
finally
{
Console.WritelLine($"Goodbye { firstName }");
}
return result;
}
}
OuTtpPuT 5.13

Enter your first name: Inigo
Enter your age: forty-two

Unhandled Exception: System.FormatException: Input string was
not in a correct format.
at System.Number.ThrowOverflowOrFormatException(...)
at System.Number.ParseInt32(String s)
at ...ExceptionHandling.Main()
Goodbye Inigo

The attentive reader will have noticed something interesting here: The runtime
first reported the unhandled exception and then ran the finally block. What explains
this unusual behavior?

First, the behavior is legal because when an exception is unhandled, the behavior

of the runtime is implementation defined—any behavior is legal! The runtime

Basic Error Handling with Exceptions "= 279

chooses this particular behavior because it knows before it chooses to run the finally
block that the exception will be unhandled; the runtime has already examined all of
the activation frames on the call stack and determined that none of them is associated
with a catch block that matches the thrown exception.

As soon as the runtime determines that the exception will be unhandled, it checks
whether a debugger is installed on the machine, because you might be the software
developer who is analyzing this failure. If a debugger is present, it offers the user the
chance to attach the debugger to the process before the finally block runs. If there is
no debugger installed or if the user declines to debug the problem, the default
behavior is to print the unhandled exception to the console and then see if there are
any finally blocks that could run. Due to the “implementation-defined” nature of the
situation, the runtime is not required to run finally blocks in this situation; an

implementation may choose to do so or not.

"= NOTE

If an exception goes unhandled before the process exits, the order of

execution of the finally block, and whether it even executes, is

implementation defined.

Guidelines

AVOID explicitly throwing exceptions from finally blocks.
(Implicitly thrown exceptions resulting from method calls are
acceptable.)

DO favor try/finally and avoid using try/catch for cleanup code.

DO throw exceptions that describe which exceptional
circumstance occurred and, if possible, how to prevent it.

280 "= Chapter 5: Parameters and Methods

" ADVANCED TOPIC

Exception Class Inheritance
All objects thrown as exceptions derive from System.Exception. (Objects

thrown from other languages that do not derive from System.Exception are
automatically “wrapped” by an object that does.) Therefore, they can be handled by
the catch(System.Exception exception) block. It is preferable, however, to
include a catch block that is specific to the most derived type (e.g., System
.FormatException), because then it is possible to get the most information
about an exception and handle it less generically. In so doing, the catch statement
that uses the most derived type can handle the exception type specifically, accessing
data related to the exception thrown and avoiding conditional logic to determine
what type of exception occurred.

Therefore, C# enforces the rule that catch blocks appear from most derived to
least derived. For example, a catch statement that catches System.Exception
cannot appear before a statement that catches System.FormatException
because System.FormatException derives from System.Exception.

A method could throw many exception types. Table 5.2 lists some of the more

common ones within the framework.

TABLE 5.2: Common Exception Types

Exception Type Description

System.Exception The “base” exception from which all other
exceptions derive.

System.ArgumentException Indicates that one of the arguments passed into
the method is invalid.

System.ArgumentNullException Indicates that a particular argument is null and
that this is not a valid value for that parameter.

System.ApplicationException To be avoided. The original idea was that you
might want to have one kind of handling for
system exceptions and another for application
exceptions, which, although plausible, doesn’t
actually work well in the real world.

Basic Error Handling with Exceptions "= 281

TABLE 5.2: Common Exception Types (continued)

Exception Type Description

System.FormatException Indicates that the string format is not valid for
conversion.

System.IndexOutOfRangeException Indicates that an attempt was made to access an
array or other collection element that does not
exist.

System.InvalidCastException Indicates that an attempt to convert from one

data type to another was not a valid conversion.

System.InvalidOperationException Indicates that an unexpected scenario has
occurred such that the application is no longer in
a valid state of operation.

System.NotImplementedException Indicates that although the method signature
exists, it has not been fully implemented.

System.NullReferenceException Thrown when code tries to find the object
referred to by a reference that is nul1l.

System.ArithmeticException Indicates an invalid math operation, not
including divide by zero.

System.ArrayTypeMismatchException Occurs when attempting to store an element of
the wrong type into an array.

System.StackOverflowException Indicates an unexpectedly deep recursion.

" ADVANCED TOPIC

General Catch
It is possible to specify a catch block that takes no parameters, as shown in

Listing 5.29.

LISTING 5.29: General Catch Blocks

// A previous catch clause already catches all exceptions
#pragma warning disable CS1058
/e

try

282 "s Chapter 5: Parameters and Methods

{
age = int.Parse(ageText);
Console.WritelLine(
$"Hi { firstName }! You are { age * 12 } months old.");
}
catch(FormatException exception)
{
Console.WritelLine(
$"The age entered ,{ageText}, is not valid.");
result = 1;
}
catch(Exception exception)
{
Console.WritelLine(
$"Unexpected error: { exception.Message }");
result = 1;
}
catch
{
Console.WriteLine("Unexpected error!");
result = 1;
}
finally
{
Console.WritelLine($"Goodbye { firstName }");
}

A catch block with no data type, called a general catch block, is equivalent to
specifying a catch block that takes an object data type—for instance,
catch(object exception){...}. For this reason, a warning is triggered
stating that the catch block already exists; hence the #pragma warning disable
directive.

Because all classes ultimately derive from object, a catch block with no data
type must appear last.

General catch blocks are rarely used because there is no way to capture any
information about the exception. In addition, C# doesn’t support the ability to throw
an exception of type object. (Only libraries written in languages such as C++
allow exceptions of any type.)

Basic Error Handling with Exceptions "= 283

Guidelines

AVOID general catch blocks and replace them with a catch of
System.Exception

AVOID catching exceptions for which the appropriate action is
unknown. It is better to let an exception go unhandled than to
handle it incorrectly.

Reporting Errors Using a throw Statement

C# allows developers to throw exceptions from their code, as demonstrated in Listing
5.30 and Output 5.14.

LiISTING 5.30: Throwing an Exception

public static void Main()

{
try
{
Console.WriteLine("Begin executing");
Console.WriteLine("Throw exception");
throw new Exception("Arbitrary exception");
// Catch 1
Console.WriteLine("End executing");
}
catch(FormatException exception)
{
Console.WritelLine(
"A FormatException was thrown");
}
// Catch 1
catch(Exception exception)
{
Console.WriteLine(
$"Unexpected error: { exception.Message }");
// Jump to Post Catch
}

// Post Catch
Console.WriteLine(
"Shutting down...");

284 "m Chapter 5: Parameters and Methods

OuTPuT 5.14

Begin executing

Throw exception...

Unexpected error: Arbitrary exception
Shutting down...

As the comments in Listing 5.30 depict, throwing an exception causes execution
to jump from where the exception is thrown into the first compatible catch block
(Catch 1).10 In this case, the second catch block handles the exception and
writes out an error message. In Listing 5.30, there is no finally block, so following
the WriteLine() method of Catch 1, execution falls through to the Console
WriteLine() statement following the try/catch block (after the Post Catch
comment).

To throw an exception, it is necessary to have an instance of an exception. Listing
5.30 creates an instance using the keyword new followed by the type of the
exception. Most exception types allow a message to be specified for the exception’s
construction parameter, so that when the exception occurs, the message can be
retrieved.

Sometimes a catch block will trap an exception but be unable to handle it
appropriately or fully. In these circumstances, a catch block can rethrow the

exception using the throw statement without specifying any exception, as shown in
Listing 5.31.

LISTING 5.31: Rethrowing an Exception

/Ay
catch (Exception exception)

{

Console.WritelLine(
"Rethrowing unexpected error:
+ $"{ exception.Message }");

throw;

10. Technically, it could be caught by a compatible exception filter as well.

Basic Error Handling with Exceptions "= 285

In Listing 5.31, the throw statement is “empty” rather than specifying that the
exception referred to by the exception variable is to be thrown. This illustrates a
subtle difference: throw; preserves the call stack information in the exception,
whereas throw exception; replaces that information with the current call stack
information. For debugging purposes, it is usually better to know the original call
stack. Of course, this is allowed only in a catch statement where the caught exception

can be determined.

[|
Guidelines

DO prefer using an empty throw when catching and rethrowing
an exception, to preserve the call stack.

DO report execution failures by throwing exceptions rather than
returning error codes.

DO NOT have public members that return exceptions as return
values or an out parameter. Throw exceptions to indicate
errors; do not use them as return values to indicate errors.

AVOID catching and logging an exception before rethrowing it.
Instead, allow the exception to escape until it can be handled
appropriately.

Reporting Null Argument Exceptions

When nullability reference types are enabled, the compiler will make a best effort to
identify when there is the possibility of a nullable argument passed as a non-nullable
argument. If you assign a possible null value to a non-nullable argument, the
compiler will issue a warning stating that you are attempting to convert a possible
null value to a non-nullable argument. Assuming you address all such warnings
appropriately, the compiler will catch most of the cases. However, if the caller is
outside of your control (such as from a library you didn’t write), doesn’t turn on
nullable reference types, ignores the warnings, or invokes the method from C# 7.0 or
earlier, there is nothing preventing a null argument even though the parameter is
declared as non-nullable. For this reason, the best practice is to check that any public
non-nullable reference types are not null. With .NET 6.0 you can use a conditional
if (is null) check:

286 "= Chapter 5: Parameters and Methods

if (is null) throw new ArgumentNullException(...)

You can accomplish this in a single statement using the null coalescing assignment
operator with a throw ArgumentNullException expression if the parameter
value is null (see Listing 5.32).

LiSTING 5.32: Parameter Validation by Throwing ArgumentNullException

httpsUrl = httpsUrl ??

throw new ArgumentNullException(nameof(httpsUrl));
fileName = fileName??

throw new ArgumentNullException(nameof(fileName));

Zane

With .NET 7.0, you can use the ArgumentNullException.ThrowIfNull()
method (see Listing 5.33).

LisTING 5.33: Parameter Validation with ArgumentException.ThrowIfNull()

ArgumentNullException.ThrowIfNull(httpsUrl);
ArgumentNullException.ThrowIfNull(fileName);

/.

Internally, the ArgumentNullException.ThrowIfNull() method also throws
the ArgumentNullException.

[|
Guidelines

DO verify that non-null reference types parameters are

not null and throw an ArgumentNullException when they
are.

DO use ArgumentException.ThrowIfNull() to verify values
are null in .NET 7.0 or later.

Basic Error Handling with Exceptions "= 287

Additional Parameter Validation

There are obviously a myriad of other type constraints that a method may have on its
parameters. Perhaps a string argument should not be an empty string, should not be
comprised only of whitespace, or must have “HTTPS” as a prefix. Listing 5.34
displays the full DownloadSSSL() method, demonstrating this validation.

LISTING 5.34: Custom Parameter Validation

public class Program

{
public static int Main(string[] args)
{
int result = 0;
if(args.Length != 2)
{
// Exactly two arguments must be specified; give an error
Console.WriteLine(
"ERROR: You must specify the "
+ "URL and the file name");
Console.WritelLine(
"Usage: Downloader.exe <URL> <TargetFileName>");
result = 1;
}
else
{
DownloadSSL(args[0], args[1]);
}
return result;
}

private static void DownloadSSL(string httpsUrl, string fileName)
{
#if INET7_0_OR_GREATER
httpsUrl = httpsUrl?.Trim() ??
throw new ArgumentNullException(nameof(httpsUrl));
fileName = fileName ??
throw new ArgumentNullException(nameof(fileName));
if (fileName.Trim().Length == 0)

{
throw new ArgumentException(
$"{nameof(fileName)} cannot be empty or only whitespace");
}
#else

ArgumentException.ThrowIfNullOrEmpty(httpsUrl = httpsUrl?.Trim()!);
ArgumentException.ThrowIfNullOrEmpty(fileName = fileName?.Trim()!);

288 "= Chapter 5: Parameters and Methods

t#tendif

if (!httpsUrl.ToUpper().StartswWith("HTTPS"))
{

throw new ArgumentException("URL must start with 'HTTPS'.");
}

HttpClient client = new();
byte[] response =
client.GetByteArrayAsync(httpsUrl).Result;
client.Dispose();
File.WriteAllBytes(fileName!, response);
Console.WriteLine($"Downloaded '{fileName}' from '{httpsUrl}'.");

When using .NET 7.0 or higher, you can rely on the ArgumentException
.ThrowIfNullOrEmpty() method to check for both null and an empty string.
And, if you invoke the string.Trim() method when invoking
ThrowIfNullOrEmpty(), you can throw an exception if the argument content is
only whitespace. (Admittedly, the exception message will not indicate whitespace
only is invalid.) The equivalent code for .NET 6.0 or earlier is shown in the else
directive.

If the null, empty, and whitespace validation pass, Listing 5.34 has an if statement
that checks for the “HTTPS” prefix. If the validation fails, the resulting code throws

an ArgumentException, with a custom message describing the problem.

Introducing the nameof Operator

When the parameter fails validation, it is necessary to throw an exception—
generally of type ArgumentException() or ArgumentNullException().
Both exceptions take an argument of type string called paramName that identifies
the name of the parameter that is invalid. In Listing 5.33, we use the nameof
operator!! for this argument. The nameof operator takes an identifier, like the
httpsUrl variable, and returns a string representation of that name—in this case,
"httpsUrl".

11. Introduced in C# 6.0.

Basic Error Handling with Exceptions "= 289

The advantage of using the nameof operator is that if the identifier name
changes, then refactoring tools will automatically change the argument to nameof as
well. If no refactoring tool is used, the code will no longer compile, forcing the
developer to change the argument manually, which is preferable because the former
value would presumably be invalid. The result is that nameof will even check for
spelling errors. The resulting guideline is: DO use nameof for the paramName
argument passed into exceptions such as ArgumentException and
ArgumentNullException that take such a parameter. For more information, see
Chapter 18.

[|
Guidelines

DO use nameof(value) (which resolves to "value") for the
paramName argument when creating ArgumentException() or
ArgumentNullException() type exceptions. (value is the implicit
name of the parameter on property setters.)

Avoid Using Exception Handling to Deal with Expected Situations
Developers should avoid throwing exceptions for expected conditions or normal
control flow. For example, developers should not expect users to enter valid text
when specifying their age.12 Therefore, instead of relying on an exception to validate
data entered by the user, developers should provide a means of checking the data
before attempting the conversion. (Better yet, they should prevent the user from
entering invalid data in the first place.) Exceptions are designed specifically for
tracking exceptional, unexpected, and potentially fatal situations. Using them for an
unintended purpose such as expected situations will cause your code to be hard to
read, understand, and maintain.

Consider, for example, the int.Parse() method we used in Chapter 2 to
convert a string to an integer. In this scenario, the code converted user input that was
expected to not always be a number. One of the problems with the Parse() method

12. In general, developers should expect their users to perform unexpected actions; in turn, they
should code defensively to handle “stupid user tricks.”

290 "= Chapter 5: Parameters and Methods

is that the only way to determine whether the conversion will be successful is to
attempt the cast and then catch the exception if it doesn’t work. Because throwing an
exception is a relatively expensive operation, it is better to attempt the conversion
without exception handling. Toward this effort, it is preferable to use one of the
TryParse() methods, such as int.TryParse(). It requires the use of the out
keyword because the return from the TryParse() function is a bool rather than
the converted value. Listing 5.35 is a code snippet that demonstrates the conversion
using int.TryParse().

LisTING 5.35: Conversion Using int.TryParse()

if (int.TryParse(ageText, out int age))

{
Console.WritelLine(
$"Hi { firstName }! " +
$"You are { age * 12 } months old.");
}
else
{
Console.WritelLine(
$"The age entered, { ageText }, is not valid.");
}

With the TryParse() method, it is no longer necessary to include a try/catch block
simply for the purpose of handling the string-to-numeric conversion.

Another factor in favor of avoiding exceptions for expected scenarios is
performance. Like most languages, C# incurs a slight performance hit when throwing
an exception—taking microseconds compared to the nanoseconds most operations
take. This delay is generally not noticeable in human time—except when the
exception goes unhandled. For example, when Listing 5.26 is executed and the user
enters an invalid age, the exception is unhandled and there is a noticeable delay while
the runtime searches the environment to see whether there is a debugger to load.
Fortunately, slow performance when a program is shutting down isn’t generally a

factor to be concerned with.

Summary "= 291

[|
Guidelines

DO NOT use exceptions for handling normal, expected
conditions; use them for exceptional, unexpected conditions.

Summary

This chapter discussed the details of declaring and calling methods, including the use
of the keywords out and ref to pass and return variables rather than via return
values. In addition to method declaration, this chapter introduced exception handling.

A method is a fundamental construct that is a key to writing readable code.
Instead of writing large methods with lots of statements, you should use methods to
create “paragraphs” of roughly 10 or fewer statements within your code. The process
of breaking large functions into smaller pieces is one of the ways you can refactor
your code to make it more readable and maintainable.

The next chapter considers the class construct and describes how it encapsulates
methods (behavior) and fields (data) into a single unit.

This page intentionally left blank

Index

Symbols
. (periods)
fully qualified method names, 17-18, 50-53,
228
nested namespaces, 221, 234-235, 567-570
null-conditional operator, 98-99, 173-178,
434

! (exclamation points), 65-67, 143, 809-811
" (double quotes)

escape sequence, 65-68, 71-74

strings, 65-73, 143
(hash symbols)

preprocessor directives, 207-214
#define directive, 207-214, 237-240
#elif directive, 207-214, 237-239
#else directive, 34, 207-214, 239
#endif directive, 207-214, 239, 573
#endregion directive, 207, 211-214, 236-239
#error directive, 34, 207-214, 239
#if directive, 207-214, 239, 898
#line directive, 207-214, 239, 573
#nullable directive, 83, 101-102, 214
#pragma directive, 207-214, 237-239
#region directive, 207-214, 237-239
#undef directive, 207-214, 237-239
#warning directive, 207-214, 239, 304
$ (dollar signs)

string interpolation, 67, 70-73, 77

% (percent signs)
compound assignment, 27, 139-142, 149
overriding, 59-61, 77, 139
precedence, 139-142, 216, 427
remainder operation, 55, 138-140, 183-185
& (ampersands), 65-67, 143, 184-185
' (single quotes)
characters, 64-73
escape sequence, 65, 66-73
() (parentheses), 16, 141-142, 427
* (asterisks), 59, 65-66, 955
+ (plus signs), 59, 138-139, 142-143
, (commas), 103-106, 115-116, 193
- (minus signs), 138-139, 148-150, 182-183
/ (forward slashes), 59, 65-73, 573
: (colons), 106, 193, 344
; (semicolons)
ending statements, 13, 23, 192-193
for loops, 13, 23, 192-193
preprocessor directives, 13, 23,207-210
< (less than signs), 138-139, 167-169, 426
<> (angle brackets)
generics, 623, 630, 635
XML, 35-37, 168-170, 572-573
= (equals signs), 63, 167-170, 548
> (greater than signs), 138-139, 167-170,
698
? (question marks)
command-line option, 269, 437, 896

"= 1131

1132 "™n Index

conditional operators, 98, 166-171, 175
null-coalescing operator, 82, 97-98, 173-178
null-conditional operators, 82, 97-98,
173-178
@ (at signs)
identifiers, 16-19, 53, 65-67
verbatim strings, 65-73
[1 (square brackets)
arrays, 115-116, 120-123, 132
attributes, 115-116, 881, 896-897
indexers, 122, 126-127, 857-861
null-conditional operators, 82, 98, 173-178
\ (backslashes)
escape sequences, 65, 66-74
as literals, 65-66, 67-73
\a escape sequence, 65-68, 71-73, 160-161
\b escape sequence, 65-73, 161
\f escape sequence, 65-73, 77
\n
escape sequence, 65-73
new lines, 70-72, 78, 160-161
\t escape sequence, 65-73, 160-161
\u escape sequence, 64, 65-73
\x escape sequence, 64, 65-73
" (carets), 16, 65-67, 168-170
_ (underscores), 17-19, 59, 323
{} (curly braces), 24, 70-71, 162-163
~ (tildes)
complement operator, 143, 168-170, 187
finalizers, 581-584, 589-590, 596
list searches, 815, 820-822, 843
overriding, 65-67, 237, 241

A

abstract modifier
interface refactoring, 444-446, 453-455, 484
limitations, 405, 411, 414

Access modifiers
base class overriding, 393-394, 398, 402
classes, 315-316, 330, 566-567
derivation, 330, 393-394, 566-567
finalizers, 341, 581-582, 583-584

getters and setters, 316-317, 326, 330-333
type declarations, 330, 547, 565-567
Accessing
arrays, 120, 123-124, 129-130
base members, 306, 391-394, 407
instance fields, 303-306, 317, 330
properties, 319-320, 326, 330-333
referent type members, 901, 921-922, 1097
static fields, 360-363, 367, 373
Accuracy of floating-point types, 53-58, 92,
145-148
Acronyms as identifiers, 17-19, 53, 59
Action delegate, 727, 741-747, 753
Activation frames, 66, 246, 935
Add() method
collection initializers, 339, 754-759, 845
dictionaries, 758, 832-834, 845-849
interlocks, 528, 758, 1057
lists, 417, 758, 835-839
Addition
binary operator, 138-143, 149, 550-552
compound assignment, 139-143, 149, 736
increment operator, 138-139, 143, 149-153
strings, 67-69, 143, 514
unary operator, 138-139, 141-143, 149-150
Address operator (&), 183-185, 1098,
1102-1103
Addresses and pointers, 491-492,
1097-1099, 1102-1103
AggregateException type
asynchronous requests, 958-960, 1028, 1035
parallel loops, 959, 1028, 1035-1039
PLINQ queries, 823, 1034-1035, 1038
publish-subscribe pattern, 740-743, 753,
959-960
tasks, 958-960, 975, 994
wrapped exceptions, 622, 959-960, 1035
Aggregation for inheritance, 297, 385-386,
463
Ahead of time (AOT) compilation, 38-39,
1121, 1127-1128
Alerts escape sequence, 65-73, 143, 160

Aliases
command-line option, 241, 269, 896
namespaces, 221, 235, 567-570
Allow Unsafe Code option, 621, 1077,
1093-1095
AllowMultiple parameter, 259-260, 269-270,
906-909
AllowNull attribute, 82-83, 348-350, 354
AllowUnsafeBlocks option, 620-621, 1093,
1094-1095
Alternative statements for if statements,
158-163, 197, 205
Ampersands (&)
address operator, 143, 149, 184-185
bitwise operators, 169-170, 184-187, 552
compound assignment, 140-141, 149,
184-185
logical operators, 143, 168-170, 184-185
overriding, 17, 143, 407
AND operations
bitwise operators, 169, 184-187, 540
enums, 534, 540-542, 550
logical operators, 143, 167-170, 184-185
Angle brackets (<>)
generics, 623, 630-635, 677
XML, 35-37, 571-574, 897
Anonymous functions, 704-706, 797-800,
803
Anonymous methods
internals, 705, 797-798, 801-803
lambda expressions as replacement for,
697-706, 710
overview, 705, 797-800, 803
parameterless, 704-706, 797, 800-805
Anonymous types
collection initializers, 339, 754-757, 805
generating, 705, 797-805
local variables, 705, 710, 797-799
overview, 705, 754-756, 797-803
selecting into, 754-756, 797-805
type safety and immutability, 505, 797-805

