
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137918300
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137918300
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137918300

Go Fundamentals

This page intentionally left blank

Go Fundamentals

Mark Bates
Cory LaNou

Boston • Columbus • New :ork • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

SÊo Paulo • Sydney • Hong ,ong • Seoul • Singapore • Taipei • Tokyo

Cover image: T-flex/Shutterstock

Figures 7.1, 7.2: Microsoft

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022943902

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-791830-0
ISBN-10: 0-13-791830-5

ScoutAutomatedPrintCode

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:corpsales@pearsoned.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious
or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

. Everyone has an equitable and lifelong opportunity to succeed through learning.

. Our educational products and services are inclusive and represent the rich diversity
of learners.

. Our educational content accurately reflects the histories and experiences of the
learners we serve.

. Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

This page intentionally left blank

For Rachel, Dylan, Leo, and Ringo.
—Mark Bates

For Karie, Logan, and Megan.
—Cory LaNou

This page intentionally left blank

Contents

Foreword xxi

Preface xxiii

Acknowledgments xxxi

About the Authors xxxv

1 Modules, Packages, and Dependencies 1
Modules 1

Toolchain 2
Initializing a Module 3
VCS and Modules 3

Packages 4
Naming Packages 5

Folders, Files, and Organization 6
Multiple Packages in a Folder 7
File Names 9
Package Organization 9

Importing Packages and Modules 13
Import Path 13
Using Imports 14
Resolving Import Name Clashes 14

Dependencies 16
Using a Dependency 17
Requiring with Go Get 18
The Go Sum File 20
Updating Dependencies 21
Semantic Versioning 22
Multiple Versions 23
Cyclical Imports 24

Summary 25

x Contents

2 Go Language Basics 27
Go Language Overview 27

Static Typing 27
Garbage Collection 28
Compilation 28
Keywords, Operators, and Delimiters 30

Numbers 31
Picking the Correct Numeric Type 32
Overflow versus Wraparound 32
Saturation 34

Strings 35
Interpreted String Literals 35
Raw String Literals 36

UTF-8 37
Runes 38
Iterating over UTF-8 Characters 38

Variables 40
Variable Declaration 40
Variable Assignment 41
Zero Values 42
Nil 42
Zero Values Cheat Sheet 43
Variable Declaration and Initialization 44
Assigning Multiple Values 45
Unused Variables 46

Constants 48
Typed Constants 49
Untyped Constants (Inferred Typing) 50
Type Inference 50

Naming Identifiers 51
Naming Style 53
Conflicting with Package Names 53
Exporting through Capitalization 57

Printing and Formatting 57
Formatting Functions 57
New Lines 60
Multiple Arguments with Println 61
Using Formatting Functions 61

Contents xi

Escape Sequences 61
Formatting Strings 63
Formatting Integers 63
Formatting Floats 66
Printing a Value’s Type 67
Printing a Value 67
Printing a Value with More Detail 68
Printing a Value’s Go-Syntax Representation 69
Using Formatting Verbs Incorrectly 70
Explicit Argument Indexes 71
Converting Strings to and from Numbers 72

Summary 75

3 Arrays, Slices, and Iteration 77
List Types: Arrays and Slices 77

Differences between Arrays and Slices 77
Spotting the Difference 79
Initializing Arrays and Slices 79
Array and Slice Zero Values 81
Indexing Arrays and Slices 81
Array and Slice Types 82
Array and Slice Type Definitions 83
Setting Array and Slice Values 85
Appending to Slices 85
Appending Slices to Slices 87

How Slices Work 90
Length and Capacity 91
Growing a Slice 92
Making a Slice 95
Make with Length and Capacity 96
Make and Append 97
What Happens When a Slice Grows 97
Slice Subsets 99
Mutating Slice Subsets 100
Copying Slices 101
Converting an Array to a Slice 102

Iteration 104
The for Loop 104
Iterating over Arrays and Slices 105

xii Contents

The range Keyword 105
Controlling Loops 107
Do While Loop 108

Summary 110

4 Maps and Control Structures 111
Maps 111

Length and Capacity 112
Initializing Maps 113
Uninitialized Maps 114
Map Keys 114
Structs as Keys 115
Iterating Maps 116
Deleting Keys from a Map 118
Nonexistent Map Keys 120
Checking Map Key Existence 120
Exploiting Zero Value 121
Testing Presence Only 122
Maps and Complex Values 123
Copy on Insert 124
Listing Keys in a Map 126

If Statements 129
The else Statement 130
The else if Statement 131
Assignment Scope 132
Logic and Math Operators 134

Switch Statements 135
Default 138
Fallthrough 139

Summary 140

5 Functions 141
Function Definitions 141

Arguments 141
Arguments of the Same Type 142
Return Arguments 143
Multiple Return Arguments 144
Named Returns 145
First-Class Functions 147

Contents xiii

Functions as Arguments 148
Closures 149
Anonymous Functions 150
Functions Accepting Arguments from

Functions 151
Variadic Arguments 151

Variadic Argument Position 152
Expanding Slices 153
When to Use a Variadic Argument 154

Deferring Function Calls 156
Deferring with Multiple Returns 156
Defer Call Order 157
Deferred Calls and Panic 158
Defers and Exit/Fatal 158
Defer and Anonymous Functions 159
Defer and Scope 160

Init 162
Multiple Init Statements 163
Init Order 164
Using init Functions for Side Effects 164

Summary 166

6 Structs, Methods, and Pointers 167
Structs 167

Declaring New Types in Go 167
Defining a Struct 168
Initializing a Struct 169
Initialization without Field Names 170
Accessing Struct Fields 172
Struct Tags 173
Struct Tags for Encoding 173
Using Struct Tags 175

Methods 176
Differences Between Methods and

Functions 177
Methods Expressions 177
Methods on Third-Party Types 178
Functions as Types 180
Methods on Functions 181

xiv Contents

No Inheritance 181
Pointers 182

Pass by Value 183
Receiving a Pointer 184
Getting a Pointer 185
Passing with Pointers 186
Using Pointers 186
Value versus Pointer Receivers 188
New 189
Performance 190

Nil Receivers 191
Nil Receivers Checks 192

Summary 193

7 Testing 195
Testing Basics 195

Naming 195
The *testing.T Type 196
Marking Test Failures 198
Using t.Error 198
Using t.Fatal (Recommended) 200
Crafting Good Test Failure Messages 201

Code Coverage 202
Basic Code Coverage 202
Generating a Coverage Profile 203
The go tool cover Command 204
Generating an HTML Coverage Report 205
Editor Support 206

Table Driven Testing 206
Anatomy of a Table Driven Test 207
Writing a Table Driven Test 208
Subtests 211
Anatomy of a Subtest 211
Writing Subtests 212

Running Tests 213
Running Package Tests 213
Running Tests with Subpackages 213
Verbose Test Output 214
Logging in Tests 215

Contents xv

Short Tests 216
Running Package Tests in Parallel 217
Running Tests in Parallel 217
Running Specific Tests 218
Timing Out Tests 219
Failing Fast 220
Disabling Test Caching 221

Test Helpers 222
Defining Test Helpers 222
Marking a Function as a Helper 226
Cleaning Up a Helper 227

Summary 229

8 Interfaces 231
Concrete Types versus Interfaces 231
Explicit Interface Implementation 233
Implicit Interface Implementation 234
Before Interfaces 235
Using Interfaces 237
Implementing io.Writer 239
Multiple Interfaces 241
Asserting Interface Implementation 241
The Empty Interface 242

The any Keyword 242
The Problem with Empty Interfaces 243
Using an Empty Interface 243

Defining Interfaces 243
Defining a Model Interface 244
Implementing the Interface 247

Embedding Interfaces 249
Defining an Validatable Interface 250

Type Assertion 250
Asserting Assertion 251
Asserting Concrete Types 252

Assertions through Switch 252
Capturing Switch Type 253
Beware of Case Order 254

Using Assertions 255
Defining the Callback Interfaces 255

xvi Contents

Breaking It Down 256
Summary 257

9 Errors 259
Errors as Values 259

The error Interface 261
Handling Errors 262
Using Errors 263

Panic 264
Raising a Panic 265
Recovering from a Panic 265
Capturing and Returning Panic Values 269

Don’t Panic 273
Checking for Nil 274
Maps 275
Pointers 278
Interfaces 280
Functions 283
Type Assertions 284
Array/Slice Indexes 287

Custom Errors 289
Standard Errors 289
Defining Custom Errors 291

Wrapping and Unwrapping Errors 294
Wrapping Errors 296
Unwrapping Errors 297
Unwrapping Custom Errors 298
To Wrap or Not To Wrap 301

Errors As/Is 301
As 302
Is 304

Stack Traces 307
Summary 309

10 Generics 311
What Are Generics? 311

The Problem with Interfaces 311
Type Constraints 315
Multiple Generic Types 317

Contents xvii

Instantiating Generic Functions 320
Defining Constraints 321
Multiple Type Constraints 322
Underlying Type Constraints 324
The Constraints Package 326
Type Assertions 329
Mixing Method and Type Constraints 331
Generic Types 332

Summary 334

11 Channels 335
Concurrency and Parallelism 335

Concurrency Is Not Parallelism 336
Understanding Concurrency 336

Go’s Concurrency Model 338
Goroutines 338
Goroutine Memory 339
The Go Scheduler 339
Work Sharing and Stealing 339
Don’t Worry about the Scheduler 341
Goroutine Example 342

Communicating with Channels 342
What Are Channels? 343
Understanding Channel

Blocking/Unblocking 343
Creating Channels 343
Sending and Receiving Values 344
A Simple Channel Example 345
Ranging over a Channel 348
Listening to Channels with select 348
Using select Statements 349
Channels Are Not Message Queues 349

Unidirectional Channels 351
Understanding Unidirectional Channels 352

Closing Channels 352
Detecting Closed Channels on Read 354
Zero Value on Closed Read 355
Closing an Already-Closed Channel 357

xviii Contents

Writing to a Closed Channel 358
Buffered Channels 358

Basic Buffered Channel Example 359
Reading from Closed Buffered Channels 362

Capturing System Signals with Channels 363
The os/signals Package 363
Implementing Graceful Shutdown 365
Listening for System Signals 367
Listening for Shutdown Confirmation 368
Timing Out a Nonresponsive Shutdown 370

Summary 371

12 Context 373
The Context Interface 374

Context#Deadline 374
Context#Done 375
Context#Err 376
Context#Value 376
Helper Functions 378
The Background Context 378
Default Implementations 379

