
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133439854
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133439854
https://plusone.google.com/share?url=http://www.informit.com/title/9780133439854
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133439854
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133439854/Free-Sample-Chapter

C++11 FOR PROGRAMMERS
SECOND EDITION
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-343985-4
ISBN-10: 0-13-343985-2

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana..
First printing, February 2013

C++11 FOR PROGRAMMERS
SECOND EDITION

DEITEL® DEVELOPER SERIES

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Microsoft, Visual Studio and the Windows logo are either registered trademarks or trademarks of Micro-
soft Corporation in the United States and/or other countries.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

To our review team:

Dean Michael Berris
Danny Kalev
Linda M. Krause
James P. McNellis
Robert C. Seacord
José Antonio González Seco

We are grateful for your guidance and expertise.

Paul and Harvey Deitel

This page intentionally left blank

Chapter 24 and Appendices F–K are PDF documents posted online at
www.informit.com/title/9780133439854

Preface xix

1 Introduction 1
1.1 Introduction 2
1.2 C++ 2
1.3 Object Technology 3
1.4 Typical C++ Development Environment 6
1.5 Test-Driving a C++ Application 9
1.6 Operating Systems 15

1.6.1 Windows—A Proprietary Operating System 15
1.6.2 Linux—An Open-Source Operating System 15
1.6.3 Apple’s OS X; Apple’s iOS for iPhone®, iPad® and

iPod Touch® Devices 16
1.6.4 Google’s Android 16

1.7 C++11 and the Open Source Boost Libraries 17
1.8 Web Resources 18

2 Introduction to C++ Programming,
Input/Output and Operators 19

2.1 Introduction 20
2.2 First Program in C++: Printing a Line of Text 20
2.3 Modifying Our First C++ Program 23
2.4 Another C++ Program: Adding Integers 24
2.5 Arithmetic 28
2.6 Decision Making: Equality and Relational Operators 32
2.7 Wrap-Up 35

3 Introduction to Classes, Objects and Strings 37
3.1 Introduction 38
3.2 Defining a Class with a Member Function 38
3.3 Defining a Member Function with a Parameter 41
3.4 Data Members, set Member Functions and get Member Functions 44
3.5 Initializing Objects with Constructors 50

Contents

http://www.informit.com/title/9780133439854

viii Contents

3.6 Placing a Class in a Separate File for Reusability 54
3.7 Separating Interface from Implementation 58
3.8 Validating Data with set Functions 63
3.9 Wrap-Up 68

4 Control Statements: Part 1;
Assignment, ++ and -- Operators 69

4.1 Introduction 70
4.2 Control Structures 70
4.3 if Selection Statement 73
4.4 if…else Double-Selection Statement 74
4.5 while Repetition Statement 78
4.6 Counter-Controlled Repetition 79
4.7 Sentinel-Controlled Repetition 85
4.8 Nested Control Statements 92
4.9 Assignment Operators 95
4.10 Increment and Decrement Operators 96
4.11 Wrap-Up 99

5 Control Statements: Part 2; Logical Operators 100
5.1 Introduction 101
5.2 Essentials of Counter-Controlled Repetition 101
5.3 for Repetition Statement 102
5.4 Examples Using the for Statement 106
5.5 do…while Repetition Statement 110
5.6 switch Multiple-Selection Statement 112
5.7 break and continue Statements 121
5.8 Logical Operators 122
5.9 Confusing the Equality (==) and Assignment (=) Operators 127
5.10 Wrap-Up 128

6 Functions and an Introduction to Recursion 129
6.1 Introduction 130
6.2 Math Library Functions 130
6.3 Function Definitions with Multiple Parameters 132
6.4 Function Prototypes and Argument Coercion 137
6.5 C++ Standard Library Headers 139
6.6 Case Study: Random Number Generation 141
6.7 Case Study: Game of Chance; Introducing enum 146
6.8 C++11 Random Numbers 151
6.9 Storage Classes and Storage Duration 152
6.10 Scope Rules 155
6.11 Function Call Stack and Activation Records 158

Contents ix

6.12 Functions with Empty Parameter Lists 162
6.13 Inline Functions 163
6.14 References and Reference Parameters 164
6.15 Default Arguments 167
6.16 Unary Scope Resolution Operator 169
6.17 Function Overloading 170
6.18 Function Templates 173
6.19 Recursion 175
6.20 Example Using Recursion: Fibonacci Series 179
6.21 Recursion vs. Iteration 182
6.22 Wrap-Up 184

7 Class Templates array and vector;
Catching Exceptions 185

7.1 Introduction 186
7.2 arrays 186
7.3 Declaring arrays 188
7.4 Examples Using arrays 188

7.4.1 Declaring an array and Using a Loop to Initialize the
array’s Elements 188

7.4.2 Initializing an array in a Declaration with an Initializer List 189
7.4.3 Specifying an array’s Size with a Constant Variable and

Setting array Elements with Calculations 190
7.4.4 Summing the Elements of an array 192
7.4.5 Using Bar Charts to Display array Data Graphically 193
7.4.6 Using the Elements of an array as Counters 195
7.4.7 Using arrays to Summarize Survey Results 196
7.4.8 Static Local arrays and Automatic Local arrays 198

7.5 Range-Based for Statement 200
7.6 Case Study: Class GradeBook Using an array to Store Grades 202
7.7 Sorting and Searching arrays 209
7.8 Multidimensional arrays 211
7.9 Case Study: Class GradeBook Using a Two-Dimensional array 214
7.10 Introduction to C++ Standard Library Class Template vector 221
7.11 Wrap-Up 227

8 Pointers 228
8.1 Introduction 229
8.2 Pointer Variable Declarations and Initialization 229
8.3 Pointer Operators 231
8.4 Pass-by-Reference with Pointers 233
8.5 Built-In Arrays 238
8.6 Using const with Pointers 240

8.6.1 Nonconstant Pointer to Nonconstant Data 241
8.6.2 Nonconstant Pointer to Constant Data 241

x Contents

8.6.3 Constant Pointer to Nonconstant Data 243
8.6.4 Constant Pointer to Constant Data 243

8.7 sizeof Operator 244
8.8 Pointer Expressions and Pointer Arithmetic 247
8.9 Relationship Between Pointers and Built-In Arrays 249
8.10 Pointer-Based Strings 252
8.11 Wrap-Up 255

9 Classes: A Deeper Look; Throwing Exceptions 256
9.1 Introduction 257
9.2 Time Class Case Study 258
9.3 Class Scope and Accessing Class Members 264
9.4 Access Functions and Utility Functions 265
9.5 Time Class Case Study: Constructors with Default Arguments 266
9.6 Destructors 272
9.7 When Constructors and Destructors Are Called 272
9.8 Time Class Case Study: A Subtle Trap—Returning a Reference or a

Pointer to a private Data Member 276
9.9 Default Memberwise Assignment 279
9.10 const Objects and const Member Functions 281
9.11 Composition: Objects as Members of Classes 283
9.12 friend Functions and friend Classes 289
9.13 Using the this Pointer 291
9.14 static Class Members 297
9.15 Wrap-Up 302

10 Operator Overloading; Class string 303
10.1 Introduction 304
10.2 Using the Overloaded Operators of Standard Library Class string 305

10.3 Fundamentals of Operator Overloading 308
10.4 Overloading Binary Operators 309
10.5 Overloading the Binary Stream Insertion and Stream Extraction Operators 310
10.6 Overloading Unary Operators 314
10.7 Overloading the Unary Prefix and Postfix ++ and -- Operators 315
10.8 Case Study: A Date Class 316
10.9 Dynamic Memory Management 321
10.10 Case Study: Array Class 323

10.10.1 Using the Array Class 324
10.10.2 Array Class Definition 328

10.11 Operators as Member vs. Non-Member Functions 336
10.12 Converting Between Types 337
10.13 explicit Constructors and Conversion Operators 338
10.14 Overloading the Function Call Operator () 340
10.15 Wrap-Up 341

Contents xi

11 Object-Oriented Programming: Inheritance 342
11.1 Introduction 343
11.2 Base Classes and Derived Classes 343
11.3 Relationship between Base and Derived Classes 346

11.3.1 Creating and Using a CommissionEmployee Class 346
11.3.2 Creating a BasePlusCommissionEmployee Class Without Using

Inheritance 351
11.3.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 357
11.3.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Data 361
11.3.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Data 364
11.4 Constructors and Destructors in Derived Classes 369
11.5 public, protected and private Inheritance 371
11.6 Software Engineering with Inheritance 372
11.7 Wrap-Up 372

12 Object-Oriented Programming: Polymorphism 374
12.1 Introduction 375
12.2 Introduction to Polymorphism: Polymorphic Video Game 376
12.3 Relationships Among Objects in an Inheritance Hierarchy 376

12.3.1 Invoking Base-Class Functions from Derived-Class Objects 377
12.3.2 Aiming Derived-Class Pointers at Base-Class Objects 380
12.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 381
12.3.4 Virtual Functions and Virtual Destructors 383

12.4 Type Fields and switch Statements 390
12.5 Abstract Classes and Pure virtual Functions 390
12.6 Case Study: Payroll System Using Polymorphism 392

12.6.1 Creating Abstract Base Class Employee 393
12.6.2 Creating Concrete Derived Class SalariedEmployee 397
12.6.3 Creating Concrete Derived Class CommissionEmployee 399
12.6.4 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee 401
12.6.5 Demonstrating Polymorphic Processing 403

12.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 407

12.8 Case Study: Payroll System Using Polymorphism and Runtime
Type Information with Downcasting, dynamic_cast, typeid and
type_info 410

12.9 Wrap-Up 414

13 Stream Input/Output: A Deeper Look 415
13.1 Introduction 416

xii Contents

13.2 Streams 417
13.2.1 Classic Streams vs. Standard Streams 417
13.2.2 iostream Library Headers 418
13.2.3 Stream Input/Output Classes and Objects 418

13.3 Stream Output 420
13.3.1 Output of char * Variables 421
13.3.2 Character Output Using Member Function put 421

13.4 Stream Input 422
13.4.1 get and getline Member Functions 422
13.4.2 istream Member Functions peek, putback and ignore 425
13.4.3 Type-Safe I/O 425

13.5 Unformatted I/O Using read, write and gcount 425
13.6 Introduction to Stream Manipulators 426

13.6.1 Integral Stream Base: dec, oct, hex and setbase 427
13.6.2 Floating-Point Precision (precision, setprecision) 427
13.6.3 Field Width (width, setw) 429
13.6.4 User-Defined Output Stream Manipulators 430

13.7 Stream Format States and Stream Manipulators 431
13.7.1 Trailing Zeros and Decimal Points (showpoint) 432
13.7.2 Justification (left, right and internal) 433
13.7.3 Padding (fill, setfill) 435
13.7.4 Integral Stream Base (dec, oct, hex, showbase) 436
13.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(scientific, fixed) 437
13.7.6 Uppercase/Lowercase Control (uppercase) 438
13.7.7 Specifying Boolean Format (boolalpha) 438
13.7.8 Setting and Resetting the Format State via Member

Function flags 439
13.8 Stream Error States 440
13.9 Tying an Output Stream to an Input Stream 443
13.10 Wrap-Up 443

14 File Processing 444
14.1 Introduction 445
14.2 Files and Streams 445
14.3 Creating a Sequential File 446
14.4 Reading Data from a Sequential File 450
14.5 Updating Sequential Files 456
14.6 Random-Access Files 456
14.7 Creating a Random-Access File 457
14.8 Writing Data Randomly to a Random-Access File 462
14.9 Reading from a Random-Access File Sequentially 464
14.10 Case Study: A Transaction-Processing Program 466
14.11 Object Serialization 473
14.12 Wrap-Up 473

Contents xiii

15 Standard Library Containers and Iterators 474
15.1 Introduction 475
15.2 Introduction to Containers 476
15.3 Introduction to Iterators 480
15.4 Introduction to Algorithms 485
15.5 Sequence Containers 485

15.5.1 vector Sequence Container 486
15.5.2 list Sequence Container 494
15.5.3 deque Sequence Container 498

15.6 Associative Containers 500
15.6.1 multiset Associative Container 501
15.6.2 set Associative Container 504
15.6.3 multimap Associative Container 505
15.6.4 map Associative Container 507

15.7 Container Adapters 509
15.7.1 stack Adapter 509
15.7.2 queue Adapter 511
15.7.3 priority_queue Adapter 512

15.8 Class bitset 513
15.9 Wrap-Up 515

16 Standard Library Algorithms 517
16.1 Introduction 518
16.2 Minimum Iterator Requirements 518
16.3 Algorithms 520

16.3.1 fill, fill_n, generate and generate_n 520
16.3.2 equal, mismatch and lexicographical_compare 522
16.3.3 remove, remove_if, remove_copy and remove_copy_if 524
16.3.4 replace, replace_if, replace_copy and replace_copy_if 527
16.3.5 Mathematical Algorithms 529
16.3.6 Basic Searching and Sorting Algorithms 533
16.3.7 swap, iter_swap and swap_ranges 537
16.3.8 copy_backward, merge, unique and reverse 538
16.3.9 inplace_merge, unique_copy and reverse_copy 541
16.3.10 Set Operations 543
16.3.11 lower_bound, upper_bound and equal_range 546
16.3.12 Heapsort 548
16.3.13 min, max, minmax and minmax_element 551

16.4 Function Objects 553
16.5 Lambda Expressions 556
16.6 Standard Library Algorithm Summary 557
16.7 Wrap-Up 559

17 Exception Handling: A Deeper Look 560
17.1 Introduction 561

xiv Contents

17.2 Example: Handling an Attempt to Divide by Zero 561
17.3 Rethrowing an Exception 567
17.4 Stack Unwinding 568
17.5 When to Use Exception Handling 570
17.6 Constructors, Destructors and Exception Handling 571
17.7 Exceptions and Inheritance 572
17.8 Processing new Failures 572
17.9 Class unique_ptr and Dynamic Memory Allocation 575
17.10 Standard Library Exception Hierarchy 578
17.11 Wrap-Up 579

18 Introduction to Custom Templates 581
18.1 Introduction 582
18.2 Class Templates 582
18.3 Function Template to Manipulate a Class-Template Specialization Object 587
18.4 Nontype Parameters 589
18.5 Default Arguments for Template Type Parameters 589
18.6 Overloading Function Templates 589
18.7 Wrap-Up 590

19 Class string and String Stream Processing:
A Deeper Look 591

19.1 Introduction 592
19.2 string Assignment and Concatenation 593
19.3 Comparing strings 595
19.4 Substrings 598
19.5 Swapping strings 598
19.6 string Characteristics 599
19.7 Finding Substrings and Characters in a string 601
19.8 Replacing Characters in a string 603
19.9 Inserting Characters into a string 605
19.10 Conversion to Pointer-Based char * Strings 606
19.11 Iterators 607
19.12 String Stream Processing 609
19.13 C++11 Numeric Conversion Functions 612
19.14 Wrap-Up 613

20 Bits, Characters, C Strings and structs 615
20.1 Introduction 616
20.2 Structure Definitions 616
20.3 typedef 618
20.4 Example: Card Shuffling and Dealing Simulation 618
20.5 Bitwise Operators 621

Contents xv

20.6 Bit Fields 630
20.7 Character-Handling Library 633
20.8 C String-Manipulation Functions 639
20.9 C String-Conversion Functions 646
20.10 Search Functions of the C String-Handling Library 651
20.11 Memory Functions of the C String-Handling Library 655
20.12 Wrap-Up 659

21 Other Topics 660
21.1 Introduction 661
21.2 const_cast Operator 661
21.3 mutable Class Members 663
21.4 namespaces 665
21.5 Operator Keywords 668
21.6 Pointers to Class Members (.* and ->*) 670
21.7 Multiple Inheritance 672
21.8 Multiple Inheritance and virtual Base Classes 677
21.9 Wrap-Up 681

22 ATM Case Study, Part 1:
Object-Oriented Design with the UML 682

22.1 Introduction 683
22.2 Introduction to Object-Oriented Analysis and Design 683
22.3 Examining the ATM Requirements Document 684
22.4 Identifying the Classes in the ATM Requirements Document 691
22.5 Identifying Class Attributes 698
22.6 Identifying Objects’ States and Activities 703
22.7 Identifying Class Operations 707
22.8 Indicating Collaboration Among Objects 714
22.9 Wrap-Up 721

23 ATM Case Study, Part 2:
Implementing an Object-Oriented Design 725

23.1 Introduction 726
23.2 Starting to Program the Classes of the ATM System 726
23.3 Incorporating Inheritance into the ATM System 732
23.4 ATM Case Study Implementation 739

23.4.1 Class ATM 740
23.4.2 Class Screen 747
23.4.3 Class Keypad 749
23.4.4 Class CashDispenser 750
23.4.5 Class DepositSlot 752

xvi Contents

23.4.6 Class Account 753
23.4.7 Class BankDatabase 755
23.4.8 Class Transaction 759
23.4.9 Class BalanceInquiry 761
23.4.10 Class Withdrawal 763
23.4.11 Class Deposit 768
23.4.12 Test Program ATMCaseStudy.cpp 771

23.5 Wrap-Up 771

A Operator Precedence and Associativity 774

B ASCII Character Set 777

C Fundamental Types 778

D Number Systems 780
D.1 Introduction 781
D.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 784
D.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 785
D.4 Converting from Binary, Octal or Hexadecimal to Decimal 785
D.5 Converting from Decimal to Binary, Octal or Hexadecimal 786
D.6 Negative Binary Numbers: Two’s Complement Notation 788

E Preprocessor 790
E.1 Introduction 791
E.2 #include Preprocessing Directive 791
E.3 #define Preprocessing Directive: Symbolic Constants 792
E.4 #define Preprocessing Directive: Macros 792
E.5 Conditional Compilation 794
E.6 #error and #pragma Preprocessing Directives 795
E.7 Operators # and ## 796
E.8 Predefined Symbolic Constants 796
E.9 Assertions 797
E.10 Wrap-Up 797

Index 799

Online Chapters and Appendices
Chapter 24 and Appendices F–K are PDF documents posted online at
www.informit.com/title/9780133439854

24 C++11 Additional Features 24-1

http://www.informit.com/title/9780133439854

Contents xvii

F C Legacy Code Topics F-1

G UML 2: Additional Diagram Types G-1

H Using the Visual Studio Debugger H-1

I Using the GNU C++ Debugger I-1

J Using the Xcode Debugger J-1

K Test Driving a C++ Program on Mac OS X K-1
[Note: The test drives for Windows and Linux are in Chapter 1.]

This page intentionally left blank

“The chief merit of language is clearness …”
—Galen

Welcome to C++11 for Programmers! This book presents leading-edge computing technol-
ogies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—concepts are presented in the context of complete
working programs, rather than in code snippets. Each complete code example is accompa-
nied by live sample executions. All the source code is available at

As you read the book, if you have questions, we’re easy to reach at

We’ll respond promptly. For book updates, visit www.deitel.com/books/cpp11fp. Join our
social media communities on Facebook (www.deitel.com/DeitelFan), Twitter (@deitel),
Google+ (gplus.to/deitel) and LinkedIn (bit.ly/DeitelLinkedIn), and subscribe to the
Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Features
Here are the key features of C++11 for Programmers.

C++11 Standard
The new C++11 standard, published in 2011, motivated us to write C++11 for Program-
mers. Throughout the book, each new C++11 feature we discuss is marked with the “11”
icon you see here in the margin. These are some of the key C++11 features of this new
edition:

• Conforms to the new C++11 standard. Extensive coverage of many of the key new
C++11 features (Fig. 1).