Index "= 1133

Antecedent tasks, 935, 952-957, 975
Any() operator, 143, 167-169, 800
APIs (application programming interfaces)
documentation, 45, 444-445, 463-464
as frameworks, 45, 1110-1113, 1120
wrapper calls, 45, 1078, 1086
AppDomain
exceptions, 612-615, 618, 962-964
process exits, 590-591, 594-595, 962-964
AppDomains for unhandled exceptions, 274,
604, 962-964
Append() method, 260, 462, 758
AppendFormat() method, 32-33, 75-77, 514
Applicable calls, 270-271, 417-418, 1078
ApplicationException type
__arglist keyword, 19, 258, 601-603
args parameter for Main(), 21-22, 243-245,
258
ArgumentException type
description, 651, 656, 664
nameof operator, 289, 603, 894
properties, 333, 802, 901-903

throwing exceptions, 600-603, 612-614, 622

ArgumentNullException type
description, 603, 654-656, 664
properties, 347-350, 603, 802

ArgumentOutOfRangeException type,

600-603, 612-614, 916

Arguments
generics, 623, 664, 677
methods, 220, 224, 269-270
named, 224, 269-270, 289
passed by value, 224, 269, 488-489
passing methods as, 220, 224, 260

Arithmetic operations, 138-143, 148-151,

184
Arithmetic operators, 138-143, 149, 167
ArithmeticException type, 600-605, 622,
916

Arity

generic methods, 642-645, 664, 676-677

1134 "» Index

tuples, 108, 642-645, 664
type parameters, 642-645, 664, 677-678
Array accessors, 112, 123-130, 320
Arrays
anonymous types, 705, 797-805
assigning, 112, 115-120, 123-124
collection conversion to, 339, 754-759,
835-837
common errors, 114, 124, 132
declaring, 112, 115-120, 193
foreach loops, 194-195, 760, 1023-1025
forward accessing, 112, 120-126, 130
instance members, 129-130, 302, 306
instantiating and assigning, 116-120, 299,
338-339
length, 115-116, 122-125, 129-130
methods, 115, 124, 128-130
null-conditional operators, 82, 98, 173-178
overview, 112-116, 123-126, 856
parameters, 115-118, 224, 259-260
ranges, 112, 115-116, 124-128
redimensioning, 115-120, 123-124, 130-132
reverse accessing, 112, 121-127, 130-131
strings as, 115-116, 143, 1033
unsafe covariance, 669-676, 708
working with, 112, 115, 123-124
ArrayTypeMismatchException type, 124,
675, 1098
as operator
async, 985, 989-991, 1004-1008
Main() method, 21-22, 243-246, 258
return types, 335, 439, 554
ASPNET, 11, 44-47, 1128
AsParallel() operator, 771-772, 1023-1024,
1031-1039
AspNetSynchronizationContext type, 944,
1013-1015, 1053-1054
Assemblies
attributes, 881, 897-899, 905-907
APIs, 43-45, 898-899, 1122-1123
boundaries, 557-559, 898-899, 1122-1123
building, 38, 898-899, 1122-1123
CIL, 38-44, 1114, 1124

CLI, 557-560, 1109, 1121-1123
constants, 373, 898-899, 1122-1123
extensions, 371, 898-899, 1122-1123
references, 557-560, 898-899, 1122-1123
AssemblyCopyrightAttribute, 897-899,
903-908, 914
AssemblyFileVersionAttribute, 897-900,
905-908, 914
AssemblyVersionAttribute, 897-899,
905-908, 912-915
Assert() method, 147, 462, 916-918
Assigning
arrays, 112, 115-120, 123-124
nulls to references, 82-83, 96, 100-101
nulls to strings, 82-83, 173, 176
pointers, 95-96, 1097-1099, 1102-1103
tuples, 106-108, 359, 807
variables, 26-27, 106, 116
Assignment operators
associativity, 140-142, 149, 552
compound, 139-143, 149, 552
delegates, 149, 548, 736
null-coalescing, 98, 173-178, 286
overriding, 149-151, 548-549, 552
Associations
data with static members, 302, 363, 367
with instance fields, 302-307, 363, 372
Associativity of operators, 138-143, 149,
552
AsSpan, 463, 856-859, 1084
Asterisks (*)
comments, 34-36, 571-573, 955
compound assignment, 140-142, 149, 955
indirection operators, 153, 955, 1102-1103
multiplication, 138-142, 149, 955
overriding, 142, 216, 955
pointers, 955, 1096-1103
precedence, 140-142, 216, 955
async
Main() method, 21-22, 991, 1003-1005
return types, 990-994, 1004-1006, 1019
async / await support, 985, 989, 1004-1008
async operator, 989, 1000, 1004

http://ASP.NET

async return types, 989-995, 1004-1006,
1019
async void methods, 975, 1002-1004, 1008
Async() method, 994-997, 1000-1005, 1074
async/await support, 985, 989, 1004-1008
AsyncEnumberable class, 766, 994-1001,
1004-1006
Asynchronous invocation, 984-985,
1003-1005, 1012
Asynchronous lambdas, 701-706, 1008,
1012
Asynchronous methods return types,
990-994, 1002-1006, 1012
Asynchronous pattern, 935, 975, 1074
Asynchronous tasks
complexities from, 944-945, 975, 1012
introduction, 935, 944-945, 975
task continuation, 951-952, 975, 1074
task exceptions, 958-959, 975, 1003-1005
thread exceptions, 958, 964, 973-975
TPL, 944-945, 973-979, 1025
AsyncState property, 994-997, 1000, 1074
At signs (@)
identifiers, 17-19, 65-68, 139
verbatim strings, 65-70, 73, 1103
Atomic operations in multithreading, 154,
940-942, 1061
AttachedToParent task continuation option,
951-957, 1026, 1031
Attributes
custom, 881, 897, 900
description, 881, 896-900, 906-908
enum, 533-534, 542-544, 906-908
FlagsAttribute, 543, 905-908, 911
initializing, 118, 338-340, 346
vs. interfaces, 443-445, 482, 897
named parameters, 269-270, 895-897, 909
nullable, 82-83, 97, 101-102
predefined, 881, 896-897, 900

Index "= 1135

properties, 333, 881, 896-897
restricting, 394, 808-811, 897
retrieving, 333, 881-883, 897
System.Conditional Attribute, 354, 900,
912-914
System.ObsoleteAttribute, 900, 905-908,
914-915
AttributeTargets flag, 896-900, 906, 908
AttributeUsageAttribute class, 900, 905-908,
914
Automatically implemented properties
read-only, 322, 374-375, 507
reference type, 96, 333, 347
structs, 320-322, 333, 510-511
working with, 318-322, 333, 474
AutoResetEvent event, 746-747, 1003-1005,
1064-1068
Average() function, 248, 948, 1001
await operator
iterating, 760, 806, 863-868
task-based asynchronous pattern, 989, 1004,
1074
Await() method, 989-993, 1003-1006, 1074
AwaitAsync() method, 994-997, 1000-1006,
1074
AwaitWithCancellationAsync() method,
966-969, 1003-1005, 1038

B
Backslashes (\)
escape sequence, 64, 65-68, 71-74
as literals, 57, 65-66, 67-73
Backspace escape sequence, 64, 65-72, 160
Base Class Library (BCL)
description, 1109, 1113-1114, 1125-1126
purpose, 557, 1113-1114, 1124-1126
type names, 50, 51-53, 1125-1126
Base class overriding
constructor invocation, 344-345, 402,
407-410

1136 "n Index

members, 398, 407-410, 417-418
new modifier, 397-398, 402-406, 657
overview, 402, 407-410, 417
sealed modifier, 397-398, 402, 405-406
virtual modifier, 398-402, 405-408, 455
Base classes
derived object conversion to, 386-391, 410,
418
inheritance, 295-297, 385-386, 410
protected member access in, 393-394, 476,
566
Base types

casting between derived types, 297, 389-391,

402
classes, 134, 391, 410
description, 134, 391, 410
BCL (Base Class Library)
description, 1109, 1113-1114, 1124-1126
purpose, 557-558, 1113-1114, 1124-1126
type names, 50, 53, 567-568
Binary digits (bits), 54-55, 60-61, 182-185
Binary expression trees, 141, 716-719,
723-725
Binary operators
associativity, 139-142, 149, 552
compound assignment, 139-141, 149, 552
non-numeric types, 63, 143, 552
null-coalescing, 98, 173-178, 286
overriding, 167-169, 548, 552
overview, 137-138, 167, 184
relational and equality, 63, 167-169, 548
Binary values
conversions to, 55, 60-63, 182-185
floating-point, 54-56, 145-148, 182-184
literals, 57, 61-63, 182-187
shift operators, 170, 182-187, 202
BinaryExpression expression trees, 139-141,
716-720, 723-725
BinarySearch() method
arrays, 128-130, 685-687, 842
list searches, 687, 839, 842-848
BinaryTree<T> class
constraints, 646-651, 662, 667

index operators, 648-650, 667, 865-866
iterators, 865-866, 869, 872-874
parameters, 646-651, 667, 872
Binding
dynamic, 920-923, 926-931
extension methods, 371-372, 396, 461-463
late, 725-727, 920, 931-933
metadata, 881-883, 931, 1127
Bits (binary digits), 54-55, 60-61, 182-187
Bitwise operators
bits and bytes, 61, 170, 182-187
complement, 169-170, 183-187, 552
compound assignment, 149, 183-187, 552
enums, 169, 184-187, 540-542
for positions, 119, 183-187, 202
shift, 182, 183-187, 202
working with, 139, 170, 183-187
Block statements, 13, 162-164, 702
BlockingCollection<T> class, 832-834,
1068-1069, 1076
Boolean (bool) type
array initial values, 63, 118-120, 554
conversions, 63, 89, 554-555
flow control, 137, 166, 169-170
lambdas, 166, 554, 703
logical operators, 63, 166-170, 184
overview, 63, 166, 554
relational and equality operators, 63,
167-170, 554
Boolean expressions for if statements, 158,
166-171, 184
Boolean operators
logical, 63, 167-170, 184-185
overriding, 167-170, 184, 552-554
Bounds
arrays, 115-120, 124, 135
floating-point types, 53-56, 145-148
Boxing
avoiding, 281, 523-527, 545
generics for, 524-527, 677, 681
idiosyncrasies, 17, 523-527, 545
in loops, 188, 192-194, 524-527
overview, 517, 523-527, 545

Brand casing for namespaces, 50-51, 221,
568-570
Break() method
break statements, 13, 200-201, 875
lambda expressions, 697-702, 716, 875
overview, 200-201, 875, 1031-1032
switch statements, 197-201, 205, 230
working with, 200-201, 875, 1031-1032
yield break, 870, 875, 1032
Breaking parallel loops, 1020-1023,
1031-1032, 1035-1039
Brittle base class problem, 391-394, 402,
410
Bubble sorts, 687, 698-700, 710-711
byte type, 53, 64, 96
Bytes, 488-489, 579, 1098-1099

C

C language and C# syntax similarities,
14-15, 48-49, 150
C++ language vs

arrays, 112, 115-117, 135

Boolean conversions, 63, 166-169, 554

buffer overflows, 84-86, 1077, 1120

delete operator, 139, 150-151, 168

deterministic destruction, 581, 1077, 1118

equality checks, 63, 168, 548

global methods, 218, 232-233, 684

global variables and functions, 2, 164,
232-233

header files, 2-3, 14-15, 1114

implicit overriding, 398, 402-403, 455-457

increment and decrement operators, 139, 149,
150-154

local variable scope, 164-165, 233, 714

Main(), 14, 20-22, 243-245

methods called during construction, 333, 336,
341

multiple inheritance, 294-297, 443, 599

operand evaluation, 63, 137, 141-143

operator-only statements, 137, 150, 168

pointer declarations, 1077, 1098-1099,
1102-1103

Index "= 1137

preprocessor directives, 207-214
pure virtual functions, 401-403, 441-443, 599
short type, 53, 84-85, 1125
string concatenation, 32, 67-69, 143
structs, 217, 487, 1083
switch statements, 197-200, 422-423, 441
syntax similarities, 14-15, 48, 1114
Variant and var, 94, 102-103, 708
void type, 63, 84, 94-96

C++ similarity
importance, 17, 63, 557
literal suffixes, 53, 59, 67-69
suffixes, 53, 59, 264

Calculated properties, 79, 318-322, 333

Call sites, 246, 261, 923-925

Call stacks for methods, 245-246, 261,

624-626
Callback functions, 219, 737, 1090-1092
CallerMemberName parameter attribute,
270, 895, 918-919

Calling
constructors, 334-338, 341, 344-345
collection initializers, 339, 754-759, 805
external functions, 219, 232-233, 1078-1080
object initializers, 334, 338-341, 346

CallSite<T> type
camelCase, 223, 678, 923-925
description, 223, 678, 923-925
parameter names, 635, 678, 923-925
property names, 801, 804, 923-925
tuples, 111, 642-645, 923-925
variable names, 223, 798-799, 923-925
"can do" relationships, 651, 662-663,

923-925

Cancel() method
parallel iterations, 1027-1032, 1035, 1038
PLINQ queries, 963-968, 1034-1035, 1038
tasks, 963-969, 975, 1038

Canceling
iterations, 863, 875, 1030-1032
parallel loops, 1023, 1027-1032, 1035
PLINQ queries, 963-965, 1035, 1038
tasks, 963-969, 975, 1036

1138 ™» Index

CancellationToken class
asynchronous methods, 966-969, 997, 1038
asynchronous streams, 966-969, 997, 1038
overview, 963-969, 1027-1029, 1038
PLINQ queries, 963-969, 1035, 1038
CancellationToken property, 966-967,
968-969, 1038
CancellationTokenSource class, 963-966,
968-969, 1027-1029
Capacity of lists, 790, 835-837, 843-845
Capture() method, 228, 605, 1074
Captured outer variables, 248, 710, 711-715
Carets (")
arrays, 115, 121-122, 170
bitwise operators, 168, 170, 183-187
compound assignment, 27, 149-151, 170
index from end operator, 121-122, 125-127,
170
logical operators, 168-169, 170, 184
overriding, 121, 127, 170
Carriage returns
escape sequence, 65-72, 78
newlines, 23, 65-72, 78
Cartesian products
inner joins, 780-784, 788-789, 828
query expressions, 808-812, 828, 831
Case labels
goto statements, 156-158, 198-200, 205-206
switch statements, 197-200, 205-206,
422-423
Case sensitivity, 17-18, 59, 323
Casing
identifier formats, 17-19, 53, 59-61
local variables, 164-165, 710, 714
cast operator and casting
base and derived types, 390-391, 439-440,
555
defining, 85, 439-440, 555
enums, 85, 421, 537-540
generic methods, 85, 439-440, 555
implicit conversions, 85, 390-392, 555

in inheritance chains, 390-391, 439-440, 555

overriding, 85, 439-440, 552-555
overview, 85, 439-440, 555
Catch blocks
exceptions, 275, 280-284, 605
general, 280-282, 605, 609-610
rethrowing exceptions, 275, 601, 605-610
working with, 281-282, 601, 605
Catching exceptions, 280, 601, 605
cells member in arrays, 114-115, 129-130,
195
Central processing units (CPUs)
description, 933-938, 1021, 1107
multithreading, 934-938, 941, 973
PLINQ queries, 933-935, 1021, 1114
Centralizing constructor initializers,
336-346, 367
Chains
constructors, 338, 344, 735
circular, 162, 735, 780
delegates, 693-694, 727, 735
expressions, 716-718, 724-725, 809
inheritance, 385-388, 396, 418
iterators, 863-866, 871-873, 878
null-coalescing operator, 98, 173-178, 179
queries, 777, 809, 823-828
tasks, 935, 952, 975
Characters (char) types
arithmetic operations, 64-66, 144, 149-151
array initial values, 64-66, 118, 144
description, 49, 64-66, 144
Checked conversions, 88-90, 290, 538
checked keyword, 15, 63, 166-169
CheckForOverflowUnderflow property,
86-87, 620, 621
Child types, 134, 293-299, 386
Church, 294-295, 385, 568-570
CIL, 38-41, 1114, 1124
Circular wait conditions in deadlocks,
940-943, 974, 1060-1062
Class definitions
description, 295, 298-299, 385
guidelines, 293-295, 298, 568-570

Index "= 1139

class keyword, 15, 19, 298-299
Classes

Clone() method, 338, 365, 508-509
Close() method, 312, 581-589, 763

abstract, 295, 410-411, 444-445

access modifiers, 314-316, 330, 566-567

associated data, 302, 363, 782

concrete, 410-411, 482, 568

constraints, 652, 655, 660-662

constructors. See Constructors

declaring, 19, 298, 568-570

deconstructors, 295, 341, 410

defined, 295, 298-299, 568

delegates, 693, 726-728, 743

encapsulation, 301, 314-317, 394

extension methods, 371-372, 396, 461-463

files for storing and loading, 298, 311,
557-558

generics, 623, 631-635, 677

hierarchy, 221, 295-296, 385-386

inextensible, 376, 396, 461-463

inheritance. See Inheritance

instance fields, 302-306, 360, 363

instance methods, 306, 363, 370-371

instantiating, 299, 363, 568

interfaces. See Interfaces

libraries, 557-559, 568, 1126

members, 302, 394, 475

methods, 218-220, 291, 363

multiple interfaces, 444-445, 461-463, 482

multiple iterators in, 568, 863-865, 873

nested, 221, 376-378, 568-570

nullable attributes, 97, 354, 897

object-oriented programming, 293-295,
298-299, 302

overview, 134, 295, 385

partial, 298, 379-384, 568

properties. See Properties

refactoring, 227, 291, 568

sealed, 394, 397, 406

static, 363, 367-370, 373

static members. See Static members

vs. structs, 487, 499-500, 545

this keyword, 15, 298, 307-309

Closed over outer variables, 248, 710,
711-713
Closures, 581-584, 589-591, 605
CLR (Common Language Runtime)
description, 38-39, 1106-1109, 1114
enums, 533, 537-538, 1126
namespaces, 567-568, 1114, 1126
CLS (Common Language Specification)
description, 39, 1114, 1125-1126
libraries, 39, 1113-1114, 1124-1126
metadata, 1114, 1125-1126, 1127
CLSCompliant attribute, 903, 914, 1126
CLU language, 39, 1114, 1124-1126
Clusters, 786, 809, 863
Code access security, 315-316, 1093-1095,
1119-1120
Code blocks
error trapping, 274-275, 281-282, 619
if statements, 156-163, 197, 205
loops, 156, 162-163, 188-193
scope, 162-163, 164-165, 702
Code editors for preprocessor directives, 4,
207-214, 572
Code readability, 17, 161-163, 227
CodeAnalysis class, 558, 709, 712
Cold tasks, 934-937, 947, 975
Collect() method, 754-757, 761, 832-834
Collections
anonymous types, 754-756, 797, 800-807
class categories, 754-756, 832-837, 845
dictionaries, 832-836, 845-849
foreach loops, 194, 759-760, 863-864
IEnumerable<T>, 800, 832-834, 995-997
indexers, 832-834, 854, 860-863
initializers, 338-340, 754-759
interfaces, 463, 754-756, 832-834
iterators. See Iterators
join operations. See Join operations

Clear() method, 761-763, 863, 1115-1118
CLI, 4-7, 887-889, 1106-1109
Clock speeds, 154, 933, 938-942

linked lists, 463, 832-837, 863
null values, 82, 173-175, 863
overview, 113, 754-755, 832-837

1140 "= Index

queues, 832-837, 853-855
searching, 808-810, 832-837, 843
shared states, 858, 974, 1069
sorted, 779, 821, 832-841
sorting, 696-698, 821, 839-841
stacks, 624, 631-634, 853-855

standard query operators. See Standard query

operators
thread synchronization, 1041, 1051, 1069
total ordering, 777-779, 821, 839-842
Collisions, 780, 852, 941
Colons (3)
conditional operators, 163, 166-172, 175
constraints, 106, 344, 656
constructors, 336-339, 344, 757
derived classes, 344, 387, 463
hexadecimal format, 59-61, 64-66, 344
labels, 106, 206, 344
COM threading model, 935-938, 973, 1075
Combine() method
delegates, 259-260, 653, 736
hash codes, 248, 259, 851-852
parameters, 248, 259-260, 653
COMEZxception type, 284, 609-614, 617
Command-line arguments, 224, 243, 269
CommandLinelnfo class, 886-890, 896,
1109
CommandLineRequiredAttribute, 269, 896,
900-908
CommandLineSwitchAliasAttribute, 889,
895-896, 900-908
CommandLineUltils package, 4-5, 886-889,
1109
Commas (,)
arrays, 112, 115-120, 135
attributes, 881, 897, 898-900
constraints, 115-116, 193, 656
enums, 533-537, 540-542, 1091
for loops, 115-116, 188, 192-194
interfaces, 443-445, 461-463, 482
methods, 228, 291, 897
parameters, 116, 228, 701

variable declarations, 106, 115-116, 193

Comments

guidelines, 17, 34-36, 571-574
overview, 34-36, 291, 571-573
XML, 34-37,571-574

Common Intermediate Language (CIL)

anonymous types, 610, 797-798, 1124-1126

assemblies, 38-40, 1114, 1124-1126

boxing code, 524-526, 610, 1124

compilation to, 38-40, 1114, 1124

description, 38, 1114, 1124

events, 752, 1114, 1124

general catch blocks, 524, 610, 1124

generics representation, 677-678, 1114, 1124

ILDASM, 38, 1114, 1124-1126

indexers, 38, 1114, 1124

metadata, 1114, 1124, 1125-1126

outer variable implementation, 38, 713,
1124-1126

output, 38, 1114, 1124

properties, 332-333, 1114, 1124

purpose, 38, 1114, 1124

Common Language Infrastructure (CLI)

assemblies, 1106-1109, 1114, 1121-1126

Base Class Library, 1109, 1113-1114,
1124-1126

CIL, 1106-1109, 1114, 1124

CLS, 1106-1109, 1113-1114, 1124-1126

compilation to, 1114, 1121, 1124-1126

CTS, 1106-1109, 1114, 1124-1126

description, 39, 1106-1109, 1124-1126

encapsulation, 39, 1106-1109, 1124-1126

garbage collection, 39, 577, 1115-1118

implementations, 39, 1106-1109, 1124-1125

manifests, 39, 1109, 1124-1126

metadata, 39, 1106-1109, 1124-1126

Microsoft NET Framework, 5, 1109-1114,
1124

modules, 39, 1109, 1124-1126

multicast delegates, 739, 1106-1109, 1124

namespaces, 1078, 1109, 1124-1126

NET Core, 5, 1109-1114, 1124

NET Native feature, 1109, 1124, 1128

NET Standard version, 1106-1109,
1113-1114, 1124
overview, 39, 1106-1109, 1124-1125
P/Invoke, 1078, 1106-1109, 1124-1126
performance, 39, 1106-1109, 1124
platform portability, 1109, 1113-1114,
1124-1125
runtime, 39, 1106-1109, 1124
type safety, 39, 1106-1109, 1124-1126
Xamarin compiler, 1106-1109, 1113-1114,
1124
Common Language Runtime (CLR)
description, 38-39, 1106-1108, 1114-1116
enums, 537, 1114, 1126
namespaces, 44, 1106-1108, 1114
Common Language Specification (CLS)
description, 1106-1109, 1114, 1124-1126
libraries, 39, 1114, 1124-1126
metadata, 39, 1114, 1124-1126
Common Type System (CTS), 1107, 1125,
1126
Compacting objects in garbage collection,
576-578, 1100, 1115-1118
Compare() method, 515, 687, 850
CompareExchange() method, 515-518,
850-851, 1056
CompareTo() method
collection sorts, 647, 838-842, 850
interfaces, 455-456, 647, 850
tree sorts, 647-650, 698, 838-840
Comparing
binary tree nodes, 648-650, 724, 872-873
collections items, 808-810, 832-837, 850
compare/exchange pattern, 423-425, 433,
1056
floating-point types, 53-56, 63, 145-147
strings, 63, 168, 514
Comparison operators
overriding, 167-169, 548-549, 552
pointers, 167-168, 548-549, 1102
Compatibility between enum types, 487,
533-538, 542-545