Context Rules 380
Context Nodal Hierarchy 381

Understanding the Nodal Hierarchy 381
Wrapping with Context Values 382
Following the Context Nodes 382

Context Values 384
Understanding Context Values 384
Key Resolution 386

Problems with String Keys 388
Key Collisions 388
Custom String Key Types 390

Securing Context Keys and Values 393
Securing by Not Exporting 394

Cancellation Propagation with Contexts 396
Creating a Cancelable Context 397
Canceling a Context 398
Listening for Cancellation Confirmation 400

Timeouts and Deadlines 405

Contents xix

Canceling at a Specific Time 405
Canceling after a Duration 407

Context Errors 408
Context Canceled Error 409
Context Deadline Exceeded Error 410

Listening for System Signals with Context 411
Testing Signals 413

Summary 416

13 Synchronization 419
Waiting for Goroutines with a WaitGroup 419

The Problem 419
Using a WaitGroup 421
The Wait Method 421
The Add Method 422
The Done Method 426
Wrapping Up Wait Groups 432

Error Management with Error Groups 433
The Problem 434
The Error Group 436
Listening for Error Group Cancellation 439
Wrapping Up Error Groups 440

Data Races 443
The Race Detector 445
Most, but Not All 446
Wrapping Up the Race Detector 447

Synchronizing Access with a Mutex 447
Locker 449
Using a Mutex 451
RWMutex 453
Improper Usage 455
Wrapping Up Read/Write Mutexes 459

Performing Tasks Only Once 459
The Problem 460
Implementing Once 462
Closing Channels with Once 463

Summary 466

xx Contents

14 Working with Files 467
Directory Entries and File Information 467

Reading a Directory 468
The FileInfo Interface 471
Stating a File 472

Walking Directories 473
Skipping Directories and Files 477

Skipping Directories 478
Creating Directories and Subdirectories 481
File Path Helpers 484

Getting a File’s Extension 485
Getting a File’s Directory 485
Getting a File/Directory’s Name 486
Using File Path Helpers 486
Checking the Error 488

Creating Multiple Directories 489
Creating Files 492

Truncation 495
Fixing the Walk Tests 497

Creating the Files 498
Appending to Files 500
Reading Files 503
Beware of Windows 505
The FS Package 506

The FS Interface 508
The File Interface 509

Using the FS Interface 510
File Paths 512

Mocking a File System 513
Using MapFS 515

Embedding Files 517
Using Embedded Files 518
Embedded Files in a Binary 520
Modifying Embedded Files 521
Embedding Files as a String or Byte Slice 522

Summary 522

Index 523

Foreword

I feel excited, honored, and a bit shocked to be writing these words.
I’ve known Mark and Cory for more than a decade, and as the Go project has evolved

beyond our 1.0 vision, I’ve really been hoping for someone to write a follow up to the
excellent Go 1.0 books. I’m really grateful for the good fortune I’ve had to be so deeply
involved in the Go project and community. What began with me typing the first few lines
of code into Hugo,1 Cobra,2 and Viper3 over 10 years ago has exploded in ways I couldn’t
have dreamed of. It’s been the privilege of a lifetime to lead the Go project alongside my
partners Russ Cox and Sameer Ajmani and to work alongside the luminary programmers
both on the Go team at Google and across the Go community.

I met Mark when we both spoke at the first Gotham Go.4 I was instantly drawn away
from him. I found his on-stage persona to be a bit too much. Later that year, the
organizers of GopherCon5 asked me to lead the lightning talk program and said they had
the perfect partner for me. You guessed it—Mark. I learned that Mark’s stage persona was
indeed who he was off stage. I also learned that he was a loyal friend who would do
anything for the Go community, whose humor and courage was boundless… limitless…
maybe a bit too much. Mark and I have paired on many stages and projects over the past
10 years, and Mark injected a spirit of excitement into everything he did. He’s become a
dear friend, and I’m grateful to have been on so many adventures with him.

I met Cory at the second GopherCon and instantly was drawn to him. Cory is a natural
teacher—captivating and empathetic. He cares deeply about the Go community and
ensuring that Go is accessible to all, especially the folks new to Go. I’ve worked with him
on a variety of community efforts, and I’ve always come away impressed with the depth he
shows in his knowledge about Go and the learning experience.

Mark and Cory have been working together for many years now as the dominant
training duo for Go under the name Gopher Guides. Together they have produced
excellent training programs for clients that include many notable brands found on the
Fortune 500. They have expertise in both Go and in empathic learning, forged over
thousands of hours of classroom-style instruction. They are the perfect pair to author what
is destined to become “The Go Book” for Go’s second phase (Go with Modules &
Generics).

This book leans on Mark and Cory’s years of experience in the field and in the
Go community to take a very grassroots approach to learning, and it is the guide for

1. https://gohugo.io/
2. https://pkg.go.dev/github.com/spf13/cobra
3. https://pkg.go.dev/github.com/spf13/viper
4. https://gothamgo.com/
5. https://www.gophercon.com/

https://gohugo.io/
http://https://pkg.go.dev/github.com/spf13/cobra
https://pkg.go.dev/github.com/spf13/viper
https://gothamgo.com/
https://www.gophercon.com/

xxii Foreword

programmers to become gophers. It also leverages their practical experience writing
Go libraries and applications to present to the reader pragmatic solutions and simple
explanations.

This book guides you like an old friend would, telling you the technical approaches
to things but also relaying the cultural norms and idioms. It answers questions that the
majority of books don’t even think of because Mark and Cory have heard these questions
asked by real people in a classroom so many times. Through reading and applying what is
in this book, more than any other of its kind, you will progress from becoming a
programmer to being a programmer who writes Go to being a gopher.

I am excited for the journey you are about to take with this book. I’m sure that you
will sense the same excitement and empathy through these pages that I have experienced
through all the adventures I’ve had with Mark and Cory. My hope for you is that as you
learn Go, you will, as I did when I first discovered Go over a decade ago, fall in love with
programming again.

—Steve Francia
@spf13

Preface

Over the years, we have been fortunate to have trained thousands of developers in Go. It
has been an incredible experience for us. We are developers who care about developers, so
to be able to help developers grow is a great honor for us. This book is a culmination of
that experience.

With nearly a half-century of experience between us, we both love Go. Go is fast,
efficient, and fairly straightforward. We both believe that Go is a great first language to
learn.

Unlike previous languages we have both used, there is relatively little “magic” in the
language. Developers are rarely left scratching their heads as to where a function or type
came from. Although the language does offer tools, such as the reflect1 package, those
tools are not used often. As part of this philosophy, the general consensus in the
community is to favor using the standard library over third-party libraries. Again, this
stems from experience with languages where bloated dependencies caused all sorts of
problems. Also, early in the language’s history, there was no package manager, so managing
dependencies was a challenge.

The Go compiler is another reason why Go has become so popular. The speed of the
compiler is a huge factor in the development of Go. Fast compilation times mean a faster
feedback cycle for developers. Large Go applications can be compiled in seconds. Small
Go applications, when using go run, compile and execute so quickly that it makes Go feel
like a scripting language. This fast compilation and execution time extends to the running
of tests as well. It is not uncommon for a Go developer to run the entire test suite every
time they save a file. This is not something that can be done with other languages.

The Go compiler, the language’s type system, and its fast compiler mean that a lot of
common bugs are very quickly caught. This is a great advantage for Go developers. We are
able to focus on business logic, knowing that the compiler will catch any stupid mistakes
we might make, such as using a variable before it is defined or forgetting to use the range

keyword in a loop.
For example, in Listing P.1, we are doing just that. You can see from the output that the

compiler caught the error and did so very quickly.

1. https://pkg.go.dev/reflect

https://pkg.go.dev/reflect
https://pkg.go.dev/reflect

xxiv Preface

Listing P.1 Quick Feedback Cycle Thanks to the Go Compiler

package main

import (

"fmt"

"os"

"os/exec"

"time"

)

func main() {

letters := []string{"a", "b", "c"}

for _, l := letters {

fmt.Println(l)

}

}

$ go run .

demo

./main.go:13:11: syntax error: cannot use _, l := letters as value

Duration: 64.341084ms

Go Version: go1.19

We discuss more about looping in Chapter 3 and more about how the Go compiler and
runtime work as we progress throughout the book.

Finally, Go has a great concurrency story. The language was built from the ground with
concurrency in mind. This means you don’t need to worry about threading, spawning
processes, or anything like that. You can write concurrent code quickly and easily.

In the code snippet in Listing P.2, we are using goroutines, channels, and
synchronization types, such as sync.WaitGroup2 to create an application that properly
handles concurrency.

Listing P.2 Go Concurrency in Action

func main() {

// create a channel of type int

ch := make(chan int)

2. https://pkg.go.dev/sync#WaitGroup

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup

Preface xxv

// create a wait group to track

// the goroutines

var wg sync.WaitGroup

// create some goroutines to

// listen for messages on the

// channel

for i := 0; i < 4; i++ {

// increment the wait group

wg.Add(1)

// create a goroutine

// to call the sayHello function

go func(id int) {

// call the sayHello function

sayHello(id, ch)

// decrement the wait group

// when the sayHello function

// exits

wg.Done()

}(i + 1)

}

// send messages on the channel

for i := 0; i < 10; i++ {

ch <- i

}

// close the channel to signal

// the goroutines to exit

close(ch)

// wait for all goroutines to finish

wg.Wait()

}

func sayHello(id int, ch chan int) {

// listen for messages on the channel

// loop exits when the channel is closed

for i := range ch {

xxvi Preface

fmt.Printf("Hello %d from goroutine %d\n", i, id)

// simulate a long-running task

sleep()

}

}

$ go run .

Hello 2 from goroutine 4

Hello 1 from goroutine 2

Hello 3 from goroutine 3

Hello 0 from goroutine 1

Hello 4 from goroutine 1

Hello 5 from goroutine 2

Hello 6 from goroutine 1

Hello 7 from goroutine 1

Hello 8 from goroutine 4

Hello 9 from goroutine 3

Go Version: go1.19

You can read more about Go’s concurrency model in Chapters, 11, 12, and 13.

How to Read This Book
We have laid this book out with the idea that it is meant to be read from start to finish.
Each chapter, and each example, build on previous examples. While those with some
experience with Go might be tempted to jump straight to later chapters, we really
recommend reading the whole book.

We have gone through great effort to try to make sure that examples and chapters don’t
contain any new information that we haven’t covered up to that point. In Chapter 9, for
example, we cover errors in Go. To understand how errors work, you first need to learn
about interfaces, which we cover in Chapter 8. Occasionally, we do have to break this rule,
though. In those instances, we try our best to explain the concept or point to the chapter
where it is explained.