• Code thoroughly tested on three popular industrial-strength C++11 compilers.
We tested the code examples on GNU™ C++ 4.7, Microsoft® Visual C++®

2012 and Apple® LLVM in Xcode® 4.5.

• Smart pointers. Smart pointers help you avoid dynamic memory management er-
rors by providing additional functionality beyond that of built-in pointers. We dis-
cuss unique_ptr in Chapter 17, and shared_ptr and weak_ptr in Chapter 24.

www.deitel.com/books/cpp11fp

deitel@deitel.com

Preface

http://www.deitel.com/books/cpp11fp
http://www.deitel.com/books/cpp11fp
http://www.deitel.com/DeitelFan
http://www.deitel.com/newsletter/subscribe.html

xx Preface

• Earlier coverage of template-based Standard Library containers, iterators and al-
gorithms, enhanced with C++11 capabilities. We moved the treatment of Stan-
dard Library containers, iterators and algorithms from Chapter 20 in the previous
edition to Chapters 15 and 16 and enhanced it with new C++11 features. The
vast majority of your data structure needs can be fulfilled by reusing these Stan-
dard Library capabilities.

• Online Chapter 24, C++11: Additional Topics. In this chapter, we present addi-
tional C++11 topics. The new C++11 standard has been available since 2011, but
not all C++ compilers have fully implemented the features. If all three of our key
compilers already implemented a particular C++11 feature at the time we wrote
this book, we generally integrated a discussion of that feature into the text with a
live-code example. If any of these compilers had not implemented that feature, we
included a bold italic heading followed by a brief discussion of the feature. Many
of those discussions will be expanded in online Chapter 24 as the features are im-
plemented. Placing the chapter online allows us to evolve it dynamically. This

C++11 features in C++11 for Programmers

all_of algorithm
any_of algorithm
array container
auto for type inference
begin/end functions
cbegin/cend container member

functions
Compiler fix for >> in template

types
copy_if algorithm
copy_n algorithm
crbegin/crend container mem-

ber functions
decltype

Default type arguments in func-
tion templates

defaulted member functions
Delegating constructors
deleted member functions
explicit conversion operators
final classes
final member functions
find_if_not algorithm
forward_list container
Immutable keys in associative

containers
In-class initializers

Inheriting base-class constructors
insert container member func-

tions return iterators
is_heap algorithm
is_heap_until algorithm
Keywords new in C++11
Lambda expressions
List initialization of key–value
pairs

List initialization of pair objects
List initialization of return values
List initializing a dynamically

allocated array
List initializing a vector
List initializers in constructor

calls
long long int type
min and max algorithms with
initializer_list parameters

minmax algorithm
minmax_element algorithm
move algorithm
Move assignment operators
move_backward algorithm
Move constructors
noexcept

Non-deterministic random
number generation

none_of algorithm
Numeric conversion

functions
nullptr
override keyword
Range-based for statement
Regular expressions
Rvalue references
Scoped enums
shared_ptr smart pointer
shrink_to_fit vector/deque

member function
Specifying the type of an
enum’s constants

static_assert objects for
file names

string objects for file names
swap non-member function
Trailing return types for

functions
tuple variadic template
unique_ptr smart pointer
Unsigned long long int

weak_ptr smart pointer

Fig. 1 | A sampling of C++11 features in C++11 for Programmers.

Features xxi

chapter includes discussions of regular expressions, the shared_ptr and weak_ptr
smart pointers, move semantics and more. You can access this chapter at:

• Random Number generation, simulation and game playing. To help make pro-
grams more secure (see Secure C++ Programming on the next page), we now dis-
cuss C++11’s new non-deterministic random-number generation capabilities.

Object-Oriented Programming
• Early-objects approach. The book introduces the basic concepts and terminology

of object technology in Chapter 1. You’ll develop your first customized C++
classes and objects in Chapter 3.

• C++ Standard Library string. C++ offers two types of strings—string class ob-
jects (which we begin using in Chapter 3) and C strings (from the C program-
ming language). We’ve replaced most occurrences of C strings with instances of
C++ class string to make programs more robust and eliminate many of the se-
curity problems of C strings. We discuss C strings later in the book to prepare
you for working with the legacy code in industry. In new development, you
should favor string objects.

• C++ Standard Library array. Our primary treatment of arrays now uses the Stan-
dard Library’s array class template instead of built-in, C-style, pointer-based ar-
rays. We also cover built-in arrays because they still have some uses in C++ and so
that you’ll be able to read legacy code. C++ offers three types of arrays—class tem-
plates array and vector (which we start using in Chapter 7) and C-style, pointer-
based arrays which we discuss in Chapter 8. As appropriate, we use class template
array and occasionally, class template vector, instead of C arrays throughout the
book. In new development, you should favor class templates array and vector.

• Crafting valuable classes. A key goal of this book is to prepare you to build valu-
able reusable C++ classes. In the Chapter 10 case study, you’ll build your own
custom Array class. Chapter 10 begins with a test-drive of class template string
so you can see an elegant use of operator overloading before you implement your
own customized class with overloaded operators.

• Case studies in object-oriented programming. We provide case studies that span
multiple sections and chapters and cover the software development lifecycle.
These include the GradeBook class in Chapters 3–7, the Time class in Chapter 9 and
the Employee class in Chapters 11–12. Chapter 12 contains a detailed diagram
and explanation of how C++ can implement polymorphism, virtual functions
and dynamic binding “under the hood.”

• Optional case study: Using the UML to develop an object-oriented design and C++
implementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems. We
introduce the UML in the early chapters. Chapters 22 and 23 include an optional
case study on object-oriented design using the UML. We design and implement the
software for a simple automated teller machine (ATM). We analyze a typical re-
quirements document that specifies the system to be built. We determine the classes

www.informit.com/title/9780133439854

http://www.informit.com/title/9780133439854

xxii Preface

needed to implement that system, the attributes the classes need to have, the behav-
iors the classes need to exhibit and we specify how the classes must interact with one
another to meet the system requirements. From the design we produce a complete
C++ implementation. Readers often report that the case study “ties it all together”
and helps them achieve a deeper understanding of object orientation.

• Exception handling. We integrate basic exception handling early in the book. You
can easily pull more detailed material forward from Chapter 17, Exception Han-
dling: A Deeper Look.

• Key programming paradigms. We discuss object-oriented programming and generic
programming.

Pedagogic Features
• Examples. We include a broad range of example programs selected from comput-

er science, business, simulation, game playing and other topics.

• Illustrations and figures. Abundant tables, line drawings, UML diagrams, pro-
grams and program outputs are included.

Other Features
• Pointers. We provide thorough coverage of the built-in pointer capabilities and

the intimate relationship among built-in pointers, C strings and built-in arrays.

• Debugger appendices. We provide three debugger appendices—Appendix H, Us-
ing the Visual Studio Debugger, Appendix I, Using the GNU C++ Debugger and
Appendix J, Using the Xcode Debugger.

Secure C++ Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses,
worms, and other forms of “malware.” Today, via the Internet, such attacks can be instan-
taneous and global in scope. Building security into software from the beginning of the de-
velopment cycle can greatly reduce vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices that leave systems open to attacks.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard.

We’ve done the same for C++11 for Programmers, adhering to key CERT C++ Secure
Coding Standard guidelines (as appropriate for a book at this level), which you can find at:

www.securecoding.cert.org

http://www.cert.org
http://www.securecoding.cert.org

Training Approach xxiii

We were pleased to discover that we’ve already been recommending many of these coding
practices in our books since the early 1990s. If you’ll be building industrial-strength C++
systems, Secure Coding in C and C++, Second Edition (Robert Seacord, Addison-Wesley
Professional) is a must read.

Training Approach
C++11 for Programmers stresses program clarity and concentrates on building well-engi-
neered software.

Live-Code Approach. The book includes hundreds of “live-code” examples—each new con-
cept is presented in the context of a complete working C++ program that is immediately fol-
lowed by one or more actual executions showing the program’s inputs and outputs.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place light-gray rectangles around each program’s key code seg-
ments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold italic text for easier reference. We emphasize on-screen com-
ponents in the bold Helvetica font (e.g., the File menu) and emphasize C++ program text
in the Lucida font (e.g., int x = 5).

Web Access. All of the source-code examples can be downloaded from:

Objectives. The chapter opening quotations are followed by a list of chapter objectives.

Programming Tips. We include hundreds of programming tips to help you focus on im-
portant aspects of program development. These tips and practices represent the best we’ve
gleaned from a combined eight decades of programming and teaching experience.

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

www.deitel.com/books/cpp11fp

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of C++ that prevent bugs from getting into your programs.

http://www.deitel.com/books/cpp11fp

xxiv Preface

Online Chapter and Appendices
The following chapter and appendices are available online:

• Chapter 24, C++11: Additional Features

• Appendix F, C Legacy Code Topics

• Appendix G, UML 2: Additional Diagram Types

• Appendix H, Using the Visual Studio Debugger

• Appendix I, Using the GNU C++ Debugger

• Appendix J, Using the Xcode Debugger

• Appendix K, Test Driving a C++ Program on Mac OS X

To access the online chapter and appendices, go to:

You must register for an an InformIT account and then login. After you’ve logged into your
account, you’ll see the Register a Product box. Enter the book’s ISBN (9780133439854) to
access the page with the online chapter and appendices.

Obtaining the Software Used in C++11 for Programmers
We wrote the code examples in C++11 for Programmers using the following C++ develop-
ment tools:

• Microsoft’s free Visual Studio Express 2012 for Windows Desktop, which in-
cludes Visual C++ and other Microsoft development tools. This runs on Win-
dows 7 and 8 and is available for download at

• GNU’s free GNU C++ (gcc.gnu.org/install/binaries.html), which is al-
ready installed on most Linux systems and can also be installed on Mac OS X and
Windows systems.

• Apple’s free Xcode, which OS X users can download from the Mac App Store.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

www.informit.com/register

www.microsoft.com/express

http://www.informit.com/register
http://www.microsoft.com/express

C++11 Fundamentals: Parts I, II, III and IV LiveLessons Video Training Product xxv

C++11 Fundamentals: Parts I, II, III and IV LiveLessons Video Train-
ing Product
Our C++11 Fundamentals: Parts I, II, III and IV LiveLessons video training product shows
you what you need to know to start building robust, powerful software with C++. It in-
cludes 20+ hours of expert training synchronized with C++11 for Programmers. For addi-
tional information about Deitel LiveLessons video products, visit

or contact us at deitel@deitel.com. You can also access our LiveLessons videos if you
have a subscription to Safari Books Online (www.safaribooksonline.com). These Live-
Lessons will be available in the Summer of 2013.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored Chapter 1 and this Preface, and she and
Barbara painstakingly researched the new capabilities of C++11.

We’re fortunate to have worked on this project with the dedicated publishing profes-
sionals at Prentice Hall/Pearson. We appreciate the extraordinary efforts and mentorship
of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson Tech-
nology Group. Carole Snyder did a great job recruiting distinguished members of the C++
community to review the manuscript. Chuti Prasertsith designed the cover with creativity
and precision—we gave him our vision for the cover and he made it happen. John Fuller
does a superb job managing the production of all of our Deitel Developer Series books and
LiveLessons video products.

Reviewers
We wish to acknowledge the efforts of the reviewers whose constructive criticisms helped
us shape the recent editions of this content. They scrutinized the text and the programs
and provided countless suggestions for improving the presentation: Dean Michael Berris
(Google, Member ISO C++ Committee), Danny Kalev (C++ expert, certified system an-
alyst and former member of the C++ Standards Committee), Linda M. Krause (Elmhurst
College), James P. McNellis (Microsoft Corporation), Robert C. Seacord (Secure Coding
Manager at SEI/CERT, author of Secure Coding in C and C++); José Antonio González
Seco (Parliament of Andalusia), Virginia Bailey (Jackson State University), Thomas J.
Borrelli (Rochester Institute of Technology), Ed Brey (Kohler Co.), Chris Cox (Adobe
Systems), Gregory Dai (eBay), Peter J. DePasquale (The College of New Jersey), John
Dibling (SpryWare), Susan Gauch (University of Arkansas), Doug Gregor (Apple, Inc.),
Jack Hagemeister (Washington State University), Williams M. Higdon (University of In-
diana), Anne B. Horton (Lockheed Martin), Terrell Hull (Logicalis Integration Solu-
tions), Ed James-Beckham (Borland), Wing-Ning Li (University of Arkansas), Dean
Mathias (Utah State University), Robert A. McLain (Tidewater Community College),
Robert Myers (Florida State University), Gavin Osborne (Saskatchewan Institute of Ap-
plied Science and Technology), Amar Raheja (California State Polytechnic University,
Pomona), April Reagan (Microsoft), Raymond Stephenson (Microsoft), Dave Topham
(Ohlone College), Anthony Williams (author and C++ Standards Committee member)
and Chad Willwerth (University Washington, Tacoma).

www.deitel.com/livelessons

http://www.deitel.com/livelessons
http://www.safaribooksonline.com

xxvi Preface

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

We’ll respond promptly. We enjoyed writing C++11 for Programmers. We hope you enjoy
reading it!

Paul Deitel
Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry, government and military
clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the
Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Pu-
ma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are
the world’s best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has more than 50 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. In the 1960s, through Advanced Computer Techniques and Computer Usage
Corporation, he worked on the teams building various IBM operating systems. In the
1970s, he built commercial software systems. He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science Depart-
ment at Boston College before founding Deitel & Associates, Inc., in 1991 with his son,
Paul Deitel. The Deitels’ publications have earned international recognition, with trans-
lations published in Chinese, Korean, Japanese, German, Russian, Spanish, French,
Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds
of programming courses to corporate, academic, government and military clients.

Deitel® Dive-Into® Series Corporate Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s clients include many of the world’s largest corpora-
tions, government agencies, branches of the military, and academic institutions. The com-
pany offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including C++, Visual C++®, C, Java™, Visual
C#®, Visual Basic®, XML®, Python®, object technology, Internet and web program-
ming, Android app development, Objective-C and iOS app development and a growing
list of additional programming and software development courses.

deitel@deitel.com

Deitel® Dive-Into® Series Corporate Training xxvii

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

To learn more about Deitel Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

www.deitel.com/training

www.informit.com/store/sales.aspx

http://www.deitel.com/training
http://www.deitel.com
http://www.informit.com/store/sales.aspx

This page intentionally left blank

2
Introduction to C++ Programming,

Input/Output and Operators

O b j e c t i v e s
In this chapter you’ll:

� Write simple C++ programs.

� Write input and output statements.

� Use fundamental types.

� Use arithmetic operators.

� Learn the precedence of arithmetic operators.

� Write decision-making statements.

20 Chapter 2 Introduction to C++ Programming, Input/Output and Operators
O

u
tl

in
e

2.1 Introduction
We now introduce C++ programming. We show how to display messages on the screen
and obtain data from the user at the keyboard for processing. We explain how to perform
arithmetic calculations and save their results for later use. We demonstrate decision-making
by showing you how to compare two numbers, then display messages based on the com-
parison results.

Compiling and Running Programs
At www.deitel.com/books/cpp11fp, we’ve posted videos that demonstrate compiling and
running programs in Microsoft Visual C++, GNU C++ and Xcode.

2.2 First Program in C++: Printing a Line of Text
Consider a simple program that prints a line of text (Fig. 2.1). This program illustrates sev-
eral important features of the C++ language. The line numbers are not part of the source
code.

Comments
Lines 1 and 2

each begin with //, indicating that the remainder of each line is a comment. The comment
Text-printing program describes the purpose of the program. A comment beginning with

2.1 Introduction
2.2 First Program in C++: Printing a Line of

Text
2.3 Modifying Our First C++ Program
2.4 Another C++ Program: Adding Integers

2.5 Arithmetic
2.6 Decision Making: Equality and

Relational Operators
2.7 Wrap-Up

1 // Fig. 2.1: fig02_01.cpp
2 // Text-printing program.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n"; // display message
9

10 return 0; // indicate that program ended successfully
11 } // end function main

Welcome to C++!

Fig. 2.1 | Text-printing program.

// Fig. 2.1: fig02_01.cpp
// Text-printing program.

http://www.deitel.com/books/cpp11fp

2.2 First Program in C++: Printing a Line of Text 21

// is called a single-line comment because it terminates at the end of the current line. [Note:
You also may use comments containing one or more lines enclosed in /* and */.]

#include Preprocessing Directive
Line 3

is a preprocessing directive, which is a message to the C++ preprocessor (introduced in
Section 1.4). Lines that begin with # are processed by the preprocessor before the program
is compiled. This line notifies the preprocessor to include in the program the contents of
the input/output stream header <iostream>. This header is a file containing information
used by the compiler when compiling any program that outputs data to the screen or in-
puts data from the keyboard using C++’s stream input/output. The program in Fig. 2.1
outputs data to the screen, as we’ll soon see. We discuss headers in more detail in
Chapter 6 and explain the contents of <iostream> in Chapter 13.

Blank Lines and White Space
Line 4 is simply a blank line. Together, blank lines, space characters and tab characters are
known as whitespace. Whitespace characters are normally ignored by the compiler.

The main Function
Line 5

is another single-line comment indicating that program execution begins at the next line.
Line 6

is a part of every C++ program. The parentheses after main indicate that main is a program
building block called a function. C++ programs typically consist of one or more functions
and classes (as you’ll learn in Chapter 3). Exactly one function in every program must be
named main. Figure 2.1 contains only one function. C++ programs begin executing at
function main, even if main is not the first function defined in the program. The keyword
int to the left of main indicates that main returns an integer value. The complete list of
C++ keywords can be found in Fig. 4.2. We’ll say more about return a value when we
demonstrate how to create your own functions in Section 3.3. For now, simply include
the keyword int to the left of main in each of your programs.

The left brace, {, (line 7) must begin the body of every function. A corresponding
right brace, }, (line 11) must end each function’s body.

An Output Statement
Line 8

#include <iostream> // allows program to output data to the screen

Common Programming Error 2.1
Forgetting to include the <iostream> header in a program that inputs data from the key-
board or outputs data to the screen causes the compiler to issue an error message.

// function main begins program execution

int main()

std::cout << "Welcome to C++!\n"; // display message

22 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

instructs the computer to perform an action—namely, to print the characters contained
between the double quotation marks. Together, the quotation marks and the characters
between them are called a string, a character string or a string literal. In this book, we
refer to characters between double quotation marks simply as strings. Whitespace charac-
ters in strings are not ignored by the compiler.

The entire line 8, including std::cout, the << operator, the string "Welcome to

C++!\n" and the semicolon (;), is called a statement. Most C++ statements end with a
semicolon, also known as the statement terminator (we’ll see some exceptions to this
soon). Preprocessing directives (like #include) do not end with a semicolon. Typically,
output and input in C++ are accomplished with streams of characters. Thus, when the
preceding statement is executed, it sends the stream of characters Welcome to C++!\n to
the standard output stream object—std::cout—which is normally “connected” to the
screen.

The std Namespace
The std:: before cout is required when we use names that we’ve brought into the pro-
gram by the preprocessing directive #include <iostream>. The notation std::cout spec-
ifies that we are using a name, in this case cout, that belongs to namespace std. The names
cin (the standard input stream) and cerr (the standard error stream)—introduced in
Chapter 1—also belong to namespace std. Namespaces are an advanced C++ feature that
we discuss in depth in Chapter 21, Other Topics. For now, you should simply remember
to include std:: before each mention of cout, cin and cerr in a program. This can be
cumbersome—the next example introduces using declarations and the using directive,
which will enable you to omit std:: before each use of a name in the std namespace.