Index "= 1141

Compilation
ahead of time, 207-208, 1114-1116, 1121
disassembling, 34, 38-44, 1121
to machine code, 38-40, 1114-1116, 1121
sample output, 6, 12, 562
source code, 3-4, 10-12, 1114
static vs. dynamic, 367, 926, 1114
CompilerGeneratedAttribute, 333, 900,
906-908
Complement operator (~), 138-139, 170,
183-187
Complexity of asynchronous requests, 975,
981-985, 1012
ComponentModel class, 295, 394, 497
Components in compilation, 207, 1114-1116,
1121-1123
Composite formatting
description, 32-33, 36, 75-77
patterns, 77, 424, 433-435
strings, 32-33, 75-77, 143
Compound assignment
bitwise, 149, 183-187, 552
mathematical operators, 139-142, 149, 552
overriding, 149, 552, 736
Compress() method, 445, 687, 1118
Concat() method for strings, 75, 143,
259-260
Concat() operator for queries, 143, 808-812,
825-828
Concatenating strings, 75-77, 104, 143
Concrete classes, 293-295, 298-299, 482
Concurrent collection classes, 832-837,
1069, 1076
Concurrent operations, 154, 937-942, 1061
ConcurrentBag<T> class, 634, 1068-1069,
1076
ConcurrentDictionary<TKey, TValue> class,
659, 832-836, 845-849
ConcurrentQueue<T> class, 631-634,
853-855, 1068-1069

1142 "= Index

ConcurrentStack<T> class, 624, 631-634,
853-855
Conditional clauses in catch blocks, 275,
280-282, 605-606
Conditional operators
null. See Null-conditional operator
overriding, 169-172, 548, 552-554
working with, 137, 143, 166-171
Conditional types, 166, 169-172, 205
Conditional Attribute, 354, 900-903, 912-916
ConditionalExpression expression trees, 166,
428, 716-725
Conditions
for loops, 156, 166, 188-194
if statements, 156-161, 166, 205
Consequence statements in if statements,
156-163, 166, 204-205
Console
comments, 28, 34-36, 571-574
input, 7, 28-31, 225
newlines, 67, 70-72, 78
output, 28, 31, 723
round-trip formatting, 62, 75-77, 514
string methods, 28-31, 75, 225
const keyword
constants, 15, 19, 373
encapsulation, 15, 19, 394
ConstantExpression expression trees, 154,
716-720, 723-725
Constants
expressions and locals, 193, 373, 714-716
pattern matching, 423-425, 433-438, 441
switch statements, 197-200, 205-206,
422-424
Constructed struct types, 293, 487, 545-547
Constructor implementation, 407, 463,
832-834
Constructors
attributes, 338, 897, 903
base classes, 402, 410, 660
chaining, 336-338, 341-345, 512

collection initializers, 338-341, 754-759
constraints, 337-338, 657, 660-662
declaring, 298, 334-338, 344-345
default, 337-338, 341-345, 510
finalizers, 341, 581-584, 596
generics, 623, 638, 660
initializers, 334, 338-341, 344-346
methods called during, 334-338, 341,
344-346
new operator, 335, 511, 548
non-nullable reference type properties,
346-350, 505, 510
object initializers, 334, 338-341, 344-346
overloading, 336-338, 341-345
overview, 294-295, 336-338, 341
propagating exceptions from, 280, 609, 622
static, 359-360, 363, 366-369
structs, 338, 495, 510-511
Contains() method
list searches, 833, 842-848, 853-855
stack searches, 624, 846-848, 853-855
ContainsGenericParameters property, 660,
677-678, 891-893
ContainsKey() method, 845-849, 852-855,
929
ContainsValue() method, 515-516, 842-846,
848-850
Context switches, 200, 428, 937-938
Contextual keywords, 15-16, 19, 811-813
Continuation of tasks, 935, 950-956, 975
continue statements
lambda expressions, 697-702, 716, 725
overview, 156, 193, 203-206
switch statements, 197, 200, 204-206
working with, 188, 193, 203-206
ContinueWith() method
asynchronous requests, 951-953, 980-981,
1074
synchronization context, 951-953,
1003-1005, 1015-1018
tasks, 951-953, 980-982, 1003-1005
Contravariance
delegates, 671-676, 707-708

generics, 660, 672-676, 708
type parameters, 660, 672-676, 708
Control flow, 156-158, 203-205, 950
Conversions
as operator, 392, 439-440, 555-556
to binary representation, 60-61, 182, 185
Boolean type, 63, 88-89, 554-555
boxing, 88, 523-527, 530-532
casts, 88-89, 391-392, 555
checked and unchecked, 86-89, 391-392,
620-621
collections to arrays, 682, 774-776, 790
covariant, 391-392, 672-674, 708
dynamic objects, 88-89, 555, 920
enums, 89, 536-539, 1091
explicit, 88, 391-392, 555-556
false return values, 88-90, 147, 554
implementing classes and interfaces,
391-392, 444-445, 457
implicit, 88, 390-392, 555-556
overriding operators, 392, 548, 552-555
overview, 88-89, 391-392, 523
type safety, 88-89, 391-392, 555
without casts, 84-85, 88, 555
Cooperative cancellation, 963-968, 1030,
1036-1038
Copying
arrays, 130-132, 508, 676
directories, 261-264, 365, 371
null values, 82, 96, 508-509
reference types, 93-96, 134, 488-492
variables, 492, 508, 530
CopyTo() method
collections, 365, 371, 833-837
directories, 261-266, 365, 371
Core NET frameworks, 44-47, 483,
1109-1113
CoreCLR compiler, 44, 47, 1109-1116
Cores, 47, 933-938, 1110-1113
Count property for collections, 682,
773-776, 835-837
Count() method
description, 773-776, 987, 1043-1045

Index "= 1143

elements, 760, 773-776, 1043-1045
index-based collection, 760, 773-776, 839
CountdownEvent event, 1003-1005, 1068,
1074
CountOccurrencesAsync() method, 976-978,
981, 986-988
Covariance
in arrays, 120, 673-676, 708
delegates, 669-676, 707-708
generics, 669-677, 708
out modifier, 358, 671-674, 707-708
CPUs (central processing units)
description, 933-938, 1021, 1107
multithreading, 934-938, 941, 973
PLINQ queries, 933-934, 1021, 1034-1039
Create() method, 227-228, 310-311, 402
Cryptographer class, 316, 369-370, 998
.cs file extension, 3-4, 10, 264
CTS (Common Type System), 1107, 1125,
1126

Curly braces ({})
arrays, 115-116, 162-163, 757
classes, 24, 162-163, 570
code blocks, 24, 70-72, 162-163
code formatting, 24, 70-72, 162-163
collection initializers, 162-163, 339, 757
lambda expressions, 162-163, 697-699,

702-704

methods, 24, 162-163, 702
namespaces, 24, 162-163, 567-570
object initializers, 162-163, 338-339, 757
pattern matching, 162-163, 427-429, 433-435
properties, 24, 162-163, 757
string interpolation, 32, 70-71, 162-163
switch statements, 162-163, 197-200, 428
type definitions, 24, 162-163, 757
use of, 24, 70-71, 162-163

Current property for iterators, 760, 863-868,

878

CurrentDomain class
exceptions, 612-615, 618, 622
process exits, 590-591, 594-595, 962-964

1144 "= Index

Currentld property for asynchronous tasks,
366-368, 991, 1013-1016

Custom attributes, 881, 896-907, 914

Custom conversions, 88-89, 391-392, 523

Custom exceptions, 280, 599-601, 612-615

Custom objects in dynamic programming,
293-295, 920, 926

Custom value types for structs, 487,
544-547, 1097

D

Data namespace, 221, 567-570, 782
Data persistence, 310-311, 314, 782
Data types, 25, 92-93, 134
DataBinder class, 410, 683, 922-923
Deadlocks

avoiding, 941-943, 974, 1060-1062
causes, 940-943, 974, 1060-1062

DEBUG preprocessor identifier, 17-19,
207-214
Debug() method, 514, 564, 723
Debugging
preprocessor directives for, 207-214
source code, 3-4, 12, 572
Decimal type, 53-58, 84, 144-145
Declaration spaces in code blocks, 24,
162-165, 569
Declaring
arrays, 112, 115-120, 123
await using statement, 989-993, 999,
1003-1005

BinaryTree<T> class, 648-651, 667, 865-866

class type constraints, 651-656, 660-663
classes, 291-293, 298, 568-570
constants, 269, 298, 373

constructors, 298, 334-338, 344-345
deconstructors, 341, 358-359, 512
delegate types, 689-693, 707, 716
enums, 533-542, 1091

events, 728, 743-747, 750-753

external methods, 228, 232-233, 291

generic interfaces, 444-445, 635-638, 663
generic methods, 651, 663-664, 892
instance fields, 303-307, 360, 363

interface constraints, 444-445, 651-652, 656

local variables, 25-27, 164-165, 193
Main() method, 20-22, 227, 243-246
methods, 228, 291, 298
namespaces, 221-222, 235-239, 568-570
out variables, 26-27, 193, 291
parameters, 228, 267-270, 701
pointers, 95, 1096-1103
properties, 318-322, 333, 367
read-only automatically implemented
properties, 326, 374-375, 506-507
read-only fields, 326, 374-376, 506-507
return types, 84, 228-231, 700
static constructors, 359-360, 367-370, 373
static fields, 360-363, 367-369, 373-374
structs, 506, 547, 1083
tuples, 106-108, 359, 803
types from unmanaged structs, 654,
1083-1084, 1097
variables, 25-27, 193, 298
Deconstructors, 341, 357-358, 512
Decrement operators
description, 138-139, 150-154, 183
loop example, 138-139, 150-154, 1044
thread-safe, 150-154, 1044, 1071-1072
Decrement() method, 150-151, 1044,
1071-1072
Default constructors, 337-338, 341-346, 510
Default interface members
vs. extension methods, 461-463, 481,
484-485
versioning, 446, 464-467, 481-484
default operator for generics, 630, 651,
662-663
default sections in switch statements,
197-200, 205-206, 422-424
Default types, 134, 269, 640
Default values
generics, 269, 630, 638-641
structs, 269, 510, 640

DefaultIfEmpty() method, 269, 288, 640
Deferred execution
LINQ, 775-777, 793-796, 806
query expressions, 718-720, 777, 806
Defining
abstract classes, 410-411, 414, 453
attributes, 881, 896-900, 914
calculated properties, 318, 322, 333
cast operators, 85, 439-440, 555
custom conversions, 88-89, 391-392, 555
custom exceptions, 599-601, 612-615, 618
enums, 533, 540-542, 1091
finalizers, 341, 581-584, 596
generic classes, 631-634, 677, 832-835
generic constructors, 635-638, 660, 677
generic methods, 623, 663-664, 892
indexers, 832-836, 860-864
iterators, 760, 863-868, 873
namespaces, 221, 235, 567-570
nested classes, 298, 376-380, 568-570
partial classes, 379-381, 383-384, 568
preprocessor symbols, 15, 207-210, 214
publishers, 725-728, 743, 753
stacks, 624-628, 631-634, 854
static methods, 360, 363, 367-370
subscriber methods, 727, 730-731, 753
Delay() method, 1003-1005, 1066-1068,
1074-1076
Delegate class, 683, 694, 753
Delegate constraints, 651-657, 660-663
delegate keyword, 716, 747, 750
Delegate type, 693, 726-728, 738
Delegates
constraints, 693, 716, 743
deferred execution, 693, 716, 727
event notifications, 727, 737-739, 753
events, 726-728, 743, 753
vs. expression trees, 684, 693, 716-725
function pointers to, 693, 727, 1090-1092
instantiating, 693-694, 726-728, 738
internals, 693-694, 716, 727
introduction, 693-694, 716, 727

Index "= 1145

invoking, 693-694, 727, 739
method returns and pass-by-reference,
693-694, 727, 735
nesting, 691-694, 716, 727
null-conditional operators, 173-175, 178-180,
733
overview, 693-694, 727, 743
predicates, 690, 716, 767
process exits, 590-591, 594-595, 735
publish-subscribe pattern operators, 727, 743,
753
statement lambdas for, 697-699, 705, 716
structural equality, 691-694, 707, 716
tasks, 693-694, 727, 945-946
types, 690-694, 726-728, 738
unsafe code, 693, 1093-1095, 1104
delete operator, 138-139, 143, 169-170
Deleting files, 583-584, 770, 808-810
Delimited comments, 34-36, 70, 571-574
Delimiters, 23, 573, 716
DenyChildAttach task continuation option,
951-958, 1026, 1031
Dependencies in libraries, 11, 557-559,
562-564
Dequeue() method, 624, 760-762, 853-855
Dereferencing
description, 95, 491-492, 1098
null-conditional operator for, 98-99, 173-178,
733
null references, 83, 98-101, 173-175
null values, 82-83, 98-100, 173-175
pointers, 95, 492, 1097-1103
Derivation
casting between base and derived types, 297,
389-391, 402
custom conversions, 89, 389-392, 555
extension methods, 371-372, 396-397,
461-463
interfaces, 444, 456, 458-463
overview, 389, 397, 418
private access modifier, 315-316, 393-394,
566

1146 "= Index

protected access modifier, 315-316, 393-397, Directives

566 dynamic, 207, 237-241, 920
sealed classes, 397, 406, 410 preprocessor. See Preprocessor directives
single inheritance, 296-297, 386, 396-397 strings, 67-69, 207, 235-240
from System.Object, 389-391, 418, 463 Directories, 261-262, 770, 782
Derived members, 386, 418, 660 DirectoryInfo class
Derived objects converted to base class, extension methods, 371-372, 461-463,
386-391, 410, 418 886-890
Derived types inner joins, 463, 780-784, 789
casting between base types, 297, 389-391, DirectoryInfoExtension class, 371-372, 396,
402 461-463
classes, 296-297, 386, 410 DisallowNull attribute, 286, 348-350, 354

description, 296-297, 386, 410
DescriptionAttribute, 881, 895-897, 900

Deserialize() method, 463, 538, 668
Deterministic destruction, 581-584, 596,

Disambiguating multiple Main() methods,
218-219, 227, 243-247
Disassembling programs, 38-44, 557, 1122

Discards
1118 out parameters, 251-253, 358, 701
Deterministic finalization, 581-584, tuples, 106-108, 807, 815
588-591, 596 DispatcherTimer class, 242, 1011-1013,
Deterministic resource cleanup, 583-584, 1074-1076
1087, 1115-1118 Disposability of tasks, 933-937, 971-975,
Diagnostics class 1013
debugging with, 496, 514, 564 Dispose() method
notifications, 496, 564, 737 collections, 583-584, 588-589, 763
nullable attributes, 101-102, 350, 354 finalization. 583-589. 595-596. 1087
. processes? 496, 564, 1010 resource cleanup, 583-589, 595, 1087
Diagramming interfaces, 444-445, 456-458, DisposeAsync() method, 584, 1003-1005,
461-464 1074

Dictionaries Distinct members in query expressions,
collection lnltlallzers, 339, 754-758, 845 808-812. 823-824. 828-831
interfaces, 463, 832-836, 845 ’ ’
key equality, 845-852
sorted, 832-836, 845-849, 852
thread synchronization, 941-942, 1041, 1061 = ™
working with, 680, 832-836, 845-848 Division

Dictionary<TKey, TValue> class binary operatolr, 138-141, 167, 184-185
collections, 832-836, 845, 854 compound assignment, 27, 139-141, 149

. . shift operators, 138-140, 149-151, 183-184
working with, 659, 845-849, 852-854
. by zeros, 138-139, 145-147, 148
Digit separators, 23, 59-61, 143 .
Dimensions for arrays, 115-120, 123-125 DIlTmport attribute, 881, 897-900, 914
129-130 vSs ’ ’ DLLs (dynamic link libraries), 920,

1078-1080, 1114

Distinct() operator
description, 548, 809, 828-829
query expressions, 808-812, 828-831

do/while loops
overview, 156, 188-194, 204
working with, 188-194, 203-204
Documentation
reflection, 35, 44, 881-882
XML files, 10, 35-37, 571-574
Dollar signs ($) for string interpolation,
66-67, 70-74, 77
DotGNU Portable.NET compiler, 12, 44,
1128
dotnet CLI, 4-5, 1109-1112, 1128
Dotnet CLI
code building and executing, 4-5, 10-12,
1109
NuGet references, 5, 558-561, 1109-1112
project and library references, 5, 557-562,
1109
working with, 4-5, 47, 1109-1112
Double quotes (")
escape sequence, 65-67, 70-74
strings, 67, 70-74, 143
double type
overview, 92-93, 134, 1125
special characteristics, 53, 145, 1125
DownloadData() method, 580, 976-978, 981
DownloadDataTaskAsync() method,
975-978, 981, 984-988
DownloadString() method, 243-244,
976-978, 981
Drawing class, 295, 298-299, 832-834
Duck typing, 50, 799, 926
Duplicating interfaces, 443-445, 461-465,
637
dynamic data type principles and behaviors,
920-922, 926, 1125
Dynamic invocation
delegates, 693, 716, 727
members, 920-925, 930-931
nameof operator, 289, 8§94, 930-931
Dynamic link libraries (DLLs), 557-559,
1078-1080, 1114

Index "= 1147

Dynamic programming
binding, 725, 920-926, 930-931
custom objects, 293-295, 920, 926-928
description, 725, 920, 926
overview, 725, 920, 926
principles and behaviors, 294-295, 920, 926
reflection, 920-922, 931, 1119
vs. static compilation, 920-922, 926, 1114
Dynamiclnvoke() method, 733, 923-931,
1078
DynamicObject class, 295, 680, 920-931

E
Editors
dotnet CLI, 4-5, 12, 1109-1112
preprocessor directives, 207-214, 237
source code, 3-4, 12, 562
Visual Studio 2019. See Visual Studio 2019
Elements, counting, 760, 773, 1043-1045
else clauses, 160-163, 169, 193
Empty collections, 113, 754-756, 863
Empty property for events, 324, 431,
743-752
Empty strings, 81-82, 288, 514
Encapsulation
classes, 294-295, 314-317, 394
CLI 5, 394, 1106-1109
const modifier, 314-316, 372-375, 394
information hiding, 301, 314-316, 394
object-oriented programming, 293-295, 314,
394
with protected interface members, 394, 476,
484
publications, 294-295, 314-316, 394
readonly modifier, 331, 374-376, 506-507
subscriptions, 394, 743, 753
well-formed types, 314, 394, 545-547
EncryptAsync() method, 994-1001, 1004,
1033
EndsWith() method, 122, 462, 842-844
Enqueue() method, 258, 314, 853-855

1148 "= Index

Enter() method with monitors, 528,
1046-1049, 1053
Enum class, 487, 533-542, 1091
enum values
conversions, 532-534, 538, 1091
flags, 533-534, 540-544, 910
FlagsAttribute, 541-544, 906-911
metadata, 533-535, 541-544, 1091
overview, 487, 533-535, 1091
parsing, 533-534, 538-539, 1091
type compatibility, 487, 533-538, 1091
Enumerable class
delegates, 463, 694, 742
element counting, 760-761, 765-766,
773-776
filters, 463, 769, 833-834
inner joins, 463, 780-784, 788-789
methods, 463, 766, 832-834
parallel queries, 772, 833, 1033-1039

query expressions, 463, 809-812, 831-833

sorts, 778-779, 839, 1034

standard query operators, 777, 806-810, 833

Enumerator patterns for iterators, 760,
863-868, 878
Environment class

equality operator, 63, 167-168, 548
null checks, 98, 168, 173-175
null-coalescing operator, 98, 168, 173-178
overriding, 63, 167-168, 548
pointers, 63, 168, 1102-1103
precedence, 63, 140-142, 167-168
properties, 168, 333, 515
relational and equality operators, 63,
167-168, 548
shift operators, 149, 167-170, 183-184
variable assignment, 63, 149, 168
Equals() method
collections, 515-518, 832-835, 850
description, 168, 515-518, 548
with GetHashCode(), 515-520, 850-852
implementing, 515-518, 548, 850
null values, 98, 173-175, 515-518
overriding, 515-518, 548, 850
reflection, 493-494, 515-518, 548
Equi-joins, 780-784, 788-789, 809
Error handling
catch blocks, 275-276, 605, 610
exception class inheritance, 280, 599-601,
605
with exceptions, 280, 599-601, 622
P/Invoke, 1077-1078, 1085-1092

command-line arguments, 269, 886-889, 896
newlines, 67, 70-72, 78
thread synchronization, 941-942, 1046, 1076

publish-subscribe pattern, 727, 737-743, 753
throw statements, 284-285, 601, 607-608