About the Examples
As mentioned, we spent considerable time designing the examples in this book and our
training materials to be as clear and concise as possible. We also wanted to make sure that
all of the code, output, and documentation were accurate.

Preface xxvii

To ensure that all of these things are true, we used a system designed give us this
accuracy. Knowing that every code snippet is from a real file, every command is actually
executed, every output is exact, and every piece of documentation is up to date means we
can be confident in the materials we present.

In Listing P.3, you see an example of what one of these documents looks like.

Listing P.3 Sample of How the Book Was Written

Commands and Documentation

In <ref>exit</ref>, we see a snippet of code.

This will execute the command 'go run .' in the 'src/bad' directory.

This command is expected to exit with a code of '1'.

The output of the command is automatically captured and inserted into

ythe document.

<figure id="exit" type="listing">

<code src="module.md#exit" esc></code>

<figcaption>Handling a non-successful exit code.</figcaption>

</figure>

In <ref>panic</ref>, we can see the output of the non-successful program.

yNotice, at the top of the output we see the command used that was executed,

y'$ go run .'. At the bottom we can see that the program was executed with,

yGo version '1.19'.

<figure id="panic">

<go src="src/bad" run="." exit="1"></go>

<figcaption>Output of a non-successful program.</figcaption>

</figure>

While this book was written with Go version '1.18', all of the final

yexamples, and documentation, were run with Go version '1.19'.

In <ref>appendf.doc</ref>, we can see an example of documentation that is

ybeing inserted into the document. In this case, we are inserting the

ydocumentation for the new Go '1.19' function, 'fmt.Appendf'. Again, just

ylike the command output in <ref>panic</ref>, the command used to get the

ydocumentation and the Go version is shown at the bottom of the output.

(continued)

xxviii Preface

<figure id="appendf.doc">

<go doc="fmt.Appendf"></go>

<figcaption>The 'fmt.Appendf' function documentation.</figcaption>

</figure>

The output of Listing P.3 is included in the next section.

Commands and Documentation
Listing P.4 shows a snippet of code.

It executes the command go run . in the src/bad directory. This command is
expected to exit with a code of 1. The output of the command is automatically captured
and inserted into the document.

Listing P.4 Handling a Nonsuccessful Exit Code

<go src="src/bad" run="." exit="1"></go>

In Listing P.5, you can see the output of the nonsuccessful program. Notice that the top
of the output, you see the command used that was executed: $ go run . At the bottom,
you can see that the program was executed with Go version 1.19.

Listing P.5 Output of a Nonsuccessful Program

$ go run .

panic: Hello, World!

goroutine 1 [running]:

main.main()

./main.go:5 +0x2c

exit status 2

Go Version: go1.19

While this book was written with Go version 1.18, all of the final examples and
documentation were run with Go version 1.19.

In Listing P.6, you can see an example of documentation that is being inserted into the
document. In this case, we are inserting the documentation for the new Go 1.19 function,
fmt.Appendf. Again, just like the command output in Listing P.5, the command used to
get the documentation, $ go do fmt.Appendf, is shown at the top of the output, and the
Go version is shown at the bottom of the output.

Preface xxix

Listing P.6 The fmt.Appendf Function Documentation

$ go doc fmt.Appendf

package fmt // import "fmt"

func Appendf(b []byte, format string, a ...any) []byte

Appendf formats according to a format specifier, appends the result to the

ybyte slice, and returns the updated slice.

Go Version: go1.19

Summary
Contained within these pages are the concepts, types, packages, idioms, and other features
of Go that we believe to be the most fundamental to understanding the language.

Go, its ecosystem, and its community are large, complex, and vibrant. Although we
wish we could have included more in this book, it would’ve been impossible to print, and
we would have never finished it.

Our goal, by the end of this book, is to help you be a knowledgeable Go
programmer—one who not only feels confident using the language but understands how
to write idiomatic Go code, tests, and is a good community member.

Finally, dear reader, thank you for your support. We consider it a privilege to be able to
share this book and our knowledge with you. We love Go, and we hope you do, too.

—Mark Bates and Cory LaNou
August 2022

Register your copy of Go Fundamentals on the InformIT site for convenient access to
updates and/or corrections as they become available. To start the registration process,
go to informit.com/register and log in or create an account. Enter the product ISBN
(9780137918300) and click Submit. Look on the Registered Products tab for an Access
Bonus Content link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/register

This page intentionally left blank

Acknowledgments

Authoring a book is incredibly hard work, whether you are self-publishing or working
with a great publisher like Addison-Wesley. It requires long hours of writing, creating
just the right sample code, and refactoring. This is usually where the self-publishing
author stops. When working with a publisher, however, this only the start of a new
phase in the process.

After a book is written and submitted, a team of people jump in to try and make
the book the best it can be. There are technical reviewers who are there to make sure
the code and the discussion of the code are correct. There are copy editors who drill
into the minutiae of grammar, spelling, punctuation, and other stylistic issues. There is the
production team who is responsible for the final delivery of the book. There is the cover
designer, the proofreader, the indexer, and more. As the adage says, “It takes a village.”

Gopher Guides would like to thank Kim Spenceley, our editor, and Debra
Williams-Cauley, our managing editor, for all of their incredible support since we first
started this journey. Their optimism and excitement has kept us going through this
process. Without Kim and Debra, there would be no book. Thank you two so
very much.

In addition to Kim and Debra, Gopher Guides would like to the following people at
Addison-Wesley for their help in the process of making this book a reality:

Copy editor and project manager: Charlotte Kughen

Production manager: Sandra Schroeder

Production editor: Julie Nahil

Cover designer: Chuti Prasertsith

Development editor: Chris Zahn

Indexer: Cheryl Lenser

Proofreader: Sarah Kearns

The rest of the village at Addison-Wesley

The Go community has been a huge supporter of Gopher Guides over the years. We
would like to thank everyone on the Go team for their dedication and hard work in
creating a language that is loved by so many. Thank you to all those who have committed
to the Go project over the years. Again, it takes a village.

In particular, Gopher guides would like to thank the following Go community
members who have helped us along the way.

xxxii Acknowledgments

Steve Francia Ron Evans

Ashley Willis (McNamara) (who designed Bill Kennedy
the Gopher Guides logo) Brian Ketelsen

Mat Ryer Bryan Liles

Carmen Andoh Ben Johnson

Johnny Boursiquot Dave Cheney

Tim Raymond Matt Aimonetti

Antonio Pagano Francesc Campoy

Renee French (for creating the Gopher
logo)

From Mark Bates

In addition to everyone that Cory and I have thanked already, I would like to make a few
acknowledgments of my own.

First, I would like to thank my business partner and friend, Cory LaNou. Cory and I
knew each other well in the community, but we really got to know each other and became
good friends on a trip to GopherCon India in Bengaluru (Bangalore), India, and in Dubai,
United Arab Emirates. We both spoke at the conferences, which were great, but it was the
extra curriculum that truly bonded us. We rode camels, drove dune buggies, and went to a
desert oasis. It was a great experience.

About a year later, in 2017, Cory and I decided that we wanted to start a company to
help people learn Go. With that, Gopher Guides was born. I have never worked anywhere
for longer than two and a half years. Gopher Guides, at the time of writing, has been
going for more than five years. That is more than double the time I’ve worked at any job.
The reason for this is simple: Cory LaNou is an excellent partner and a great friend. I have
never felt as supported and as understood while working at any other company as I do
working with Cory.

Cory, thank you for your patience, understanding, and support. I couldn’t be prouder
of what we have built together—this great company and our enduring friendship.

Next, I want to thank Kim Spenceley and Debra Williams-Cauley. I have known both
of them for a long time. Debra was the editor on my first two books for Addison-Wesley
in 2009 and 2012. Kim was the publishing coordinator of the first book. Both of these
strong women have been of great support to me over the years. I always feel lucky that I
was able to find a publishing company like Addison-Wesley—with editors like Debra and
Kim—that is so focused on author success. Thank you both for helping me to first realize
my dream of having a book published, and then for encouraging me to continue writing.

Finally, I would like to thank my family. There is no better partner, friend, and
supporter than my wife, Rachel. She is an actual wonder woman. The saying “behind
every good man is a great woman” is about her. She is a ball of energy, enthusiasm, and
spirit. She has a goal of running a half marathon in every U.S. state, and she’s more than

Acknowledgments xxxiii

halfway there. I get winded driving 13.1 miles. She is the morning person to my night
owl. Rachel is a successful business woman who has spent her career being an advocate for
women in the workplace. She is the mentor that she never had to a generation of women
in business. I know several of these women, and to hear them talk about Rachel with such
respect and appreciation is heart-warming.

Lastly, in addition to all of her support, love, and dedication over the years, Rachel has
given me the greatest gift of all; our two sons, Dylan and Leo, are wonderful people. They
are kind, caring, and honest. They are both very smart, talented, and hilarious people who
continue to amaze me and make me glow with pride. Each night, we eat dinner together
and then settle in, as a family, to watch TV. Our dog Ringo curls up at the end of the sofa,
and we all enjoy each other’s company. It’s at those moments I feel truly thankful and
happy to be surrounded by their love.

Thank you Rachel, Dylan, and Leo (and Ringo—the dog, not the Beatle—though he’s
cool, too!) for all of your support and love. I love you all to the very depths of my heart.

From Cory LaNou

First, and most obvious, my thanks go to my business partner, Mark Bates. Mark and I met
through the Go community and have become not just great partners in our business but
also great friends. We both share a passion for Go and training, which is why I believe we
have been so successful together.

A big thanks to Levi Cook for introducing me to the Go language in March 2012 and
encouraging me to start one of the first Go meetups in the world in Denver, Colorado.
Levi not only introduced me to Go but also to open source and, most important, VIM!

I also want to recognize some of the brightest and most talented developers I have ever
worked with on the InfluxDB project. Ben Johnson for having an ability to name the
impossible things. Jason Wilder for opening my mind to taking the most complex of issues
and breaking them into their smallest components. Philip O’Toole for challenging every
new concept I introduced to the Go code base. David Norton for being the nicest person
I’ve ever worked with (and giving the best SQL presentation ever!). Joe LeGasse for never
hesitating to pair program with me. And all the other amazing people I worked with on
the InfluxDB team.

When I moved back to Wisconsin to be around all my family, I knew I would miss
Denver’s rich technology community. Thankfully, Doug Rhoten was heading up the
Chippewa Valley Developers meetup and made me feel incredibly welcome. Thank you,
Doug, for working so hard for the local technology community!