The Stream Insertion Operator and Escape Sequences
In the context of an output statement, the << operator is referred to as the stream insertion
operator. When this program executes, the value to the operator’s right, the right operand,
is inserted in the output stream. Notice that the operator points in the direction of where
the data goes. A string literal’s characters normally print exactly as they appear between the
double quotes. However, the characters \n are not printed on the screen (Fig. 2.1). The
backslash (\) is called an escape character. It indicates that a “special” character is to be
output. When a backslash is encountered in a string of characters, the next character is
combined with the backslash to form an escape sequence. The escape sequence \n means
newline. It causes the screen cursor to move to the beginning of the next line on the screen.
Some common escape sequences are listed in Fig. 2.2.

Good Programming Practice 2.1
Indent the body of each function one level within the braces that delimit the function’s
body. This makes a program’s functional structure stand out and makes the program easier
to read.

Good Programming Practice 2.2
Set a convention for the size of indent you prefer, then apply it uniformly. The tab key
may be used to create indents, but tab stops may vary. We prefer three spaces per level of
indent.

2.3 Modifying Our First C++ Program 23

The return Statement
Line 10

is one of several means we’ll use to exit a function. When the return statement is used at
the end of main, as shown here, the value 0 indicates that the program has terminated suc-
cessfully. The right brace, }, (line 11) indicates the end of function main. According to the
C++ standard, if program execution reaches the end of main without encountering a re-
turn statement, it’s assumed that the program terminated successfully—exactly as when
the last statement in main is a return statement with the value 0. For that reason, we omit
the return statement at the end of main in subsequent programs.

2.3 Modifying Our First C++ Program
We now present two examples that modify the program of Fig. 2.1 to print text on one line
by using multiple statements and to print text on several lines by using a single statement.

Printing a Single Line of Text with Multiple Statements
Welcome to C++! can be printed several ways. For example, Fig. 2.3 performs stream inser-
tion in multiple statements (lines 8–9), yet produces the same output as the program of
Fig. 2.1. [Note: From this point forward, we use a light gray background to highlight the
key features each program introduces.] Each stream insertion resumes printing where the
previous one stopped. The first stream insertion (line 8) prints Welcome followed by a
space, and because this string did not end with \n, the second stream insertion (line 9) be-
gins printing on the same line immediately following the space.

Escape
sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.
\t Horizontal tab. Move the screen cursor to the next tab stop.
\r Carriage return. Position the screen cursor to the beginning of the

current line; do not advance to the next line.
\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\' Single quote. Used to print a single quote character.
\" Double quote. Used to print a double quote character.

Fig. 2.2 | Escape sequences.

return 0; // indicate that program ended successfully

1 // Fig. 2.3: fig02_03.cpp
2 // Printing a line of text with multiple statements.
3 #include <iostream> // allows program to output data to the screen
4

Fig. 2.3 | Printing a line of text with multiple statements. (Part 1 of 2.)

24 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Printing Multiple Lines of Text with a Single Statement
A single statement can print multiple lines by using newline characters, as in line 8 of
Fig. 2.4. Each time the \n (newline) escape sequence is encountered in the output stream,
the screen cursor is positioned to the beginning of the next line. To get a blank line in your
output, place two newline characters back to back, as in line 8.

2.4 Another C++ Program: Adding Integers
Our next program obtains two integers typed by a user at the keyboard, computes the sum
of these values and outputs the result using std::cout. Figure 2.5 shows the program and
sample inputs and outputs. In the sample execution, we highlight the user’s input in bold.
The program begins execution with function main (line 6). The left brace (line 7) begins
main’s body and the corresponding right brace (line 22) ends it.

5 // function main begins program execution
6 int main()
7 {
8
9

10 } // end function main

Welcome to C++!

1 // Fig. 2.4: fig02_04.cpp
2 // Printing multiple lines of text with a single statement.
3 #include <iostream> // allows program to output data to the screen
4
5 // function main begins program execution
6 int main()
7 {
8 std::cout << "Welcome to C++!\n";
9 } // end function main

Welcome
to

C++!

Fig. 2.4 | Printing multiple lines of text with a single statement.

1 // Fig. 2.5: fig02_05.cpp
2 // Addition program that displays the sum of two integers.
3 #include <iostream> // allows program to perform input and output

Fig. 2.5 | Addition program that displays the sum of two integers. (Part 1 of 2.)

Fig. 2.3 | Printing a line of text with multiple statements. (Part 2 of 2.)

std::cout << "Welcome ";
std::cout << "to C++!\n";

\n \n\n

2.4 Another C++ Program: Adding Integers 25

Variable Declarations
Lines 9–11

are declarations. The identifiers number1, number2 and sum are the names of variables.
These declarations specify that the variables number1, number2 and sum are data of type
int, meaning that these variables will hold integer values. The declarations also initialize
each of these variables to 0.

All variables must be declared with a name and a data type before they can be used in a
program. Several variables of the same type may be declared in one declaration or in mul-
tiple declarations. We could have declared all three variables in one declaration by using a
comma-separated list as follows:

This makes the program less readable and prevents us from providing comments that de-
scribe each variable’s purpose.

4
5 // function main begins program execution
6 int main()
7 {
8 // variable declarations
9

10
11
12
13 std::cout << "Enter first integer: "; // prompt user for data
14
15
16 std::cout << "Enter second integer: "; // prompt user for data
17
18
19
20
21 std::cout << "Sum is " << sum << ; // display sum; end line
22 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

Error-Prevention Tip 2.1
Although it’s not always necessary to initialize every variable explicitly, doing so will help
you avoid many kinds of problems.

int number1 = 0, number2 = 0, sum = 0;

Fig. 2.5 | Addition program that displays the sum of two integers. (Part 2 of 2.)

int number1 = 0; // first integer to add (initialized to 0)
int number2 = 0; // second integer to add (initialized to 0)
int sum = 0; // sum of number1 and number2 (initialized to 0)

std::cin >> number1; // read first integer from user into number1

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

std::endl

26 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Fundamental Types
We’ll soon discuss the type double for specifying real numbers, and the type char for spec-
ifying character data. Real numbers are numbers with decimal points, such as 3.4, 0.0 and
–11.19. A char variable may hold only a single lowercase letter, a single uppercase letter,
a single digit or a single special character (e.g., $ or *). Types such as int, double and char
are called fundamental types. Fundamental-type names consist of one or more keywords
and therefore must appear in all lowercase letters. Appendix C contains the complete list
of fundamental types.

Identifiers
A variable name (such as number1) is any valid identifier that is not a keyword. An identi-
fier is a series of characters consisting of letters, digits and underscores (_) that does not
begin with a digit. C++ is case sensitive—uppercase and lowercase letters are different, so
a1 and A1 are different identifiers.

Placement of Variable Declarations
Declarations of variables can be placed almost anywhere in a program, but they must ap-
pear before their corresponding variables are used in the program. For example, in the pro-
gram of Fig. 2.5, the declaration in line 9

could have been placed immediately before line 14

Good Programming Practice 2.3
Declare only one variable in each declaration and provide a comment that explains the
variable’s purpose in the program.

Portability Tip 2.1
C++ allows identifiers of any length, but your C++ implementation may restrict identifier
lengths. Use identifiers of 31 characters or fewer to ensure portability.

Good Programming Practice 2.4
Choosing meaningful identifiers makes a program self-documenting—a person can un-
derstand the program simply by reading it rather than having to refer to program com-
ments or documentation.

Good Programming Practice 2.5
Avoid using abbreviations in identifiers. This improves program readability.

Good Programming Practice 2.6
Do not use identifiers that begin with underscores and double underscores, because C++
compilers may use names like that for their own purposes internally. This will prevent the
names you choose from being confused with names the compilers choose.

int number1 = 0; // first integer to add (initialized to 0)

std::cin >> number1; // read first integer from user into number1

2.4 Another C++ Program: Adding Integers 27

Obtaining the First Value from the User
Line 13

displays Enter first integer: followed by a space. This message is called a prompt be-
cause it directs the user to take a specific action. We like to pronounce the preceding state-
ment as “std::cout gets the string "Enter first integer: ".” Line 14

uses the standard input stream object cin (of namespace std) and the stream extraction
operator, >>, to obtain a value from the keyboard. Using the stream extraction operator
with std::cin takes character input from the standard input stream, which is usually the
keyboard. We like to pronounce the preceding statement as, “std::cin gives a value to
number1” or simply “std::cin gives number1.”

When the computer executes the preceding statement, it waits for the user to enter a
value for variable number1. The user responds by typing an integer (as characters), then
pressing the Enter key (sometimes called the Return key) to send the characters to the com-
puter. The computer converts the character representation of the number to an integer
and assigns (i.e., copies) this number (or value) to the variable number1. Any subsequent
references to number1 in this program will use this same value.

The std::cout and std::cin stream objects facilitate interaction between the user
and the computer.

Users can, of course, enter invalid data from the keyboard. For example, when your
program is expecting the user to enter an integer, the user could enter alphabetic charac-
ters, special symbols (like # or @) or a number with a decimal point (like 73.5), among
others. In these early programs, we assume that the user enters valid data. As you progress
through the book, you’ll learn various techniques for dealing with the broad range of pos-
sible data-entry problems.

Obtaining the Second Value from the User
Line 16

prints Enter second integer: on the screen, prompting the user to take action. Line 17

obtains a value for variable number2 from the user.

Calculating the Sum of the Values Input by the User
The assignment statement in line 19

adds the values of variables number1 and number2 and assigns the result to variable sum us-
ing the assignment operator =. We like to read this statement as, “sum gets the value of
number1 + number2.” Most calculations are performed in assignment statements. The = op-
erator and the + operator are binary operators—each has two operands. In the case of the
+ operator, the two operands are number1 and number2. In the case of the preceding = op-
erator, the two operands are sum and the value of the expression number1 + number2.

std::cout << "Enter first integer: "; // prompt user for data

std::cin >> number1; // read first integer from user into number1

std::cout << "Enter second integer: "; // prompt user for data

std::cin >> number2; // read second integer from user into number2

sum = number1 + number2; // add the numbers; store result in sum

28 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

Displaying the Result
Line 21

displays the character string Sum is followed by the numerical value of variable sum fol-
lowed by std::endl—a stream manipulator. The name endl is an abbreviation for “end
line” and belongs to namespace std. The std::endl stream manipulator outputs a new-
line, then “flushes the output buffer.” This simply means that, on some systems where out-
puts accumulate in the machine until there are enough to “make it worthwhile” to display
them on the screen, std::endl forces any accumulated outputs to be displayed at that mo-
ment. This can be important when the outputs are prompting the user for an action, such
as entering data.

The preceding statement outputs multiple values of different types. The stream inser-
tion operator “knows” how to output each type of data. Using multiple stream insertion
operators (<<) in a single statement is referred to as concatenating, chaining or cascading
stream insertion operations.

Calculations can also be performed in output statements. We could have combined
the statements in lines 19 and 21 into the statement

thus eliminating the need for the variable sum.
A powerful feature of C++ is that you can create your own data types called classes (we

introduce this capability in Chapter 3 and explore it in depth in Chapter 9). You can then
“teach” C++ how to input and output values of these new data types using the >> and <<
operators (this is called operator overloading—a topic we explore in Chapter 10).

2.5 Arithmetic
Most programs perform arithmetic calculations. Figure 2.6 summarizes the C++ arithmetic
operators. The asterisk (*) indicates multiplication and the percent sign (%) is the modulus
operator that will be discussed shortly. The arithmetic operators in Fig. 2.6 are all binary op-
erators, i.e., operators that take two operands. For example, the expression number1 +

number2 contains the binary operator + and the two operands number1 and number2.
Integer division (i.e., where both the numerator and the denominator are integers)

yields an integer quotient; for example, the expression 7 / 4 evaluates to 1 and the expression
17 / 5 evaluates to 3. Any fractional part in integer division is truncated —no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer division.
The modulus operator can be used only with integer operands. The expression x % y yields
the remainder after x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later chap-
ters, we discuss many interesting applications of the modulus operator, such as determining
whether one number is a multiple of another (a special case of this is determining whether
a number is odd or even).

Good Programming Practice 2.7
Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

std::cout << "Sum is " << sum << std::endl; // display sum; end
line

std::cout << "Sum is " << number1 + number2 << std::endl;

2.5 Arithmetic 29

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in C++ must be entered into the computer in straight-line form.
Thus, expressions such as “a divided by b” must be written as a / b, so that all constants,
variables and operators appear in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C++ expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c we write a * (b + c).

Rules of Operator Precedence
C++ applies the operators in arithmetic expressions in a precise order determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are at the highest level of precedence. In cases of nested, or embed-
ded, parentheses, such as

the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an ex-
pression contains several multiplication, division and modulus operations, oper-
ators are applied from left to right. Multiplication, division and modulus are on
the same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains
several addition and subtraction operations, operators are applied from left to
right. Addition and subtraction also have the same level of precedence.

The rules of operator precedence define the order in which C++ applies operators.
When we say that certain operators are applied from left to right, we are referring to the
associativity of the operators. For example, the addition operators (+) in the expression

C++ operation
C++ arithmetic
operator

Algebraic
expression

C++
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b ⋅ m b * m

Division / x / y or or x ÷ y x / y

Modulus % r mod s r % s

Fig. 2.6 | Arithmetic operators.

x
y--

a
b
--

(a * (b + c))

a + b + c

30 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

associate from left to right, so a + b is calculated first, then c is added to that sum to deter-
mine the whole expression’s value. We’ll see that some operators associate from right to left.
Figure 2.7 summarizes these rules of operator precedence. We expand this table as we in-
troduce additional C++ operators. Appendix A contains the complete precedence chart.

Sample Algebraic and C++ Expressions
Now consider several expressions in light of the rules of operator precedence. Each exam-
ple lists an algebraic expression and its C++ equivalent. The following is an example of an
arithmetic mean (average) of five terms:

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5.

The following is an example of the equation of a straight line:

No parentheses are required. The multiplication is applied first because multiplication has
a higher precedence than addition.

The following example contains modulus (%), multiplication, division, addition, sub-
traction and assignment operations:

The circled numbers indicate the order in which C++ applies the operators. The multiplica-
tion, modulus and division are evaluated first in left-to-right order (i.e., they associate from

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, such as in the expres-
sion a * (b + c / d + e)), the expression in the innermost pair is
evaluated first. [Caution: If you have an expression such as (a + b) *
(c - d) in which two sets of parentheses are not nested, but appear
“on the same level,” the C++ Standard does not specify the order in
which these parenthesized subexpressions will be evaluated.]

*

/

%

Multiplication
Division
Modulus

Evaluated second. If there are several, they’re evaluated left to right.

+

-

Addition
Subtraction

Evaluated last. If there are several, they’re evaluated left to right.

Fig. 2.7 | Precedence of arithmetic operators.

Algebra:

C++: m = (a + b + c + d + e) / 5;

Algebra:

C++: y = m * x + b;

m
a b c d e+ + + +

5
-------------------------------------=

y mx b+=

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:

C++:

2.5 Arithmetic 31

left to right) because they have higher precedence than addition and subtraction. The addition
and subtraction are applied next. These are also applied left to right. The assignment opera-
tor is applied last because its precedence is lower than that of any of the arithmetic operators.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of a second-degree polynomial y = ax 2 + bx + c:

The circled numbers indicate the order in which C++ applies the operators. There is no arith-
metic operator for exponentiation in C++, so we’ve represented x2 as x * x. In Chapter 5, we’ll
discuss the standard library function pow (“power”) that performs exponentiation.

Suppose variables a, b, c and x in the preceding second-degree polynomial are initial-
ized as follows: a = 2, b = 3, c = 7 and x = 5. Figure 2.8 illustrates the order in which the
operators are applied and the final value of the expression.

Redundant Parentheses
As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make the
expression clearer. These are called redundant parentheses. For example, the preceding as-
signment statement could be parenthesized as follows:

Fig. 2.8 | Order in which a second-degree polynomial is evaluated.

y = (a * x * x) + (b * x) + c;

6 1 2 4 3 5

y = a * x * x + b * x + c;

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

32 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

2.6 Decision Making: Equality and Relational Operators
We now introduce a simple version of C++’s if statement that allows a program to take
alternative action based on whether a condition is true or false. If the condition is true, the
statement in the body of the if statement is executed. If the condition is false, the body
statement is not executed. We’ll see an example shortly.

Conditions in if statements can be formed by using the relational operators and
equality operators summarized in Fig. 2.9. The relational operators all have the same level
of precedence and associate left to right. The equality operators both have the same level of
precedence, which is lower than that of the relational operators, and associate left to right.

Using the if Statement
The following example (Fig. 2.10) uses six if statements to compare two numbers input
by the user. If the condition in any of these if statements is satisfied, the output statement
associated with that if statement is executed.

Algebraic relational
or equality operator

C++ relational or
equality operator

SampleC++
condition Meaning of C++ condition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Fig. 2.9 | Relational and equality operators.

Common Programming Error 2.2
Reversing the order of the pair of symbols in the operators !=, >= and <= (by writing them
as =!, => and =<, respectively) is normally a syntax error. In some cases, writing != as =!
will not be a syntax error, but almost certainly will be a logic error that has an effect at
execution time. You’ll understand why when you learn about logical operators in
Chapter 5. A fatal logic error causes a program to fail and terminate prematurely. A
nonfatal logic error allows a program to continue executing, but usually produces incor-
rect results.

Common Programming Error 2.3
Confusing the equality operator == with the assignment operator = results in logic errors.
We like to read the equality operator as “is equal to” or “double equals,” and the assign-
ment operator as “gets” or “gets the value of” or “is assigned the value of.” As you’ll see in
Section 5.9, confusing these operators may not necessarily cause an easy-to-recognize syn-
tax error, but may cause subtle logic errors.

2.6 Decision Making: Equality and Relational Operators 33

1 // Fig. 2.13: fig02_13.cpp
2 // Comparing integers using if statements, relational operators
3 // and equality operators.
4 #include <iostream> // allows program to perform input and output
5
6
7
8
9

10 // function main begins program execution
11 int main()
12 {
13 int number1 = 0; // first integer to compare (initialized to 0)
14 int number2 = 0; // second integer to compare (initialized to 0)
15
16 cout << "Enter two integers to compare: "; // prompt user for data
17
18
19
20
21
22 if ()
23 cout << number1 << " != " << number2 << endl;
24
25 if ()
26 cout << number1 << " < " << number2 << endl;
27
28 if ()
29 cout << number1 << " > " << number2 << endl;
30
31 if ()
32 cout << number1 << " <= " << number2 << endl;
33
34 if ()
35 cout << number1 << " >= " << number2 << endl;
36 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

Fig. 2.10 | Comparing integers using if statements, relational operators and equality operators.

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

cin >> number1 >> number2; // read two integers from user

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

number1 != number2

number1 < number2

number1 > number2

number1 <= number2

number1 >= number2

34 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

using Declarations
Lines 6–8

are using declarations that eliminate the need to repeat the std:: prefix as we did in ear-
lier programs. We can now write cout instead of std::cout, cin instead of std::cin and
endl instead of std::endl, respectively, in the remainder of the program.

In place of lines 6–8, many programmers prefer to provide the using directive

which enables a program to use all the names in any standard C++ header (such as
<iostream>) that a program might include. From this point forward in the book, we’ll use
the preceding directive in our programs. In Chapter 21, Other Topics, we’ll discuss some
issues with using directives in large-scale systems.