Equality
C# vs. C++, 63, 168, 515
collections, 463, 755, 832-834
delegates, 691-694, 707, 716
dictionary keys, 832-834, 845-852
floating-point types, 53-56, 145-148
with null, 82, 173-175, 493
objects, 167-168, 493-494, 515
operators, 63, 167-170, 548

EqualityComparer<T> class, 515-516,

838-842, 850-852

Equals signs (=)
compound assignment, 63, 149, 168
delegates, 167-168, 548, 736

trapping, 274, 599-601, 604-605
Errors

array coding, 114-115, 124, 132

preprocessor directives for, 207-214
Escape sequences, 65-67, 160-163, 204
Essential source code, 3-4, 12, 562
EssentialCSharp.sin file, 4, 10-14, 245
Etch A Sketch game, 119, 158-160, 196
Evaluation of operators, 141-143, 167-169,

548

event keyword, 743-750, 751-753
Event notifications, 737, 743-747, 750-753
EventArgs class, 181, 463, 743-752

EventHandler<T> class, 726-728, 743,
746-753
Events
coding conventions, 743-744, 747, 750-753
declaring, 743-747, 750-753
generics and delegates, 726-728, 743, 747
implementation, 444, 743-744, 753
internals, 737, 743-747, 750-753
listeners, 743-744, 747, 753
overview, 743-744, 750, 753
publication encapsulation, 743, 746-747, 753
publish-subscribe pattern. See
Publish-subscribe pattern
purpose, 727, 743-744, 747
subscription encapsulation, 727, 743, 753
thread synchronization, 932, 973, 1041
Exception conditions, 601-606, 612-614,
622
Exceptional continuation, 204, 825-827,
950-952
ExceptionDispatchlnfo class
asynchronous requests, 608, 618, 1074
purpose, 599, 608, 618
Exceptions
catch blocks, 275, 601, 605
class inheritance, 280, 599-601, 605
custom, 280, 599-601, 612-615
error trapping, 274-275, 280, 601
expected situations, 280, 599-601, 605
guidelines, 599-601, 612-614, 622
overview, 280, 599-601, 622
parallel loops, 1021-1023, 1028, 1035-1039
PLINQ queries, 796, 825-827, 1034-1035

propagating from constructors, 336-338, 341,

658
publish-subscribe pattern, 727, 743, 753
rethrowing, 601, 607-609, 622
serializable, 461-463, 599, 617
tasks, 599-601, 958, 975
threads, 937, 962-964, 972-973
throw statements, 283-284, 601, 607-609
types, 280, 601, 622
ExceptionServices class, 461-463, 599-601,

Index "= 1149

617
Exchange() method, 463, 870-871, 1056
Exclamation points (1)
equality operators, 167-170, 175, 548
generics, 66-67, 638, 678
inequality operators, 143, 167-170, 548
logical operators, 143, 166-171, 184
null-forgiving operators, 98, 168-170,
173-175
overriding, 66-67, 143, 168-170
pointers, 66-67, 168-170, 1102-1103
Excluding code, 161-163, 208, 213
Exclusive OR (XOR) operators
bitwise, 168-169, 170, 184-187
logical, 167-169, 170, 184
Executables, 12, 557, 1121-1122
ExecuteSynchronously task continuation
option, 951-953, 957, 1003-1005
Execution time, 225, 933, 939-941
ExecutionEngineException type, 604-605,
613-618, 622
Exit() method with monitors, 528,
1047-1049, 1053

Expanded form for parameters, 228,

259-260, 701

Explicit casts

base and derived types, 389-391, 457, 652
enums, 536-539, 542, 885

guidelines, 85, 390-392, 457

overview, 85, 390-391, 555

Explicit deterministic resource cleanup,

583-584, 595-596, 1087

Explicit member implementation, 454-457,

476, 485

Exponential notation, 58-61, 150, 182
Expression bodied members

declaring, 231, 697-699, 716-718
properties, 231, 333, 522

Expression bodied methods, 231, 716-719,

725

1150 "= Index

Expression trees
deferred execution, 716-720, 723-725,
775-777
vs. delegates, 684, 693, 716-725
description, 716-720, 723-725, 831
examining, 716-720, 723-725, 831
object graphs, 716-720, 723-725, 831
SQL queries, 718, 724-725, 831
Expressions
constant, 154-155, 373, 425
lambda. See Lambda expressions
query. See Query expressions
Extended Application Markup Language
(XAML), 35-37, 572, 1109
Extensible Markup Language, 36, 37,
572-574
Extension methods
classes, 371-372, 396, 461-463
vs. default interface members, 396, 461-463,
481
derivation, 371-372, 396, 461-463
interfaces, 396, 444-445, 461-463
Extensions, 371-372, 396, 461-463
External methods and functions

calling, 253, 1078-1080, 1086
declaring, 232-233, 291, 1078

F

f-reachable (finalization) queues, 582-584,
588, 595-596

Factory interfaces for constructor constraints
, 651-652, 656-662, 673-674

FailFast() method, 604, 622, 1074

Failure type, 604-605, 619, 802

false operator, 63, 166-171, 554

Fat arrow notation (=>) for lambda
expressions, 697-706, 716-718, 1008

FCL (Framework Class Library), 557-558,
568, 1109-1114

Fibonacci numbers, 188, 189, 1020-1022

Fields

guidelines, 302-303, 375, 521
instance. See Instance fields
static members, 360-363, 367-370, 373
strings, 80, 115-116, 143
thread synchronization, 1041, 1046, 1061
FIFO (first in, 142, 189, 624
FileAttributes class, 896-900, 906-908, 911
Filelnfo class
inner joins, 770, 782-784, 814-815
projections, 770, 808-810, 814-815
query expressions, 808-810, 814-815,
821-822
Files
deleting, 583-584, 770, 808-810
extensions, 10, 264, 770
Java language vs. C#, 1-3, 14, 1114
project, 10, 558-562, 808-810
storing and loading with, 311-314, 557, 782
FileStream class
finalizers, 312, 583-589, 596
IAsyncDisposable, 583, 586-589, 997-999
storing and loading files, 311-312, 597-598,
770
ToString(), 311, 513-514, 532
Filters
Browse, 770, 808-812, 843
collections, 113, 682, 808-810
exceptions, 280, 605, 808-810
query expressions, 718, 808-812, 820
Finalization, 581-584, 589-591, 595-596
finalization (f-reachable) queues, 581-584,
588-590, 595-596
finalize() method, 341, 581-584, 595-596
Finalizers
constructors, 341, 581-584, 589-590
generics, 341, 581-584, 595-596
resource cleanup, 582-584, 589-590, 595-596
structs, 341, 511, 581-584
finally blocks in error trapping, 279-282,
604-605, 1047
FindAll() method, 770, 794, 844
First in, 6, 639, 812

fixed statement for pointers, 96, 491-492,
1096-1102
Flags, 463, 540-544, 906-910
FlagsAttribute
enums, 540-543, 906-911
overview, 897, 905-908, 911
Flatten() method, 769-770, 782, 800
Flattening sequences in query expressions,
808-810, 823-828, 831
float type
overview, 53, 56, 145
special characteristics, 53-56, 92, 145-148
Floating-point types
equality issues, 53-56, 145-148
overview, 53-56, 92, 145-148
special characteristics, 53-56, 92, 145-148
Flow control
Boolean expressions, 137, 166, 169
code blocks, 156, 204, 950
description, 156, 204, 950
for loops, 188, 192-193, 204
foreach loops, 194-195, 204, 1023-1025
if statements, 156-163, 166, 204-205
introduction, 137, 156, 950
jump statements, 156, 200, 204-206
preprocessor directives, 137, 207-214
scope, 156, 164, 950
switch statements, 156, 197-200, 204-206
task continuation, 204, 950-955, 975
threads, 936-938, 964, 973
while and do/while loops, 156, 188-193,
203-204
for loops
overview, 188-194, 760, 1021
parallel iterations, 193, 1020-1023,
1035-1039
For() method, 190-194, 760, 1023-1024
Forcing resource cleanup, 576-577, 583-584,
1115-1118
foreach loops
arrays, 192-195, 760, 1023
async streams, 994-999, 1023-1025, 1035
collections, 194, 759-761, 863-864

Index "= 1151

enumerator patterns, 200, 760, 863-864
IEnumerable<T>, 760, 765-766, 869-871
overview, 192-194, 760, 863-864
parallel iterations, 1020-1025, 1035-1039
Form feeds escape sequence, 65-73, 160,
204
Formal parameter lists, 228, 664, 701
Format items, 75-77, 843, 897
Format strings, 31-33, 75-77, 143
Format() method, 32-33, 75-77, 513-514
FormatException type, 84, 280-282, 619
FormatMessage() method, 32, 75-77, 514
Formatting
hexadecimal format, 60-61, 66, 77
round-trip, 62, 65-67, 77
with string interpolation, 32-33, 67, 74-77
strings, 32-33, 75-77, 143
Forward accessing arrays, 112, 120-126,
130-132
Forward slashes (/)
command-line option, 269, 437, 896
compound assignment, 67, 106, 149
overriding, 59, 65-68, 573
precedence, 65-67, 142,216

XML comments, 35-37, 571-572, 573-574
XML elements, 36-37, 571-572, 573-574

Fragile base class problem, 397-398, 402,
410
Framework Class Library (FCL), 557-558,
1109-1114, 1126
Framework Design Guidelines, 17-18, 521,
1110-1113
Frameworks
APIs, 45, 1078, 1110-1113
NET. See .NET frameworks
from keyword in query expressions,
808-813, 823, 831
FromCurrentSynchronizationContext()
method, 1011-1015, 1051-1054, 1076
Full outer joins, 780-784, 789, 809
Fully qualified method names, 50, 228, 895
Func delegate, 688-693, 716, 727

1152 "» Index

Functions

G

external, 1007, 1078-1080, 1086
pointers to delegates, 689-693, 727,
1090-1092

Garbage collection

CLI, 576-578, 584, 1115-1118

managed execution, 39, 576-578, 1115-1118

Microsoft .NET framework, 44, 576-578,
1115-1118

objects, 576-578, 596, 1115-1118

overview, 576-578, 595, 1115-1118

resource cleanup. See Resource cleanup

weak references, 576-577, 578, 1115-1118

GC class

finalization, 582-584, 596, 1118

finalizers, 341, 582-584, 595-596

garbage collection timing, 576-578, 1100,
1115-1118

resource cleanup, 576-578, 595, 1115-1118

General catch blocks, 280-282, 605-606,
609-610
Generics

benefits, 623, 631-635, 677

CIL representation, 630, 677-678, 709
classes, 623, 631-634, 681

constraints. See Constraints

constructors, 623, 638, 677

covariance and contravariance, 669-676, 708
default values, 630, 638-640, 677

defining, 623, 631-635, 677

delegates, 690, 693-694, 726-728

events, 623, 677, 726-728

examples without, 638, 677, 681

finalizers, 581-584, 590, 595-596
instantiating, 623, 638, 677-681

interfaces and structs, 444-445, 636-638, 651
internals, 631-633, 646, 677-681
introduction, 623, 677, 681

Java, 623, 630-633, 638

lazy loading, 638, 677, 680-681

linked lists, 624, 631-638, 835-837

methods, 623, 664, 681

nested, 631-633, 638, 643-646
overview, 623, 677, 681
reflection, 677, 882-883, 892
tuples, 108, 642-645, 803
type parameters, 631-635, 664, 677
working with, 623, 630-634, 677
get keyword for properties, 309, 318-320,
333
GetAsyncEnumerator() method, 766,
994-997, 1000
GetAwaiter() method, 989-997, 1000,
1003-1006
GetCommandLineArgs() method, 243-244,
269, 886-890
GetCustomAttributes() method, 901-903,
914,931
GetEnumerator() method
duck typing, 765-766, 864, 868-871
iterators, 760, 864-871, 878
purpose, 760, 863-865, 868-870
queryable extensions, 766, 833, 868
standard query operators, 766, 833, 868
GetFiles() method
directories, 261-264, 770, 821
inner joins, 770, 782-784, 814
GetGenericArguments() method, 664-665,
677, 891-893
GetHashCode() method
collections, 519-520, 832-834, 851-852
description, 418, 516-520, 851-852
overriding, 408, 516-520, 851-852
value types, 494, 516-520, 850-852
GetLastError() method, 383, 1079-1080,
1085-1087
GetLength() method, 79, 125, 129
GetMethods() method, 332-333, 829, 884
GetProperties() method, 79, 333, 883-884
GetResult() method
getters, 253, 332, 1006
access modifiers, 315-316, 330, 566
properties, 79, 884, 949
GetType() method

description, 883-885, 888-893
null values, 99-100, 356, 884-885
objects, 421, 883-885, 891-893
reflection, 883-885, 888-893
GetValue() method, 329, 532, 888-890
GhostDoc tool, 4-7, 576, 1118
Global methods, 113, 237-238, 664
Global variables and functions, 232-233,
237,710
goes to operator, 137-139, 143, 439
goto statements
lambda expressions, 697-705, 716, 725
overview, 156, 205-206, 246-247
switch statements, 197-200, 205-206, 422
Graphs for expression trees, 716-720,
723-725, 831
Greater than signs (>)
generics, 663-664, 677-678, 698
overriding, 139, 167-169, 698
pointers, 139, 167-170, 1102-1103
referent member access, 139, 167-169,
1102-1103
relational operators, 138-139, 167, 168-170
shift operators, 139, 167-170, 183
XML, 35-37, 167-169, 698
group by clause, 786, 809-812, 823-828
group clauses in query expressions, 809-812,
823-828, 831
GroupBy() method, 786-788, 809, 823-826
Grouping query expressions, 808-811,
823-828, 831
GroupJoin() method
inner joins, 782-789, 809, 826
outer joins, 780-789, 809

H
Handle() method

asynchronous requests, 975, 1003-1005, 1074

task exceptions, 274, 604, 958-961
Handlers for process exits, 589-591,

Index "= 1153

594-595, 1010
Hardcoding values, 57-60, 94-96, 373
HasFlags() method, 540-544, 888, 906-911
Hash codes and tables
collection equality, 167, 515-519, 850-852
dictionaries, 521, 845-847, 850-852
GetHashCode(), 418, 516-520, 851-852
Hash symbols (#) for preprocessor directives
, 19, 66,207-214
Hat operator (") for arrays, 121-122,
125-127, 170
Header files, 37, 207-210, 239
Heap
boxing, 523-528, 1100, 1118
new operator, 300, 335, 511
reference types, 95-96, 488-492, 1097
HelloWorld program
assemblies, 12, 557-561, 1122
CIL output, 38-40, 1114, 1124
compiling, 2, 12-14, 557-559
debugging, 2, 12-14, 557-561
description, 2, 20, 557-561
dotnet CLI for, 4-5, 10-12, 557-561
preparing, 2, 20, 557
project files, 10-14, 20, 557-561
stand-alone, 2, 12-14, 557-559
Visual Studio 2019 for, 2-4, 7, 12
HelloWorld.dll file, 10-12, 557-561, 1122
Hexadecimal numbers
formatting numbers as, 59-61, 66, 182
notation, 60-61, 66, 182-184
Unicode characters, 60-61, 66, 144
HideScheduler task continuation option,
970-971, 1011-1013, 1031
Hierarchy of classes, 295-298, 385-386,
568-570
High-latency operations
async/await syntax, 985, 991, 1004

asynchronous example, 933-935, 975, 1074
synchronous example, 933, 939-940, 975

1154 "» Index

WPF example, 933-934, 1016, 1074
Hill climbing, 193, 1025, 1119
Hold and wait conditions in deadlocks,
941-943, 974, 1060-1062
Hooking up publishers and subscribers,
726-728, 731-732, 743
Horizontal tabs escape sequence, 65, 66-67,
160
Hot tasks, 944, 947, 973-975
Hungarian notation, 53, 59-61, 66
Hyper-Threading, 932-938, 941, 972-973
Hyphens (-), 17-19, 59, 138-139

|
I/O-bound operations
latency, 933, 934, 937-941

performance considerations, 524, 933-934,
1120

[AsyncDisposable interface, 584, 763-764,
995-1000
[AsyncEnumerable<T> interface
async returns, 994-997, 1000, 1004-1006
asynchronous streams, 793-795, 994-997,
998-1000
LINQ with, 793-796, 995-997, 1000
IAsyncEnumerator<string> interface, 763,
994-997, 1000
ICollection<T> interface

collection initializers, 339, 754-759, 832-834

element counting, 759-760, 765, 773
members, 463, 759, 832-836
IComparable<string> interface, 463,
838-840, 850
IComparable<T> interface, 647-650, 667,
838-842
IComparer<T> interface, 647-650, 838-842,
850
Id property for asynchronous tasks, 333,
367-368, 1014
IDE (integrated development environment)

debugging support, 7, 209, 572
Visual Studio 2019, 1-4, 7, 572
Identifiers
guidelines, 17-19, 298, 895
keywords as, 15-19, 298, 811-813
overview, 17-19, 113, 567
Identity of objects, 295, 299-302, 782
IDictionary<TKey, TValue> interface, 656,
832-836, 845-849
IDisposable interface
resource cleanup, 583-584, 763-764, 1087
tasks, 584, 763-764, 971
IDynamicMetaObjectProvider interface,
458-459, 920, 928-931
IEnumerable<T> interface
collections, 463, 759-760, 832-834
delegates, 463, 832-834, 865
element counting, 760-762, 765, 773
filters, 463, 769, 832-834
foreach loops, 760, 763-765, 868
iterators, 760, 863-868, 871
PLINQ queries, 463, 793-796, 1034-1035
projections, 463, 800, 832-834
query expressions, 463, 793-796, 833
standard query operators, 463, 769, 833
task-based asynchronous pattern, 975,
994-997, 1074
yield statement, 866-871, 875-879
IEnumerator<T> interface
foreach loops, 760, 763-765, 868
iterators, 863-866, 871, 995-997
yield statement, 866-870, 875-879, 994
[EqualityComparer<T> interface, 515-516,
838-840, 850-851
[Equatable<T> interface, 515-516, 793-795,
850
if statements
Boolean expressions, 158, 166, 168-171
code blocks, 156-163, 166, 205
continue statement replacement, 156-161,
203-206

nested, 158-163, 166, 205
overview, 156-161, 197, 205

Index "= 1155

prefix and postfix, 139-142, 149-153, 154
thread-safe, 154, 1043-1045, 1057

switch statements for, 197-200, 205-206, 428 Increment() method, 150-154, 1044, 1057

working with, 158-162, 166, 205
IFileCompression interface, 444, 445,
456-463
IGrouping type, 463, 786-788, 823-826
ILDASM (IL Disassembler), 38-40, 41,
43-44
IList<T> interface, 463, 832-837, 854
IList<TKey> interface, 832-837, 849, 854
IList<TValue> interface, 463, 832-837, 854
Immutability
anonymous types, 505-507, 797-798,
801-805
delegates, 505-507, 707, 716
strings, 28, 67-69, 80-81
value types, 96, 488-489, 505-507
Immutable library, 375, 524, 832-834
Implementing class conversions with
interfaces, 444-445, 451-453, 456-457
Implicit conversions
base and derived types, 389-391, 402, 652
guidelines, 88-89, 391-392, 457
types, 88-89, 390-392, 555
Implicit deterministic resource cleanup,
583-584, 595-596, 1087
Implicit member implementation, 455-458,
476, 485
implicit operator for types, 391, 439,
554-555
Implicitly typed local variables, 102, 714,
798-799
import directive, 207-209, 213-214, 235-239
in modifier, 315-316, 351, 405
in parameters, 224, 228, 701
Including code, 4, 298, 572
Increment operators
description, 139, 150-154, 1057

Indenting code
if statements, 24, 158-163, 166
readability, 24, 36, 160-163
Index operator
lists, 122, 126, 860-861
variable parameters, 112, 153, 860-861
Index type, 112, 126, 860-861
IndexerNameAttribute, 860, 861, 895-899
Indexers, 808-810, 833, 860-864
Indexes
arrays, 115-116, 120, 123-128
dictionaries, 832-836, 845-849
list searches, 833, 843, 860
sorted collections, 113, 682, 832-837

IndexOf() method, 121-122, 760, 842
IndexOutOfRangeException type, 126-127,
600-603, 760
Indirection operators for pointers, 511,
1097-1102, 1103
Inequality
floating-point types, 53-56, 145-148
with null, 82, 98-99, 173-175
operators, 138-139, 167-170, 548
Inextensible classes, 396-397, 461-463, 482
Inferences for generic methods, 651,
660-666, 892
Infinite recursion errors, 246, 261-263, 802
Infinity value, 54-57, 139, 148
Infix notation for binary operators, 138-142,
149, 153
Information hiding in encapsulation,
314-316, 394, 476
Inheritance
abstract classes, 385-386, 410-411, 414
base class overriding. See Base class
overriding

1156 "™n Index

casting in, 85, 386, 390-391
constraints, 386, 656, 660-662
definitions, 294-297, 385-386, 599
derivation. See Derivation
exception classes, 280, 599-601, 605
interfaces, 443-445, 458, 461-463
is operator, 386, 548, 599
overview, 294-297, 385-386, 599
System.Object class in, 294-295, 299, 418
value types, 96, 134, 487-489
Initial section in for loops, 188-195, 863,
1021-1024
Initialization, 338-341, 346, 367
Initializers
collections, 339, 754-759, 832-834
constructors, 334, 338-341, 344-346
object, 338-341, 346, 757
Initializing
anonymous type arrays, 118, 754, 797-805
arrays, 112, 115-120, 135
attributes, 881, 896-900, 903
dictionaries, 680, 832-834, 845-849
fields, 334, 338-340, 346
loop counters values, 150, 193, 1043-1045
static members, 363, 367-370, 373
structs, 338, 510-511, 1083-1084
Inner classes, 376-378, 394, 475
Inner joins
description, 780-784, 788-789, 809
one-to-many relationships, 780-784,
788-789, 809
performing, 780-784, 788-789, 809
InnerException property, 616, 617-618, 960
InnerExceptions property
aggregate exceptions, 616-618, 959-960,
1028
asynchronous requests, 616-618, 958-960,
1028
error handling, 601, 616-618, 960
parallel loops, 960, 1028-1032, 1035-1039
tasks, 616-618, 958-961, 1028
INotifyCompletion interface, 461-463, 1003,
1006