And lastly, but certainly not least, my family! My wife, Karie, has been nothing but
supportive, even when I have done the craziest of business ventures. Without her support
and belief in me, I would not be where I am today. My son, Logan, and daughter, Megan,
who thank me for all the long hours I put in so that they can have bacon for breakfast!

This page intentionally left blank

About the Authors

Mark Bates is cofounder and instructor at Gopher Guides, the industry leader for Go
training, consulting, and conference workshops. After graduating with a degree in music
from the Liverpool Institute for Performing Arts in 1999, Mark joined the original
dot-com boom as a software engineer and began his career as a technologist. Since then,
Mark has been fortunate enough to work with some of the world’s largest and most
innovative companies, including Apple, Uber, and Visa.

When he first discovered Go in the summer of 2013, Mark was immediately drawn to
the language and its ecosystem. In 2014, Mark attended the first GopherCon, where he
met Cory LaNou. For seven years, Mark hosted the GopherCon lightning talks and has
been proud to introduce hundreds of new speakers to the community. Mark has spoken at
conferences around the world and is a regular on the Go Time podcast.

When not coding or writing about coding, Mark enjoys spending time with his family,
traveling, and recording music. Mark is currently completing a master’s degree in music
production from Berklee College of Music in Boston, Massachusetts.

Cory LaNou is a full stack technologist who has specialized in start-ups for the last 20
years. Cory has started several technology companies over the years, including companies
such as Pulsity, a web consulting firm that operated in the late 1990s. From that company,
Local Launch (an Internet marketing technology company) was formed and later sold to
RH Donnelly in 2006.

Cory has deep experience in the Go world, having worked on the Core engineering
team that contributes to InfluxDB, which is a highly scalable, distributed time series
database written in Go. Cory has worked on several other Go projects with a focus on
profiling and optimizing applications, using advanced profiling concepts such as torch
graphs and tracing profiles.

Cory has deep ties to the Go community and started Denver Gophers, one of the very
first Go meetups in the world, and he assisted in the very first GopherCon. Cory has
created and led numerous Go workshops and training courses and has several published
online articles related to Go. He continues to help organize and lead several community
technology meetups and mentors new developers. Cory is also a partner at Gopher
Guides, the industry leader for Go training and conferences.

When Cory isn’t working on writing new Go training material, he volunteers his time
to help local entrepreneurs start up their businesses by offering free services and business
advice—such as how to incorporate their business and get their web presence set up—and
giving them the moral support they need to make their dreams a reality.

This page intentionally left blank

13
Synchronization

In Chapter 11, we explained how to use channels for passing data between goroutines.
Then in Chapter 12, we discussed how to use the context1 package to manage the
cancellation of goroutines. In this chapter, we cover the final part of concurrent
programming: synchronization.

We show you how to wait for a number of goroutines to finish. We explain race
conditions,2 how to find them using Go’s -race3 flag, and how to fix them with
sync.Mutex4 and sync.RWMutex.5

Finally, we discuss how to use sync.Once to ensure a function is only executed one time.

Waiting for Goroutines with a WaitGroup
Often, you might want to wait for a number of goroutines to finish before you continue
your program. For example, you might want to spawn a number of goroutines to create
a number of thumbnails of different sizes and wait for them all to complete before
you continue.

The Problem
Consider Listing 13.1. We launch 5 new goroutines, each of which creates a thumbnail of
a different size. We then wait for all of them to complete.

Listing 13.1 Launching Multiple Goroutines to Complete One Task

func Test_ThumbnailGenerator(t *testing.T) {

t.Parallel()

// image that we need thumbnails for

const image = "foo.png"

(continued)

1. https://pkg.go.dev/context
2. https://en.wikipedia.org/wiki/Race_condition
3. https://golang.org/doc/articles/race_detector
4. https://pkg.go.dev/sync#Mutex
5. https://pkg.go.dev/sync#RWMutex

https://pkg.go.dev/context
https://golang.org/doc/articles/race_detector
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#Once
https://pkg.go.dev/context
https://en.wikipedia.org/wiki/Race_condition
https://golang.org/doc/articles/race_detector
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex

420 Chapter 13 Synchronization

// start 5 goroutines to generate thumbnails

for i := 0; i < 5; i++ {

// start a new goroutine for each thumbnail

go generateThumbnail(image, i+1)

}

fmt.Println("Waiting for thumbnails to be generated")

}

The generateThumbnail function, Listing 13.2, generates a thumbnail of the
specified size. In this example, we sleep one millisecond per “size” of thumbnail
to simulate the time it takes to generate the thumbnail. For example, if we call
generateThumbnail("foo.png", 200), we sleep 200 milliseconds before returning.

Listing 13.2 A Test Exiting before All Goroutines Have Finished

func generateThumbnail(image string, size int) {

// thumbnail to be generated

thumb := fmt.Sprintf("%s@%dx.png", image, size)

fmt.Println("Generating thumbnail:", thumb)

// wait for the thumbnail to be ready

time.Sleep(time.Millisecond * time.Duration(size))

fmt.Println("Finished generating thumbnail:", thumb)

}

$ go test -v

=== RUN Test_ThumbnailGenerator

=== PAUSE Test_ThumbnailGenerator

=== CONT Test_ThumbnailGenerator

Waiting for thumbnails to be generated

--- PASS: Test_ThumbnailGenerator (0.00s)

PASS

ok demo 0.408s

Go Version: go1.19

Waiting for Goroutines with a WaitGroup 421

As you can see from the test output in Listing 13.2, the test exits before the thumbnails
are generated.

Our tests exit prematurely because we have not provided any mechanics to ensure that
we wait for all of the thumbnail goroutines to finish before we continue.

Using a WaitGroup
To help us solve this problem, we can use a sync.WaitGroup,6 Listing 13.3, to track how
many goroutines are still running and notify us when they have all finished.

Listing 13.3 The sync.WaitGroup Type

$ go doc -short sync.WaitGroup

type WaitGroup struct {

// Has unexported fields.

}

A WaitGroup waits for a collection of goroutines to finish. The main

ygoroutine calls Add to set the number of goroutines to wait for. Then

yeach of the goroutines runs and calls Done when finished. At the same

ytime, Wait can be used to block until all goroutines have finished.

A WaitGroup must not be copied after first use.

func (wg *WaitGroup) Add(delta int)

func (wg *WaitGroup) Done()

func (wg *WaitGroup) Wait()

Go Version: go1.19

The principle is simple: We create a sync.WaitGroup and use the sync.WaitGroup.Add7

method to add to the sync.WaitGroup for each goroutine we want to wait for. When
we want to wait for all of the goroutines to finish, we call the sync.WaitGroup.Wait8

method. When a goroutine finishes, it calls the sync.WaitGroup.Done9 method to indicate
that the goroutine is finished.

The Wait Method
As the name suggests, a sync.WaitGroup is about waiting for a group of tasks, or
goroutines, to finish. To do this, we need a way of blocking until all of the tasks have
finished. The sync.WaitGroup.Wait method in Listing 13.4 does exactly that.

6. https://pkg.go.dev/sync#WaitGroup
7. https://pkg.go.dev/sync#WaitGroup.Add
8. https://pkg.go.dev/sync#WaitGroup.Wait
9. https://pkg.go.dev/sync#WaitGroup.Done

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Done

422 Chapter 13 Synchronization

The sync.WaitGroup.Wait method blocks until its internal counter is zero. When
the counter is zero, it means that all of the tasks have finished, and we can unblock
and continue.

Listing 13.4 The sync.WaitGroup.Wait Method

$ go doc sync.WaitGroup.Wait

package sync // import "sync"

func (wg *WaitGroup) Wait()

Wait blocks until the WaitGroup counter is zero.

Go Version: go1.19

The Add Method
For a sync.WaitGroup to know how many goroutines it needs to wait for, we need to add
them to the sync.WaitGroup using the sync.WaitGroup.Add method, Listing 13.5.

Listing 13.5 The sync.WaitGroup.Add Method

$ go doc sync.WaitGroup.Add

package sync // import "sync"

func (wg *WaitGroup) Add(delta int)

Add adds delta, which may be negative, to the WaitGroup counter.

yIf the counter becomes zero, all goroutines blocked on Wait are released.

yIf the counter goes negative, Add panics.

Note that calls with a positive delta that occur when the counter is

yzero must happen before a Wait. Calls with a negative delta, or calls

ywith a positive delta that start when the counter is greater than zero,

ymay happen at any time. Typically this means the calls to Add should

yexecute before the statement creating the goroutine or other event to be

ywaited for. If a WaitGroup is reused to wait for several independent

ysets of events, new Add calls must happen after all previous Wait calls

yhave returned. See the WaitGroup example.

Go Version: go1.19

The sync.WaitGroup.Add method takes a single integer argument, which is the number
of goroutines to wait for. There are, however, some caveats to be aware of.

https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Add

Waiting for Goroutines with a WaitGroup 423

Adding a Positive Number
The sync.WaitGroup.Add method accepts an int argument, which is the number of
goroutines to wait for. If we pass a positive number, the sync.WaitGroup.Add method
adds that number of goroutines to the sync.WaitGroup.

As you can see from the test output in Listing 13.6, the sync.WaitGroup.Wait method
blocks until the internal counter of the sync.WaitGroup reaches zero.

Listing 13.6 Adding a Positive Number of Goroutines

func Test_WaitGroup_Add_Positive(t *testing.T) {

t.Parallel()

var completed bool

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// add one to the waitgroup (count: 1)

wg.Add(1)

// launch a goroutine to call the Done() method

go func(wg *sync.WaitGroup) {

// sleep for a bit

time.Sleep(time.Millisecond * 10)

fmt.Println("done with waitgroup")

completed = true

// call the Done() method to decrement

// the waitgroup counter (count: 0)

wg.Done()

}(&wg)

fmt.Println("waiting for waitgroup to unblock")

// wait for the waitgroup to unblock (count: 1)

wg.Wait()

// (count: 0)

(continued)

https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup

424 Chapter 13 Synchronization

fmt.Println("waitgroup is unblocked")

if !completed {

t.Fatal("waitgroup is not completed")

}

}

$ go test -v -run Positive

=== RUN Test_WaitGroup_Add_Positive

=== PAUSE Test_WaitGroup_Add_Positive

=== CONT Test_WaitGroup_Add_Positive

waiting for waitgroup to unblock

done with waitgroup

waitgroup is unblocked

--- PASS: Test_WaitGroup_Add_Positive (0.01s)

PASS

ok demo 0.351s

Go Version: go1.19

Adding a Zero Number
It is legal to call the sync.WaitGroup.Add method with a zero number, 0, Listing 13.7.
In this case, the sync.WaitGroup.Add method does nothing. The call becomes a no-op.