Variable Declarations and Reading the Inputs from the User
Lines 13–14

declare the variables used in the program and initializes them to 0.
The program uses cascaded stream extraction operations (line 17) to input two inte-

gers. Remember that we’re allowed to write cin (instead of std::cin) because of line 7.
First a value is read into variable number1, then a value is read into variable number2.

Comparing Numbers
The if statement in lines 19–20

compares the values of variables number1 and number2 to test for equality. If the values are
equal, the statement in line 20 displays a line of text indicating that the numbers are equal.
If the conditions are true in one or more of the if statements starting in lines 22, 25, 28,
31 and 34, the corresponding body statement displays an appropriate line of text.

Each if statement in Fig. 2.10 has a single statement in its body and each body state-
ment is indented. In Chapter 4 we show how to specify if statements with multiple-state-
ment bodies (by enclosing the body statements in a pair of braces, { }, creating what’s
called a compound statement or a block).

using std::cout; // program uses cout
using std::cin; // program uses cin
using std::endl; // program uses endl

using namespace std;

int number1 = 0; // first integer to compare (initialized to 0)
int number2 = 0; // second integer to compare (initialized to 0)

if (number1 == number2)
cout << number1 << " == " << number2 << endl;

Common Programming Error 2.4
Placing a semicolon immediately after the right parenthesis after the condition in an if

statement is often a logic error (although not a syntax error). The semicolon causes the body
of the if statement to be empty, so the if statement performs no action, regardless of
whether or not its condition is true. Worse yet, the original body statement of the if state-
ment now becomes a statement in sequence with the if statement and always executes,
often causing the program to produce incorrect results.

2.7 Wrap-Up 35

White Space
Recall that whitespace characters, such as tabs, newlines and spaces, are normally ignored
by the compiler. So, statements may be split over several lines and may be spaced according
to your preferences. It’s a syntax error to split identifiers, strings (such as "hello") and
constants (such as the number 1000) over several lines.

Operator Precedence
Figure 2.11 shows the precedence and associativity of the operators introduced in this
chapter. The operators are shown top to bottom in decreasing order of precedence. All
these operators, with the exception of the assignment operator =, associate from left to
right. Addition is left-associative, so an expression like x + y + z is evaluated as if it had
been written (x + y) + z. The assignment operator = associates from right to left, so an ex-
pression such as x = y = 0 is evaluated as if it had been written x = (y = 0), which, as we’ll
soon see, first assigns 0 to y, then assigns the result of that assignment—0—to x.

2.7 Wrap-Up
You learned many important basic features of C++ in this chapter, including displaying
data on the screen, inputting data from the keyboard and declaring variables of fundamen-

Good Programming Practice 2.8
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose meaningful breaking points, such as after a comma in a comma-sepa-
rated list, or after an operator in a lengthy expression. If a statement is split across two or
more lines, indent all subsequent lines and left-align the group of indented lines.

Operators Associativity Type

() [See caution in Fig. 2.7] grouping parentheses
* / % left to right multiplicative
+ - left to right additive
<< >> left to right stream insertion/extraction
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. 2.11 | Precedence and associativity of the operators discussed so far.

Good Programming Practice 2.9
Refer to the operator precedence and associativity chart (Appendix A) when writing ex-
pressions containing many operators. Confirm that the operators in the expression are per-
formed in the order you expect. If you’re uncertain about the order of evaluation in a
complex expression, break the expression into smaller statements or use parentheses to force
the order of evaluation, exactly as you’d do in an algebraic expression. Be sure to observe
that some operators such as assignment (=) associate right to left rather than left to right.

36 Chapter 2 Introduction to C++ Programming, Input/Output and Operators

tal types. In particular, you learned to use the output stream object cout and the input
stream object cin to build simple interactive programs. We explained how variables are
stored in and retrieved from memory. You also learned how to use arithmetic operators to
perform calculations. We discussed the order in which C++ applies operators (i.e., the
rules of operator precedence), as well as the associativity of the operators. You also learned
how C++’s if statement allows a program to make decisions. Finally, we introduced the
equality and relational operators, which you use to form conditions in if statements.

The non-object-oriented applications presented here introduced you to basic pro-
gramming concepts. As you’ll see in Chapter 3, C++ applications typically contain just a
few lines of code in function main—these statements normally create the objects that per-
form the work of the application, then the objects “take over from there.” In Chapter 3,
you’ll learn how to implement your own classes and use objects of those classes in appli-
cations.

This page intentionally left blank

Symbols
-- postfix decrement operator 96
-- prefix decrement operator 96
^ (bitwise exclusive OR operator) 621,

669
^= (bitwise exclusive OR assignment op-

erator) 515, 629, 669
, (comma operator) 104
:: (binary scope resolution operator) 298
:: (scope resolution operator) 60
:: (unary scope resolution operator) 668,

672
:: unary scope resolution operator 169
! (logical NOT operator) 123, 124, 668

truth table 125
!= (inequality operator) 32, 668
?: (ternary conditional operator) 75, 181
.* (pointer-to-member operator) 670,

672
.* and ->* operators 670
'\0', null character 253
'\n', newline character 252
[] (operator for map) 507
* (multiplication operator) 29
* (pointer dereference or indirection op-

erator) 232, 232
*= (multiplication assignment operator)

96
/ (division operator) 29
/* */ (C-style multiline comment) 21
// (single-line comment) 20
/= (division assignment operator) 96
\' (single-quote-character) escape se-

quence 23
\" (double-quote-character) escape se-

quence 23
\\ (backslash-character) escape sequence

23
\a (alert) escape sequence 23
\n (newline) escape sequence 23
\r (carriage-return) escape sequence 23
\t (tab) escape sequence 23
& (address operator) 669
& (bitwise AND) 621
& in a parameter list 166
& to declare reference 165
&, address operator 231, 232
&& (logical AND operator) 123, 181, 668

truth table 123
&= (bitwise AND assignment operator)

515, 629, 669
preprocessor operator 791, 796
preprocessor operator 796
#pragma preprocessing directive 796
#undef preprocessing directive 794
% (modulus operator) 29

%= (modulus assignment operator) 96
+ (addition operator) 27, 29
++ (postfix increment operator) 96

on an iterator 480
++ (prefix increment operator) 96

on an iterator 480
+= (addition assignment operator) 95

string concatenation 595
< (less-than operator) 32
<< (left-shift operator) 621
<< (stream insertion operator) 22, 28
<<= (left-shift assignment operator) 629
<= (less-than-or-equal-to operator) 32
<algorithm> header 558
<algorithm> header 558
<forward_list> header 494
<unordered_map> header 505, 507
<unordered_set> header 501, 504
= 27, 35, 279, 308, 480
= (assignment operator) 27, 29, 125
-= (subtraction assignment operator) 96
== (equality operator) 32, 125
> (greater-than operator) 32
-> (member selection via pointer) 672
->* (pointer-to-member operator) 670
>= (greater-than-or-equal-to operator) 32
>> (right shift operator) 621
>>= (right shift with sign extension as-

signment operator) 629
| (bitwise inclusive OR operator) 621,

669
|= (bitwise inclusive OR assignment op-

erator) 515, 629, 669
|| (logical OR operator) 123, 124, 668

truth table 124
|| logical OR operator 181
~ (bitwise complement operator) 621,

669

Numerics
0X 432
0x 432
2-D array 211

A
abbreviating assignment expressions 95
abort 797
abort function 272, 574
absolute value 131
abstract base class 390, 391, 738
abstract class 390, 391, 392, 407
abstract operation in the UML 734
access a global variable 169
access function 265

access non-static class data members
and member functions 301

access private member of a class 47
access privileges 241, 243
access specifier 39, 47, 291, 726

private 47
protected 258
public 47

access the caller’s data 164
access violation 476
accessor 49
Account class (ATM case study) 690,

693, 697, 699, 700, 708, 715, 716,
718, 720, 732, 772

accounts-receivable system 446
accumulate algorithm 529, 532, 553,

555, 559
accumulated outputs 28
action 74, 75
action expression 71
action expression in the UML 705
action of an object 704
action state 71
action state in the UML 705
action state symbol 71
activation in a UML sequence diagram

720
activation record 159
activity diagram 70, 71, 78, 105

do…while statement 111
for statement 106
if statement 74
if…else statement 75
in the UML 690, 704, 706, 723
sequence statement 71
switch statement 120
while statement 79

activity in the UML 690, 703, 707
activity of a portion of a software system

71
actor in use case in the UML 689
adapter 509
add a new account to a file 472
add an integer to a pointer 247
addition 29
addition assignment operator (+=) 95
addition program that displays the sum of

two numbers 24
address of a bit field 633
address operator (&) 231, 232, 234, 308,

672
addressable storage unit 633
adjacent_difference algorithm 559
adjacent_find algorithm 558
aggregation 264, 696
aiming a derived-class pointer at a base-

class object 381

Index

800 Index

airline reservation system 456
alert escape sequence ('\a') 23, 637
algebraic expression 29
<algorithm> header 141, 492
algorithms 476, 485

accumulate 529, 532
all_of 533, 536
any_of 533, 536
binary_search 209, 533, 536
copy_backward 539
copy_n 541
count 529, 532
count_if 529, 532
equal 523
equal_range 546, 548
fill 520, 521
fill_n 520, 521
find 533, 535
find_if 533, 536
find_if_not 533, 537
for_each 529, 533
generate 520, 521
generate_n 520, 521
includes 544
inplace_merge 541, 542
is_heap 551
is_heap_until 551
iter_swap 537, 538
lexicographical_compare 524
lower_bound 548
make_heap 550
max 552
max_element 529, 532
merge 538, 540
min 552
min_element 529, 532
minmax 552
minmax_element 529, 532, 553
mismatch 522, 524
move 540
move_backward 540
none_of 533, 536
pop_heap 551
push_heap 551
random_shuffle 529, 531
remove 524, 526
remove_copy 526
remove_copy_if 524, 527, 541
remove_if 524, 526
replace 529
replace_copy 527, 529
replace_copy_if 527, 529
replace_if 527, 529
reverse 538, 541
reverse_copy 541, 542
separated from container 519
set_difference 543, 545
set_intersection 543, 545
set_symmetric_difference

543, 545
set_union 543, 546
sort 209, 533, 536
sort_heap 550
swap 537, 538
swap_ranges 537, 538
transform 529, 533
unique 538, 540
unique_copy 541, 542
upper_bound 548

alias 166, 167, 609
for the name of an object 276

alignment 617
all 514
all_of algorithm 533, 536, 558
allocate 321
allocate dynamic memory 575
allocate memory 140, 321
allocator 493
allocator_type 479
alphabetizing strings 643
alter the flow of control 121
ambiguity problem 672, 677
American National Standards Institute

(ANSI) 2
American Standard Code for Information

Interchange (ASCII) 116
analysis stage of the software life cycle 688
analyzing a project’s requirements 683
and operator keyword 668
and_eq operator keyword 669
“ANDed” 623
Android 16

operating system 16
smartphone 16

angle brackets (< and >) 173, 791
angle brackets (< and >) in templates 583
anonymous function objects 518
ANSI (American National Standards In-

stitute) 2
ANSI/ISO 9899: 1990 2
any 514
any_of algorithm 533, 536, 558
Apache Software Foundation 15
append 595
append data to a file 447, 448
Apple Inc. 16
Apple Macintosh 16
argument coercion 138
argument for a macro 792
argument to a function 41
arguments in correct order 136
arguments passed to member-object con-

structors 283
arithmetic assignment operators 95, 96
arithmetic calculations 28
arithmetic mean 30
arithmetic operator 28
arithmetic overflow 84, 570
arithmetic overflow error 579
arithmetic underflow error 579
“arity” of an operator 309
<array> header 140
array

built-in 229, 238
name 250
notation for accessing elements 251
subscripting 251

array 187
bounds checking 198

Array class 324
Array class definition with overloaded

operators 328
Array class member-function and

friend function definitions 329
array class template 186
Array class test program 324
array subscript operator ([]) 328
arrow 71

arrow member selection operator (->)
265

arrow operator (->) 293
arrowhead in a UML sequence diagram

720
ASCII (American Standard Code for In-

formation Interchange)
Character Set 116, 252, 422

assert 797
assign member function of class

string 593
assign member function of list 498
assign one iterator to another 484
assigning addresses of base-class and de-

rived-class objects to base-class and de-
rived-class pointers 378

assigning class objects 279
assignment operator functions 333
assignment operators 27, 35, 95, 279,

308, 480
*= multiplication assignment opera-

tor 96
/= division assignment operator 96
%= modulus assignment operator 96
+= addition assignment operator 95
-= subtraction assignment operator

96
assignment statement 27, 97
associate from left to right 35, 98
associate from right to left 35, 98, 116
association 508
association (in the UML) 694, 695, 696,

728, 729
name 695

associative container 480, 483, 500, 503
ordered 476, 500
unordered 476, 500

associative container functions
count 503
equal_range 503
find 503
insert 503, 507
lower_bound 503
upper_bound 503

associativity 124, 126
associativity chart 35
associativity not changed by overloading

309
associativity of operators 29, 35
asterisk (*) 28
asynchronous call 717
asynchronous event 570
at member function 493, 514

class string 308, 595
class vector 226

ATM (automated teller machine) case
study 683, 688

ATM class (ATM case study) 693, 694,
695, 699, 702, 703, 708, 714, 715,
716, 717, 718, 727

ATM system 689, 690, 691, 692, 693,
698, 703, 707, 726

atof 647
atoi 647
atol 648
attribute 45, 728, 729

compartment in a class diagram 701
declaration in the UML 701, 703

Index 801

attribute (cont.)
in the UML 5, 41, 693, 698, 700,

701, 703, 707, 736
name in the UML 701
of a class 4
of an object 5

attributes of a variable 152
auto keyword 213
auto_ptr object manages dynamically

allocated memory 577
automated teller machine 456
automated teller machine (ATM) 683,

684, 688
user interface 684

automatic array 188
automatic array initialization 199
automatic local array 199
automatic local variable 153, 156, 167
automatic object 571
automatic storage class 152, 200
automatic storage duration 153
automatically destroyed 156
average 30
average calculation 79, 85
avoid naming conflicts 291
avoid repeating code 270

B
back member function of queue 511
back member function of sequence con-

tainers 492
back_inserter function template 540,

542
backslash (\) 22, 794
backslash escape sequence (\\) 23
backward traversal 607
bad member function 442
bad_alloc exception 493, 572, 574,

578
bad_cast exception 578
bad_typeid exception 578
badbit 449
badbit of stream 422, 442
BalanceInquiry class (ATM case

study) 693, 696, 699, 700, 702, 704,
708, 715, 716, 717, 718, 727, 733,
734, 735

Bank account program 466
BankDatabase class (ATM case study)

693, 697, 699, 708, 715, 716, 717,
718, 720, 727, 729

banking system 456
bar chart 193, 194
bar chart printing program 194
bar of asterisks 193, 194
base 2 621
base case(s) 175, 179, 182
base class 343, 345, 733
base-class catch 578
base-class constructor 370
base-class exception 578
base-class member accessibility in derived

class 371
base-class pointer to a derived-class object

389
base-class private member 361
base-class subobject 678
base e 132

base specified for a stream 436
base-10 number system 132, 432
base-16 number system 432
base-8 number system 432
base-class initializer syntax 359
base-class member function redefined in a

derived class 368
BasePlusCommissionEmployee class

header 402
BasePlusCommissionEmployee class

implementation file 402
BasePlusCommissionEmployee class

represents an employee who receives a
base salary in addition to a commis-
sion 352

BasePlusCommissionEmployee class
test program 355

BasePlusCommissionEmployee class
that inherits from class Commission-
Employee, which does not provide
protected data 367

basic searching and sorting algorithms of
the Standard Library 533

basic_fstream class template 420, 446
basic_ifstream class template 420,

445
basic_ios class template 418, 677
basic_iostream class template 418,

420, 446, 677
basic_istream class template 418,

446, 677
basic_istringstream class template

609
basic_ofstream class template 446
basic_ostream class template 420,

446, 677
basic_ostringstream class template

609
basic_string class template 592
begin function 240
begin iterator 608
beginmember function of class string

608
begin member function of containers

479
begin member function of first-class

containers 480
beginning of a file 452
beginning of a stream 452
behavior 707

of a class 4
behavior of the system 703, 704, 707, 716
bell 23
Bell Laboratories 2
bidirectional iterator 482, 483, 494, 501,

504, 505, 518, 540, 541, 542
bidirectional iterator operations 484
bidirectional navigability in the UML

727
binary (base 2) number system 781
binary arithmetic operator 90
binary function 553
binary function object 553
binary number 634
binary number system 650
binary operator 27, 28
binary predicate function 497, 523, 532,

536, 540, 545, 550

binary_search algorithm 209, 533,
536, 558

bit 616
bit field 621, 630, 633
bit-field manipulation 633
bit-field member of structure 631
bit fields save space 633
bit manipulation 621
bitand operator keyword 669
bitor operator keyword 669
“bits-and-bytes” level 621
bitset 477, 513, 514, 515
<bitset> header 140
bitwise AND assignment 669
bitwise AND assignment operator (&=)

629
bitwise AND operator (&) 621, 621, 624,

626
bitwise AND, bitwise inclusive-OR, bit-

wise exclusive-OR and bitwise com-
plement operators 624

bitwise assignment operator keywords
669

bitwise assignment operators 515, 629
bitwise complement 622, 669
bitwise complement operator (~) 621,

624, 627, 629, 788
bitwise exclusive OR 669
bitwise exclusive OR assignment operator

(^=) 629
bitwise exclusive OR operator (^) 621,

624, 627
bitwise inclusive OR 669
bitwise inclusive OR assignment operator

(|=) 629
bitwise inclusive OR operator (|) 461,

621, 624, 626
bitwise left-shift operator (<<) 304, 627
bitwise logical OR 515
bitwise operator keywords 669
bitwise operators 621, 622, 629
bitwise right-shift operator (>>) 304
bitwise shift operator 627
BlackBerry OS 15
block 34, 44, 66, 77, 89, 153, 155, 156
block is active 153
block is exited 153
block of data 655
block of memory 498, 655
block scope 155, 265

variable 265
body of a class definition 39
body of a function 21, 22, 40
body of a loop 102, 105
Booch, Grady 684
bool data type 74
bool value false 74
bool value true 74
boolalpha stream manipulator 125,

432, 438
Boolean attribute in the UML 699
Boost C++ Libraries 17
boundary of a storage unit 633
bounds checking 198
braces ({}) 22, 34, 66, 77, 89, 117
braces in a do…while statement 112
bracket ([]) 187
break statement 118, 121

802 Index

break statement exiting a for statement
121

brittle software 364
buffer is filled 420
buffer is flushed 420
buffer overflow 198
buffered output 420
buffered standard error stream 418
buffering 443
building-block approach 3
built-in array 229, 238
business-critical computing 565
byte 621

C
.C extension 6
C legacy code 791, 792, 797
C-like pointer-based array 477
C string 252
c_str member function of class string

607
C++ 2
C++ compiler 7
C++ development environment 7, 8
C++ preprocessor 7, 21
C++ Standard Library 3

<string> file 43
class template vector 221
header location 57
headers 139
string class 43

C++11 17, 178
all_of algorithm 536
anonymous function objects 518
any_of algorithm 536
associative container keys are immu-

table 477
auto keyword 213, 503
begin function 240, 489
cbegin container member function

489
cend container member function

489
compiler fix for types ending in >>

502
copy_n algorithm 541
crbegin container member func-

tion 490
crend container member function

490
default type arguments for function

template type parameters 589
delegating constructor 271
end function 240, 489
find_if_not algorithm 537
forward_list class template 476,