INotifyPropertyChanged interface, 181, 463,
732
Input, 28-31, 199, 227-228
Insert() method, 305, 463, 758
Inserting dictionary items, 758, 832-836,
845-849
Instance fields
accessing, 306, 330, 338
declaring, 302-304, 307, 360
description, 302-303, 338, 363
initializing, 338-340, 346, 367
Instance members
arrays, 129-130, 302, 790
strings, 69, 129, 514
working with, 302, 305-307, 475
Instantiation
arrays, 115-120, 129, 790
classes, 298-299, 410, 568
defined, 299, 338, 360
delegates, 683, 693-694, 727
generics, 623, 677-679, 892
Integers and int type
characteristics, 56, 96, 144-145
characters, 64-66, 87-88, 144
conversions, 56, 84-88, 144
default, 56-57, 87, 640
description, 56-57, 84, 144
enums, 487, 533-535, 1091
overflow, 55-56, 86-88, 620
vs. strings, 84, 88, 144
Integrated development environment (IDE)
debugging support, 4, 7, 572
Visual Studio 2019, 1-4, 7, 572
IntelliSense feature, 44, 572, 812
Interlocked class
increment and decrement operators, 150-151,
154, 1056-1057
working with, 1056, 1061, 1076
internal access modifier
description, 315-316, 384, 565-566
interface refactoring, 445-446, 455, 465
on type declarations, 316, 565-567, 1119
Interoperability, 441-445, 463, 1119-1120

InteropServices class
SafeHandle, 1077-1081, 1087-1088,
1090-1092
unmanaged exceptions, 610, 1077-1078,
1085-1087
Interpolation of strings, 31-32, 67-71, 143
Intersect() operator, 167-170, 771, 780
into clause in query expressions, 809-812,
823-827, 831
IntPtr class, 96, 523-524, 1081
InvalidAddressException type, 612-614,
618-619, 1098
InvalidCastException type
description, 84-85, 390-391, 647-651
generics, 630, 638, 649-651
using, 85, 391, 648-651
InvalidOperationException type
catch blocks, 280-282, 605-606, 609-610
collections, 754-756, 759, 832-835
description, 649-651, 656, 662
null values, 99-100, 628-630, 656
tasks, 802, 975, 994
wrapped exceptions, 612-614, 618, 622
Invocation
base class constructors, 402, 410, 660
delegates, 693, 716, 727
dynamic, 716, 920-926, 931
referenced packages and projects, 557-562,
568, 1078
using statement, 702, 705, 716
Invoke() method
delegates, 733, 1078, 1090-1092
dynamic invocation, 733, 930-931, 1078
events, 727, 733, 753
IOException type, 466, 482, 617-619
I0rderedEnumerable<T> interface, 463,
833, 995-997
IProducerConsumerCollection<T> interface,
832-834, 995-997, 1069
IQueryable<T> interface
delegates, 463, 793-796, 833
query expressions, 793-796, 830, 833

Index "= 1157

queryable extensions, 463, 793-796, 833
is a kind of relationships, 295-297, 385-386,
781-782
is a relationship
abstract members, 302, 410-414, 456
classes, 295-296, 302, 385-386
derivation forms in, 296, 385-386, 389
IsCancellationRequested property, 963-969,
1030, 1038
IsCompleted property
multithreading, 940, 1043-1046, 1051
parallel loops, 1024, 1027-1032, 1035
IsDefined() method, 269, 463, 515
ISerializable interface, 456-458, 461-463,
617
IsGenericType property, 891, 892, 893
IsInvalid member, 324-325, 353, 440
Iterations
loops, 188, 192-194, 1021-1023
parallel. See Parallel iterations
Iterators
compiling, 765, 863-868, 877-878
defining, 863-868, 871-873, 878
escaping, 863-868, 871-873, 878
multiple, 760, 863-866, 871-873
origin, 863-868, 871-873, 878
recursive, 863-866, 872-873, 878
states, 763, 863-870, 873
syntax, 760, 863-868, 878
yielding values from, 863-873, 878

J

Jagged arrays
defining, 120, 123, 132
element assignment, 116-120, 123, 130-132
length, 120-125, 129-132

Java language vs
arrays, 112, 115-116, 120-122
exception specifiers, 599, 609-610, 622
filenames, 14, 17, 1114
generics, 623, 677, 681
implicit overriding, 455-457, 475, 485
import directive, 14, 193, 235-239

1158 ™» Index

inner classes, 475, 524, 710
Main(), 14, 20-22, 245-246
syntax similarities, 14, 193, 831
virtual methods, 401, 455, 475
JIT (just-in-time) compiler and jitting
CIL, 38-40, 1114-1116, 1121
description, 38-40, 1114-1116, 1121
thread synchronization, 941-942, 1114, 1121
Join operations
inner joins, 780, 784, 788-789
outer joins, 780, 784, 788-789
overview, 143, 216, 808-810
Join() method
inner joins, 780-784, 788-789, 809
threads, 784, 943, 972-973
Jump statements
break, 160-161, 200-201, 205-206
continue, 160-161, 193, 203-206
goto, 156, 200, 205-206
lambda expressions, 697-702, 705, 716-718
Just-in-time (JIT) compiler and jitting
CIL, 38-40, 1114-1116, 1121
description, 38-40, 1114-1118, 1121
thread synchronization, 941, 973, 1121

K

KeyNotFoundException type, 600-605,
618-619, 622
Keys
dictionaries, 832-834, 845-849, 852
equality, 493-494, 515, 850-852
sorted collections, 832-837, 845, 852-854
Keys property, 318-319, 333, 394-395
KeyValuePair<TKey, TValue> class, 659,
845-849, 852-854
Keywords
contextual, 15-16, 811, 843
as identifiers, 15-19, 298, 811-813
list of, 813, 835-837, 843
overview, 15, 113, 831-833
types, 49-50, 134, 813

Labels for switch statements, 197-200,
205-206, 422-423
Lambda calculus, 697-699, 702-707,
716-719
Lambda expressions
asynchronous, 716-718, 725, 1008
as data, 716-720, 724-725, 796
deferred execution, 716-720, 725, 796
expression trees, 702, 716-720, 724-725
filters, 697-699, 716-720, 725
internals, 702, 716-720, 725
lazy loading, 704-706, 716-720, 725
notes and examples, 702-706, 716-718, 725
outer variables, 702, 710, 713-718
overview, 697-699, 716-720, 725
predicates, 697-699, 716-720, 775
purpose, 697-699, 716-718, 725
statement, 697-699, 702, 716-720
LambdaExpression expression trees,
697-699, 702, 716-725
Language Integrated Query (LINQ)
anonymous types, 463, 755, 796
collections, 463, 755, 831-833
deferred execution, 777, 796, 806
delegates, 463, 755, 796
extension methods, 463, 755, 796
with [AsyncEnumerable, 796, 1000,
1033-1034
parallel queries, 796, 823, 1033-1035
query expressions. See Query expressions
Language interoperability, 17, 463, 1124
Last in, 32, 194, 624
LastIndexOf() method, 121-122, 125-127,
839
Late binding with metadata, 575, 931-933,
1127
Latency
async/await syntax, 985, 989-991,
1004-1008
asynchronous example, 933, 1003-1005,
1074
description, 933, 935-938, 1074
multithreading for, 933-934, 937-941, 973

synchronous example, 933, 1003-1005,
1074-1076
WPF example, 1003-1005, 1016, 1074
Lazy initialization, 338-340, 346, 367
LazyCancellation task continuation option,
951-953, 963-971, 1031
Leaf asynchronous task-returning method,
975, 991-994, 1002-1008
Left outer joins, 780-784, 788, 789
Left-associative operators, 138-143, 149,
183-184
Length
arrays, 115-116, 120-125, 129
strings, 69, 79-80, 129
Length property, 79, 318-320, 333
Less than signs (<)
generics, 638, 663-664, 677-678
overriding, 138-139, 167-170, 698
pointers, 138-139, 182-183, 1099-1103
relational operators, 138-139, 167-170,
425-426
shift operators, 138-139, 167-170, 183
XML, 35-37, 139, 572-574
let clause, 166, 193, 820
Libraries
BCL. See Base Class Library (BCL)
classes, 295, 557-559, 568
creating, 11, 557-559, 1113-1114
dependencies, 11, 557-564, 1113
referencing, 492, 557-564, 1126
TPL. See Task Parallel Library (TPL)

Lifetime of captured outer variables, 248,
488-490, 710-716
LIFO (last in, 121-122, 624, 854
Line feeds
escape sequence, 65-67, 70-73, 78
newlines, 65-67, 70-72, 78
Line numbers, 160, 213, 219-220
Line-based statements in Visual Basic vs C#,
13-14, 70, 225
Linked lists, 524, 624, 863

Index "= 1159

LinkedList<T> class, 631-634, 832-837, 865
LinkedListNode<T> class, 631-633, 667,
865-866
LINQ, 794-796, 823, 1033-1034
Liskov, 294-297, 443, 461-463
List<T> class
overview, 631-634, 832-837
searches, 631-634, 833-837, 844
Listeners for events, 737, 743-744, 753
Lists
collections, 113, 790, 832-837
linked, 770, 782, 843
searching, 808-812, 833, 843
sorted, 685-686, 821, 839-841
Literal values
characters, 57, 64-69, 144
default, 57, 510, 640
overview, 57, 63, 488-489
strings, 57, 66-71, 425
Load() method, 314, 342, 580
Loading
with files, 10, 770, 1122-1123
lazy, 314, 367, 597-598
Local functions
NET frameworks, 44-47, 233, 1110-1113
Local variables
anonymous types, 710, 797-800, 803
assigning values to, 25-27, 94, 106
declaring, 25-27, 164-165, 193
implicitly typed, 102, 249, 798-799
scope, 164-165, 193, 233
thread synchronization, 941-942, 1045-1046,
1073
types, 25, 488-491, 798-799
working with, 164-165, 233, 710
Localized applications, 39, 557, 1120-1123
Locals, 164-165, 233, 714-716
lock keyword
thread synchronization, 1046, 1050-1053,
1060-1061
value types, 528, 813, 1050-1053

1160 "= Index

Locks
deadlocks, 941-943, 974, 1060-1062
thread synchronization, 941-942, 1041,
1060-1061
value types, 487-488, 528, 545
Logical operators
Boolean, 63, 167-171, 184-185
overriding, 167-170, 548, 552-554
working with, 143, 167-171, 184
Lollipops, 463, 624, 716
long type
characteristics, 53, 88, 1125
conversions, 53, 84-85, 88-89
Long-running tasks, 944, 970-975, 1026
LongRunning task continuation option
delays, 969-971, 1026, 1074
description, 951-954, 970-971, 1026
TPL performance, 944, 973, 1026
Loop variables in lambda expressions,
701-702, 710, 715-716
Loops
for, 188-194, 1021-1023
foreach, 194, 760, 864
parallel iterations, 1020-1023, 1032,
1035-1039
while and do/while, 150, 188-194, 204
LowestBreaklteration property, 875, 878,
1030-1032

M

Machine code, 3, 38-40, 1114

Main()
names, 17, 20-21, 242-245
namespaces, 221, 245, 568-570
overloading, 21-22, 243-246, 342
overview, 21-22, 243-246, 887-889
parameters. See Parameters
partial, 21-22, 243-246, 379-380
passing as arguments, 21-22, 243-245, 258
publish-subscribe pattern, 727, 737, 753
recursion, 22, 243-246, 261-263
refactoring into, 21-22, 227, 243-245
resolution, 21-22, 227, 243-246
return values, 21-22, 243-245, 248

scope, 21-22, 164, 243-247
vs. statements, 14, 225, 245-247
static members, 21-22, 243-245, 1071-1072
strings, 17, 21-22, 243-245
structs, 21-22, 243-247, 887-889
syntax, 14, 20-22, 243-247
this keyword, 21-22, 245-246, 307-309
type inferences, 22, 245-247, 666
types, 21-22, 49, 243-247
using directive, 21, 237-240, 243-247
virtual, 21-22, 243-245, 475
Main() method
async, 22, 991, 1003-1005
declaring, 20-22, 227, 243-246
description, 20-22, 227, 243-245
Java vs. C#, 14, 20-22, 243-246
multiple, 22, 227, 243-246
return values and parameters, 21-22,
243-245, 248
__makeref keyword, 19-22, 227, 257-258

Managed code, 38-39, 1077-1078,
1120-1121

Managed execution, 38-39, 1116, 1120-1121

Manifests in CLI, 5-7, 1106-1109,
1121-1122

ManualResetEvent class, 750, 1003-1005,
1064-1068

ManualResetEventSlim class, 1003-1005,
1064-1067, 1068

Many-to-many relationships in join
operations, 780-784, 788-789, 809

Masks, 184-187, 203, 843

Matching caller variables with parameters,
248-251, 269-270, 895

Max() function, 26-28, 542, 663-665

MaxDegreeOfParallelism property, 318,
1030-1031, 1034-1039

MaybeNull attribute, 349-350, 354, 357

MaybeNullWhen attribute, 354-357,
895-897,914

Me keyword, 15, 307-309, 811-813

Mechanism relationships, 295-296, 456,
781-782

Members
abstract classes, 410-411, 414, 453

base class overriding, 398, 401-402, 407-410

class variables, 298, 302, 363
classes, 298-299, 302, 568
default interface, 444-445, 467-469, 484
dynamic invocation, 920-923, 926-931
explicit and implicit implementation, 333,
453-457, 485
static. See Static members
MemberwiseClone() method, 338, 376,
508-509
Memory
boxing, 488-490, 523-524, 1118
finalizers, 581-584, 596, 1087
generics, 631-634, 681, 1118
multithreading complexity, 934, 937-942,
973
objects, 295, 363, 576-578
reference types, 93-96, 491-492, 1097
Memory<T>, 95-96, 300, 489-490
Metadata
attributes, 881, 896-898, 1127
CIL, 333, 882, 1124-1127
CLIL 4-7, 896, 1109-1111
reflection, 881-883, 931, 1127
XML, 35-37, 571-574, 928
Method groups for delegates, 689-693, 727,
735
Method invocations, 224, 733, 816-818
MethodCallExpression expression trees,
716-725, 830-831
MethodImplAttribute, 354, 897-899, 914
MethodImplOptions class, 461-465,
888-890, 896
MethodInfo class
delegates, 683-684, 689-691, 694-695

dynamic invocation, 920-921, 924, 928-931

reflection, 882-883, 886-890, 931
Methods

Index "= 1161

anonymous, 704-706, 797-803
arguments, 220, 224, 243
attributes, 881, 896-901, 932
call stacks, 246, 624-626, 631-634
called during construction, 338, 341, 344-346
casting in, 84-85, 390-391, 421
constraints, 651-652, 656-657, 660-663
constructors. See Constructors
declaring, 291, 298, 689
description, 227, 291, 444
expression bodied, 231, 716-719, 723-725
extension, 371-372, 396, 461-463
external, 330, 562-565, 1078
generics, 623, 631-635, 664
instance, 306, 363, 475
interface refactoring, 444-445, 461-464, 683
Microsoft
assemblies, 38, 43-45, 1122-1123
CLI implementation, 4-7, 1109, 1110-1112
description, 2-4, 7, 564
garbage collection, 576-578, 595, 1115-1118
versioning, 7, 46-47, 1109-1111
Microsoft Silverlight compiler, 3-4, 44, 1114
Min() function, 138-139, 368, 665
Minus signs (-)
compound assignment, 138-141, 149, 183
decrement operator, 138-139, 149-153, 183
delegates, 138-139, 735-736, 946
identifier names, 17-19, 138-139, 150
overriding, 86-87, 138-139, 182
precedence, 138-139, 140-142, 182
referent member access, 138-139, 330,
1102-1103
subtraction, 138-139, 148-150, 182-183
unary operator, 138-139, 150, 170
Modules
attributes, 881, 897-900, 932
CLI, 4-7, 1109-1113, 1121-1122
dependencies, 557-564, 1113, 1122-1123
Monitor class
locks, 1046, 1050-1053, 1061-1062
thread synchronization, 1046, 1061, 1076

1162 "» Index

Mono .NET frameworks, 44-47, 1109-1113,
1128
Mono compiler, 38-40, 1114, 1121
Move() method, 529-530, 626, 762
MoveNext() method
duck typing, 760, 762, 765
iterators, 760-762, 865-871
MoveNextAsync() method, 762, 994-1000,
1003-1005
MTASs (multithreaded apartments), 944, 973,
1075
Multicast delegates
description, 693-695, 727, 738
internals, 726-728, 738, 739
publish-subscribe pattern. See
Publish-subscribe pattern
MulticastDelegate class
constraints, 693-695, 727, 738
internals, 693-695, 726-727, 738
Multidimensional arrays, 115-120, 123,
130-132
Multiple .NET frameworks, 11, 44-47,
1109-1113
Multiple constraints, 651-656, 660-663, 843
Multiple inheritance
C++, 386, 443, 599
interfaces, 443-445, 458, 461-463
Multiple interfaces for single classes,
443-445, 461-463, 637-638
Multiple Iterators, 863-866, 871-873, 1023
Multiple Main() methods, 21-22, 227,
243-247
Multiple searches in lists, 828, 843, 844-848
Multiple selection for query expressions,
808-812, 823-828, 831
Multiple threads synchronization, 941-943,

1041, 1046
Multiple type parameters in generics, 635,
642-646, 663-664
Multiplication
binary operator, 138-141, 149, 183-185
compound assignment, 140-142, 149, 552
shift operator, 140-142, 149, 183
Multithreaded apartments (MTAs), 944, 973,
1075
Multithreading
asynchronous tasks. See Asynchronous tasks
atomic operations, 940, 941-942, 1061
canceling tasks, 937, 963-968, 1036
deadlocks, 937, 940-943, 973
description, 932, 936-938, 973
disposability of tasks, 937, 973-975,
1013-1014
issues, 937, 940-943, 973
jargon, 934-938, 941, 973
long-running tasks, 937, 944, 973-975
memory model complexity, 934-937,
940-943, 973
overview, 934-937, 973, 1041
performance considerations, 934, 937-941,
973
purpose, 934-938, 941, 973
race conditions, 940-942, 1041, 1046
Threading class, 932, 936-937, 972-973
Mutable value types, 487-489, 530, 545
Mutex class, 1050-1053, 1061-1063, 1076
MutexSecurity class, 1051-1055, 1060-1063,
1076
Mutual exclusion in deadlocks, 974, 1056,
1060-1062

Name/value pairs for dictionaries, 108, 758,
845-849

Named arguments, 224, 269-270, 289
Named parameters
attributes, 881, 895-897, 906-909
changing names of, 269-270, 289, 383
nameof operator
arguments, 269, 289, 548
properties, 318, 333, 548
working with, 143, 167-169, 548
nameof() operator
NET frameworks, 175, 289, 548
Names
ambiguity, 17-18, 241, 567-568
class definitions, 221, 298, 567-570
collisions, 17-18, 221, 568
constant values, 57, 373, 425
constructor parameters, 228, 270, 344-345
constructors, 17-18, 221, 568
enums, 533-535, 538-542, 1091
fields, 303, 307-309, 323
identifiers, 17-19, 783-785, 895
indexers, 126, 833, 860-863
local variables, 164-165, 233, 309
methods, 221, 308-309, 568
scope, 164, 221, 567-570
tuples, 104-108, 111, 807
type parameters, 635, 642, 663-664
variables, 25-26, 106-107, 308-309
Namespaces
aliasing, 221-222, 241, 568-570
defining, 221, 235-239, 568-570
methods, 221-222, 235, 567-570
nesting, 221, 235, 568-570
using directive, 222, 235-240, 568-570
NaN (Not a Number) value, 82, 139,
146-148
Native code, 38-39, 1114-1116, 1120
NDoc tool, 4-7, 560-561, 576
Negation operator (!), 138-139, 168-175,
187
Negative infinity value, 86-87, 139, 148
Negative numbers notation, 138-139, 148,
182
Negative zero value, 139, 148, 182

Index "= 1163

Nested items
classes, 387, 394, 638
delegates, 691-693, 716, 727
generic types, 631-633, 636-638, 643-646
if statements, 158-163, 166, 205
iterators, 760, 862-866, 872-873
namespaces, 221, 235, 567-570
using directive, 234, 237-241, 843
.NET Compact Framework, 44-47,
1109-1114, 1128
NET Core, 4-5, 46-47, 1109-1113
NET Micro Framework, 44-47, 1109-1114
Net namespace, 221, 235, 567-570
NET Native feature, 47, 1120, 1127-1128
NET Standard version, 4, 45-47, 1109-1113
new modifier in base class overriding, 393,
397-398, 401-407
new operator
arrays, 126, 132, 143
constructors, 143, 335-336, 511
objects, 143, 335, 511
projections, 143, 800, 808-810
value types, 511, 545, 548
Newlines
escape sequence, 65-67, 70-73, 78
preprocessor directives, 70-72, 207-209,
213-214
variations, 23, 70-73, 78
NGEN tool, 4, 560-561, 1116-1118
No preemption condition in deadlocks,
940-943, 974, 1060-1061
NodeType property expression trees, 431,
716-720, 723-725
None task continuation option, 951-957,
971, 1031
Normal continuation, 203-204, 825-827,
950-951
Normal form for parameters, 224, 228,
267-270
Normalized data, 53-58, 148, 782
Not a Number (NaN) value, 82, 139, 148
NOT operators

1164 "n Index

inequality, 138-139, 167-170, 548 dereferencing operations, 98-99, 173-178,
logical, 167-171, 184, 552 1102
Notifications for thread synchronization, null checks, 82, 98, 173-178
1041, 1061, 1076 thread synchronization, 175, 941-942, 1056

working with, 98-99, 171-178

event handlers, 98, 173-180, 733
Nullable attributes, 354, 881, 897-899
Nullable values

array initial values, 116-120, 135, 805

default values, 82, 269, 640

NotImplementedException type, 601-604,
618, 622

NotNull attribute, 354, 897-900, 914

notnull constraints, 82, 348-350, 654-656

NotNulllfNotNull attribute, 286-288, 350,

354-356 description, 82-83, 505, 656
NotNullWhen attribute, 354-355, 906-908, example, 82, 173, 629

914-919 struct constraints, 505, 629, 654-656
NotOnCanceled task continuation option, Nullable<T> type, 630, 649-651, 655-656

951-953, 963-971, 1031 NullReferenceException type
NotOnFaulted task continuation option, delegates, 99-101, 285, 603

951-953, 956-958, 961 derle7f3er;:1;(5:ing null values, 82-83, 97-100,

NotOnRanToCompletion task continuation

i description, 97-101, 285, 603
option, 951-957, 961, 1031 escription

reference type nullability, 82-83, 97-101, 347

nowarn preprocessor directive option, thread synchronization, 1014, 1053-1054,
207-214, 269, 1094 1060-1061
NuGet packages Numeric types
invoking, 44, 559-564, 1116 decimal, 53-59, 145
references, 44, 236, 558-564 floating-point, 53-58, 145-148
referencing, 44, 236, 558-564 hexadecimal notation, 53-56, 59-61, 144
Null assignments to reference types, 82-83, integers, 53-59, 88, 144
96, 100-101 literal values, 53-59, 63, 88