Listing 13.7 Adding a Zero Number of Goroutines

func Test_WaitGroup_Add_Zero(t *testing.T) {

t.Parallel()

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// add 0 to the waitgroup (count: 0)

wg.Add(0)

// (count: 0)

fmt.Println("waiting for waitgroup to unblock")

// wait for the waitgroup to unblock (count: 0)

// will not block since the counter is already 0

(continued)

https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Add

Waiting for Goroutines with a WaitGroup 425

wg.Wait()

// (count: 0)

fmt.Println("waitgroup is unblocked")

}

$ go test -v -run Zero

=== RUN Test_WaitGroup_Add_Zero

=== PAUSE Test_WaitGroup_Add_Zero

=== CONT Test_WaitGroup_Add_Zero

waiting for waitgroup to unblock

waitgroup is unblocked

--- PASS: Test_WaitGroup_Add_Zero (0.00s)

PASS

ok demo 0.166s

Go Version: go1.19

As you can see from the test output in Listing 13.7, the sync.WaitGroup.Wait method
unblocked immediately because its internal counter is already zero.

Adding a Negative Number
When calling the sync.WaitGroup.Add method with a negative number, the
sync.WaitGroup.Add method panics.

As you can see from the test output in Listing 13.8, the sync.WaitGroup.Wait method
was never reached because the sync.WaitGroup.Add method panicked when we tried to
add a negative number of goroutines.

Listing 13.8 Adding a Negative Number of Goroutines

func Test_WaitGroup_Add_Negative(t *testing.T) {

t.Parallel()

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// use an anonymous function to trap the panic

// so we can properly mark the test as a failure

func() {

// defer a function to catch the panic

defer func() {

(continued)

https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Add

426 Chapter 13 Synchronization

// recover the panic

if r := recover(); r != nil {

// mark the test as a failure

t.Fatal(r)

}

}()

// add a negative number to the waitgroup

// this will panic since the counter cannot be negative

wg.Add(-1)

fmt.Println("waiting for waitgroup to unblock")

// this will never be reached

wg.Wait()

fmt.Println("waitgroup is unblocked")

}()

}

$ go test -v -run Negative

=== RUN Test_WaitGroup_Add_Negative

=== PAUSE Test_WaitGroup_Add_Negative

=== CONT Test_WaitGroup_Add_Negative

add_test.go:92: sync: negative WaitGroup counter

--- FAIL: Test_WaitGroup_Add_Negative (0.00s)

FAIL

exit status 1

FAIL demo 0.753s

Go Version: go1.19

The Done Method
Once we increase that counter by calling the sync.WaitGroup.Add method, the
sync.WaitGroup.Wait method blocks until we decrement the counter as we finish with
each goroutine.

For each item we add to the sync.WaitGroup with the sync.WaitGroup.Add method,
we need to call the sync.WaitGroup.Done method, Listing 13.9, to indicate that the
goroutine is finished.

https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Done

Waiting for Goroutines with a WaitGroup 427

Listing 13.9 The sync.WaitGroup.Done method

$ go doc sync.WaitGroup.Done

package sync // import "sync"

func (wg *WaitGroup) Done()

Done decrements the WaitGroup counter by one.

Go Version: go1.19

Consider Listing 13.10, which creates N goroutines and adds N to the sync.WaitGroup

using the sync.WaitGroup.Add method. Each goroutine calls the sync.WaitGroup.Done

method after it finishes. We then use the sync.WaitGroup.Wait method to wait for all of
the goroutines to finish.

Listing 13.10 Testing the sync.WaitGroup.Done Method

func Test_WaitGroup_Done(t *testing.T) {

t.Parallel()

const N = 5

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// add 5 to the waitgroup (count: 5)

wg.Add(N)

for i := 0; i < N; i++ {

// launch a goroutine that will call the

// waitgroup's Done method when it finishes

go func(i int) {

// sleep briefly

time.Sleep(time.Millisecond * time.Duration(i))

fmt.Println("decrementing waiting by 1")

// call the waitgroup's Done method

// (count: count - 1)

wg.Done()

(continued)

https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Done

428 Chapter 13 Synchronization

}(i + 1)

}

fmt.Println("waiting for waitgroup to unblock")

wg.Wait()

fmt.Println("waitgroup is unblocked")

}

$ go test -v -timeout 1s

=== RUN Test_WaitGroup_Done

=== PAUSE Test_WaitGroup_Done

=== CONT Test_WaitGroup_Done

waiting for waitgroup to unblock

decremeting waiting by 1

decremeting waiting by 1

decremeting waiting by 1

decremeting waiting by 1

decremeting waiting by 1

waitgroup is unblocked

--- PASS: Test_WaitGroup_Done (0.01s)

PASS

ok demo 0.384s

Go Version: go1.19

As we can see from the test output, Listing 13.10, the sync.WaitGroup.Wait method
unblocked after all of the goroutines finished.

Improper Usage

You must call sync.WaitGroup.Done exactly once for each number of items you add with
sync.WaitGroup.Add.

If you don’t call sync.WaitGroup.Done exactly once for each item you add with
sync.WaitGroup.Add, the sync.WaitGroup.Wait method will block forever, which causes a
deadlock and crashes your program, as shown in Listing 13.11.

https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Wait

Waiting for Goroutines with a WaitGroup 429

Listing 13.11 Decrementing a sync.WaitGroup with the sync.WaitGroup.Done Method

func Test_WaitGroup_Done(t *testing.T) {

t.Parallel()

const N = 5

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// add 5 to the waitgroup (count: 5)

wg.Add(N)

for i := 0; i < N; i++ {

// launch a goroutine that will call the

// waitgroup's Done method when it finishes

go func(i int) {

// sleep briefly

time.Sleep(time.Millisecond * time.Duration(i))

fmt.Println("finished")

// exiting with calling the Done method

// (count: count)

}(i + 1)

}

fmt.Println("waiting for waitgroup to unblock")

// this will never unblock

// because the goroutines never call Done

// and the application will deadlock and panic

wg.Wait()

fmt.Println("waitgroup is unblocked")

}

$ go test -v -timeout 1s

=== RUN Test_WaitGroup_Done

=== PAUSE Test_WaitGroup_Done

=== CONT Test_WaitGroup_Done
(continued)

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Done

430 Chapter 13 Synchronization

waiting for waitgroup to unblock

finished

finished

finished

finished

finished

panic: test timed out after 1s

goroutine 19 [running]:

testing.(*M).startAlarm.func1()

/usr/local/go/src/testing/testing.go:2029 +0x8c

created by time.goFunc

/usr/local/go/src/time/sleep.go:176 +0x3c

goroutine 1 [chan receive]:

testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1405 +0x45c

testing.tRunner(0x140001361a0, 0x1400010fcb8)

/usr/local/go/src/testing/testing.go:1445 +0x14c

testing.runTests(0x1400001e280?, {0x101045ea0, 0x1, 0x1},

y{0x6e00000000000000?, 0x100e71218?, 0x10104e640?})

/usr/local/go/src/testing/testing.go:1837 +0x3f0

testing.(*M).Run(0x1400001e280)

/usr/local/go/src/testing/testing.go:1719 +0x500

main.main()

_testmain.go:47 +0x1d0

goroutine 4 [semacquire]:

sync.runtime_Semacquire(0x0?)

/usr/local/go/src/runtime/sema.go:56 +0x2c

sync.(*WaitGroup).Wait(0x14000012140)

/usr/local/go/src/sync/waitgroup.go:136 +0x88

demo.Test_WaitGroup_Done(0x0?)

./done_test.go:43 0xd0

testing.tRunner(0x14000136340, 0x100fa1580)

/usr/local/go/src/testing/testing.go:1439 +0x110

created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x300

exit status 2

FAIL demo 1.225s

Go Version: go1.19

Waiting for Goroutines with a WaitGroup 431

If you call sync.WaitGroup.Done more than the number of items you added with
sync.WaitGroup.Add, the sync.WaitGroup.Done method panics, Listing 13.12. The result
is the same as if you called sync.WaitGroup.Add with a negative number.

Listing 13.12 Panicking from Decrementing sync.WaitGroup Too Many Times

func Test_WaitGroup_Done(t *testing.T) {

t.Parallel()

func() {

// defer a function to catch the panic

defer func() {

// recover the panic

if r := recover(); r != nil {

// mark the test as a failure

t.Fatal(r)

}

}()

// create a new waitgroup (count: 0)

var wg sync.WaitGroup

// call done creating a negative

// waitgroup counter

wg.Done()

// this line is never reached

fmt.Println("waitgroup is unblocked")

}()

}

$ go test -v -timeout 1s

=== RUN Test_WaitGroup_Done

=== PAUSE Test_WaitGroup_Done

=== CONT Test_WaitGroup_Done

done_test.go:20: sync: negative WaitGroup counter

--- FAIL: Test_WaitGroup_Done (0.00s)

FAIL

exit status 1

FAIL demo 0.416s

Go Version: go1.19

https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup

432 Chapter 13 Synchronization

Wrapping Up Wait Groups
Using a sync.WaitGroup is a great way to manage the number of goroutines or any other
number of tests that need to finish before your program can continue.

As you can see, we can effectively use a sync.WaitGroup to manage the thumbnail
generator goroutines from our initial example.

In Listing 13.13, we create a new sync.WaitGroup. Then, in the for loop, we use the
sync.WaitGroup.Add method to add 1 to the sync.WaitGroup. We then pass a pointer to
the generateThumbnail function to sync.WaitGroup. A pointer is needed because the
generateThumbnail function needs to be able to modify the sync.WaitGroup by calling
the sync.WaitGroup.Done method.

Finally, we call the sync.WaitGroup.Wait method to wait for all of the goroutines
to finish.

Listing 13.13 Using a sync.WaitGroup to Manage the Thumbnail Generator Goroutines

func Test_ThumbnailGenerator(t *testing.T) {

t.Parallel()

// image that we need thumbnails for

const image = "foo.png"

var wg sync.WaitGroup

// start 5 goroutines to generate thumbnails

for i := 0; i < 5; i++ {

wg.Add(1)

// start a new goroutine for each thumbnail

go generateThumbnail(&wg, image, i+1)

}

fmt.Println("Waiting for thumbnails to be generated")

// wait for all goroutines to finish

wg.Wait()

fmt.Println("Finished generate all thumbnails")

}

The generateThumbnail function now receives a pointer to the sync.WaitGroup and
defers a call to the sync.WaitGroup.Done method to indicate that the goroutine is finished
when the function exits.