494
in-class initializer 120, 260
insert container member function

(now returns an iterator) 493,
494

iota algorithm 559
is_heap algorithm 551
is_heap_until algorithm 551
list initialization 94, 507
list initialization of a return type 507
list initialization of associative con-

tainer 507

C++11 (cont.)
list initializer 271
list initializers 490
minmax algorithm 552
minmax_element algorithm 532,

553
move algorithm 540
move assignment operator 478
move constructor 478
move_backward algorithm 540
noexcept 571
none_of algorithm 536
non-member container swap func-

tion 478
nullptr constant 230
override 384
random-number generation 195
scoped enum 150
shrink_to_fit container member

function for vector and deque
490

specifying an enum’s integral type
150

stod function 612
stof function 612
stoi function 612
stol function 612
stold function 612
stoll function 612
stoul function 612
stoull function 612
to_string function 612
trailing return types for functions

175
unique_ptr class template 575,

575, 578
unordered_multimap class tem-

plate 477
unordered_multiset class tem-

plate 477
unordered_set class template 477

calculations 28, 70
call a function 41
call stack 242
calling function (caller) 40, 47
calling functions by reference 233
camel case 39
capacity member function

of string 601
of vector 488

capacity of a string 599
Card Shuffling and Dealing

simulation 616, 618, 620
carriage return ('\r') escape sequence

23, 634, 637
carry bit 788
cascading member function calls 293,

294, 296
cascading stream insertion operations 28
case label 117, 118
case sensitive 26
CashDispenser class (ATM case study)

693, 695, 699, 700, 708, 720
casino 146
<cassert> header 141, 797
cast 249

downcast 383
cast away const-ness 662
cast expression 794

cast operator 85, 90, 139, 337, 338
cast operator function 337
cast variable visible in debugger 792
catch a base class object 578
catch all exceptions 579
catch block 226
catch clause (or handler) 566, 570
catch handler 564
catch related errors 572
catch(...) 579
cbegin member function of containers

479
cbeginmember function of vector 489
<cctype> header 140, 634
CD 445
ceil function 131
cend member function of containers 479
cend member function of vector 489
cerr (standard error stream) 9, 66, 418,

419, 445
<cfloat> header 141
chaining stream insertion operations 28
char ** 648
char data type 26, 116, 139, 606, 621
char16_t 418
char32_t 418
character 616
character array 253, 606
character constant 252
character-handling functions 634

isdigit, isalpha, isalnum and
isxdigit 635

islower, isupper, tolower and
toupper 636

isspace, iscntrl, ispunct, is-
print and isgraph 637

character presentation 141
character sequences 456
character set 120
character string 22, 188
character’s numerical representation 116
characters represented as numeric codes

644
character-string manipulation 633
checked access 595
cin (standard input stream) 9, 27, 418,

419, 445, 449
function getline 254

cin.clear 442
cin.eof 422, 442
cin.get function 115, 116, 423
cin.tie function 443
circular include 730
class 4, 701, 707, 711, 726, 792

attribute 45
client-code programmer 62
constructor 50
data member 5, 45
default constructor 51, 53
define a constructor 52
define a member function 38
implementation programmer 62
instance of 46
interface 58
interface described by function pro-

totypes 58
member function 38
member-function implementations

in a separate source-code file 59

Index 803

class (cont.)
name 728
naming convention 39
object of 46
public services 58
services 49

class average on a quiz 79
class average problem 79
class definition 39
class development 324
class diagram

for the ATM system model 697, 722
in the UML 690, 693, 696, 698,

701, 708, 726, 729, 735, 736,
737

class diagram (UML) 41
class hierarchy 344, 389, 391
class-implementation programmer 62
class keyword 173, 583
class libraries 109
class library 372
class members default to private access

616
class scope 155, 261, 264
class-scope variable is hidden 265
class template 186, 582, 592

auto_ptr 575
definition 582
scope 585
specialization 582
Stack 583, 585

class variable 207
Classes 3

Array 324
bitset 477, 513, 514, 515
deque 485, 498
exception 562
forward_list 485, 494
invalid_argument 578
list 485, 494
multimap 505
out_of_range exception class 226
priority_queue 512
queue 511, 511
runtime_error 562, 570
set 504
stack 509
string 43
unique_ptr 575
vector 221

classic stream libraries 417
clear function of ios_base 442
clear member function of containers

479
clear member function of first-class

containers 494
client code 376
client-code programmer 62
client of a class 707, 717
client of an object 48
<climits> header 141
clog (standard error buffered) 418, 419,

445
close member function of ofstream

450
<cmath> header 109, 140
code 5
CodeLite 7
coin tossing 141

collaboration 714, 715, 717
collaboration diagram in the UML 691,

716
collaboration in the UML 714
colon (:) 155, 286, 675
column 211
column headings 189
column subscript 211
comma operator (,) 104, 181
comma-separated list

of parameters 136
25, 35, 104, 230
command-line argument 240
comma-separated list of base classes 675
comment 20
CommissionEmployee class header 399
CommissionEmployee class implemen-

tation file 400
CommissionEmployee class represents

an employee paid a percentage of gross
sales 347

CommissionEmployee class test pro-
gram 350

CommissionEmployee class uses mem-
ber functions to manipulate its pri-
vate data 365

Common Programming Errors overview
xxiii

communication diagram in the UML
691, 716, 717

commutative 336
commutative operation 336
comparator function object 501, 505
comparator function object less 501,

512
compare iterators 484
compare member function of class

string 597
comparing

strings 639, 642
comparing blocks of memory 655
comparing strings 595
compilation error 95
compilation unit 667
compile 7
compiler 21, 90
compiling

multiple-source-file program 63
compl operator keyword 669
complement operator (~) 621
complex conditions 123
component 3
composition 264, 283, 287, 343, 346,

695, 696, 721
compound interest 108

calculation with for 108
compound statement 34
computing the sum of the elements of an

array 193
concatenate 595

stream insertion operations 28
strings 641

concrete class 390
concrete derived class 395
condition 32, 73, 75, 111, 122
conditional compilation 791, 794
conditional execution of preprocessing di-

rectives 791
conditional expression 75

conditional operator (?:) 75
conditional preprocessing directives 794
conditionally compiled output statement

795
confusing equality (==) and assignment

(=) operators 32, 127
conserving memory 153
consistent state 65
const 281, 313, 792
const keyword 163
const member function 40, 281
const member function on a const ob-

ject 282
constmember function on a non-const

object 282
const object 192, 282
const object must be initialized 192
const objects and const member func-

tions 282
const qualifier 191, 240, 661
const qualifier before type specifier in

parameter declaration 166
const variables must be initialized 192
const version of operator[] 335
const with function parameters 240
const_cast

cast away const-ness 662
const_cast demonstration 662
const_cast operator 661, 662, 663
const_iterator 479, 480, 481, 483,

484, 503, 505, 608
const_pointer 479
const_reference 479
const_reverse_iterator 479, 480,

484, 490, 608
constant integral expression 119
constant pointer

to an integer constant 243
to constant data 241, 243, 244
to nonconstant data 241, 243

constant reference 334
constant reference parameter 166
constant variable 191
“const-ness” 663
constructed inside out 288
constructor 50

cannot be virtual 389
cannot specify a return type 50
conversion 337, 339
copy 332
default 53
default arguments 269
defining 52
explicit 339
function prototype 59
in a UML class diagram 54
inherit 370
inherit from base class 370
naming 52
parameter list 52
single argument 339, 340

constructors and destructors called auto-
matically 272

container 140, 475, 476
container adapter 476, 477, 483, 509

priority_queue 512
queue 511
stack 509

804 Index

container adapter functions
pop 509
push 509

container class 265, 328, 476
containers

begin function 479
cbegin function 479
cend function 479
clear function 479
crbegin function 479
crend function 479
empty function 478
end function 479
erase function 479
insert function 478
max_size function 478
rbegin function 479
rend function 479
size function 478
swap function 478

continue statement 121
continue statement terminating a single

iteration of a for statement 122
control characters 637
control statement 70, 73, 74

nesting 73
stacking 73

control statements 73
do…while 110, 111
do…while repetition statement 72
for 102, 104
for repetition statement 72
if 32
if single-selection statement 71
if…else double-selection state-

ment 72
nested if…else 77
nesting 92
repetition statement 73
selection statement 73
sequence statement 73
switch 112, 119
while 102, 110
while repetition statement 72

control variable 102
control-variable name 104
controlling expression 117
converge on the base case 182
conversion constructor 337, 339
conversion operator 337

explicit 340
conversions among fundamental types

by cast 337
convert a binary number to decimal 786
convert a hexadecimal number to decimal

786
convert among user-defined types and

built-in types 337
convert an octal number to decimal 786
convert between types 337
convert lowercase letters 140
convert strings to floating-point types 612
convert strings to integral types 612
converting strings to C-style strings and

character arrays 606
copy algorithm 492, 558
copy assignment 279
copy constructor 280, 287, 327, 332,

334, 370, 478, 480

copy member function of class string
461, 607

copy of the argument 241
copy_backward algorithm 539, 558
copy_if algorithm 558
copy_n algorithm 541, 558
copy-and-paste approach 356
copying strings 640
correct number of arguments 136
correct order of arguments 136
correctly initializing and using a constant

variable 191
cos function 131
cosine 131
count algorithm 529, 532, 558
count function of associative container

503
count_if algorithm 529, 532, 558
counter 154
counter-controlled repetition 79, 88, 92,

101, 182
counter-controlled repetition with the

for statement 103
counter variable 82
counting loop 102
cout (<<) (the standard output stream)

418, 419, 445
cout (standard output stream) 9
cout (the standard output stream) 21,

24, 27
cout.put 421
cout.write 426
__cplusplus predefined symbolic con-

stant 797
.cpp extension 6
CPU (central processing unit) 8
craps simulation 146, 147, 150
crbegin member function of containers

479
crbegin member function of vector

490
create an object (instance) 40
create your own data types 28
CreateAndDestroy class

definition 273
member-function definitions 274

creating a random access file 457
Creating a random-access file with 100

blank records sequentially 461
Creating a sequential file 447
creating an association 508
Credit inquiry program 453
credit processing program 458
crend member function of containers

479
crend member function of vector 490
<cstdio> header 141
<csdtlib> header 574
<cstdlib> header 140, 141, 646
<cstring> header 140, 640
<ctime> header 140, 146
<Ctrl>-d 116, 429, 449
Ctrl key 116
<Ctrl>-z 116, 429, 449
<cstdlib> header 142
current position in a stream 452
cursor 22
.cxx extension 6

D
dangerous pointer manipulation 407
dangling-else problem 77
dangling pointer 333
dangling reference 167
data hiding 47, 49
data member 5, 45, 46, 726
data member function of class string

607
data members 38
data persistence 445
data structures 475
data types

bool 74
char 116, 139
double 85, 108
float 85, 138
int 25
long 120
long double 138
long int 120, 139
long long 120, 138
long long int 138
short 120
short int 120
unsigned 145
unsigned char 139
unsigned int 139, 145
unsigned long 138
unsigned long int 138
unsigned long long 138
unsigned long long int 138
unsigned short 139
unsigned short int 139

data types in the UML 44
Date class 283, 316
Date class definition 283
Date class definition with overloaded in-

crement operators 316
Date class member function definitions

284
Date class member-function and

friend-function definitions 317
Date class test program 319
__DATE__ predefined symbolic constant

797
date source file is compiled 797
deallocate 321
deallocate memory 321, 575
debugger 792
debugging 144
debugging aid 795
debugging tool 797
dec stream manipulator 427, 432, 436
decimal (base 10) number system 649,

650, 781
decimal (base-10) number system 432
decimal numbers 436, 634
decimal point 85, 90, 91, 109, 421, 432
decision 74
decision in the UML 705
decision symbol 74
declaration 25
declaration of a function 59
declaring a static member function

const 301
decrement

a pointer 247
decrement a control variable 101

Index 805

decrement operator (--) 96
decrement operators 315
default access mode for class is private

47
default argument 167, 266
default arguments with constructors 266
default case 117, 118, 144
default constructor 51, 53, 267, 288, 316,

327, 332, 370, 478
provided by the compiler 53
provided by the programmer 53

default copy constructor 287
default delimiter 425
default memberwise assignment 279
default memberwise copy 332
default precision 90
default to decimal 436
default to public access 616
default type argument for a type parame-

ter 589
default type arguments for function tem-

plate type parameters 589
default_random_engine 151
#define 794, 796
define a constructor 52
define a member function of a class 38
Define class GradeBook with a member

function displayMessage, create a
GradeBook object, and call its dis-
playMessage function 38

Define class GradeBook with a member
function that takes a parameter, create
a GradeBook object and call its dis-
playMessage function 42

#define NDEBUG 797
#define PI 3.14159 792
#define preprocessing directive 792
#define preprocessor directive 259
defining occurrence 9
definition 101
Deitel Buzz Online newsletter 18
delegating constructor 271
delete 333, 575, 577
delete [] (dynamic array deallocation)

323
delete a record from a file 472
delete operator 321, 389
deleting dynamically allocated memory

333
delimiter 254, 644
delimiter (with default value '\n') 423
delimiting characters 644
Deposit class (ATM case study) 693,

696, 699, 700, 708, 715, 716, 724,
727, 733, 734

DepositSlot class (ATM case study)
693, 695, 699, 708, 716, 728

<deque> header 140, 499
deque class template 485, 498

push_front function 499
shrink_to_fit member function

490
dereference

a const iterator 482
a null pointer 232
a pointer 232, 235, 241
an iterator 480, 481, 484
an iterator positioned outside its con-

tainer 490

dereferencing operator (*) 232
derive one class from another 264
derived class 343, 345, 372, 733, 734

indirect 401
derived-class catch 578
descriptive words and phrases 699, 701
deserialized object 473
design process 5, 683, 689, 708, 713
design specification 689
destructor 272, 357, 478

called in reverse order of constructors
272

destructor in a derived class 370
destructors called in reverse order 370
Dev C++ 7
diagnostics that aid program debugging

141
diamond inheritance 677
diamond symbol 71, 74
dice game 146
die rolling

using an array instead of switch
195

difference_type 480
digit 26, 253, 781
direct base class 345
directly reference a value 229
disk 8, 9
disk drive 417
disk I/O completion 570
disk space 449, 573, 574
displacement 410
display screen 417, 419
divide by zero 9
DivideByZeroException 566
divides function object 554
division 29
do…while repetition statement 72, 110,

111
dollar amount 109
dot (.) operator 40
dot operator (.) 265, 293, 384, 576
dotted line 71
double 26
double data type 85, 108, 138
double-ended queue 498
double-precision floating-point number

89
double quote 22, 23
double-selection statement 72
double-word boundary 617
“doubly initializing” member objects 288
doubly linked list 494, 477
downcasting 383
driver program 55
dummy value 85
duplicate keys 500, 505
DVD 445
dynamic binding 384, 406, 407, 410
dynamic casting 411
dynamic data structure 229
dynamic memory 575
dynamic memory management 321
dynamic storage duration 153
dynamic_cast 413, 578
dynamically allocate array of integers 328
dynamically allocated memory 279, 280,

333, 389, 575
allocate and deallocate storage 272

dynamically allocated storage 332
dynamically determine function to exe-

cute 383

E
Eclipse 7
Eclipse Foundation 15
edit 6
edit a program 6
editor 6
element of an array 186
elided UML diagram 694
#elif 795
emacs 6
embedded parentheses 29
embedded system 15
Employee class 283

definition showing composition 285
definition with a static data member

to track the number of Employee
objects in memory 299

header 394
implementation file 395
member-function definitions 286,

299
empty member function

of containers 478
of priority_queue 513
of queue 511
of sequence container 493
of stack 509
of string 307, 601

empty parentheses 40, 41, 43
empty statement 78
empty string 48, 601
encapsulate 47
encapsulation 5, 49, 262, 278, 288
end function 240
end line 28
end member function of class string

608
end member function of containers 479
end member function of first-class con-

tainer 480
end of a sequence 536
end of a stream 452
“end of data entry” 85
end-of-file 116, 117, 254, 442
#endif preprocessing directive 795
#endif preprocessor directive 259
endl 28, 90
end-of-file 449
end-of-file indicator 449
end-of-file key combination 449
end-of-file marker 445
Enter key 27
enter key 117, 118
enum

scoped 150
specifying underlying integral type

150
unscoped 150

enum class 150
enum keyword 149
enum struct 150
enumeration 149, 792
enumeration constant 149, 794
EOF 116, 422, 425, 634

806 Index

eof member function 422, 442
eofbit of stream 442
equal algorithm 523, 558
equal to 32
equal_range algorithm 546, 548, 558
equal_range function of associative

container 503
equal_to function object 554
equality and relational operators 33
equality operator (==) 324, 480
equality operators 32, 33
equality operators (== and !=) 74, 123
equation of straight line 30
erase 603
erase member function of class string

603
erase member function of containers

479
erase member function of first-class

containers 493
e-reader device 16
#error preprocessing directive 795
error

off-by-one 104
error bits 425
error detected in a constructor 571
error state of a stream 422, 440, 441
escape character 22
escape early from a loop 121
escape sequence 22, 24
escape sequences

\' (single-quote character) 23
\" (double-quote character) 23
\\ (backslash character) 23
\a (alert) 23
\n (newline) 23
\r (carriage return) 23
\t (tab) 23, 118

event 703
<exception> header 140
exception 225, 561

handler 225
handling 221
parameter 226

exception class 562, 578
what virtual function 562

exception classes derived from common
base class 572

exception handling 140, 561
out_of_range exception class 226
what member function of an excep-

tion object 226
<exception> header 562, 578
exception object 566
exception parameter 564
exceptional condition 118
Exceptions 226

bad_alloc 572
bad_cast 578
bad_typeid 578
length_error 578
logic_error 578
out_of_range 226, 578
overflow_error 578
underflow_error 579

executable image 8
executable program 7
execute a program 6, 8
execution-time error 9

execution-time overhead 407
exit 449
exit a function 23
exit function 272, 273, 574
EXIT_FAILURE 449
EXIT_SUCCESS 449
exp function 131
expand a macro 793
explicit constructor 339
explicit conversion 90
explicit keyword 52, 339

conversion operators 340
exponential “explosion” of calls 182
exponential complexity 182
exponential function 131
exponentiation 31, 108
expression 74, 75, 90, 104
extensibility 376
extensibility of C++ 314
extensible language 179
extensible markup language (XML) 473
extensible programming language 40
extern keyword 154
extern storage-class specifier 152

F
fabs function 131
Facebook 15
factorial 176, 177, 179
fail member function 442
failbit 449
failbit of stream 422, 426, 442
false 32
false 74, 75, 182, 438
fatal logic error 32
fatal runtime error 9
fault-tolerant programs 225, 561
Fibonacci series 179, 182
field width 110, 189, 426, 429
fields larger than values being printed 435
FIFO 477, 498
FIFO (first-in, first-out) 511
file 445, 451
file of n bytes 445
file open mode 447, 450
file open modes

ios::app 447
ios::ate 448
ios::binary 448, 461, 464
ios::in 448, 450
ios::out 447
ios::trunc 448

__FILE__ predefined symbolic constant
796

file processing 417, 420
file scope 155, 264
filename 447, 450
filename extensions 6
file-position pointer 452, 464, 472
file-processing classes 420
fill algorithm 520, 521, 558
fill character 261, 426, 429, 434, 435
fill member function 433, 435
fill member function of basic_ios 442
fill_n algorithm 520, 521, 558
final

class 389
member function 389

final state 71
final state in the UML 705
final value of a control variable 101, 105
find algorithm 533, 535, 558
find function of associative container