Null character escape sequence, 64-68, 82, round-trip formatting, 54-58, 62, 145-146

173-175 o
Null checks, 98-100, 173-175, 346-350
null modifier, 82-83, 97, 173-175
null references, 82-83, 100-101, 173-175
null values

Object class
derivation from, 299, 386-389, 418
dynamic objects, 293-295, 299, 920
) Object-oriented programming
checking for, 97-98, 173-175, 350 encapsulation, 293-295, 314, 394
collections, 632, 754-756, 863 inheritance, 293-295, 386, 599
dereferencing, 82-83, 97-100, 173-175 overview, 293-295, 302, 441

pointers, 82—83, .1 73, 1097-1099 polymorphism, 294-297, 415, 441-443
programming with, 82, 97-98, 173-175 Objects
publish-subscribe pattern, 727, 732-733, 743 associated data, 301-302, 363, 781-782

ftmelsg Zlizwif 15?23-’8238897 100-101 CTS, 617, 681, 1125-1126
P & 70 defined, 293-295, 299, 302

Null-conditional operator

dynamic programming, 441, 920, 926
expression trees, 716-720, 723-725, 831
filtering, 800, 808-810, 820
identity vs. equality, 493-494, 515-517, 850
initializers, 338-340, 346, 754-759
member overriding, 398, 418, 513
resurrecting, 576-578, 596, 1118
ObsoleteAttribute, 897-900, 905-908,
914-915
OfType<T>() operator, 647, 800, 885
One-to-many relationships
example, 463, 781-782, 843
inner joins, 780-784, 788-789, 809
OnlyOnCanceled task continuation option,
953, 963-969, 1030-1031
OnlyOnFaulted task continuation option,
951-953, 956-958, 961
OnlyOnRanToCompletion task continuation
option, 951-957, 969-971, 1031
Operands
description, 137-143, 184-185
evaluation, 138-143, 149, 184-185
Operational polymorphism, 294-297, 415,
443
OperationCanceledException type, 963-969,
1030, 1038
operator keyword, 138-143, 149, 167-169
Operator overriding, 398-399, 407-408, 548
Operators
assignment, 139-143, 149-151, 552
associativity, 140-143, 216, 552
binary, 138-143, 167, 184
bitwise, 169-170, 183-187, 552
characters in arithmetic operations, 138-143,
149, 550
compound assignment, 140-143, 149, 552
concatenation, 141-142, 143, 149
conditional, 137, 163, 166-172

constant expressions and locals, 153-154,
714-716, 719

Index "= 1165

constraints, 143, 651-656, 660-663
decrement, 138-139, 150-154, 1044
delegates, 726-727, 735-736, 743
description, 137-139, 143, 167
evaluation, 138, 141-143, 149
floating-point equality, 145-148, 167-168,
548
increment, 139, 143, 149-154
logical, 138, 167-170, 184
with null, 98, 173-178, 286
null-coalescing, 98, 173-178, 286
null-conditional, 98, 169-178, 733
null-forgiving, 139, 143, 173-175
overriding, 407-408, 418, 548
overview, 143, 216, 833
precedence, 138-143, 149, 216
relational and equality, 167-169, 425, 548
shift, 138-143, 183, 216
special floating-point characteristics, 54-55,
138, 143-148
thread-safe, 972-973, 1057, 1061
unary, 138-143, 150, 719
Optional parameters, 267-270, 343-345, 701
OR operations
bitwise operators, 169-170, 183, 184-187
constraints, 143, 167-170, 184
enums, 167-169, 184-185, 540-541
logical operators, 167-170, 184-185, 552
orderby clause, 809-812, 820-823, 831
OrderBy() method, 696-698, 777-779, 821
OrderByDescending() method, 698,
777-779, 821
Ordering collections, 113, 754-756, 832-837
out argument, 224, 269-270, 603
out parameters
conversions, 253, 392, 708
properties, 253, 331-333, 896
out type parameter modifier, 651, 663,
672-674
Outer joins, 780-784, 788-789, 809

1166 "m Index

Outer variables in lambda expressions,
702-704, 710-711, 715-718
OutOfMemoryException type, 600-604, 622,
1118
Output, 6, 404, 723
Output parameters, 6, 404, 723
Overflow
C# vs. C++, 84-86, 609, 1077
managed execution, 39, 86, 1116-1121
type safety, 86-87, 490, 1057
unsafe code, 1077-1078, 1093-1095, 1104
Overflow of integers, 86-87, 148, 620-621
OverflowException type, 86, 601, 618-622
Overloading
constructors, 336-338, 341-345
methods, 260, 264-266, 417-418
override keyword, 398-403, 455, 661
Overriding
assignment operators, 149-151, 548, 552
Base class. See Base class overriding
binary operators, 138-141, 548, 552
comparison operators, 167-168, 548-549,
552-554
conversion operators, 391-392, 548, 552-555
Equals(), 515-519, 548, 851
GetHashCode(), 408, 515-520, 851-852
logical operators, 184, 548, 552-554
methods, 396-398, 417-418, 513
object members, 398, 418, 513
operators, 167, 548, 552-555
ToString(), 408, 513-516, 804
unary operators, 138-139, 548, 552

P
P/Invoke
vs. ref, 1077-1078, 1082, 1087-1092
referent member access, 921, 1077-1078,
1087-1092
stacks, 1077-1078, 1082, 1086-1092
unsafe code, 1077-1078, 1086-1087,
1090-1092
Packages, 221, 557-562, 568

Pair<T> type
iterators, 642, 866, 869-871
struct vs. class, 636-637, 642-644, 874
Parallel class, 934, 1020-1025, 1033-1039
Parallel iterations
loops, 1020-1023, 1032, 1035-1039
overview, 1021-1023, 1030-1032, 1035-1039
performance, 1020-1023, 1032, 1035-1039
PLINQ queries, 825-827, 1023, 1034-1039
Parallel LINQ (PLINQ)
canceling queries, 796, 1033-1035, 1038
parallel queries, 796, 823, 1033-1039
running queries, 796, 823, 1033-1039
Parallel loops
breaking, 1020-1023, 1028, 1031-1032
canceling, 1023, 1027-1032, 1035
exception handling, 1023, 1028-1032,
1035-1039
for, 1020-1024, 1035-1039
foreach, 1023-1025, 1028, 1035-1039
options, 1020-1023, 1031, 1035-1039
performance, 1020-1024, 1035-1039
Parallel programming, 934, 1020-1023,
1035-1039
ParallelEnumerable class, 772, 1000,
1033-1039
ParallelLoopResult class, 1022-1024,
1028-1032, 1035-1039
ParallelLoopState class, 1023, 1030-1032,
1035-1039
ParallelOptions class, 972, 1029-1031,
1034-1039
ParallelQuery<T> class, 1023, 1028,
1034-1039
ParameterExpression expression trees,
716-725, 830
Parameterized generic types, 663-664, 677,
892
Parameters
anonymous methods, 684, 704-706, 802-803
arrays, 224, 259-260, 664

Index "= 1167

catch blocks, 281-282, 601, 605-606

constraints. See Constraints

constructors, 338, 344-345, 903

declaring, 224, 228, 267-270

events, 224, 743-750, 753

extension methods, 371-372, 396, 461-463

finalizers, 341, 581-584, 590-591

generics, 635, 664, 677

in, 224, 228, 664

indexers, 126-127, 833, 860-861

lambda expressions, 697-701, 704-706,
716-720

Main(), 21-22, 243-246, 887-889

matching caller variables with, 248-249,
269-271, 918

461-465
Partial methods
description, 379-384, 396, 462-463
interface refactoring, 381-384, 463, 683
PascalCase
description, 18, 20, 323
field names, 18, 308-309, 323
interfaces, 18, 444-446, 463-464
namespaces, 18, 221, 568-570
properties, 18, 323, 333
tuples, 104-108, 435, 807
type names, 18, 50, 323
Pass-by-reference, 96, 249-251, 491-492
Passed by reference variables, 248-251, 488,

method resolution, 228, 269-271, 701 491-492

methods, 220, 224, 228 Passed by value arguments, 224, 260,
optional, 267-270, 343, 896 269-270

out, 6, 253-254, 358 Passing

reference types, 96, 134, 1097
return by reference, 224, 248-256
statement lambdas, 697-702, 705, 716-718

anonymous methods, 684, 704-706, 800-803
arrays, 112, 115-120, 135
command-line arguments, 224, 243, 886-889

types, 134, 642-645, 664
value, 224, 267-269, 489

Parent types, 134, 296-297, 386

Parentheses ()
casts, 85, 141-142, 427
collection initializers, 339, 427, 754-757
declaration lists, 115-116, 193, 427
lambda expressions, 697-706, 716-718
logical operators, 141-142, 166-170, 427
operator precedence, 141-142, 216, 427
query expressions, 718, 809-812, 831
tuples, 106-108, 427, 803

Parse() method
conversions, 88-91, 290, 538-539
enum, 90-91, 538-539, 888-890
FlagsAttribute, 539, 543, 910-911
metadata, 539, 888-890, 931

Parsing types, 885, 888-890, 1125

Partial classes
defining, 379-384, 463, 476
methods, 371, 379-384, 462-463

Partial interface refactoring, 383-384, 445,

delegates, 693-696, 716, 727

instances, 310, 360, 363

method return values, 220, 224-225, 254

methods as arguments, 218-220, 224, 260

null values, 82, 173-175, 350

out parameters, 224, 228, 267-270

read-only references, 326, 374-376, 507

this keyword, 15, 291, 307-310

values to methods, 218-220, 224, 228

variables by reference, 249-251, 255, 492

variables to methods, 218-220, 228, 291
Peek() method, 306, 317-319, 853-855
Percent signs (%)

compound assignment, 27, 139-142, 149

overriding, 59, 142-143, 398

precedence, 139-142, 153, 216

remainder operation, 138-142, 170, 184
Performance

CLIL 4-7, 1109-1111, 1121

hash codes, 517-521, 524, 851-852

multithreading, 934-941, 973, 1041

parallel iterations, 1020-1023, 1031,

1035-1039

1168 ™m Index

Periods (

fully qualified method names, 50-53, 228,
383-384

nested namespaces, 51, 221, 567-570

null-conditional operator, 98-99, 173-179,
863

Pi calculations, 6, 948, 1020-1024
Platform interoperability

delegates, 683, 738, 1120

overview, 443, 1113, 1120

P/Invoke, 1077-1078, 1086-1092, 1120

pointers and addresses, 1077-1081, 1097,
1104

Platform Invoke (P/Invoke)

description, 1077-1078, 1086-1092, 1120

error handling, 1077-1078, 1085-1092

external functions, 1077-1078, 1079,
1086-1092

function pointers, 1077-1080, 1086-1088,
1090-1092

parameter data types, 1077-1084, 1090-1092

references, 44, 1077-1078, 1086-1092

SafeHandle, 1077-1081, 1087-1092

sequential layout, 1077-1078, 1083,
1090-1092

wrappers, 44, 1077-1078, 1086-1092

Platform portability

CLI, 5, 1109-1113, 1119

managed execution, 39, 47, 1119-1121

preprocessor directives for, 207-211, 214,
1119-1120

PLINQ, 463, 823, 1034-1035
Plus signs (+)

addition, 138-139, 142-143, 149-150
characters, 66, 138-139, 143-144
compound assignment, 139-142, 149, 552
delegates, 139, 736, 946

increment operator, 139, 143, 149-153
overriding, 139, 142-143, 182
precedence, 138-143, 149, 216

strings, 66-67, 139, 143

unary operator, 138, 139, 149-150

Pointers

assigning, 95-96, 1097-1099, 1102-1103

declaring, 95, 1096-1103
dereferencing, 95, 1096-1103
fixing data, 95, 1096-1102
function, 1090-1092, 1096-1104
Polling tasks, 944, 963-965, 973-975
Polyfill code, 522-524, 1104, 1118-1120
Polymorphism
abstract classes, 297, 414-415, 443
interfaces, 415, 443-445, 481
operational, 294-297, 415, 443
overview, 294-297, 415, 443
pattern matching, 415, 433, 438
with protected interface members, 415,
443-445, 475-476
Pools
temporary, 490, 973-974, 1068
threads, 935-937, 944, 972-973
Pop() method, 624, 631-633, 853-855
positional
switch statements, 197, 200, 428
Positive infinity value, 86-87, 139, 148
Positive zero value, 139, 148, 182
Postfix operators, 138-143, 149, 153
Precedence of operators, 138-142, 153,216
Precision of floating-point types, 53-58, 92,
145-148
Predefined attributes, 881, 897-900, 914
Predefined types, 49-50, 53, 134
Predicates
delegates, 690, 716, 767
filters, 767, 808-810, 820
lambdas, 697-703, 716-720, 775
PreferFairness task continuation option,
953-957, 1026, 1031
Prefix operators, 138-143, 149-150, 153
Prefixes for hexadecimal notation, 17-19,
59-61, 66-67
Preprocessor directives
excluding and including code, 207-214
line numbers, 207-214
list of, 207-214
nullable references, 83, 100-102, 214
purpose, 207-209, 210-214

symbols, 207-214
visual code editors, 4, 7, 207-214
private access modifier
description, 314-316, 330, 566
inheritance, 314-316, 393-394, 566
interface refactoring, 444-446, 455, 683
nested classes, 314-317, 376-378, 394
private internal access modifier, 314-316,
330, 565-566
Private members for information hiding,
314-317, 393-394, 566
private protected access modifier, 314-316,
330-331, 566
private protected modifier, 315-316,
330-331, 566
Procedural programming, 188, 217, 441
Process class
multithreading, 934-938, 943, 973
notifications, 737, 753, 1010
Processes, 933-938, 975, 1009
ProcessExit events, 590-591, 594-595, 1010
Processor-bound latency, 933, 934-942, 973
Projections
anonymous types, 707, 797-805
collections, 800, 808-810, 815
query expressions, 808-810, 815, 831
Projects
creating, 10, 571, 808-810
invoking, 245, 557-562, 808-810
referencing, 134, 557-562, 808-810
Properties
attributes, 333, 881, 896-903
automatically implemented. See
Automatically implemented properties
calculated, 318, 322, 333
declaring, 298, 333, 896-897
getters and setters, 317-322, 326, 330-333
guidelines, 330, 333, 896-897
interface refactoring, 445-446, 458, 638
internals, 333, 367, 394
lazy loading, 333, 367, 597-598

Index "= 1169

nameof operator, 289, 548, 894
overriding, 398-399, 407-408, 458
overview, 113, 134, 333
pattern matching, 318, 423-424, 431-438
read-only and write-only, 326, 374-376,
506-507
retrieving, 319-320, 333, 883
static, 363, 367-370, 373
strings, 143, 333, 896-897
structs, 504-506, 510-511, 1083-1084
unallowed parameter values, 325-326,
348-350, 621
with validation, 322-325, 333, 338
PropertyChanged event, 181, 745-748,
752-753
PropertylInfo class
attributes, 333, 888-890, 901-903
dynamic invocation, 695, 883-890, 928
protected access modifier
description, 314-316, 330, 566-567
inheritance, 315-316, 386, 566
interface refactoring, 444-446, 455, 476
protected interface members, 444-446,
453-458, 475-476
protected internal access modifier, 314-316,
330-331, 565-566
public access modifier
description, 315-316, 330, 566-567
interface refactoring, 444-446, 455, 464-465
on type declarations, 315-316, 330, 565-567
Public constants, 154-155, 373, 425
publish command, 4-7, 10-12, 560-561
Publish-subscribe pattern
delegate invocation, 727, 743, 753
delegate operators, 727, 743, 753
encapsulation, 727, 743, 753
error handling, 739-740, 743, 753
hooking up publishers and subscribers, 727,
743,753
method returns and pass-by-reference, 727,
741-743, 753

1170 "= Index

multicast delegate internals, 727, 737-739,
753
null checks, 173-175, 180, 424
publishers, 727, 743, 753
subscriber methods, 727, 743, 753
Pulse() method, 1016-1017, 1049, 1067
Pure virtual functions, 400-401, 418, 475
Push() method, 624, 631-633, 853-855

Q
Quantums, 54-55, 933, 938-940
Queries, 808-812, 815, 831-833
Query continuation clauses, 809-812,
823-828, 831
Query expressions
deferred execution, 777, 796, 831
distinct members, 809-812, 823, 828-831
filters, 718, 808-812, 831
grouping, 809-811, 823-828, 831
introduction, 718, 808-812, 831
as method invocations, 718-719, 808-811,
830-831
overview, 808-812, 823, 831
projections, 808, 810-812, 815
query continuation clauses, 809-812,
823-828, 831
sequences, 808-810, 825-828, 831
sorting, 808-812, 821, 831
tuples, 815, 828, 831
Queryable class
delegates, 721, 755, 793-796
queryable extensions, 463, 793-796, 833
Question marks (?)
command-line option, 210, 437-438, 8§96
conditional operators, 98, 166-171, 175

null-coalescing operator, 82, 97-98, 173-178

null-conditional operators, 82, 98, 171-178

nullable modifier, 82-83, 97, 135
Queue<T> class, 631-634, 833-834, 853-855
Queues

collections, 755, 832-834, 1069

finalization, 584, 588-591, 595-596

thread synchronization, 941, 1041, 1061
\r, 65-66, 70, 78

escape sequence, 65-73, 160
newlines, 65-67, 70-73, 78

Race conditions

increment and decrement operators, 150-154,

1043-1045, 1057
multithreading, 940-943, 1041, 1046

thread synchronization, 940-942, 1041, 1046

Range type, 93, 126-127, 134
Range variables in query expressions, 126,
806-812, 831
Ranges for arrays, 115-116, 120, 123-129
Rank members, 129-130, 302, 786-788
Ranks of arrays, 115-120, 123, 129-132
Read() method
console input, 28-29, 30, 31
interlocks, 30, 1043-1046, 1061
Read-only automatically implemented
property
declaring, 326, 374-375, 506-507
reference-type, 347, 374-375, 506-507
Read-only pass by reference, 331, 374-376,
506-508
Read-only pass by reference parameters,
249-251, 374-376, 505-508
Read-only properties
defining, 326, 374-375, 506-507
strings, 79-80, 374-375, 506-507
Read/write non-nullable reference type
properties, 101, 347-349, 505-507
Readability
vs. comments, 34-35, 36, 571-574
delegates, 36, 458-460, 696
digit separators, 59, 60-62, 355
enums, 533-534, 538-543, 1091
generics, 623, 676-677, 681
if statements, 158-163, 197, 204-205
importance, 17, 34-36, 375
indentation, 23-24, 36, 160-163

methods, 36, 79, 291
parentheses, 141-142, 427, 701
refactoring for, 36, 227, 289-291
switch statements, 196-200, 205-206, 428
whitespace, 23-24, 36, 70-72
ReadAllTextAsync() method, 355, 976-978,
986-988
ReadAsync() method, 976-978, 986-988,
994-1001
ReadKey() method, 29-30, 778-779,
845-849
ReadLine(), 28-31, 78, 225
ReadLine() method
console input, 28-30, 31, 225
invoking, 29-31, 78, 225
readonly modifier, 374-375, 405, 506-507
ReadOnlySpan<T>, 126, 856-859, 1084
Recursion
infinite, 188-189, 261-263, 873
iterators, 261, 863-866, 873
methods, 218-220, 261-263, 724
pattern matching, 261-263, 424, 433-435
Redimensioning arrays, 115-120, 123-124,
129-132
Reentrant locks, 974, 1046-1048, 1060-1062
ref parameters for properties, 251, 330-333,
896-897
Refactoring
classes, 227, 291, 295
interface features, 227, 444-445, 463-469
into methods, 218-219, 227-228, 291
ReferenceEquals() method
description, 493-494, 515-518, 548
with null, 98, 173-175, 515-518
objects, 493-494, 515-518, 850
References and reference types
array initial values, 96, 510, 1097
assemblies, 44, 134, 558-560
covariance, 96, 673-676, 707-708
default values, 96, 100-101, 510

garbage collection, 490-492, 576-578, 1118

Index "= 1171

generic instantiation, 96, 677-680, 892
identity vs. equality, 96, 493-494, 850
invoking, 95-96, 249, 491-492
libraries, 96, 134, 557-559
new operator, 95-96, 511, 1097
non-nullable properties, 100-101, 347-350,
505
NuGet packages, 101, 134, 559-564
overview, 93-96, 134, 488
parameters, 96, 249-251, 680
vs. pointers, 93-96, 491-492, 1097
vs. value, 93-96, 134, 488-493
Referent types
member access, 95-96, 921, 1097
pointers, 95-96, 491-492, 1096-1097
Reflection
description, 291, 880-882, 1119
dynamic programming, 920-922, 926, 931
generics, 623, 677, 681
member invocation, 880-882, 921-925,
930-931
metadata, 881-883, 931, 1127
overview, 134, 880-882, 1119
Reflection class
delegates, 683, 693, 707
metadata, 880-883, 931, 1119
__reftype keyword, 19, 375, 1083
__refvalue keyword, 19, 96, 375
Register() method, 227-228, 753, 966-968
Registration
assemblies, 43, 898, 1122-1123
finalization activities, 581-584, 590-591,
595-596
token cancellation, 963-966, 968, 1038

RegularExpressions class, 233-234, 424-426,
831
Relational operators, 167, 168-170, 425
ReleaseHandle() method, 594-595,
1079-1081, 1087-1088
Remainder operations
binary operator, 138-141, 149, 183-185
compound assignment, 139-142, 149, 183

1172 "™» Index

Remove() method
delegates, 735-736, 743, 751-753
dictionary elements, 832-834, 839, 845-849
lists, 624, 835-839, 846-848
strings, 80-81, 514, 839
RemoveAt() method, 736, 839, 846-848
Replace() method, 81, 224, 260
Representation errors for floating-point types
, 53-58, 145-148, 392
ReRegisterFinalize() method, 581-584,
590-591, 595-596
Reserved keywords, 15-19, 811-813, 877
Reset events for thread synchronization,
1064, 1066-1068, 1076
Reset() method, 324, 761-763, 1064-1067
Resize() method, 227, 1100, 1118
Resolution of methods, 218-220, 291, 418
Results, 6,253, 933
Resurrecting objects, 576-578, 596, 920
Rethrowing exceptions, 612-614, 618, 622
Return attributes, 881, 895-901, 931-932
Return by reference, 250-251, 254-257,
491-492
Return by reference parameters, 224, 228,
249-256
return statement, 229-231, 428, 702
Return types, 134, 229-231, 990-992
Return values
async, 990-994, 1002-1006
asynchronous void methods, 990-994,
1002-1006
declaring, 228-231, 253-254, 291
Main(), 21-22, 243-245, 248
methods, 220, 224, 228-231
Reverse() method
arrays, 121-124, 128-132
collections, 624, 761, 832-834
strings, 80, 122, 130-132
Right outer joins, 780-784, 789, 809
Right-associative operators, 138-142, 149,
183-184