Finally, as you can see from our test output in Listing 13.14, the application now
finishes successfully.

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Add
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Done
https://pkg.go.dev/sync#WaitGroup.Wait
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup.Done

Error Management with Error Groups 433

Listing 13.14 Generating Thumbnails Using a sync.WaitGroup

func generateThumbnail(wg *sync.WaitGroup, image string, size int) {

defer wg.Done()

// thumbnail to be generated

thumb := fmt.Sprintf("%s@%dx.png", image, size)

fmt.Println("Generating thumbnail:", thumb)

// wait for the thumbnail to be ready

time.Sleep(time.Millisecond * time.Duration(size))

fmt.Println("Finished generating thumbnail:", thumb)

}

$ go test -v

=== RUN Test_ThumbnailGenerator

=== PAUSE Test_ThumbnailGenerator

=== CONT Test_ThumbnailGenerator

Waiting for thumbnails to be generated

Generating thumbnail: foo.png@5x.png

Generating thumbnail: foo.png@3x.png

Generating thumbnail: foo.png@4x.png

Generating thumbnail: foo.png@2x.png

Generating thumbnail: foo.png@1x.png

Finished generating thumbnail: foo.png@1x.png

Finished generating thumbnail: foo.png@2x.png

Finished generating thumbnail: foo.png@3x.png

Finished generating thumbnail: foo.png@4x.png

Finished generating thumbnail: foo.png@5x.png

Finished generate all thumbnails

--- PASS: Test_ThumbnailGenerator (0.01s)

PASS

ok demo 0.310s

Go Version: go1.19

Error Management with Error Groups
One of the downsides of the sync.WaitGroup is that it has no error management built in
to capture errors that occur in the goroutines. It also has an API that requires exact
implementation; otherwise, it panics.

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup

434 Chapter 13 Synchronization

To help address some of these issues, the golang.org/x/sync/errgroup,10 Listing 13.15,
package was introduced, providing a simpler API as well as built-in error management.

Listing 13.15 The golang.org/x/sync/errgroup Package

$ go doc golang.org/x/sync/errgroup

package errgroup // import "golang.org/x/sync/errgroup"

Package errgroup provides synchronization, error propagation, and Context

ycancelation for groups of goroutines working on subtasks of a common task.

type Group struct{ ... }

func WithContext(ctx context.Context) (*Group, context.Context)

Go Version: go1.19

The Problem
Consider Listing 13.16. In the example, a number of goroutines are launched to call the
generateThumbnail functions. A sync.WaitGroup is used to wait for all the goroutines
to finish.

Listing 13.16 Managing Goroutines with sync.WaitGroup

func Test_ThumbnailGenerator(t *testing.T) {

t.Parallel()

// image that we need thumbnails for

const image = "foo.png"

var wg sync.WaitGroup

// start 5 goroutines to generate thumbnails

for i := 0; i < 5; i++ {

wg.Add(1)

// start a new goroutine for each thumbnail

go generateThumbnail(&wg, image, i+1)

}

10. https://pkg.go.dev/golang.org/x/sync/errgroup

https://pkg.go.dev/golang.org/x/sync/errgroup
https://pkg.go.dev/golang.org/x/sync/errgroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/golang.org/x/sync/errgroup

Error Management with Error Groups 435

fmt.Println("Waiting for thumbnails to be generated")

// wait for all goroutines to finish

wg.Wait()

fmt.Println("Finished generate all thumbnails")

}

Inside the generateThumbnail function, Listing 13.17, we see that there is an error
that occurs if the size argument is divisible by 5, which causes a panic, and the
application crashes.

Listing 13.17 The generateThumbnail Function

func generateThumbnail(wg *sync.WaitGroup, image string, size int) {

defer wg.Done()

// error if the size is divisible by 5

if size%5 == 0 {

// how do we return this error back to the main

// goroutine without panicking?

err := fmt.Errorf("%d is divisible by 5", size)

panic(err)

}

// thumbnail to be generated

thumb := fmt.Sprintf("%s@%dx.png", image, size)

fmt.Println("Generating thumbnail:", thumb)

// wait for the thumbnail to be ready

time.Sleep(time.Millisecond * time.Duration(size))

fmt.Println("Finished generating thumbnail:", thumb)

}

$ go test -v

=== RUN Test_ThumbnailGenerator

=== PAUSE Test_ThumbnailGenerator

=== CONT Test_ThumbnailGenerator

Waiting for thumbnails to be generated

panic: 5 is divisible by 5

(continued)

436 Chapter 13 Synchronization

goroutine 9 [running]:

demo.generateThumbnail(0x0?, {0x10268ac77?, 0x0?}, 0x0?)

./demo_test.go:47 +0x21c

created by demo.Test_ThumbnailGenerator

./demo_test.go:24 +0x4c

exit status 2

FAIL demo 0.619s

Go Version: go1.19

The Error Group
The errgroup.Group11 type provides a minimal API when compared to the
sync.WaitGroup type. There are only two methods: errgroup.Group.Go12 and
errgroup.Group.Wait.13

The errgroup.Group type, Listing 13.18, manages the counter for you, so there is no
need for counter management as there is with the sync.WaitGroup type.

Listing 13.18 The errgroup.Group Type

$ go doc golang.org/x/sync/errgroup.Group

package errgroup // import "golang.org/x/sync/errgroup"

type Group struct {

// Has unexported fields.

}

A Group is a collection of goroutines working on subtasks that are part

yof the same overall task.

A zero Group is valid and does not cancel on error.

func WithContext(ctx context.Context) (*Group, context.Context)

func (g *Group) Go(f func() error)

func (g *Group) Wait() error

Go Version: go1.19

11. https://pkg.go.dev/golang.org/x/sync/errgroup#Group
12. https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Go
13. https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait

https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Go
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Go
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait

Error Management with Error Groups 437

The Go Method
You use the errgroup.Group.Go method, Listing 13.19, to launch a goroutine for the
provided func() error function provided. The func() error function is executed in
a goroutine. If the function returns an error, the errgroup.Group type captures the
error, cancels the other goroutines, and returns the error to the caller from the
errgroup.Group.Wait method.

Listing 13.19 The errgroup.Group.Go Method

$ go doc golang.org/x/sync/errgroup.Group.Go

package errgroup // import "golang.org/x/sync/errgroup"

func (g *Group) Go(f func() error)

Go calls the given function in a new goroutine.

The first call to return a non-nil error cancels the group; its error

ywill be returned by Wait.

Go Version: go1.19

The Wait Method
You use errgroup.Group.Wait method, Listing 13.20, to wait for all the goroutines to
finish. If any of the goroutines return an error, the errgroup.Group type returns the error
to the caller.

Listing 13.20 The errgroup.Group.Wait Method

$ go doc golang.org/x/sync/errgroup.Group.Wait

package errgroup // import "golang.org/x/sync/errgroup"

func (g *Group) Wait() error

Wait blocks until all function calls from the Go method have returned,

ythen returns the first non-nil error (if any) from them.

Go Version: go1.19

It is important to understand the errgroup.Group.Wait method returns only the first
error that occurs. Any other errors that occur are ignored. In Listing 13.21, we are calling
the Go method on an errorgroup.Group 10 times. Each time we pass a function that sleeps
for a random time, prints a messages, and then returns an error. From the output of the
test, you can see that the error returned by the Wait method was returned from function
number 4. The other nine errors are discarded.

https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Go
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Go
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait
https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait

438 Chapter 13 Synchronization

Listing 13.21 The errgroup.Group.Wait Method Returns Only the First Error

func Test_ErrorGroup_Multiple_Errors(t *testing.T) {

t.Parallel()

var wg errgroup.Group

for i := 0; i < 10; i++ {

i := i + 1

wg.Go(func() error {

time.Sleep(time.Millisecond * time.Duration(rand.Intn(10)))

fmt.Printf("about to error from %d\n", i)

return fmt.Errorf("error %d", i)

})

}

err := wg.Wait()

if err != nil {

t.Fatal(err)

}

}

$ go test -v

=== RUN Test_ErrorGroup_Multiple_Errors

=== PAUSE Test_ErrorGroup_Multiple_Errors

=== CONT Test_ErrorGroup_Multiple_Errors

about to error from 4

about to error from 6

about to error from 3

about to error from 1

about to error from 9

about to error from 10

about to error from 8

about to error from 5

about to error from 2

about to error from 7

demo_test.go:38: error 4

https://pkg.go.dev/golang.org/x/sync/errgroup#Group.Wait

Error Management with Error Groups 439

--- FAIL: Test_ErrorGroup_Multiple_Errors (0.01s)

FAIL

exit status 1

FAIL demo 0.263s

Go Version: go1.19

Listening for Error Group Cancellation
When launching a number of goroutines, it can often be useful to let others know the
tasks have all completed. The errgroup.WithContext14 function, Listing 13.22, returns a
new errgroup.Group, as well as a context.Context that can be listened to for cancellation.

Listing 13.22 The errgroup.WithContext Function

func Test_ErrorGroup_Context(t *testing.T) {

t.Parallel()

// create a new error group

// and a context that will be canceled

// when the group is done

wg, ctx := errgroup.WithContext(context.Background())

// create a quit channel for the goroutine

// waiting for the context to be canceled

// can close to signal the goroutine has finished

quit := make(chan struct{})

// launch a goroutine that will

// wait for the errgroup context to finish

go func() {

fmt.Println("waiting for context to cancel")

// wait for the context to be canceled

<-ctx.Done()

fmt.Println("context canceled")

// close the quit channel so the test

// will finish

close(quit)

(continued)

14. https://pkg.go.dev/golang.org/x/sync/errgroup#WithContext

https://pkg.go.dev/golang.org/x/sync/errgroup#WithContext
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/context#Context
https://pkg.go.dev/golang.org/x/sync/errgroup#WithContext
https://pkg.go.dev/golang.org/x/sync/errgroup#WithContext

440 Chapter 13 Synchronization

}()

// add a task to the errgroup

wg.Go(func() error {

time.Sleep(time.Millisecond * 5)

return nil

})

// wait for the errgroup to finish

err := wg.Wait()

if err != nil {

t.Fatal(err)

}

// wait for the context goroutine to finish

<-quit

}

$ go test -v

=== RUN Test_ErrorGroup_Context

=== PAUSE Test_ErrorGroup_Context

=== CONT Test_ErrorGroup_Context

waiting for context to cancel

context canceled

--- PASS: Test_ErrorGroup_Context (0.01s)

PASS

ok demo 0.725s

Go Version: go1.19

Wrapping Up Error Groups
The errgroup.Group type provides a simpler API than the sync.WaitGroup type. It also
provides built-in error management. This makes managing goroutines with error handling
much easier. The downside is that it is not as flexible as the sync.WaitGroup type, where
you are in charge of managing the counter.