503
find member function of class string

601, 603
find_end algorithm 558
find_first_not_of member function

of class string 603
find_first_of algorithm 558
find_first_of member function of

class string 603
find_if algorithm 533, 536, 558
find_if_not algorithm 533, 537, 558
find_last_ofmember function of class

string 603
finding strings and characters in a string

601
first data member of pair 503
first-in, first-out (FIFO) data structure

511
first-class container 477, 479, 480, 483,

489, 494
begin member function 480
clear function 494
end member function 480
erase function 493

first-in, first-out (FIFO) 477, 498
fixed notation 421, 432, 437
fixed-point format 91
fixed-point value 110
fixed stream manipulator 91, 432, 433,

437
fixed-size data structure 238
flag value 85
flags member function of ios_base

439
flash drive 445
float data type 85, 138
floating point 432, 437
floating-point arithmetic 304
floating-point division 90
floating-point literal 89

double by default 89
floating-point number 85, 90

double data type 85
double precision 89
float data type 85
single precision 89

floating-point size limits 141
floating-point number in scientific format

437
floor function 131
flow of control 78, 88
flow of control in the if…else state-

ment 75
flow of control of a virtual function call

408
flush buffer 443
flush output buffer 28
flushing stream 426
fmod function 131
fmtflags data type 439
for repetition statement 72, 102, 104
for repetition statement examples 105
for_each algorithm 529, 533, 558
force a decimal point 421

Index 807

forcing a plus sign 434
form feed ('\f') 634, 637
formal parameter 136
formal type parameter 173
format error 442
format of floating-point numbers in sci-

entific format 437
format state 426, 439
format-state stream manipulators 432
formatted data file processing 445
formatted I/O 417
formatted input/output 456
formatted text 456
forward declaration 730
forward iterator 482, 518, 521, 529, 536,

538, 540
forward iterator operations 484
forward iterators 494
<forward_list> header 140
forward_list class template 476, 485,

494
splice_after member function

498
fractional parts 90
fragile software 364
free function (global function) 262
free store 321
friend function 289, 346
friend of a derived class 675
friends are not member functions 291
Friends can access private members of

class 289
friendship granted, not taken 289
front member function of queue 511
frontmember function of sequence con-

tainers 492
front_inserter function template 540
<fstream> header 140
fstream 446, 462, 466, 471
<fstream> header 445
function 3, 9, 21, 137

argument 41
call 136
call overhead 163
call stack 159
declaration 137
definition 136, 156
empty parentheses 40, 41, 43
header 40
local variable 44
multiple parameters 44
name 154
overloading 170
parameter 41, 43
parameter list 43
prototype 58, 136, 137, 156, 165,

235
return a result 47
signature 137, 171
that takes no arguments 162
trailing return type 175

function body 40
function call 41
function call operator () 340, 410
function call stack 242
function object 501, 505, 518, 553

binary 553
divides 554
equal_to 554

function object (cont.)
greater 554
greater_equal 554
less 554
less_equal 554
logical_end 554
logical_not 554
logical_or 554
minus 554
modulus 554
multiplies 554
negate 554
not_equal_to 554
plus 554
predefined in the STL 553

function object less< int > 501
function object less< T > 505, 512
function overhead 793
function overloading 416
function pointer 407, 410, 518, 553
function prototype 58, 109, 289, 792

parameter names optional 59
function prototype scope 155, 156
function scope 155, 155
function template 173, 582, 589
function template specialization 173
<functional> header 141, 553
functional structure of a program 22
functions 3
functions for manipulating data in the

standard library containers 141
functions with empty parameter lists 162
function-template specialization 582
fundamental type 26
fundamental types

unsigned int 82

G
game of chance 146
game of craps 147
game playing 141
gcount function of istream 426
general class average problem 85
general utilities library <cstdlib> 797
generalities 376
generalization in the UML 733
generalized numeric operations 557
general-utilities library <cstdlib> 646
generate algorithm 520, 521, 558
generate_n algorithm 520, 521, 558
generating values to be placed into ele-

ments of an array 191
generator function 520
generic algorithms 519
generic programming 582
get a value 49
get and set functions 48
get member function 422, 423
get pointer 452
getline function for use with class

string 593
getline function of cin 424
getline function of the string header

43, 48
gets the value of 32
global 60
global function 130
global identifier 665

global namespace 667
global namespace scope 155, 156, 272,

298
global object constructors 272
global scope 272, 274, 667
global variable 154, 156, 158, 169, 667
golden mean 179
golden ratio 179
good function of ios_base 442
Good Programming Practices overview

xxiii
goodbit of stream 442
goto elimination 70
goto statement 70
GradeBook.cpp 80, 86
GradeBook.h 80, 85
graph information 194
Graphical User Interface (GUI) 16
greater function object 554
greater_equal function object 554
greater-than operator 32
greater-than-or-equal-to operator 32
guard condition 74
guard condition in the UML 705
GUI (Grahical User Interface) 16
guillemets (« and ») in the UML 54

H
.h filename extension 54
half-word 617
handle on an object 264
hard disk 445
hardcopy printer 9
hardware platform 2
has-a relationship 343, 695, 283
header 54, 62, 139, 259, 372, 791
Headers

<algorithm> 492, 558
<cmath> 109
<deque> 499
<exception> 562
<forward_list> 494
<fstream> 445
<functional> 553
<iomanip.h> 90
<iostream> 21, 116
<list> 494
<map> 505, 507
<memory> 575
<numeric> 559
<queue> 511, 512
<set> 501
<stack> 509
<stdexcept> 562, 578
<string> 43
<typeinfo> 413
<unordered_map> 505, 507
<unordered_set> 501, 504
<vector> 221
how they are located 57
name enclosed in angle brackets (<

>) 57
name enclosed in quotes (" ") 57

heap 321, 512, 548, 551
heapsort sorting algorithm 548
helper function 265
hex stream manipulator 427, 432, 436

808 Index

hexadecimal 650
integer 232

hexadecimal (base-16) number 421, 427,
432, 436, 649, 781

hexadecimal notation 421
hexadecimal number system 634
hide implementation details 288
hide names in outer scopes 155
hierarchy of exception classes 578
hierarchy of shapes 390
“highest” type 138
high-level I/O 417
horizontal tab ('\t') 23, 634, 637
host object 283

I
IDE (integrated development environ-

ment) 6
identifier 26, 72, 156
identifiers for variable names 152
IEC (International Electrotechnical

Commission) 2
#if 795
#if preprocessing directive 795
if single-selection statement 71, 74
if statement 32, 74
if statement activity diagram 74
if…elsedouble-selection statement 72,

74, 75
if…else statement activity diagram 75
#ifdef preprocessing directive 795
#ifndef preprocessor directive 259
#ifndef preprocessing directive 795
ifstream 446, 450, 451, 464
ifstream constructor function 450
ignore 312
ignore function of istream 425
implementation inheritance 393
implementation of a member function

changes 270
implementation phase 737
implementation process 708, 726
implicit conversion 90, 338, 339

via conversion constructors 339
implicit first argument 291
implicit handle 264
implicit, user-defined conversions 338
implicitly virtual 384
improper implicit conversion 338
in-class initializers 260
in-memory formatting 609
in-memory I/O 609
in-class initializer (C++11) 120
#include 791, 791
#include "filename" 791
include guard 257, 259
#include <iomanip> 90
#include <iostream> 21
#include preprocessing directive 791
#include preprocessor directive 137
includes algorithm 543, 544, 559
including a header multiple times 259
increment

a pointer 247
increment a control variable 101, 104,

105
increment an iterator 484
increment operator 315

increment operator (++) 96
indentation 73, 76
independent software vendor (ISV) 3
index 186
indexed access 498
indirect base class 345
indirect derived class 401
indirection 229, 407
indirection operator (*) 232, 234
indirectly reference a value 229
inequality 668
inequality operator (!=) 324
inequality operator keywords 668
infinite loop 89, 104, 176
information hiding 5
inherit constructors 370
inherit constructors from base class 370
inherit interface 390
inherit members of an existing class 343
Inheritance

hierarchy for university Communi-
tyMembers 344

inheritance 5, 258, 264, 343, 345, 732,
733, 736, 737
examples 344
hierarchy 384
implementation vs. interface inheri-

tance 393
multiple 672
relationships of the I/O-related class-

es 420, 446
virtual base class 679

initial state 71
initial state in the UML 703, 705
initial value of a control variable 101, 103
initial value of an attribute 702
initialize a pointer 230
initializer 189
initializer list 189, 253
initializer_list 552
initializer_list class template 336
initializing an array’s elements to zeros

and printing the array 189
initializing multidimensional arrays 212
initializing the elements of an arraywith

a declaration 190
inline 164, 335, 794
inline function 163
inline function 792, 793
inline function to calculate the volume

of a cube 164
inline keyword 163
inner block 155
inner_product algorithm 559
innermost pair of parentheses 29
inplace_merge algorithm 542, 559
input a line of text 424
Input and output stream iterators 481
input from string in memory 140
input iterator 482, 484, 523, 526, 529,

532, 540, 545
input line of text into an array 254
input/output library functions 141
input/output of objects 473
input/output operations 71
input/output stream header <iostream>

21
input sequence 481
input stream 422, 423

input stream iterator 481
input stream object (cin) 27
inputting from strings in memory 609
insert function of associative container

503, 507
insert member function of class

string 605
insert member function of containers

478
insert member function of sequence

container 493
inserter function template 540
insertion at back of vector 486
instance 4
instance of a class 46
instant access processing 466
instant-access application 456
instruction 8
int 21, 26, 138
int & 165
int operands promoted to double 90
integer 21, 25
integer arithmetic 304
Integer class definition 575
integer division 28, 90
integer promotion 90
integers prefixed with 0 (octal) 436
integers prefixed with 0x or 0X (hexadec-

imal) 436
integral constant expression 112
integral size limits 141
integrated development environment

(IDE) 6
interaction diagram in the UML 716
interactions among objects 714, 717
interest rate 108
interface 58
Interface Builder 16
interface inheritance 393
interface of a class 58
internal spacing 434
internal stream manipulator 432, 434
International Electrotechnical Commis-

sion (IEC) 2
International Standards Organization

(ISO) 2
invalid_argument class 578
invalid_argument exception 493
invalid_argument exception class 260
invoking a non-const member function

on a const object 281
<iomanip> header 140, 791, 418, 427
<iomanip.h> header 90
iOS 15
ios_base base class 440
ios_base class

precision function 427
width member function 429

ios::app file open mode 447
ios::ate file open mode 448
ios::beg seek direction 452
ios::binary file open mode 448, 461,

464
ios::cur seek direction 452
ios::end seek direction 452
ios::in file open mode 448, 450
ios::out file open mode 447
ios::trunc file open mode 448

Index 809

<iostream> header 21, 139, 418, 419,
791, 116, 445

iota algorithm 559
iPod Touch 16
is a 675
is-a relationship (inheritance) 343, 372
is_heap algorithm 551, 559
is_heap_until algorithm 551, 559
is_partitioned algorithm 558
is_permutation algorithm 558
is_sorted algorithm 558
is_sorted_until algorithm 558
isalnum 634
isalpha 634
iscntrl 634, 637
isdigit 634, 636
isgraph 634, 637
islower 634, 636
ISO 2
isprint 634, 637
ispunct 634, 637
isspace 634, 637
istream 420
istream class 452, 457, 464, 471, 473,

609
peek function 425
seekg function 452
tellg function 452

istream member function ignore 312
istream_iterator 481
istringstream 611
istringstream class 609, 611
isupper 634, 636
isxdigit 634, 634
iter_swap algorithm 537, 538, 558
iterating 82
iteration 182, 184
Iterative factorial solution 183
iterative model 688
iterative solution 176, 184
<iterator> header 141, 540, 542
iterator 198, 475, 607, 608
iterator 479, 480, 481, 484, 503, 608
iterator invalidation 519
iterator operations 484
iterator pointing to first element past the

end of container 480
iterator pointing to the first element of the

container 480
iterator typedef 483
iterator-category hierarchy 483

J
Jacobson, Ivar 684
Jacopini, G. 70
Java programming language 16
Jobs, Steve 16
justified field 435

K
key 500
keyboard 9, 27, 115, 417, 419, 445
Keypad class (ATM case study) 690, 693,

695, 708, 715, 716, 720, 728
key–value pair 477, 505, 507, 508
keywords 72

and 668

keywords (cont.)
and_eq 669
auto 213
bitand 669
bitor 669
class 173, 583
compl 669
const 163
enum 149
enum class 150
enum struct 150
explicit 52, 339
extern 154
inline 163
mutable 663
namespace 665, 667
not 668
not_eq 668
or 668
or_eq 669
private 47
public 39
static 154
table of keywords 72
template 583
throw 566
typedef 418
typename 173, 583
void 40
xor 669
xor_eq 669

L
label 155
labels in a switch structure 155
lambda expression 518, 556
lambda function 556
lambda introducer 557
large object 166
last-in, first-out (LIFO) 158

data structure 477, 509
order 582, 587

late binding 384
leading 0 436
leading 0x and leading 0X 432, 436
left brace ({) 21, 24
left justification 110, 434
left-shift operator (<<) 304, 621, 621,

627, 628
left side of an assignment 128, 187, 276,

328
left stream manipulator 110, 432, 433,

433
left-to-right associativity 98
left value 128
left-shift assignment operator (<<=) 629
left-shift operator (<<) 419
left-to-right associativity 35
left-to-right evaluation 29, 30
legacy C code 792
legacy code 797
length member function of class

string 593
length of a string 254
length of a substring 340
length_error exception 493, 578, 599
less function object 554
less_equal function object 554

less< double > 505
less< int > 501, 505
less-than operator 32, 480
less-than-or-equal-to operator 32
lexicographical 597
lexicographical_compare algo-

rithm 522, 524, 559
lifeline of an object in a UML sequence

diagram 719
LIFO (last-in, first-out) 158, 477, 509

order 582, 587
<limits> header 141
line 30
line number 796
line of communication with a file 448,

450
line of text 424
__LINE__ predefined symbolic constant

796
link 6
linkage 152, 667
linker 7
Linux 15

shell prompt 9
Linux operating system 15
<list> header 140
list class 485, 494
list functions

assign 498
merge 498
pop_back 498
pop_front 498
push_front 497
remove 498
sort 497
splice 497
swap 498
unique 498

<list> header 494
list initialization 94
list initializer 227, 271

dynamically allocated array 322
vector 490

literal
floating point 89

live-code approach xxiii
load 6
loader 8, 8
local automatic object 275
local variable 44, 154, 156
<locale> header 141
log function 132
log10 function 132
logarithm 132
logic error 6, 32
logic_error exception 578
logical AND 668
logical AND (&&) 123
logical negation 123, 124
logical NOT (!) 123, 124, 668
logical operator keywords 668
logical operators 123
logical OR (||) 123, 124, 626, 668
logical_and function object 554
logical_not function object 554
logical_or function object 554
long data type 120
long double data type 138
long int 177

810 Index

long int data type 120, 139
long long data type 120, 138
long long int data type 138
loop 72, 79
loop-continuation condition 72, 101,

102, 104, 105, 110, 111
loop counter 101
loop-continuation condition fails 182
looping statement 72
loss of data 442
lower_bound algorithm 548, 558
lower_bound function of associative

container 503
lowercase letter 634, 636
lowercase letters 26, 140
“lowest type” 138
low-level I/O capabilities 417
lvalue ("left value") 128, 167, 187, 231,

232, 276, 328, 335, 500
lvalues as rvalues 128

M
m-by-n array 211
Mac OS X 15, 16
machine code 110
machine dependent 247
machine language 153
Macintosh 16
macro 139
macro argument 793
macro definition 796
macro expansion 793
macro-identifier 792
macros 791
magnitude 434
magnitude right justified 432
main 21, 24
“make your point” 146
make_heap algorithm 550, 559
make_pair 507
mandatory function prototypes 137
mangled function name 171
manipulating individual characters 633
manipulator 109
manipulators 446
many-to-one relationship 697
<map> header 140, 505, 507
mapped values 500
mask 623
“masked off” 623
matching catch block 564
math library 140
math library functions 109, 131

ceil 131
cos 131
exp 131
fabs 131
floor 131
fmod 131
log 132
log10 132
pow 132
sin 132
sqrt 132
tan 132

mathematical algorithms 529
mathematical algorithms of the Standard

Library 529

max algorithm 552, 559
max_element algorithm 529, 532, 559
max_sizemember function of a string

601
max_size member function of contain-

ers 478
maximum function 132
maximum length of a string 601
maximum size of a string 599
mean 30
member function 4, 38, 39, 726

argument 41
implementation in a separate source-

code file 59
parameter 41

member function automatically inlined
261

member function call 5
member function calls for const objects

281
member function calls often concise 262
member function defined in a class defini-

tion 261
member function definitions of class In-

teger 576
member functions that take no arguments

262
member-initializer list 52, 283, 286, 675
member object

default constructor 288
initializer 287

member selection operator (.) 265, 293,
384, 576

memberwise assignment 279, 308
memberwise copy 332
memchr 656, 658
memcmp 656, 657
memcpy 655, 656
memmove 656, 657
<memory> header 140
memory 153
memory address 229
memory consumption 407
memory functions of the string-handling

library 655
memory handling

function memchr 658
function memcmp 658
function memcpy 656
function memmove 657
function memset 659

<memory> header 575
memory leak 322, 476, 575, 577, 607

prevent 577
memory-access violation 476
memset 656, 659
merge algorithm 538, 540, 558
merge in the UML 705
merge member function of list 498
merge symbol 79
message in the UML 714, 716, 717, 720
message passing in the UML 719
Microsoft

Visual C++ 6
Microsoft Visual C++ 669
Microsoft Windows 116
min algorithm 552, 559
min_element algorithm 529, 532, 559
minmax algorithm 552, 559

minmax_element algorithm 529, 532,
553, 559

minus function object 554
minus sign (-) indicating private visibility

in the UML 726
minus sign, – (UML) 50
mismatch algorithm 522, 524, 558
mission-critical computing 565
mixed-type expression 138
model of a software system 694, 702, 735
modifiable lvalue 308, 328, 335
modify a constant pointer 243
modify address stored in pointer variable

243
modulus function object 554
modulus operator (%) 28, 29, 142, 146
monetary formats 141
most derived class 681
move algorithm 540, 558
move assignment operator 334, 480
move constructor 334, 370, 478, 480
move semantics 334, 480
move_backward algorithm 540, 558
Mozilla Foundation 15
multidimensional array 211
multimap associative container 505
multiple 28
multiple inheritance 345, 418, 672, 673,

674, 675, 677
multiple inheritance demonstration 673
multiple parameters to a function 44
multiple-selection statement 72, 112
multiple-source-file program

compilation and linking process 62
multiple-statement body 34
multiplication 28, 29
multiplicative operators (*, /, %) 90
multiplicity 694
multiplies function object 554
mutable

data member 663, 663, 664
demonstration 664
keyword 152, 663

mutable data member 664
mutating sequence algorithms 558
mutator 49

N
name decoration 171
name function of class type_info 413
name handle 264

on an object 264
name mangling 171
name mangling to enable type-safe link-

age 172
name of a control variable 101
name of a source file 796
name of a user-defined class 39
name of a variable 152
name of an array 187
named constant 191
namespace 22

alias 668
global 667
nested 667
qualifier 668
unnamed 667

Index 811

namespace 665
namespace alias 668
namespace keyword 665, 667
namespace member 665
namespace scope 155
namespaces 665
naming conflict 291, 665
narrowing conversion 95
natural logarithm 132
navigability arrow in the UML 726
NDEBUG 797
near container 477
negate function object 554
nested blocks 155
nested control statement 92
nested for statement 194, 214, 219
nested if…else statement 76, 77
nested message in the UML 718
nested namespace 667
nested namespace 667
nested parentheses 29
NetBeans 7
network connection 417
network message arrival 570
new 332
new calls the constructor 321
new failure handler 574
<new> header 572
new operator 321
new returning 0 on failure 573
new stream manipulators 430
new throwing bad_alloc on failure 572,