Root references in garbage collection,
576-578, 595-596, 1115-1118

Round-trip formatting, 62, 75-77, 104

Rounding floating-point types, 53-58,
145-146, 147-148

Run() method

asynchronous tasks, 947, 975, 1003-1005
preference for, 475, 479-480, 969
RunContinuationsAsynchronously task
continuation option, 951-953, 957,
969-971
Running source code, 3-4, 10-12, 562
RunProcessAsync() method, 947,
1003-1005, 1009-1010
Runtime
CLI, 4-7, 39, 1106-1109
defined, 38-39, 1106-1108, 1120
description, 38-39, 1106-1108, 1119-1120
purpose, 38-39, 1107, 1119-1120
Runtime callable wrappers (RCWs), 39,
1086, 1119-1120
Runtime.InteropServices. COMException
type, 601-604, 609-610, 1084-1085
RuntimeBinderException type, 617-618,
922-923, 930

S
SafeHandle class, 960, 1087-1088,
1093-1095
sbyte type, 53, 56, 272
Schedulers for tasks, 970, 973-975,
1011-1013
Scope
captured outer variables, 164-165, 362,
710-715
code blocks, 161-165, 246, 702
methods, 164, 218, 291
SDK (software development kit), 1-4, 7,
1110-1114
sealed access modifier
base class overriding, 397-398, 406, 566
interface refactoring, 315-316, 445-446, 476

sealed classes, 397, 406, 566-567
Sealed classes, 394, 397, 406
Searching
dictionaries, 832-836, 843-848
lists, 833, 843, 1033
Security
buffer overflows, 86, 1094-1095, 1099-1101
code access, 314-316, 330, 1095
exposing holes in, 618, 1094-1095, 1119
hash codes, 60, 517-521, 851-852
obfuscation, 41, 314-316, 394

SEHException type, 280, 599-601, 609-610
select clauses in query expressions, 809-813,
823-828, 831
Select() method
anonymous types, 770-771, 792, 800
LINQ queries, 771, 792, 1033
outer joins, 771, 784, 788-789
projections, 792, 800, 815-818
Selecting into anonymous types, 701, 770,
796-807
SelectMany() method
outer joins, 771, 788-789, 792
query expressions, 771, 792, 809-812
Semantic relationships, 296, 302, 781-782
Semaphore class
reset events, 1057, 1062, 1064-1068
thread synchronization, 1046, 1061-1062,
1068

SemaphoreSlim class, 972, 1061-1063,
1066-1068
Semicolons (;)
ending statements, 13, 23, 193
for loops, 13, 188, 192-194
preprocessor directives, 13, 23,207-210
SequenceEquals() operator, 167-168,
515-518, 548-549

Sequences in query expressions, 777,

Index "= 1173

825-828, 831
Sequential invocation, 737-739, 1018, 1023
Sequential layout, 160-161, 777, 1023-1025
Serializable exceptions, 280, 617, 622
SerializableAttribute, 617, 897, 900
SerializationInfo type, 617, 655, 883-885
set keyword for properties, 309, 326,
330-333
Set() method for thread synchronization,
1046, 1051-1053, 1061
SetResult() method
setters, 308, 317, 338-340
access modifiers, 315-317, 330-331, 566
properties, 308, 322-324, 333
SetValue() method, 308, 317, 489
Shared collection states, 113, 790, 1069
Shared Source compiler, 3, 1114, 1124
Shift operators, 138-139, 169-170, 183-184
short type, 50, 53, 488-491
Short-circuiting operators
asynchronous methods, 989-993, 1008, 1012
conditional, 166, 169-172, 178
logical, 167-171, 184-185, 552
null-coalescing, 98, 173-180, 286
null-conditional expressions, 98-99, 173-180
Signal AndWait() method, 1003-1005, 1049,
1063-1068
Signatures
constructors, 444, 664, 1057
deconstructors, 341, 358, 512
interfaces, 443-445, 458, 464-465
methods, 444, 664, 1057
Signed numbers, 139, 182, 1057
Significant digits in floating-point types, 53,
54-59, 145-148
Silverlight compiler, 3-4, 44, 1114
Simultaneous multithreading, 934-943, 973,
1041

1174 ™» Index

Single inheritance, 297, 385-386, 396
Single quotes (')
characters, 64-68, 71-73
escape sequence, 65-73, 428
Single-line comments, 34-36, 70, 571-574
Single-threaded programs, 934-937,
940-941, 973
Size of arrays, 115-120, 123-125, 129-130
Sleep() method, 972-974, 1005, 1062
Software development kit (SDK), 1-4, 7,
1110-1114
Sort() method
arrays, 685-687, 696-698, 839
collections, 685-686, 833-841
lists, 696-698, 821, 839-841
Sorted collections, 113, 807, 832-837
SortedDictionary<TKey, TValue> class, 659,
845-849, 852-854
SortedList<T> class, 631-633, 667, 835-842
Sorts
bubble, 685-687, 698, 710-711
collections, 113, 807, 832-837
query expressions, 808-812, 821, 831
standard query operators, 777, 808-812, 1034
Source code
compiling, 3-4, 12, 1114
creating, 3-4, 10-14, 557
debugging, 3-4, 12, 38-39
editing overview, 2-4, 7, 1107
editing with dotnet CLI, 4-5, 10-12, 1109
editing with Visual Studio 2019, 3-4, 7, 572
essential, 3-4, 12, 39
running, 3, 12, 38-39
Span Slice, 126, 856, 857-859
Span<T>, 631-634, 651, 856-859
Special floating-point characteristics, 53-56,
92, 145-148
Specialized types, 134,297, 1125

Splitting statements across lines, 13-14, 70,
247
Square brackets ([])
arrays, 112, 115-116, 120
attributes, 37, 115-116, 897
indexers, 115-116, 121-122, 126-127
null-conditional operators, 98, 168, 173-178
Stack class, 624-628, 631-634, 853-855
Stack unwinding, 246, 624-628, 1100
Stack<T> class
collections, 624, 631-634, 853-855
declaring, 624-625, 631-634, 854
generics, 624-627, 631-634, 679
StackOverflowException type, 86, 620-628,
679
Stacks
collections, 624, 631-634, 853-855
exception handling, 599-601, 605-607, 622
methods, 624, 631-634, 853-855
pointers, 95, 624-626, 1099-1101
rethrowing exceptions, 604-607, 618, 622
thread synchronization, 941-942, 973, 1061
for undo operations, 624-628, 631-634,
853-855
value types, 624-628, 631-633, 679
Stand-alone executables, 12-14, 557,

1121-1122

Standard query operators
anonymous types, 701-703, 800, 803
collections, 755, 806-810, 831-833
deferred execution, 777, 796, 806-810
element counting, 143, 808-810, 831
example code, 777, 808-812, 831
filters, 808-812, 820, 831
join, 771, 808-811, 831
list of, 777, 808-812, 831-833
overview, 777, 808-812, 831-833
parallel queries, 771, 809, 1034-1035
projections, 800, 808-810, 815
queryable extensions, 755, 806-810, 831-833

sorting, 777, 808-812, 821
Start() method, 21-22, 245, 475
StartNew() method, 245, 308, 969-971
StartsWith() method, 178, 721, 811-812
Statement lambdas, 697-699, 702-706,
716-718
Statements
delimiters, 13, 23, 70
vs. methods, 225, 247, 291
multiple on one line, 13-14, 70, 161-162
splitting across lines, 23, 70-72, 160-161
without semicolons, 13-14, 23, 193
States
collections, 113, 790, 832-837
iterators, 193, 863-870, 879
STAThreadAttribute, 932, 1014, 1070-1075
Static classes, 360-363, 367-370, 373
Static compilation vs. dynamic programming
,367,920-922, 926
static keyword, 15, 359-363, 367-370
Static members

associated data, 360, 363, 367
constructors, 363, 366-370, 373
fields, 359-363, 367-369, 373

interface refactoring, 367-369, 475, 482-484

methods, 363, 367-370, 373
overview, 360-363, 367-370, 475
properties, 363, 367-370, 373
strings, 69, 363, 373
Stop() method, 312, 475, 1032
Store() method, 302, 310-311, 314
Storing
with files, 311, 770, 782
reference types, 95-96, 488-492, 1097
value types, 94-96, 487-490, 545
StreamingContext type, 990-997, 1014, 1069
StreamReader class
async methods, 975, 994-997, 1012
data retrieval, 30, 311-313, 317
Streams, 6, 975, 994-997
StringBuilder type, 80, 489, 1125
Strings

Index "= 1175

as arrays, 112, 115-120, 130-132
comparing, 67-69, 143, 514
concatenating, 32, 67-69, 143
conversions, 69, 89, 143
description, 32, 80, 143
directives, 207-210, 213, 237-240
enum conversions, 532-534, 538-539, 1091
format, 32-33, 75-77, 143
formatting, 32-33, 75-77, 143
immutability, 28, 80, 507
vs. integers, 94-96, 488-489, 532
interpolation, 32, 67-71, 143
length, 79, 122-125, 129
literal values, 57, 66-69, 143
locks, 80, 528, 1060-1061
methods, 75, 80, 143
modifying, 28, 80-81, 143
newlines, 67, 70-73, 78
null values, 82, 98, 173-175
nullable modifier, 82-83, 97, 135
nullable reference types, 83, 96, 100-101
properties, 79-80, 318-320, 333
reversing, 121-122, 128-132, 839
void values, 57, 488-489, 532

Strong references in garbage collection,

576-578, 1100, 1115-1118
struct declarations, 115, 193, 298

StructLayoutAttribute
structs, 897-898, 906-908, 1083-1084
vs. classes, 897-898, 905-908, 1083
constraints, 897-898, 906-908, 1083-1084
declaring, 897-900, 906-908, 1083-1084
generics, 897, 906-908, 1083-1084
initializing, 897-898, 906-908, 1083-1084
readonly, 374-375, 506-507, 1083-1084
unmanaged, 654, 897, 1083-1084

structs, 294-295, 487, 495

Structural equality of delegates, 691-694,

707,716

Structured programming, 14, 217, 441

Subscribers
delegate invocation, 727, 737-739, 753
events, 736-737, 743, 753

1176 "= Index

exception handling, 599-601, 622, 739-743
hooking up, 726-727, 731, 753
methods, 727, 730-732, 753
Subscriptions, 725-727, 743, 753
Subtraction
binary operator, 138-139, 170, 183-184
compound assignment, 138-142, 149, 736
decrement operator, 138-139, 149-153, 183
unary operator, 138-139, 149, 183
Subtypes, 134, 295-297, 386
Suffixes
attributes, 881, 896-900, 914
literal values, 53, 57-59, 143
numeric types, 52-53, 56-59, 88
Sum() function, 139, 413, 417
Super types, 53, 134, 297
SuppressFinalize() method, 581-584,
588-591, 595-596
Surrogate pairs, 636, 642-644, 670-672
switch statements
goto in, 197-200, 205-206, 422
overview, 197, 200, 205-206
pattern matching, 200, 422-424, 441
working with, 197-200, 205-206, 428
Symbols, 15-19, 53, 64-66
Synchronization
lock statement, 1051-1053, 1060-1061, 1076
thread. See Thread synchronization
Synchronization context with task schedulers
,973-975,1011-1015, 1041
Synchronized method, 1046, 1051-1057,
1061
Synchronous delegates, 727, 946, 1059
Syntax
identifiers, 15-19, 298, 811
iterators, 831, 863-866, 877-878
keywords, 15, 19, 811-813
Main(), 14, 20-22, 243-247
methods, 14-15, 20, 218-220

tuples, 106-108, 111, 807
type definitions, 293, 547, 1125
variables, 25-27, 106, 716
System namespace, 50-51, 221, 567-570
System.Action delegates, 653, 689-691, 747
System.ApplicationException type, 280,
601-604, 612-615
System.ArgumentNullException type,
286-289, 600-603, 612-614
System.ArithmeticException type, 280,
600-603, 622
System.Array class, 112-115, 124, 128-130
System.Array.Reverse() method, 121-122,
125-132, 839
System.Array TypeMismatchException type,
537, 600-603, 619
System.Attribute class, 881, 897-907, 914
System.AttributeUsageAttribute class,
905-908, 911,914
System.Boolean class, 63, 169, 554
System.Char class, 30, 64-66, 144
System.Collections.Generic
ICollection<T> interface
collection initializers, 339, 754-759, 832-834
element counting, 760-762, 773, 832-837
members, 760, 832-837, 849
System.Collections.Generic
JEnumerator<T> interface
foreach loops, 194, 760-766, 868

iterators, 760-762, 863-866, 871
yield statement, 866-871, 875-879

System.Collections.Generic.List<T> class,
631-634, 832-837, 844-845
System.Collections.Generic.Stack<T> type
, 624-625, 631, 633-634
System.Collections.Generics class
linked lists, 624, 631-634, 833-837
stacks, 624, 630-634, 677-679

System.Collections.Generics namespace,
631-634, 681, 833-837
System.Collections.JEnumerable interface,
463, 765-766, 832-834
System.Collections.IEnumerator interface,
760-766, 863-864, 868-870
System.Collections.Immutable library, 507,
832-834, 1069
System.Collections.Stack class, 624-627,
631-634, 853-855
System.ComponentModel class, 333, 463,
1075
System.Console
input methods, 29-30, 220, 225
newlines, 30-31, 67, 78
output methods, 78, 225, 240
round-trip formatting, 28-31, 62, 75-77
System.Convert type, 88, 89, 538
System.Data namespace, 45, 235, 567-568
System.Delegate class

assignment operators, 694-695, 736-738, 743

constraints, 652, 738, 747
internals, 689, 694-695, 738
System.Diagnostics class
debugging with, 245, 514, 564
notifications, 564, 737, 1010
nullable attributes, 101-102, 354, 912-914
processes, 564, 936, 1009-1010
System.Drawing class, 45, 418, 462-463
System.Dynamic.DynamicObject class,
418, 680-681, 920-931
System.Dynamic
IDynamicMetaObjectProvider interface,
443,920-922, 928-931
System.Enum class, 533-542, 885, 1091
System.Environment class
command-line arguments, 243-245, 269,
886-889
new lines, 67, 70, 78

Index " 1177

thread synchronization, 1014, 1061-1063,
1076

System.EventArgs class, 743, 746-748,
749-752
System.EventHandler<T> class, 737,
743-752, 1058
System.Exception type
catch blocks, 280, 601, 609-610
description, 280, 601, 609-614
System.FormatException type, 276, 280,
600-604
System.Func delegates, 684, 688-691, 707
System.GC class
finalization, 576-578, 583-584, 595-596
finalizers, 577-578, 582-584, 595-596
garbage collection timing, 576-578, 584,
1115-1118
resource cleanup, 576-578, 595, 1115-1118
System.Index type, 112, 126-127, 857-860
System.IndexOutOfRangeException type,
126-127, 600-603, 847
System.IntPtr class, 1077-1080, 1081,
1087-1090
System.InvalidCastException
description, 391, 537, 618-619
generics, 537, 630, 681
using, 85, 537, 619
System.InvalidOperationException type,
600-603, 612-614, 766
System.IO class, 78, 311-312, 587
System.IO.Directorylnfo
extension methods, 365, 371, 770
inner joins, 770, 782, 814
System.lO.FileAttributes class, 770, 911,
914
System.IO.Filelnfo class
inner joins, 769-770, 814, 822
projections, 770, 814-815, 822
query expressions, 769-770, 814, 822

1178 "= Index

System.lO.FileStream class, 311-312,
586-587, 597-598
System.Lazy<T> class, 597, 598, 659
System.Linq class, 463, 794-796,
1033-1034
System.Ling.Async NuGet package,
560-561, 1000-1006, 1034
System.Ling.Enumerable class, 766, 1000,
1034
System.Ling.Extensions.Enumerable class,
463, 1000, 1034
System.Ling.ParallelEnumerable class,
772, 1033-1034, 1035-1039
System.Ling.Queryable class
delegates, 721, 793-796, 830
queryable extensions, 721, 793-796, 1034
System.MulticastDelegate class
constraints, 695, 727, 738
internals, 695, 727, 738
System.Net namespace, 44-45, 51, 235
System.NotImplementedException type,
462, 601-604, 618
System.NullReferenceException type, 83,
99-101, 600-603
System.Object class
derivation from, 387-389, 418, 513
dynamic objects, 293-295, 299, 920
System.ObsoleteAttribute, 899-900,
905-908, 914-915
System.OutOfMemoryException type,
600-604, 612-614, 622
System.OverflowException type, 86,
601-604, 620-621
System.Range type, 56, 126-128, 1081
System.Reflection class

delegates, 44, 695, 707-709
metadata, 882-883, 888-890, 931

System.Runtime.CompilerServices
unmanaged exceptions, 283, 609-610, 622

SafeHandle, 1077-1081, 1087-1088,
1093-1094

System.Runtime.CompilerServices
.CallSite<T> type, 678-679, 922, 923-925
System.Runtime.CompilerServices
.CompilerGeneratedAttribute, 354, 899,
912-915
System.Runtime.ExceptionServices class,
283, 601, 622
System.Runtime.Serialization type, 617,
630, 883-884
System.Security.AccessControl
.MutexSecurity class, 1051-1056,
1061-1063, 1076
System.StackOverflowException type, 86,
246, 620-627
System.STAThreadAttribute, 932, 1055,
1070-1075
System.String type, 64-69, 80, 532
System.Text class
description, 49, 78-81, 1109
type parameters, 49, 630-633, 8§92
System.Text.RegularExpressions class, 51,
233-234, 424-426
System.Text.StringBuilder type class,
49-50, 80-81, 462
System.Threading class, 972-973,
1013-1014, 1075-1076
System.Threading.CancellationToken class,
963-966, 968-969, 1038
System.Threading.Interlocked class,
1056-1057, 1061, 1075-1076
System.Threading.ManualResetEvent class,
1061-1063, 1064-1067, 1068
System.Threading.Monitor class
locks, 1047-1049, 1053, 1061-1063
thread synchronization, 1049-1053, 1056,
1061-1063

System.Threading.Mutex class, 1049-1053,
1061-1063, 1076
System.Threading. Tasks class, 975,
1003-1005, 1040-1042
System.Threading. Tasks
.TaskCanceledException type, 961-969,
1003-1005, 1038
System.Threading. Tasks. TaskScheduler
class, 973-975, 1011-1013, 1074
System.Threading. Thread class, 936,
972-973, 1013-1014
System.Threading. WaitHandle class,
1003-1005, 1063-1068, 1076
System.Timers class, 242, 972, 1074-1076
System.Type class
generic parameters, 663, 677-678, 891-893
metadata, 882-885, 891-893, 901
type parameters, 656, 678, 891-893
System.ValueTuple class, 107-111, 254,
642-645
System.ValueType class, 96, 487-489, 494
System.Web class, 45, 245, 462
System.Windows class, 221, 245, 1075
System.Windows.Forms class, 45, 306,
1075
System.Xml namespace, 35-37, 571-574,
927-928

T

Tabs escape sequence, 65, 66-73, 160
Task class
asynchronous tasks, 944-947, 975, 1074
thread synchronization, 1013-1014, 1041,
1076
timers, 242, 1065, 1074-1076
Task Parallel Library (TPL)
asynchronous complexity, 973, 977-979,
1023-1025
asynchronous example, 973, 977-979,
1023-1025

Index "= 1179

cooperative cancellation, 963-965, 973,
977-979
description, 973, 1023-1025, 1037-1039
for loop parallel iterations, 977-979,
1023-1025, 1035-1039
foreach loop parallel iterations, 1023, 1025,
1035-1039
performance, 973, 1023-1025, 1037-1039
purpose, 972-973, 1023-1025, 1037-1039
thread synchronization, 972-973, 1023-1025,
1041
threads pools, 944, 972-973, 1023-1026
Task.Factory class, 944-945, 969-970,
1011-1013
TaskCanceledException type, 963-969,
1028-1030, 1038
TaskCompletionSource<T> class, 953,
963-968, 1003-1006
TaskContinuationOptions enums, 540-542,
951-953, 1031
Tasks
asynchronous. See Asynchronous tasks
canceling, 963-969, 975, 1036
continuation, 950-956, 975, 1065
description, 935-936, 944, 975
disposability of, 576, 583-584, 594-596
exceptions, 944, 958, 975
long-running, 944, 971-975, 1026
polling, 944, 973-975, 1074
schedulers, 935-937, 973-975, 1011-1013
TaskScheduler class, 970, 973-975,
1011-1013
TaskScheduler property, 970, 1011-1014,
1031
Temporary storage pools
reference types, 95-96, 488-490, 491-492
value types, 96, 488-490, 545
TemporaryFileStream class, 583, 586-587,
597-598
Ternary operator, 98, 167-172, 175-178
Text class

1180 "= Index

description, 35-36, 80-81, 257

type parameters, 257, 657, 799
ThenBy() method, 698, 778-779, 821
ThenByDescending() method, 698, 777-779,