Which type you choose to use will vary from situation to situation, so it is important
to understand the tradeoffs and benefits of each before deciding which type to use.

Using a errgroup.Group allows you to clean up your code significantly to make it easier
to understand and to manage errors.

As you can see from Listing 13.23, the generateThumbnail function no longer needs
to take a sync.WaitGroup as an argument.

https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/sync#WaitGroup

Error Management with Error Groups 441

Listing 13.23 Update the generateThumbnail Function to use errgroup.Group

func generateThumbnail(image string, size int) error {

// error if the size is divisible by 5

if size%5 == 0 {

return fmt.Errorf("%d is divisible by 5", size)

}

// thumbnail to be generated

thumb := fmt.Sprintf("%s@%dx.png", image, size)

fmt.Println("Generating thumbnail:", thumb)

// wait for the thumbnail to be ready

time.Sleep(time.Millisecond * time.Duration(size))

fmt.Println("Finished generating thumbnail:", thumb)

return nil

}

Being able to return an error from the function means the function no longer needs
to panic.

As you can see from the output, Listing 13.24, the generateThumbnail function no
longer panics, and the test is now able to exit properly.

Listing 13.24 Using the errgroup.Group Type

func Test_ThumbnailGenerator(t *testing.T) {

t.Parallel()

// image that we need thumbnails for

const image = "foo.png"

// create a new error group

var wg errgroup.Group

// start 5 goroutines to generate thumbnails

for i := 0; i < 5; i++ {

// capture the i to the current scope

i := i

(continued)

https://pkg.go.dev/golang.org/x/sync/errgroup#Group
https://pkg.go.dev/golang.org/x/sync/errgroup#Group

442 Chapter 13 Synchronization

// start a new goroutine for each thumbnail

wg.Go(func() error {

// return the result of generateThumbnail

return generateThumbnail(image, i)

})

}

fmt.Println("Waiting for thumbnails to be generated")

// wait for all goroutines to finish

err := wg.Wait()

// check for any errors

if err != nil {

t.Fatal(err)

}

fmt.Println("Finished generate all thumbnails")

}

$ go test -v

=== RUN Test_ThumbnailGenerator

=== PAUSE Test_ThumbnailGenerator

=== CONT Test_ThumbnailGenerator

Waiting for thumbnails to be generated

Generating thumbnail: foo.png@4x.png

Generating thumbnail: foo.png@3x.png

Generating thumbnail: foo.png@1x.png

Generating thumbnail: foo.png@2x.png

Finished generating thumbnail: foo.png@1x.png

Finished generating thumbnail: foo.png@2x.png

Finished generating thumbnail: foo.png@3x.png

Finished generating thumbnail: foo.png@4x.png

demo_test.go:43: 0 is divisible by 5

--- FAIL: Test_ThumbnailGenerator (0.00s)

FAIL

exit status 1

FAIL demo 0.570s

Go Version: go1.19

Data Races 443

Data Races
When writing concurrent applications, it is common to run into what is called a race
condition.15 A race condition occurs when two different goroutines try to access the same
shared resource.

Consider Listing 13.25. There are two different goroutines. One goroutine inserts
values into a map, and the other goroutine ranges over the map and prints the values.

Listing 13.25 Two Goroutines Accessing a Shared Map

// launch a goroutine to

// write data in the map

go func() {

for i := 0; i < 10; i++ {

// loop putting data in the map

data[i] = true

}

// cancel the context

cancel()

}()

// launch a goroutine to

// read data from the map

go func() {

// loop through the map

// and print the keys/values

for k, v := range data {

fmt.Printf("%d: %v\n", k, v)

}

}()

In Listing 13.26, we use those two goroutines to write a test to assert the map is written
to and read from correctly.

Listing 13.26 A Passing Testing Without the Race Detector

func Test_Mutex(t *testing.T) {

t.Parallel()

(continued)

15. https://en.wikipedia.org/wiki/Race_condition

https://en.wikipedia.org/wiki/Race_condition

444 Chapter 13 Synchronization

// create a new cancellable context

// to stop the test when the goroutines

// are finished

ctx := context.Background()

ctx, cancel := context.WithTimeout(ctx, 20*time.Millisecond)

defer cancel()

// create a map to be used

// as a shared resource

data := map[int]bool{}

// launch a goroutine to

// write data in the map

go func() {

for i := 0; i < 10; i++ {

// loop putting data in the map

data[i] = true

}

// cancel the context

cancel()

}()

// launch a goroutine to

// read data from the map

go func() {

// loop through the map

// and print the keys/values

for k, v := range data {

fmt.Printf("%d: %v\n", k, v)

}

}()

// wait for the context to be canceled

<-ctx.Done()

if len(data) != 10 {

t.Fatalf("expected 10 items in the map, got %d", len(data))

}

}

Data Races 445

$ go test -v

=== RUN Test_Mutex

=== PAUSE Test_Mutex

=== CONT Test_Mutex

--- PASS: Test_Mutex (0.00s)

PASS

ok demo 0.471s

Go Version: go1.19

A quick glance at the test output, Listing 13.26, would seem to imply that the tests have
passed successfully, but this is not the case.

The Race Detector
A few of the Go commands, such as test and build, have the -race flag exposed. When
used, the -race flag tells the Go compiler to create a special version of the binary or test
binary that will detect and report race conditions.

If we run the test again, this time with the -race flag, we get a very different result, as
shown in Listing 13.27.

Listing 13.27 Tests Failing with the Race Detector

$ go test -v -race

=== RUN Test_Mutex

=== PAUSE Test_Mutex

=== CONT Test_Mutex

--- PASS: Test_Mutex (0.00s)

==================

WARNING: DATA RACE

Read at 0x00c00011c3f0 by goroutine 9:

runtime.mapdelete()

/usr/local/go/src/runtime/map.go:695 +0x46c

demo.Test_Mutex.func2()

./demo_test.go:46 +0x50

Previous write at 0x00c00011c3f0 by goroutine 8:

runtime.mapaccess2_fast64()

/usr/local/go/src/runtime/map_fast64.go:53 +0x1cc

demo.Test_Mutex.func1()

./demo_test.go:32 +0x50

(continued)

https://golang.org/doc/articles/race_detector

446 Chapter 13 Synchronization

Goroutine 9 (running) created at:

demo.Test_Mutex()

./demo_test.go:43 +0x188

testing.tRunner()

/usr/local/go/src/testing/testing.go:1439 +0x18c

testing.(*T).Run.func1()

/usr/local/go/src/testing/testing.go:1486 +0x44

Goroutine 8 (finished) created at:

demo.Test_Mutex()

./demo_test.go:28 +0x124

testing.tRunner()

/usr/local/go/src/testing/testing.go:1439 +0x18c

testing.(*T).Run.func1()

/usr/local/go/src/testing/testing.go:1486 +0x44

==================

FAIL

exit status 1

FAIL demo 0.962s

Go Version: go1.19

As you can see from the output, the Go race detector found a race condition in
our code.

If we examine the top two entries in a race condition warning, Listing 13.28, it
tells us where the two conflicting lines of code are.

Listing 13.28 Reading the Race Detector Output

Read at 0x00c00018204b by goroutine 9:

demo.Test_Mutex.func2()

problem/demo_test.go:46 +0xa5

Previous write at 0x00c00018204b by goroutine 8:

demo.Test_Mutex.func1()

problem/demo_test.go:32 +0x5c

A read of the shared resource was happening at demo_test.go:46, and a write was
happening at demo_test.go:32. We need to synchronize or lock these two goroutines
so that they don’t both try to access the shared resource at the same time.

Most, but Not All
The Go race detector makes a simple guarantee with you (the end user).

The Go race detector may not find all the race conditions in your code, but the ones it
does find are real and must be fixed.

Synchronizing Access with a Mutex 447

A race condition will panic and crash your application. If the race detector finds a race
condition, you must fix it.

Wrapping Up the Race Detector
The race detector is an invaluable tool when developing Go applications. When running
tests with the -race flag, you will notice a slowdown in test performance. The race
detector has to do a lot of work to track those conditions.

Always enable the -race flag on your CI, such as GitHub Actions.

Once identified, the sync package, Listing 13.29, provides a number of ways that you
can fix issues.

Listing 13.29 The sync Package

$ go doc -short sync

type Cond struct{ ... }

func NewCond(l Locker) *Cond

type Locker interface{ ... }

type Map struct{ ... }

type Mutex struct{ ... }

type Once struct{ ... }

type Pool struct{ ... }

type RWMutex struct{ ... }

type WaitGroup struct{ ... }

Go Version: go1.19

Synchronizing Access with a Mutex
When you run tests with the -race flag, Go’s built-in race detector can help you find data
races in your code. In Listing 13.30, for example, tests that pass normally fail when run
with the race detector. The failure message lists the data race found and where the reads
and writes occur in our code.

Listing 13.30 Detecting Race Conditions in Tests

$ go test -v -race

=== RUN Test_Mutex

=== PAUSE Test_Mutex

(continued)

https://pkg.go.dev/sync
https://pkg.go.dev/sync

448 Chapter 13 Synchronization

=== CONT Test_Mutex

--- PASS: Test_Mutex (0.00s)

PASS

==================

WARNING: DATA RACE

Read at 0x00c00019e3f0 by goroutine 9:

runtime.mapdelete()

/usr/local/go/src/runtime/map.go:695 +0x46c

demo.Test_Mutex.func2()

./demo_test.go:46 +0x50

Previous write at 0x00c00019e3f0 by goroutine 8:

runtime.mapaccess2_fast64()

/usr/local/go/src/runtime/map_fast64.go:53 +0x1cc

demo.Test_Mutex.func1()

./demo_test.go:32 +0x50

Goroutine 9 (running) created at:

demo.Test_Mutex()

./demo_test.go:43 +0x188

testing.tRunner()

/usr/local/go/src/testing/testing.go:1439 +0x18c

testing.(*T).Run.func1()

/usr/local/go/src/testing/testing.go:1486 +0x44

Goroutine 8 (finished) created at:

demo.Test_Mutex()

./demo_test.go:28 +0x124

testing.tRunner()

/usr/local/go/src/testing/testing.go:1439 +0x18c

testing.(*T).Run.func1()

/usr/local/go/src/testing/testing.go:1486 +0x44

==================

0: true

2: true

4: true

7: true

9: true

1: true

3: true

5: true

6: true

8: true

Synchronizing Access with a Mutex 449

Found 1 data race(s)

exit status 66

FAIL demo 0.862s

Go Version: go1.19

In the test in Listing 13.31, we have two different goroutines. The first is modifying a
shared resource—in this case, a map. The second goroutine is ranging over the map and
printing out the map’s values.