573
newline ('\n') escape sequence 22, 28,

35, 118, 252, 421, 637
next_permutation algorithm 559
NeXTSTEP operating system 16
noboolalpha stream manipulator 438
noexcept keyword 571
non-const member function 282
non-const member function called on a

const object 282
non-const member function on a non-

const object 282
nonconstant pointer to constant data 241
nonconstant pointer to nonconstant data

241
noncontiguous memory layout of a deque

499
nondeterministic random numbers 144
none_of algorithm 533, 536, 558
nonfatal logic error 32
nonfatal runtime error 9
non-member, friend function 313
non-member function to overload an op-

erator 336
nonmodifiable function code 264
nonmodifiable lvalue 226, 308
nonmodifying sequence algorithms 557,

558
nonparameterized stream manipulator 90
nonrecoverable failures 442
non-staticmember function 291, 301,

337
nontype template parameter 589
nonzero treated as true 127
noshowbase stream manipulator 432,

436
noshowpoint stream manipulator 432

noshowpos stream manipulator 432, 434
noskipws stream manipulator 432
NOT (!; logical NOT) 123
not equal 32
not operator keyword 668
not_eq operator keyword 668
not_equal_to function object 554
note 71
nothrow object 573
nothrow_t type 573
noun phrase in requirements specification

692, 698
nouppercase stream manipulator 432,

438
nth_element algorithm 558
NULL 231
null character ('\0') 253, 254, 426, 640,

645
null pointer (0) 230, 232, 449, 639
null statement 78
null terminated 606
null-terminated string 255, 421
nullptr constant 230
number of arguments 136
number of elements in an array 245
<numeric> 532
numeric algorithms 553, 559
<numeric> header 559
numerical data type limits 141

O
object 2, 3
object (or instance) 5, 717
object code 7, 62
object leaves scope 272
object of a derived class 377, 380
object of a derived class is instantiated 369
object-oriented analysis and design

(OOAD) 6, 683
object-oriented design (OOD) 683, 690,

692, 698, 702, 707, 726
object-oriented language 6
object-oriented programming (OOP) 2,

6, 16, 258, 343, 2
object serialization 473
object’s vtable pointer 410
Objective-C 16
objects contain only data 264
oct stream manipulator 427, 432, 436
octal (base-8) number system 427, 432,

649
octal number 421, 436, 634, 650
octal number system (base 8) 781
off-by-one error 104
offset 410
offset from the beginning of a file 452
offset to a pointer 250
ofstream 446, 448, 450, 451, 461, 464,

466
constructor 448
open function 448

one’s complement 627, 788
one’s complement operator (~) 621
one-pass algorithm 482
ones position 781
one-to-many mapping 477
one-to-many relationship 505, 697
one-to-one mapping 477, 507

one-to-one relationship 697
OOAD (object-oriented analysis and de-

sign) 6, 683
OOD (object-oriented design) 683, 690,

692, 698, 702, 707
OOP (object-oriented programming) 2,

6, 343
open a file for input 448
open a file for output 448
open a nonexistent file 449
open function of ofstream 448
Open Handset Alliance 16
open source 15, 16
opened 445
operand 22, 27, 28, 75
operating system 15, 16
operation (UML) 41
operation compartment in a class diagram

708
operation in the UML 41, 694, 707, 708,

711, 728, 731, 736
operation parameter in the UML 44, 708,

711, 712
operator

associativity 126
overloading 28, 173, 304, 416, 621
precedence 29, 98, 126, 629
precedence and associativity chart 35

operator keywords 669
operator keywords 308, 668, 669
operator keywords demonstration 669
operator overloading

decrement operators 315
increment operators 315

operator void* 452
operator void* member function 442
operator void* member function of

ios 449
operator! member function 314, 442,

449
operator!= 335
operator() overloaded operator 553
operator[]

const version 335
non-const version 335

operator+ 308
operator++ 315, 321
operator++(int) 315
operator<< 313, 331
operator= 333, 478
operator== 334, 523
operator>> 312, 331
operators

! (logical NOT operator) 123, 124
!= (inequality operator) 32
.* and ->* 670
() (parentheses operator) 29
* (multiplication operator) 29
* (pointer dereference or indirection)

232, 232
*= multiplication assignment 96
/ (division operator) 29
/= division assignment 96
&& (logical AND operator) 123
% (modulus operator) 29
%= modulus assignment 96
+ (addition operator) 27, 29
+= 595
+= addition assignment 95

812 Index

operators (cont.)
< (less-than operator) 32
<< (stream insertion operator) 22, 28
<= (less-than-or-equal-to operator)

32
= (assignment operator) 27, 29, 125
-= subtraction assignment 96
== (equality operator) 32, 125
> (greater-than operator) 32
>= (greater-than-or-equal-to opera-

tor) 32
|| (logical OR operator) 123, 124
addition assignment (+=) 95
address (&) 232
arithmetic 95
arrow member selection (->) 265
assignment 95
conditional (?:) 75
const_cast 661
decrement (--) 96, 97
delete 321
dot (.) 40
increment (++) 96
member selection (.) 265
multiplicative (*, /, %) 90
new 321
parentheses (()) 90
postfix decrement 96
postfix increment 96, 98
prefix decrement 96
prefix increment 96, 98
scope resolution (::) 60
sizeof 244, 245
static_cast 90
ternary 75
typeid 413
unary minus (-) 90
unary plus (+) 90
unary scope resolution (::) 169

optimizations on constants 281
optimizing compiler 110, 154
OR (||; logical OR) 123
or operator keyword 668
or_eq operator keyword 669
order in which constructors and destruc-

tors are called 274
order in which destructors are called 272
order in which operators are applied to

their operands 180
order of evaluation 181
ordered associative containers 476, 500
original format settings 440
OS X 16
ostream 452, 457, 466, 473
ostream class 418

seekp function 452
tellp function 452

ostream_iterator 481
ostringstream class 609
other character sets 592
out-of-range array subscript 570
out-of-range element 328
out of scope 158
out_of_bounds exception 493
out_of_range class 335
out_of_range exception 493, 514, 578,

595
out_of_range exception class 226
outer block 155

outer for structure 214
out-of-bounds array elements 198
output a floating-point value 432
output buffering 443
output data items of built-in type 419
output format of floating-point numbers

437
output iterator 482, 484, 521, 529, 542,

545
output of char * variables 421
output of characters 420
output of floating-point values 421
output of integers 421
output of standard data types 420
output of uppercase letters 421
output sequence 481
output stream 492
output to string in memory 140
outputting to strings in memory 609
overflow 570
overflow_error exception 578
overhead of a function call 793
overload the addition operator (+) 308
overload unary operator ! 314
overloaded [] operator 328
overloaded << operator 314
overloaded addition assignment operator

(+=) 316
overloaded assignment (=) operator 327,

333
overloaded binary operators 309
overloaded cast operator function 337
overloaded constructors 371
overloaded equality operator (==) 327,

334
overloaded function 171, 589
overloaded function call operator () 340
overloaded function definitions 170
overloaded increment operator 316
overloaded inequality operator 327, 335
overloaded operator

() 553
overloaded operator += 320
overloaded operator[] member func-

tion 335
overloaded postfix increment operator

316, 320
overloaded prefix increment operator

316, 320
overloaded stream insertion and stream

extraction operators 311
overloaded stream insertion operator 675
overloaded subscript operator 328, 335
overloading 28, 170

constructor 271
overloading + 309
overloading << and >> 173
overloading binary operator < 310
overloading binary operators 309
overloading function call operator () 340
overloading operators 173
overloading postfix increment operator

315, 321
overloading prefix and postfix decrement

operators 315
overloading prefix and postfix increment

operators 315
overloading resolution 589

overloading stream insertion and stream
extraction operators 310, 316, 320,
327, 331

overloading template functions 589
overloading the stream insertion operator

473
override a function 383
override keyword 384

P
pad with specified characters 421
padding 633
padding characters 429, 432, 433, 435
padding in a structure 633
pair 503
pair of braces {} 34, 66
parameter 41, 43
parameter in the UML 44, 708, 711, 712
parameter list 43, 52
parameterized stream manipulator 90,

109, 418, 427, 452
parameterized type 582
parentheses operator (()) 29, 90
parentheses to force order of evaluation

35
partial_sort algorithm 558
partial_sort_copy algorithm 558
partial_sum algorithm 559
partition algorithm 558
partition_copy algorithm 558
partition_point algorithm 558
Pascal case 39
pass-by-reference 164, 229, 235, 237

with a pointer parameter used to cube
a variable’s value 235

with pointer parameters 233
with reference parameters 165, 233

pass-by-reference with pointers 166
pass-by-value 164, 165, 233, 234, 236,

243
used to cube a variable’s value 234

passing arguments by value and by refer-
ence 165

passing large objects 166
passing options to a program 240
“past the end” iterator 532
peek function of istream 425
percent sign (%) (modulus operator) 28
perform a task 40
perform an action 22
performance 3
PI 792, 793
plus function object 554
plus sign 434
plus sign (+) indicating public visibility in

the UML 726
plus sign, + (UML) 41
pointer 247
pointer 479
pointer arithmetic 247, 248, 250, 489

machine dependent 247
pointer assignment 249
pointer-based strings 252
pointer comparison 249
pointer dereference (*) operator 232
pointer expression 247, 250
pointer handle 264
pointer manipulation 407

Index 813

pointer notation 251
pointer operators & and * 232
pointer to a function 407
pointer to an object 242
pointer to void (void *) 249
pointer variable 575
pointer/offset notation 250
pointer/subscript notation 250
pointer-based string 606
pointers and array subscripting 249, 250
pointers and arrays 249
pointers declared const 243
pointers to dynamically allocated storage

293, 334
pointer-to-member operators

.* 670
->* 670

point-of-sale system 456
poll analysis program 196
polymorphic exception processing 572
polymorphic programming 390, 410
polymorphic screen manager 376
polymorphically invoking functions in a

derived class 678
polymorphism 373, 375
polymorphism and references 407
polynomial 31
pop 587
pop function of container adapters 509
pop member function of

priority_queue 512
pop member function of queue 511
pop member function of stack 509
pop_backmember function of list 498
pop_front 494, 495, 500, 511
pop_heap algorithm 551, 559
Portability Tips overview xxiv
portable 2
position number 186
positional notation 781
positional value 781, 782
positional values in the decimal number

system 782
postdecrement 96, 98
postfix decrement operator 96
postfix increment operator 96, 98
postincrement 96, 320
postincrement an iterator 484
pow function 108, 110, 132
power 132
precedence 29, 31, 35, 98, 104, 124, 180
precedence chart 35
precedence not changed by overloading

309
precedence of the conditional operator 75
precision 90, 421, 426

format of a floating-point number 91
precision function of ios_base 427
precision of a floating-point value 85
precision of floating-point numbers 427
precision setting 428
predecrement 96, 98
predefined function objects 553
predefined symbolic constants 796
predicate function 265, 497, 523, 526,

529, 532, 536, 537, 540, 545, 550
prefix decrement operator 96, 97
prefix increment operator 96, 98
preincrement 96, 320

preprocessing directives 7, 21
preprocessor 6, 7, 137, 791
preprocessor directives

#ifndef 259
#define 259
#endif 259

prev_permutation algorithm 559
prevent memory leak 577
preventing headers from being included

more than once 259
primary memory 8
primitive data type promotion 90
principal 108
principle of least privilege 153, 239, 240,

243, 281, 450, 483
print a line of text 20
printer 9, 417
printing

line of text with multiple statements
23

multiple lines of text with a single
statement 24

unsigned integer in bits 622
priority_queue adapter class 512

empty function 513
pop function 512
push function 512
size function 513
top function 513

private
access specifier 47, 726
base class 372
base-class data cannot be accessed

from derived class 358
inheritance 345
members of a base class 345
static data member 298

private libraries 7
probability 141
program development environment 6
program execution stack 159
program in the general 375
program in the specific 375
program termination 275, 276
programmer-defined function

maximum 132
promotion 90
promotion hierarchy for built-in data

types 138
promotion rules 138
prompt 27, 88
prompting message 443
proprietary classes 372
protected 361
protected access specifier 258
protected base class 372
protected base-class data can be ac-

cessed from derived class 363
protected inheritance 345, 372
pseudorandom numbers 144
public

keyword 726, 731
method 260

public access specifier 39
public base class 372
public inheritance 343, 345
public keyword 39
public member of a derived class 346
public services of a class 58

public static class member 298
public static member function 298
punctuation mark 644
pure specifier 391
pure virtual function 391, 407
push 587
push function of container adapters 509
push member function of

priority_queue 512
push member function of queue 511
push member function of stack 509
push_back member function of class

template vector 227
push_backmember function of vector

488
push_frontmember function of deque

499
push_front member function of list

497
push_heap algorithm 551, 559
put file-position pointer 457, 462
put member function 421, 422
put pointer 452
putback function of istream 425

Q
qualified name 369
<queue> header 140
queue adapter class 511

back function 511
empty function 511
front function 511
pop function 511
push function 511
size function 511

<queue> header 511, 512
quotation marks 22

R
radians 131
raise to a power 132
rand function 141, 142
RAND_MAX symbolic constant 141
random integers in range 1 to 6 142
random number 144
random_shuffle algorithm 529, 531,

558
random-access file 445, 457, 458, 464,

466
random-access iterator 482, 483, 498,

501, 518, 524, 531, 536, 550, 551
random-access iterator operations 484
randomizing 144
randomizing the die-rolling program 145
range 481, 532
range checking 324, 595
range-based for 595, 608
range-based for statement 200
Rational Software Corporation 690
Rational Unified Process™ 690
raw data 456
raw data processing 445
rbegin member function of class

string 608
rbegin member function of containers

479
rbeginmember function of vector 490

814 Index

rdstate function of ios_base 442
read 457, 464
read a line of text 43
read characters with getline 43
read data sequentially from a file 450
read function of istream 425
read member function 426
readmember function of istream 457,

471
read-only variable 191
Reading a random-access file sequentially

464
Reading and printing a sequential file 450
real number 85
record 446, 466
record format 459
recover from errors 442
recursion 175, 182, 183
recursion step 176, 179
recursive call 176, 179
recursive function 175
recursive function factorial 178
recursive solution 184
redundant parentheses 31, 123
reference 229, 416, 479
reference argument 233
reference parameter 164, 165, 165
reference to a constant 166
reference to a private data member 276
reference to an automatic variable 167
reference to an int 165
referencing array elements 251
referencing array elements with the array

name and with pointers 251
register declaration 154
register storage-class specifier 152
regular expression 17, 609
reinterpret_cast operator 249, 458,

461, 464
reinventing the wheel 3
relational operator 32, 33
relational operators >, <, >=, and <= 122
release dynamically allocated memory 333
remainder after integer division 28
remove algorithm 526, 558
remove member function of list 498
remove_copy algorithm 524, 526, 558
remove_copy_if algorithm 524, 527,

541, 558
remove_if algorithm 524, 526, 558
rend member function of class string

608
rend member function of containers 479
rend member function of vector 490
repetition

counter controlled 79, 88
repetition statement 70, 73

do…while 110, 111
for 102, 104
while 78, 102, 110

repetition terminates 78
replace 603
replace == operator with = 127
replace algorithm 527, 529, 558
replace member function of class

string 603, 605
replace_copy algorithm 527, 529, 558
replace_copy_if algorithm 527, 529,

558

replace_if algorithm 527, 529, 558
replacement text 793, 796

for a macro or symbolic constant
792, 794

requirements 5, 683, 688
requirements document 688, 689
requirements gathering 688
requirements specification 684
reset 514
resize member function of class

string 601
resource leak 572
restore a stream’s state to “good” 442
resumption model of exception handling

565
rethrow an exception 567
return a result 137
Return key 27
return message in the UML 720
return statement 23, 47, 137, 176
return type 40

void 40, 48
return type in a function header 137
return type in the UML 708, 713
returning a reference from a function 167
returning a reference to a private data

member 276
reusability 582
reusable software components 3
reuse 4, 54, 264
reverse algorithm 538, 541, 558
reverse_copy algorithm 541, 542, 558
reverse_iterator 479, 480, 484,

490, 608
rfindmember function of class string

603
right brace (}) 21, 23, 89
right justification 110, 432, 433
right operand 22
right shift (>>) 621
right shift operator (>>) 304
right shift with sign extension assignment

operator (>>=) 629
right stream manipulator 110, 432, 433
right-to-left associativity 98
right value 128
rightmost (trailing) arguments 167
right-shift operator (>>) 419, 621, 622,

628
right-shifting a signed value is machine

dependent 629
right-to-left associativity 35
Ritchie, Dennis 2
robust application 561, 565
role in the UML 695
role name in the UML 695
rolling a die 142
rolling a six-sided die 6000 times 143
rolling two dice 146, 147
rotate algorithm 558
rotate_copy algorithm 558
round a floating-point number for display

purposes 91
rounded rectangle (for representing a state

in a UML state diagram) 703
rounding numbers 91, 131
row subscript 211
rows 211

RTTI (runtime type information) 411,
414

rules of operator precedence 29
Rumbaugh, James 684
runtime error 9
runtime type information (RTTI) 411,

414
runtime_error class 562, 570, 578

what function 567
rvalue ("right value") 128, 167, 328

S
SalariedEmployee class header 397
SalariedEmployee class implementa-

tion file 398
savings account 108
scaling 142
scaling factor 142, 146
scientific notation 91, 421, 437
scientific notation floating-point value

438
scientific stream manipulator 432,

437
scope 104, 155, 665
scope of a symbolic constant or macro

794
scope of an identifier 152, 154
scope resolution operator (::) 60, 298,

585, 665, 668, 672, 677
scoped enum 150
scope-resolution operator (::) 150
scopes

class 155
file 155
function 155
function prototype 155
namespace 155

scoping example 156
screen 9, 21
Screen class (ATM case study) 693, 695,

708, 714, 715, 716, 718, 720, 728
screen-manager program 376
scrutinize data 259
search algorithm 558
search functions of the string-handling li-

brary 651
search key 500
search_n algorithm 558
searching 533
searching arrays 209
searching blocks of memory 655
searching strings 639, 646
second data member of pair 503
second-degree polynomial 31
secondary storage device 445
secondary storage devices

CD 445
DVD 445
flash drive 445
hard disk 445
tape 445

second-degree polynomial 31
“secret” implementation details 663
security flaws 198
seed 146
seed function rand 144
seek direction 452
seek get 452

Index 815

seek put 452
seekg function of istream 452, 472
seekp function of ostream 452, 462
select a substring 340
selection statement 70, 73
self assignment 333
self-assignment 293
self-documenting 26
semicolon (;) 22, 34, 78, 791
semicolon that terminates a structure def-

inition 617
send a message to an object 5
sentinel value 85, 89, 116
separate interface from implementation