821

this keyword

class members, 15, 307-309, 369

constructors, 15, 307-309, 344

extension methods, 307-309, 462, 755

locks, 528, 942, 1050-1055

nested classes, 307-309, 369, 376-378

static methods, 307-309, 360, 369-370
Thread class, 935-937, 972-973, 1013
Thread pools

description, 935-937, 973, 1026

multithreading, 934-937, 944, 973
Thread synchronization

best practices, 941-942, 1041, 1061

COM threading model, 941, 1061,

1075-1076
concurrent collection classes, 1061, 1069,
1076

deadlocks, 941-943, 1041, 1060-1061

event notification, 737, 753, 1041

Interlocked class, 1056-1057, 1061, 1076

local variables, 1043-1046, 1053, 1073

locks, 941-942, 1060-1061, 1076

monitors, 1046, 1056, 1061

Mutex class, 1046, 1051-1053, 1061-1063

need for, 941-942, 1041, 1061

overview, 941, 1041, 1076

purpose, 941, 1041, 1061

reset events, 1057, 1064-1068, 1076

semaphores, 941, 1046, 1061

task return, 975, 1013-1014, 1017

thread local storage, 1014, 1069-1070, 1073

timers, 941, 973, 1074-1076
volatile fields, 1046, 1053-1055, 1061
WaitHandle class, 1061-1063, 1066-1068,
1076
Thread-safe code and operations
delegate invocation, 753, 946, 1057-1061
description, 1051, 1057, 1061

event notifications, 753, 1057-1058, 1061
increment and decrement, 154, 1051, 1057
Threading class, 935-937, 972-973, 1013
ThreadLocal<T> type, 598, 1069-1070,
1073
ThreadPool type, 934-938, 944, 972-973
Threads
description, 935-938, 941-943, 973
exceptions, 936-937, 964, 972-973
local storage, 942, 1069-1070, 1073
multithreading. See Multithreading
pools, 934-937, 973, 1025-1026
synchronization. See Thread synchronization
ThreadStaticAttribute, 914-916, 932,
1070-1073
throw expressions, 682, 716-719, 723-725
throw statements, 205-206, 284-285, 428
Throw() method, 284, 607-608, 916
ThrowlIfCancellationRequested() method,
963-969, 1030, 1038
Throwing exceptions
in catch blocks, 284, 601, 605-610
error reporting, 274, 283-284, 622
error trapping, 274, 601, 612-614
stack information in, 607-609, 618, 622
Tildes (~)

complement operator, 138-139, 167-170, 187

finalizers, 341, 581-584, 596
list searches, 815, 820-822, 843
overriding, 59, 65-67, 241
Time slices, 126, 815, 933-941
Timers class, 242, 1068, 1074-1076
Timers for thread synchronization, 941,
1061, 1073-1076
ToArray() method, 112, 128-130, 774-776
ToAsyncEnumerable() method, 994-1001,
1004-1006, 1034
ToCharArray() method, 30, 64-66, 130-132
ToDictionary() method, 774-776, 800,
845-849

ToEnumerable() method, 766, 774-776,
868-871
ToList() method, 770, 774-776, 868
ToLookup() method, 538, 774-778, 800
ToLower() method, 17-18, 80-81, 538
Torn reads, 672, 941, 1041
ToString() method
conversions, 89, 532, 538
description, 89, 513-514, 532
enum, 532-533, 538-539, 543
FlagsAttribute, 543, 906-908, 910-911
overriding, 408, 513-514, 532
Total ordering collections, 113, 754-756,
832-834
ToUpper() method, 17-18, 80-81, 698
TPL, 944, 973, 1023-1025
TRACE preprocessor identifier, 19,
207-214, 354
Trace() method, 417, 514, 577
Trapping errors, 114, 274-275, 604-605
Trim() method, 227-228, 288, 325
TrimEnd() method, 122, 325, 514
TrimStart() method, 29-32, 288, 325
TrimToSize() method
lists, 129, 770, 835-839
queues, 538, 1023, 1118
true operator, 63, 166-171, 554
True/false evaluations, 63, 147, 166-171
Try blocks, 162-164, 275, 605
TryParse() method
attributes, 90-91, 539, 888-890
conversions, 89-91, 290, 538-539
dynamic invocation, 90-91, 538-539,
888-890
enum, 90-91, 538-539, 888-890
Tuples
declaring and assigning, 106-108, 111-112,
359
generics, 111, 642-645, 803
GetHashCode() and Equals() overriding,
515-520, 850-852
groups, 106-108, 644, 807
pattern matching, 106-108, 433-435, 438

Index "= 1181

projections, 770, 800, 815
query expressions, 106-108, 796, 814-815
return values, 111, 254, 644
System.ValueTuple type, 107-111, 643-645,
803
anonymous type replacement, 111, 803, 807
generics, 111, 642-645, 803
Two's complement notation, 138-139, 182,
183-187
Two-dimensional arrays, 115-120, 123-124,
130-132
Type checking, 419-421, 651, 1119

Type class
generic parameters, 635, 663-664, 891-893
metadata, 655, 882-885, 1125-1127
type parameters, 655-656, 678, 8§92
Type parameters
cascading, 635, 642-646, 656
constraints. See Constraints
contravariance, 651, 660, 672-675
covariance, 664, 669, 672-675
generics, 635, 663-664, 892
lists, 631-635, 642, 664
multiple, 635, 642-645, 663-664
names, 228, 635, 664
null modifier, 82-83, 97, 654-656
obtaining, 646, 664-666, 891-892
type of, 635, 663-666, 891-893
Type safety
anonymous types, 703, 797-805
CLI, 1109, 1119-1121, 1125
generics, 638, 664, 681
managed execution, 922, 1093-1095, 1120
typeof() method
attributes, 885, 896-898, 901-903
locks, 528, 885, 1053-1057
reflection, 883-885, 888-890, 1119
Types
anonymous. See Anonymous types
arrays. See Arrays
Boolean, 63, 166, 169-170
character, 64-66, 134, 144
conversion overview, 84, 88-89, 523
CTS, 134, 1125, 1126

1182 ™» Index

decimal, 54-60, 145

declarations, 547, 885, 1125

default, 52-53, 269, 640

definitions, 93, 134, 1125

delegates, 690, 693-694, 726-728

description, 93, 134, 1125

dynamic, 664, 920-922, 926

exceptions, 280, 599-601, 605

floating-point types, 53-56, 145-148

generics, 623, 631-635, 677

hardcoding values, 57, 94-96, 373

hexadecimal notation, 60-61, 64-66, 144

implicitly typed local variables, 249, 488,
798-799

integers, 56-57, 96, 144

lambda expressions, 697-699, 702-703,
716-720

local variables, 25-27, 164-165, 714

methods, 134, 295-297, 664

nested, 221, 570, 643-646

null allowed, 82-83, 173, 628

null checks, 82, 98-100, 173-175

nullable reference, 83, 96-97, 100-102

nullable values, 96-97, 505, 629

overview, 93, 134, 832-837

parameters, 635, 664, 891-893

parsing, 88-91, 433, 888-890

pattern matching, 423-424, 433-438, 635

reference, 93-96, 134, 491-492

retrieving, 134, 800, 883-885

return values, 84, 229-231, 254

strings. See Strings

tuples, 106-108, 111, 642-644

Unicode standard, 64-65, 66, 144

unmanaged, 654, 1078-1083, 1093

from unmanaged structs, 654, 1078-1084,
1097

value. See Values and value types

verifying, 421, 651, 1119

well-formed. See Well-formed types

U

uint type, 56, 96, 1081

ulong type, 53, 95-96, 1097

Unary expression trees, 139-141, 716-720,

723-725
Unary operators
overriding, 138-143, 548, 552
plus and minus, 138-139, 141-143, 149-150
UnauthorizedAccessException type,
315-316, 618, 1119
Unboxing operation, 6, 523-527, 531-532
Unchecked conversions, 88-89, 391-392,
523
unchecked keyword, 15-16, 19, 701
Uncompress() method, 246-248, 357-358,
445
Underscores ()
digit separators, 59, 66, 138-139
field names, 17-19, 59, 323
identifier names, 17-19, 59, 323
variable names, 17-19, 59, 323
VB line continuation character, 59, 65-70,
213
Undo operations
generics for, 623-624, 631-634, 681
stacks for, 624-626, 631-634, 1100
Unhandled exceptions
description, 604, 618, 962
parallel loops, 962-964, 1028-1030, 1035
reporting, 274, 604, 962
tasks, 604, 622, 958-962
threads, 622, 958-959, 962-964
UnhandledException type, 604, 610-614,
958-962
Unicode standard
character representation, 64-65, 66, 144
escape sequence, 64-69, 143-144
localized applications, 64-66, 1113, 1120
Union() operator, 139-143, 169, 788
Unity .NET frameworks, 44-47, 1109-1113,
1128
Unmanaged code and types
buffer overflows, 1080, 1093-1095, 1120
calls into, 1077-1080, 1083, 1120
constraints, 652-655, 1083, 1120

description, 1077-1080, 1083, 1120
exceptions, 609-610, 622, 1120

guidelines, 39, 1077-1078, 1120
parameters, 1077-1080, 1093, 1120
performance, 39, 1077-1080, 1120
pointers, 1080, 1090-1093, 1097-1099
resource cleanup, 594-595, 1087, 1118-1120
stack allocation, 1077-1080, 1093, 1100
structs, 1078-1080, 1083, 1093-1097
UnobservedTaskException type, 958-961,
964, 969
Unreachable end points in methods, 230,
246, 462
Unsafe code
delegates, 684, 693, 1090-1095
platform interoperability. See Platform
interoperability
pointers, 1077, 1092-1101, 1104
unsafe modifier, 330, 1055-1057, 1093-1095
Unwrap() method, 531, 980-982, 989
UserName class, 298-299, 568, 895
ushort type, 53, 64, 654
using directive
aliasing, 210, 235-241, 898
deterministic finalization, 581-584, 587-590,
596
namespaces, 222, 235-240, 568-570
nested, 207, 234, 237-239
strings, 207-209, 213, 235-240
using statement, 193, 239, 428
using static directive
strings, 237-241, 360, 373
working with, 237-241, 360, 369-370

Vv
Validation, 324-325, 393, 478
value keyword for properties, 309, 318-320,
333
Values and value types
boxing, 523-524, 530-532, 545
CTS, 92-93, 134, 1125
description, 93, 134, 494
enums. See enum values
generic instantiation, 494, 630, 677-679
hardcoding, 57, 94-96, 487-489

Index "= 1183

immutable, 96, 488-489, 505-507
inheritance and interfaces, 482, 487, 636
from iterators, 488, 545, 863-868
lock statement, 96, 487-489, 528
new operator, 494, 511, 548
overview, 93, 134, 487-489
parameters, 134, 487-489, 494
vs. reference, 93-96, 134, 488-493
structs, 487-488, 544-545, 1097
variables, 94-96, 134, 488-489
Values property for sorted collections,
835-837, 845-849, 852
ValueTask<T> class, 659, 949, 990-994
ValueTuple class, 107-111, 359, 644
ValueType class
var keyword, 102-103, 487-489, 799
pattern matching, 433-434, 532, 545
type declarations, 487, 533, 545-547
Variable parameters, 102-103, 260, 269
Variables
anonymous types, 707, 797-805
copying, 488-489, 492, 530
declaring, 25-27, 102-103, 193
description, 25-27, 116, 193
for loops, 150, 188-195, 715
foreach loops, 192-195, 715, 863-864
immutable, 373-375, 488, 505-507
implicitly typed local, 249, 488, 798-799
instance fields, 302-306, 360, 363
lambda expressions, 697-699, 702-706,
716-720
parameters, 224, 228, 248
query expressions, 716-718, 808-812, 831
reference types, 93-96, 488, 491-492
scope, 164-165, 362, 716
thread synchronization, 941-942, 1046, 1061
tuples, 104-108, 111, 644
value types, 93-96, 488-489, 545
working with, 25-27, 94, 302
Variadic generic types, 638, 642-645, 664
Variance, 102-103, 673-676, 708
Variants, 297, 488, 708
Verbatim strings

1184 ™» Index

interpolation, 32, 67, 70-74 line-based statements, 13-14, 217-219, 225
working with, 66-73, 143 Me keyword, 14-15, 63, 319
Versioning named arguments, 224, 228, 269-270
C# 8.0 and later, 101, 476, 483 redimensioning arrays, 112, 115-118,
encapsulation and polymorphism with 130-132
protected interface members, 443-446, variable declarations, 25-27, 94, 799
475-476, 484 void type, 84, 94-96, 134
NET frameworks, 44-47, 561, 1110-1113 Visual code editors, 3-4, 7, 572
overview, 113, 488, 1118 Visual Studio 2019
pre C# 8.0, 101, 462-467, 476 CLI, 4-7, 560-561, 1109
refactoring features, 227, 255-257, 488 code bulldlng and executing, 2_4’ 7, 10-12
Vertical bars (|) debugging with, 4, 7, 1095
bitwise operators, 168-170, 183, 184-187 NuGet references, 4, 44, 559-564
compound assignment, 140-141, 149, preprocessor directives, 207-214, 237
169-170 project and library references, 11, 557-564
logical operators, 138, 167-170, 184-185 working with, 2-4, 7, 1095
overriding, 65-66, 169-170, 216 void type
Vertical tabs escape sequence, 65, 66-72, asynchronous method returns, 84, 990-993,
160 1002-1006
Virtual abstract members, 401, 410-414, 475 partial methods, 379-384, 664, 802-803

Virtual Execution System (VES) pointers, 84, 95-96, 1096-1099

CLL 38. 1106. 1108 return values, 84, 230, 254

description, 38, 1106-1108, 1125 strings, 53, 80-84, 489
managed execution, 38-39, 1106-1108, 1116 Volatile fields, 373-375, 488-490, 1055

runtime, 38-39, 1106-1108, 1116 volatile modifier, 315-316, 710, 1053-1055
Virtual functions in C++, 401, 443,
1078-1080 W
Virtual methods Wait() method
overridden, 398-401, 413, 455 asynchronous requests, 1003-1005,
overriding, 398-401, 475, 661 1066-1068, 1074

asynchronous tasks, 947, 1003-1005, 1074

virtual modifier
reset events, 954-956, 1003-1005, 1064-1068

base class overriding, 401-403, 406-408, 661

interface refactoring, 401, 443-446, 455 WaitAll() method
Virtual AllocEx() method, 1080, 1081-1082, asynchronous tasks, 947, 1003-1005, 1018
thread synchronization, 1005, 1063-1068,
1086-1088 1076
VirtualMemoryManager class, 1078-1081, WaitAny() method
1087-1088, 1118 asynchronous tasks, 947, 1003-1003, 1074
Visual Basic language vs thread synchronization, 1018, 1063,
global methods, 228, 233, 237 1066-1068

global Var‘iable.:s and functions, 2, 94, 233 WaitForPendingFinalizers() method,
ImpOI‘tS dlreCtIVe, 50, 234-241 581'584, 588'591, 595-596

WaitHandle class, 1063, 1066-1068,
1087-1088
WaitOne() method, 1003-1005, 1063,
1066-1068
Warnings
method overriding, 211-212, 402-403, 915
preprocessor directives, 207-214
Weak references in garbage collection,
576-577, 578, 595-596
Web class, 245, 557, 1113-1114
Well-formed types
assembly references, 559, 568, 1097
encapsulation, 394, 545-547, 1119

garbage collection, 576-578, 1100, 1115-1118

lazy initialization, 510, 598, 802-805
namespaces, 50-51, 221, 567-570
overriding object members, 401, 414, 547

overriding operators, 421, 545-548, 552-554

overview, 134, 293, 545-547

resource cleanup. See Resource cleanup

XML comments, 35-37, 547, 571-574
Where() operator, 721, 768-771, 820
while loops, 188-194, 203-204, 1021
Whitespace

overview, 15-17, 23, 72

in strings, 23, 66-73, 288

trimming, 23, 70-72, 288
Win32Exception() method, 601, 604, 1085
Windows class, 4, 7, 221
Windows Forms, 7, 45, 1075
Windows Presentation Foundation (WPF)

description, 45, 463, 1109-1114

high-latency example, 934, 1016, 1074-1076

Windows Ul applications, 7, 245, 1109-1113
WithCancellation() method, 963-969, 1030,
1036-1038
Work stealing, 317, 937, 973-975
WPF (Windows Presentation Foundation)
description, 245, 463, 1109-1114

high-latency example, 934, 1016, 1074-1075

Wrapped exceptions, 280, 618, 622

Index "= 1185

Wrappers with API calls, 45, 1078, 1086
Write() method
console output, 28-31, 225, 723
invoking, 31, 225, 311-312
newlines, 31, 78, 225
strings, 31-32, 75, 514
Write-only properties, 326, 374-375,
506-507
WriteLine() method
console output, 31, 78, 225
invoking, 78, 225, 240
newlines, 31, 78, 225
round-trip formatting, 31-32, 62, 75-78
strings, 31-32, 78, 225

X

Xamarin .NET frameworks, 44-47,
1109-1113, 1128
Xamarin compiler, 38-40, 44, 1114
XAML (Extended Application Markup
Language), 35-37, 1109, 1114
xcopy deployment, 508-509, 557, 1123
XML (Extensible Markup Language)
binding elements, 35-37, 571-574, 928
comments, 35, 36, 571-574
delimited comments, 35, 36, 571-574
documentation files, 35-37, 571-574, 928
namespace, 35-37, 221, 571-574
overview, 35, 36-37, 571-574
reflection, 35-37, 571-573, 882
single-line comments, 35-36, 37, 571-574
XmlSerializer class, 35-37, 571-574, 617
XOR (exclusive OR) operators
bitwise, 170, 183, 184-187
logical, 170, 184, 185-187

Y

yield statements
contextual keyword, 428, 811, 877-879
requirements, 702, 870, 877-879
yield break, 13, 870, 875-879

1186 "= Index

yield return, 230, 866-870, 875-879 Zero-based arrays, 112, 118-127, 132
Yielding values from iterators, 863-873, Zeros
877-879 division by, 54-55, 138-140, 148

floating-point types, 53-56, 145-148
Z

Index of 8.0 Topics

A

Abstract classes

defining, 476

vs. interfaces, 482

overview, 476

polymorphism, 443
Aggregation, 476-478
async returns, 994, 1004
Asynchronous streams, 994, 1004
await using statement, 587, 764

Buffer overflows
C# vs. C++, 86
managed execution, 86
type safety, 86
unsafe code, 1094

C

Constraints
constructor, 476
classes, 655
delegates, 476
generic methods, 476
inheritance, 443
interfaces, 464
limitations, 478
multiple, 478
notnull, 655
operators, 143
overview, 478
structs, 506

type parameters, 655
unmanaged, 654

Constructor overloading, 476-478

Delegate invocation, 467, 476

implementation
versioning, 476
Index from end operator, 121-122
Interfaces
vs. abstract classes, 482
vs. attributes, 482
collections, 463
constraints, 655
converting between implementing classes,
476
default members, 467
deriving, 458
diagramming, 463
duplicating, 476
extension methods, 461
generics, 443
implementation, 476
inheritance, 461
overview, 476
polymorphism, 443
purpose, 476
refactoring features, 467
value types, 482
versioning. See Versioning
is operator

"= 1187

1188 "= Index of C# 8.0 Terms

pattern matching example, 441
pattern matching overview, 441
positional pattern matching, 441
properties, 548
recursive pattern matching, 441
tuples, 815
type, 419
types with, 419

is { } property pattern
NET frameworks, 318

N
NET frameworks

description, 46

garbage collection, 577

multiple, 47

overview, 46

standard, 1113

versioning, 483
Non-nullable reference type properties, 83,

101

Non-nullable reference types, 83, 101
Null assignment for reference types, 83, 100
Null-coalescing assignment, 175-176
Null-coalescing operator, 175-176
Null-forgiving operator, 173-175
nullable modifier

reference types, 83

strings, 83

type declarations, 101

overview, 83

preprocessor directives, 214
Nullable reference types

default values, 101
nullable modifier, 83
introduced, 101

P

Pattern matching
is operator, 441
with null, 431
polymorphism, 441
positional, 435

properties, 431

recursive, 441

switch statements, 441

tuples, 433

types, 433
Pattern matching types, 433, 441
Positional pattern matching, 435, 441
Property matching, 476-478

R
Ranges, 476-478
Read-only struct members, 506-507
Read-only structs, 506-507
Resource cleanup

description, 576

deterministic finalization, 584

exception propagating from constructors, 584

finalizers, 584

forcing, 576

garbage collection, 576

guidelines, 478

resurrecting objects, 576
Reverse accessing arrays, 121, 125

S

String interpolation, 32, 77

T
Task-based Asynchronous Pattern, 935, 975
Task-based Asynchronous Pattern (TAP)

async/await syntax, 1019
async return types, 1019

asynchronous lambdas and local functions,

1019
asynchronous streams, 1019
await operator, 1019
await using statement, 1019
complexity, 1019
description, 1019
high-latency example, 1074
[AsyncDisposable, 1019
LINQ with [AsyncEnumerable, 1019
overview, 1019

Index of C# 8.0 Terms "= 1189

return types, 1019 Windows UI, 1074
synchronization context, 1019

synchronous issue example, 1019 U

task schedulers, 1019 Unmanaged constraints, 654-655

ValueTask<T> returns, 1019

Index of 9.0 Topics

Performance and interop

F Native sized integers, 56
Fit and finish features Function pointers, 1090
Target-typed new expressions, 682 Suppress emitting localsinit flag, 712

static anonymous functions, 712
Target-typed conditional expressions, 160 R

Covariant return types, 401 Records, 499-500
Extension GetEnumerator support for foreach

loops, 760 S
Lambda discard parameters, 701 Support for code generators

Attributes on local functions, 881 Module initializers, 512

New features for partial methods, 384

|
Init only setters, 338, 340 T
P Top-level statements, 160, 247

Pattern matching enhancements, 433, 441

1190 "=

Index of 10.0 Topics

A

Allow const interpolated strings, 67, 70
Allow both assignment and declaration in the
same deconstruction, 336, 359

C

CallerArgumentExpression attribute,
918-919

Enhanced #line pragma, 212-213
Extended property patterns, 424, 432

F

File-scoped namespace declaration, 568-569

G

global using directives, 236-237

Improved definite assignment, 27, 359

Improvements of structure types, 487, 545

Improvements on lambda expressions,
697-699

Interpolated string handlers, 32, 67

R
Record structs, 487, 499
Record types can seal ToString(), 499, 514

"= 1191

Index of 11.0 Topics

A

Auto-default structs, 510-511

E
Extended nameof scope, 569, 894

F
File-local types, 52-53

G
Generic attributes, 881, 897
Generic math support, 52, 56

Improved method group conversion to
delegate, 684, 693

L
List patterns, 424, 436

1192 "a

N

Newlines in string interpolation expressions,
67,70

Numeric IntPtr, 56, 1081

P

Pattern match Span<char> on a constant
string, 69, 425

Raw string literals, 67, 70
ref fields and scoped ref, 375, 510
Required members, 350, 478

U
UTF-8 string literals, 67-69

Index of 12.0 Topics

A |

Inline arrays, 123, 1084
Alias any type, 241, 651

P
D

Primary constructors, 512, 639
Default lambda parameters, 269, 701

"= 1193

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	5 Parameters and Methods
	Calling a Method
	Declaring a Method
	Local Functions
	Using Directives
	Returns and Parameters on Main Method
	Top-Level Statements
	Advanced Method Parameters
	Recursion
	Method Overloading
	Optional Parameters
	Basic Error Handling with Exceptions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Index of 8.0 Topics
	A
	B
	C
	D
	I
	N
	P
	R
	S
	T
	U

	Index of 9.0 Topics
	F
	I
	P
	R
	S
	T

	Index of 10.0 Topics
	A
	C
	E
	F
	G
	I
	R

	Index of 11.0 Topics
	A
	E
	F
	G
	I
	L
	N
	P
	R
	U

	Index of 12.0 Topics
	A
	D
	I
	P