58
sequence 210, 481, 538, 540
sequence container 476, 483, 485, 493,

497
back function 492
empty function 493
front function 492
insert function 493

sequence diagram in the UML 691, 716
sequence of messages in the UML 717
sequence of random numbers 144
sequence statement 70, 71, 73
sequence-statement activity diagram 71
sequential execution 70
sequential file 445, 446, 447, 450, 456
serialized object 473
services of a class 49
<set> header 140
set a value 49
set and get functions 48
set associative container 504
set function 288
<set> header 501, 504
set_intersection 545
set_new_handler function 572, 574
set of recursive calls to method Fibonac-

ci 181
set operations of the Standard Library

543
set_difference algorithm 543, 545,

559
set_intersection algorithm 543,

545, 559
set_new_handler specifying the func-

tion to call when new fails 574
set_symmetric_difference algo-

rithm 543, 545, 559
set_union algorithm 543, 546, 559
setbase stream manipulator 427
setfill stream manipulator 261, 433,

435
setprecision stream manipulator 90,

109, 427
setw 189, 312
setw parameterized stream manipulator

109
setw stream manipulator 254, 429, 433
Shape class hierarchy 345
shell prompt on Linux 9
shift a range of numbers 142
shifted, scaled integers 142
shifted, scaled integers produced by 1 +

rand() % 6 142
shiftingValue 146
short-circuit evaluation 124

short data type 120
short int data type 120
showbase stream manipulator 432, 436
showpoint stream manipulator 91, 432
showpos stream manipulator 432, 434
shrink_to_fit member function of

classes vector and deque 490
shuffle algorithm 558
shuffling algorithm 619
side effect 164
side effect of an expression 154, 164, 181
sign extension 622
sign left justified 432
signal value 85
signature 137, 171, 315
signatures of overloaded prefix and postfix

increment operators 315
significant digits 433
simple condition 122, 124
sin function 132
sine 132
single-argument constructor 339, 340
single-entry/single-exit control statement

73, 74
single inheritance 345, 677
single-line comment 21
single-precision floating-point number 89
single quote 23
single quote (') 252
single-selection if statement 72, 76
singly linked list 476, 494
six-sided die 142
size function of string 461
size member function of array 187
size member function of class string

64, 593
size member function of containers 478
size member function of

priority_queue 513
size member function of queue 511
size member function of stack 509
size member function of vector 224
size of a string 599
size of a variable 152
size of an array 244
size_t 189, 458
size_t type 244
size_type 480
sizeof 464, 651, 794
sizeof operator 244, 245, 291

used to determine standard data type
sizes 245

sizeof operator when applied to an ar-
ray name returns the number of bytes
in the array 245

skip remainder of switch statement 121
skip remaining code in loop 122
skipping whitespace 426, 432
skipws stream manipulator 432
small circle symbol 71
smart pointer xxi, 18
smartphone 16
software engineering 58

data hiding 47, 49
encapsulation 49
reuse 54, 57
separate interface from implementa-

tion 58
set and get functions 48

Software Engineering Observations over-
view xxiv

software life cycle 688
software reuse 3, 343, 582, 672
solid circle (for representing an initial

state in a UML diagram) in the UML
703, 705

solid circle enclosed in an open circle (for
representing the end of a UML activity
diagram) 705

solid circle symbol 71
solid diamonds (representing composi-

tion) in the UML 695
sort algorithm 209, 533, 536, 558
sort member function of list 497
sort_heap algorithm 550, 559
sorting 446, 533
sorting and related algorithms 557
sorting arrays 209
sorting order 536, 540
sorting strings 141
source code 6, 372
source-code file 54
SourceForge 15
spaces for padding 435
space-time trade-off 466
special character 253
special characters 26
specialization in the UML 734
spiral 179
splice member function of list 497
splice_aftermember function of class

template forward_list 498
sqrt function of <cmath> header 132
square function 139
square root 132, 428
srand function 144
srand(time(0)) 146
<sstream> header 140, 609, 609
stable_partition algorithm 558
stable_sort algorithm 558
<stack> header 140
stack 158, 582
stack adapter class 509

empty function 509
pop function 509
push function 509
size function 509
top function 509

Stack class template 582, 589
stack frame 159
<stack> header 509
stack overflow 159, 176
stack unwinding 566, 569, 571
Stack< double > 585, 588
stack<int> 588
Stack<T> 587
standard data type sizes 245
standard error stream (cerr) 9
standard exception classes 578
standard input object (cin) 27
standard input stream (cin) 9, 418
standard input stream object (cin) 445
Standard Library

class string 305
container classes 476
deque class template 499
exception classes 579
exception hierarchy 578

816 Index

Standard Library (cont.)
headers 141, 791
list class template 495
map class template 508
multimap class template 506
multiset class template 501
priority_queue adapter class 513
queue adapter class templates 512
set class template 504
stack adapter class 509
vector class template 487

standard output object (cout) 22, 418
standard output stream (cout) 9
standard output stream object (cout) 445
standard stream libraries 418
Standard Template Library 475
state 690
state bits 422
state diagram for the ATM object 703
state diagram in the UML 703
state in the UML 690, 705
state machine diagram in the UML 690,

703
state of an object 698, 703
statement 22, 40
statement spread over several lines 35
statement terminator (;) 22
statements

break 118, 121
continue 121
do…while 110, 111
for 102, 104
if 32
return 23
switch 112, 119
throw 261
try 226
while 102, 110

static array initialization 198, 199
static array initialization and auto-

matic array initialization 199
static binding 384
static_cast<int> 116
static data member 207, 297, 298
static data member tracking the num-

ber of objects of a class 300
static data members save storage 298
static keyword 154
static linkage specifier 667
static local object 273, 275
static local variable 156, 158, 198, 521
static member 298
static member function 298
static storage class 152
static storage duration 153, 154, 155
static storage-class specifier 152
static_cast 98, 126
static_cast (compile-time type-

checked cast) 188
static_cast operator 90
status bits 442
std namespace 592
std::cin 27
std::cout 21
std::endl stream manipulator 28
__STDC__ predefined symbolic constant

797
<stdexcept> header 140, 562, 578
StepStone 16

“sticky” setting 261
sticky setting 110, 125
STL 475
STL algorithms

accumulate 553
STL exception types 493
stod function 612
stof function 612
stoi function 612
stol function 612
stold function 612
stoll function 612
storage alignment 617
storage duration 152

automatic 153
dynamic 153
static 153
thread 153

storage unit 633
storage-class specifiers 152

extern 152
mutable 152
register 152
static 152

storage-unit boundary 633
stoul function 612
stoull function 612
str member function 610
str member function of class ostring-

stream 609
straight-line form 29, 30
strcat function of header <cstring>

639, 641
strchr 651
strcmp function of header <cstring>

639, 642
strcpy function of header <cstring>

639, 640
strcspn 651, 652
stream base 427
stream extraction operator 419
stream extraction operator >> ("get

from") 27, 34, 173, 304, 310, 332,
419, 422, 473

stream I/O class hierarchy 446
stream input 419, 422
stream input/output 21
stream insertion operator << ("put to")

22, 23, 28, 173, 304, 310, 332, 419,
420, 449, 675

stream manipulator 28, 109, 426, 434,
452

stream manipulators 90
boolalpha 125, 438
dec 427
fixed 91, 437
hex 427
internal 434
left 110, 433
noboolalpha 438
noshowbase 436
noshowpoint 432
noshowpos 432, 434
nouppercase 432, 438
oct 427
right 110, 433
scientific 437
setbase 427
setfill 261, 435

stream manipulators (cont.)
setprecision 90, 109, 427
setw 109, 254, 429
showbase 436
showpoint 91, 432
showpos 434
std::endl (end line) 28

stream of bytes 417
stream of characters 22
stream operation failed 442
stream output 419
<string> header 140
string 477

size function 461
string assignment 593, 594
string assignment and concatenation

594
string being tokenized 645
string class 43, 304, 307, 593

at member function 308
size member function 64
substr member function 66, 307

string class copy constructor 592
string class from the Standard Library

140
string comparison 595
string concatenation 593
string constant 253
string-conversion function 646

atof 647
atoi 648
atol 648
strtod 649
strtol 649
strtoul 650

string find member function 601
string find member functions 601
<string> header 43, 592, 56
string insert functions 605
string insert member function 605
string length 645
string literal 22, 253
string object

empty string 48
initial value 48

string of characters 22
string-search function

strchr 652
strcspn 652
strpbrk 653
strrchr 653
strspn 654
strstr 655

string stream processing 609
string::npos 603
strings as full-fledged objects 252
strlen function 640, 645
strncat function 639, 641
strncmp function 640, 642
strncpy function 639, 640
Stroustrup, B. 2
strpbrk 651, 653
strrchr 651, 653
strspn 651, 654
strstr 651, 654
strtod 646, 648
strtok function 640, 644
strtol 647, 649, 649
strtoul 647, 650

Index 817

struct 616
structure 616, 792
structure definition 616, 630
structure members default to private

access 616
structure name 616
structure of a system 702, 703
structure type 616
structured programming 70
student-poll-analysis program 196
subclass 343
subobject of a base class 678
subproblem 176
subscript 186
subscript 0 (zero) 186
subscript operator 500
subscript operator [] 595
subscript operator [] used with strings

593
subscript operator for map 507
subscript out of range 493
subscript through a vector 493
subscripted name used as an rvalue 328
subscripting 498
subscripting with a pointer and an offset

251
substr 598
substr member function of class

string 66, 598
substrmember function of string 307
substring 340
substring length 340
substring of a string 598
subtract one pointer from another 247
subtraction 29
sum of the elements of an array 193
summing integers with the for statement

107
superclass 343
survey 196, 198
swap algorithm 538, 558
swap member function of class string

598
swap member function of containers 478
swap member function of list 498
swap_ranges algorithm 537, 538, 558
swapping strings 598
swapping two strings 598
switch logic 390
switch multiple-selection statement

112, 119
switch multiple-selection statement ac-

tivity diagram with break statements
120

symbol 592
symbol values 781
symbolic constant 791, 792, 794, 796
symbolic constant NDEBUG 797
symbolic constant PI 793
synchronize operation of an istream and

an ostream 443
synchronous call 717
synchronous error 570
system 690
system behavior 690
system requirements 688
system structure 690

T
tab 35
tab escape sequence \t 118
Tab key 22
tab stop 23
table of values 211
tablet computer 16
tabular format 189
tails 142
tan function 132
tangent 132
tape 445
tellg function of istream 452
tellp function of ostream 452
template 792

default type argument for a type pa-
rameter 589

template definition 174
template function 173
template keyword 173, 583
template parameter 583
template parameter list 173
temporary object 337
temporary value 90, 139
terminate a program 574
terminate normally 449
terminate successfully 23
terminating condition 177
terminating null character 253, 254, 607,

640, 645
terminating right brace (}) of a block 155
termination condition 198
termination housekeeping 272
termination model of exception handling

565
termination test 182
ternary conditional operator (?:) 181
ternary operator 75
test 514
test characters 140
test state bits after an I/O operation 422
text editor 450
text file 466
text-printing program 20
text substitution 793
this pointer 291, 293, 301, 334
this pointer used explicitly 291
this pointer used implicitly and explicit-

ly to access members of an object 292
thread storage duration 153
throw an exception 226, 260, 261, 564
throw exceptions derived from standard

exceptions 579
throw exceptions not derived from stan-

dard exceptions 579
throw keyword 566
throw point 565
throw standard exceptions 579
tie an input stream to an output stream

443
tilde character (~) 272
Time class containing a constructor with

default arguments 266
Time class definition 258
Time class definition modified to enable

cascaded member-function calls 294
Time class member-function definitions

259

Time class member-function definitions,
including a constructor that takes ar-
guments 267

time function 146
__TIME__ predefined symbolic constant

797
time source file is compiled 797
to_string function 612
token 640, 644
tokenizing strings 639, 644
tolower 634, 636
top member function of

priority_queue 513
top member function of stack 509
total 154
toupper 634, 636
trailing return type 557
trailing return type (function) 175
trailing return types 175
trailing zeros 432
Transaction class (ATM case study)

733, 734, 735, 738, 772
transaction processing 505
transaction-processing program 466
transaction-processing system 456
transfer of control 70
transform algorithm 529, 533, 558
transition 71
transition arrow 71, 74, 78, 79
transition between states in the UML 703
translation 7
translation unit 667
traversal 607
trigonometric cosine 131
trigonometric sine 132
trigonometric tangent 132
true 32
true 73, 74, 75
truncate 28, 83, 90, 448
truncate fractional part of a double 138
truth table 123

! (logical NOT) operator 125
&& (logical AND) operator 123
|| (logical OR) operator 124

try block 226, 564, 567, 570, 571
try block expires 565
try statement 226
Turing Machine 70
two-dimensional array 211, 215
two-dimensional array manipulations

215
two’s complement 788

notation 788
twos position 783
tying an output stream to an input stream

443
type checking 793, 794
type field 473
type information 473
type name (enumerations) 149
type of a variable 152
type of the this pointer 292
type parameter 173, 583, 589
type-safe linkage 171
type_info class 413
typedef 418, 592, 609, 618

fstream 420
ifstream 420
in first-class containers 479

818 Index

typedef (cont.)
iostream 418
istream 418
ofstream 420
ostream 418

typeid 413, 578
<typeinfo> header 140, 413
typename keyword 173, 583
type-safe I/O 425

U
UML (Unified Modeling Language) 6,

41, 683, 684, 690, 694, 701, 702, 733
action expression 71
action state 71
activity diagram 70, 71, 78
arrow 71
attribute 41
class diagram 41
constructor in a class diagram 54
data types 44
decision symbol 74
diagram 690
diamond symbol 71, 74
dotted line 71
final state 71
guard condition 74
guillemets (« and ») 54
initial state 71
merge symbol 79
minus sign (–) 50
note 71
plus sign (+) 41
public operation 41
Resource Center

(www.deitel.com/UML/) 691
small circle symbol 71
solid circle symbol 71
String type 44
transition 71
transition arrow 71, 74, 78, 79

UML activity diagram 105
solid circle (for representing an initial

state) in the UML 705
solid circle enclosed in an open circle

(for representing the end of an ac-
tivity) in the UML 705

UML class diagram
attribute compartment 701
constructor 54
operation compartment 708

UML sequence diagram
activation 720
arrowhead 720
lifeline 719

UML state diagram
rounded rectangle (for representing a

state) in the UML 703
solid circle (for representing an initial

state) in the UML 703
UML use case diagram

actor 689
use case 689

unary decrement operator (--) 96
unary increment operator (++) 96
unary minus (-) operator 90
unary operator 90, 124, 231
unary operator overload 309, 314

unary plus (+) operator 90
unary predicate function 497, 526, 529
unary scope resolution operator (::) 169
unbuffered output 420
unbuffered standard error stream 418
#undef preprocessing directive 794, 796
undefined area in memory 618
underflow_error exception 579
underlying container 509
underlying data structure 512
underscore (_) 26
unformatted I/O 417, 418, 425
unformatted output 420, 422
Unicode 592
Unicode character set 417
Unified Modeling Language (UML) 6,

683, 684, 690, 694, 701, 702, 733
uniform initialization 94
uniform_int_distribution 151
unincremented copy of an object 321
unique algorithm 538, 540, 558
unique keys 500, 504, 507
unique member function of list 498
unique_copy algorithm 541, 542, 558
unique_ptr class 575

built-in array 578
universal-time format 260
UNIX 449
unnamed bit field 633
unnamed bit field with a zero width 633
unnamed namespace 667
unordered associative containers 476,

477, 500
<unordered_map> header 140
unordered_map class template 477, 507
unordered_multimap class template

477, 505
unordered_multiset class template

477, 501
<unordered_set> header 140
unordered_set class template 477, 504
unscoped enum 150
unsigned char data type 139
unsigned data type 139, 145
unsigned int 91
unsigned int data type 139, 145
unsigned int fundamental type 82
unsigned integer in bits 622
unsigned long 178, 650
unsigned long data type 138
unsigned long int 177, 178
unsigned long int data type 138
unsigned long long data type 138
unsigned long long int 178
unsigned long long int data type 138
unsigned short data type 139
unsigned short int data type 139
untie an input stream from an output

stream 443
unwinding the function call stack 568
update records in place 456
upper_bound algorithm 548, 558
upper_bound function of associative

container 503
uppercase letter 26, 140, 634, 636
uppercase stream manipulator 432,

436, 438
use case diagram in the UML 689, 690
use case in the UML 688, 689

use case modeling 688
user-defined class name 39
user-defined function 132
user-defined type 40, 149, 337
using a dynamically allocated ostring-
stream object 610

using a function template 173
Using a static data member to maintain

a count of the number of objects of a
class 299

using an iterator to output a string 608
using arrays instead of switch 195
using declaration 34

in headers 56
using directive 34, 665

in headers 56
using function swap to swap two
strings 598

using Standard Library functions to per-
form a heapsort 548

Using virtual base classes 680
<utility> header 141
utility function 265

V
validation 64
validity checking 64
value 27
value initialize 238
value of a variable 152
value of an array element 187
value_type 479
variable 25
variable name

argument 44
parameter 44

variadic template 504
<vector> header 140
vector class 221

capacity function 488, 488
crbegin function 490
crend function 490
push_back function 488
push_front function 488
rbegin function 490
rend function 490

vector class template 186, 486
push_back member function 227
shrink_to_fit member function

490
vector class template element-manipu-

lation functions 490
<vector> header 221
verb phrase in requirements specification

707
vertical spacing 102
vertical tab (‘v’) 634, 637
vi 6
virtual base class 661, 678, 679, 680,

681
virtual destructor 389
virtual function 375, 383, 407, 409,

678
call 409
call illustrated 408
table (vtable) 407

virtual inheritance 679
virtual memory 573, 574

http://www.deitel.com/UML/

Index 819

visibility in the UML 726
visibility marker in the UML 726
Visual Studio 2012 Express Edition 7
void * 249, 655
void keyword 40, 48
void return type 138
volatile qualifier 661
volume of a cube 164
vtable 407, 409, 410
vtable pointer 410

W
“walk off” either end of an array 323
warning message 66
waterfall model 688
wchar_t 592
wchar_t character type 418
“weakest” iterator type 482, 519
what member function of an exception

object 226
what virtual function of class exception

562, 567, 573

while repetition statement 72, 78, 102,
110

while statement activity diagram 79
whitespace characters 21, 22, 35, 422,

423, 426, 634, 637, 791, 796
whole/part relationship 695
width implicitly set to 0 429
width member function of class

ios_base 429
width of a bit field 630
width of random number range 146
width setting 429
Windows 15, 116
Windows operating system 15
Windows Phone 7 15
Withdrawal class (ATM case study) 693,

694, 695, 696, 699, 700, 705, 708,
715, 716, 719, 720, 728, 729, 731,
733, 734, 735, 737, 738, 739

word 617
word boundary 617
workflow of a portion of a software system

71
workflow of an object in the UML 704

Wozniak, Steve 16
wraparound 320
write 457, 462
write function of ostream 421, 425
writing data randomly to a random-access

file 462

X
Xcode 7
Xerox PARC (Palo Alto Research Center)

16
XML (extensible markup language) 473
xor operator keyword 669
xor_eq operator keyword 669

Z
zeroth element 186
zero-width bit field 633

	Contents
	Preface
	2 Introduction to C++ Programming, Input/Output and Operators
	2.1 Introduction
	2.2 First Program in C++: Printing a Line of Text
	2.3 Modifying Our First C++ Program
	2.4 Another C++ Program: Adding Integers
	2.5 Arithmetic
	2.6 Decision Making: Equality and Relational Operators
	2.7 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