In order for us to be able to fix this race condition, we need to be able to synchronize
access to the shared resource.

Listing 13.31 Two Goroutines Accessing a Shared Map

// launch a goroutine to

// read data from the map

go func() {

// loop through the map

// and print the keys/values

for k, v := range data {

fmt.Printf("%d: %v\n", k, v)

}

}()

// launch a goroutine to

// put data in the map

go func() {

for i := 0; i < 10; i++ {

// loop putting data in the map

data[i] = true

}

// cancel the context

cancel()

}()

Locker
To synchronize access to the shared resource, we need to be able to lock access to the
resource. By locking a shared resource, we can ensure that only one goroutine at a time
can access the resource and that the resource is not modified by another goroutine while it
is locked.

https://bit.ly/3Cedyhl

450 Chapter 13 Synchronization

The sync.Locker16 interface, Listing 13.32, defines the methods that a type must
implement to be able to lock and unlock a shared resource.

Listing 13.32 The sync.Locker Interface

$ go doc sync.Locker

package sync // import "sync"

type Locker interface {

Lock()

Unlock()

}

A Locker represents an object that can be locked and unlocked.

Go Version: go1.19

Locker Methods
You can use the sync.Locker.Lock17 method, Listing 13.33, to lock the shared resource.
Once a resource is locked, no other goroutine can access the resource until it is unlocked.

Listing 13.33 The sync.Locker.Lock Method

$ go doc sync.Mutex.Lock

package sync // import "sync"

func (m *Mutex) Lock()

Lock locks m. If the lock is already in use, the calling goroutine blocks

yuntil the mutex is available.

Go Version: go1.19

You can use the sync.Locker.Unlock18 method, Listing 13.34, to unlock the shared
resource. Once a resource is unlocked, other goroutines can access the resource.

16. https://pkg.go.dev/sync#Locker
17. https://pkg.go.dev/sync#Locker.Lock
18. https://pkg.go.dev/sync#Locker.Unlock

https://pkg.go.dev/sync#Locker
https://pkg.go.dev/sync#Locker
https://pkg.go.dev/sync#Locker.Lock
https://pkg.go.dev/sync#Locker.Lock
https://pkg.go.dev/sync#Locker.Unlock
https://pkg.go.dev/sync#Locker
https://pkg.go.dev/sync#Locker.Lock
https://pkg.go.dev/sync#Locker.Unlock

Synchronizing Access with a Mutex 451

Listing 13.34 The sync.Locker.Unlock Method

$ go doc sync.Mutex.Unlock

package sync // import "sync"

func (m *Mutex) Unlock()

Unlock unlocks m. It is a run-time error if m is not locked on entry to

yUnlock.

A locked Mutex is not associated with a particular goroutine. It is

yallowed for one goroutine to lock a Mutex and then arrange for another

ygoroutine to unlock it.

Go Version: go1.19

Using a Mutex
The most basic mutex available in Go is the sync.Mutex type, Listing 13.35. The
sync.Mutex uses a basic binary semaphore lock. This means that only one goroutine
can access the resource at a time.

Listing 13.35 The sync.Mutex Type

$ go doc sync.Mutex

package sync // import "sync"

type Mutex struct {

// Has unexported fields.

}

yA Mutex is a mutual exclusion lock. The zero value for a Mutex is an

yunlocked mutex.

A Mutex must not be copied after first use.

func (m *Mutex) Lock()

func (m *Mutex) TryLock() bool

func (m *Mutex) Unlock()

Go Version: go1.19

To use a sync.Mutex, you need to wrap the areas of code that you want to synchronize
access to by first locking the sync.Mutex and then unlocking it. For example, in the

https://pkg.go.dev/sync#Locker.Unlock
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex

452 Chapter 13 Synchronization

second goroutine in Listing 13.36, a mutex is being used to lock access around writing
values into the data map.

Listing 13.36 Locking Resources with a sync.Mutex

// launch a goroutine to

// read data from the map

go func() {

// lock the mutex

mu.Lock()

// loop through the map

// and print the keys/values

for k, v := range data {

fmt.Printf("%d: %v\n", k, v)

}

// unlock the mutex

mu.Unlock()

}()

// launch a goroutine to

// put data in the map

go func() {

for i := 0; i < 10; i++ {

// lock the mutex

mu.Lock()

// loop putting data in the map

data[i] = true

// unlock the mutex

mu.Unlock()

}

// cancel the context

cancel()

}()

By locking access to the shared resource, you can ensure that only one goroutine at a
time can access the resource. Our test output, Listing 13.37, confirms that the shared
resource is only accessed by one goroutine at a time with a successful exit.

https://pkg.go.dev/sync#Mutex

Synchronizing Access with a Mutex 453

Listing 13.37 Passing Race Detector Tests

$ go test -v -race

=== RUN Test_Mutex

=== PAUSE Test_Mutex

=== CONT Test_Mutex

9: true

--- PASS: Test_Mutex (0.00s)

0: true

2: true

5: true

8: true

7: true

1: true

PASS

3: true

4: true

6: true

ok demo 0.810s

Go Version: go1.19

RWMutex
Often, applications read a shared resource instead of writing to them. The sync.Mutex is a
very heavy-weight locking mechanism. Access to a shared resource, whether it be a read or
write, is blocked until the resource is unlocked. Only one goroutine can access a shared
resource at a time.

When you want to be able to both read and write to a shared resource, you need to use
a sync.RWMutex, Listing 13.38. The sync.RWMutex is a lighter-weight locking mechanism.
A sync.RWMutex can allow many goroutines to read from the resource at the same time,
but only one goroutine can write to the resource at a time.

Listing 13.38 The sync.RWMutex Type

$ go doc sync.RWMutex

package sync // import "sync"

type RWMutex struct {

// Has unexported fields.

}

(continued)

https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#RWMutex

454 Chapter 13 Synchronization

A RWMutex is a reader/writer mutual exclusion lock. The lock can be held

yby an arbitrary number of readers or a single writer. The zero value for

ya RWMutex is an unlocked mutex.

A RWMutex must not be copied after first use.

If a goroutine holds a RWMutex for reading and another goroutine might

ycall Lock, no goroutine should expect to be able to acquire a read lock

yuntil the initial read lock is released. In particular, this prohibits

yrecursive read locking. This is to ensure that the lock eventually

ybecomes available; a blocked Lock call excludes new readers from

yacquiring the lock.

func (rw *RWMutex) Lock()

func (rw *RWMutex) RLock()

func (rw *RWMutex) RLocker() Locker

func (rw *RWMutex) RUnlock()

func (rw *RWMutex) TryLock() bool

func (rw *RWMutex) TryRLock() bool

func (rw *RWMutex) Unlock()

Go Version: go1.19

The sync.RWMutex offers two additional methods beyond those of the sync.Locker

interface. You can use the sync.RWMutex.Rlock19 and sync.RWMutex.RUnlock20 methods
to lock the resource for reading. The sync.RWMutex.Lock21 and sync.RWMutex.Unlock22

methods are used to lock the resource across all goroutines for writing.
In Listing 13.39, we update the goroutine that is reading the resource to use the

sync.RWMutex.Rlock method instead of the sync.Mutex.Lock method. This will allow for
many goroutines to read from the resource at the same time.

Listing 13.39 Using a sync.RWMutex

// launch a goroutine to

// read data from the map

go func() {

// lock the mutex

mu.RLock()

19. https://pkg.go.dev/sync#RWMutex.Rlock
20. https://pkg.go.dev/sync#RWMutex.RUnlock
21. https://pkg.go.dev/sync#RWMutex.Lock
22. https://pkg.go.dev/sync#RWMutex.Unlock

https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#Locker
https://pkg.go.dev/sync#RWMutex.Rlock
https://pkg.go.dev/sync#RWMutex.RUnlock
https://pkg.go.dev/sync#RWMutex.Lock
https://pkg.go.dev/sync#RWMutex.Unlock
https://pkg.go.dev/sync#RWMutex.Rlock
https://pkg.go.dev/sync#Mutex.Lock
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#RWMutex.Rlock
https://pkg.go.dev/sync#RWMutex.RUnlock
https://pkg.go.dev/sync#RWMutex.Lock
https://pkg.go.dev/sync#RWMutex.Unlock

Synchronizing Access with a Mutex 455

// loop through the map

// and print the keys/values

for k, v := range data {

fmt.Printf("%d: %v\n", k, v)

}

// unlock the mutex

mu.RUnlock()

}()

$ go test -v -race

=== RUN Test_RWMutex

=== PAUSE Test_RWMutex

=== CONT Test_RWMutex

4: true

5: true

6: true

--- PASS: Test_RWMutex (0.00s)

7: true

9: true

0: true

1: true

PASS

8: true

2: true

3: true

ok demo 0.917s

Go Version: go1.19

The tests in Listing 13.39 continue to pass, but the performance of the program is
improved by allowing multiple goroutines to read from the shared resource instead of
arbitrarily locking all goroutines all at once.

Improper Usage
When using either sync.Mutex or sync.RWMutex, you must take care in making
sure to lock and unlock in the proper order.

Consider Listing 13.40. We have a sync.Mutex, and we attempt to call
sync.Mutex.Lock twice.

https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex.Lock

456 Chapter 13 Synchronization

Listing 13.40 Attempting to Lock a sync.Mutex Twice

func Test_Mutex_Locks(t *testing.T) {

t.Parallel()

// create a new mutex

var mu sync.Mutex

// lock the mutex

mu.Lock()

fmt.Println("locked. locking again.")

// try to lock the mutex again

// this will block/deadlock

// because the mutex is already locked

// and the lock was not released

mu.Lock()

fmt.Println("unlocked twice")

}

The result is the program will deadlock and crash, as shown in Listing 13.41.
The reason is that a call to sync.Mutex.Lock blocks until the sync.Mutex.Unlock

method is called. Because we have already locked the sync.Mutex, the second call to
sync.Mutex.Lock blocks indefinitely because it is never unlocked.

Listing 13.41 A Panic while Trying to Unlock an Already-Unlocked sync.Mutex

$ go test -v -timeout 10ms

=== RUN Test_Mutex_Locks

=== PAUSE Test_Mutex_Locks

=== CONT Test_Mutex_Locks

locked. locking again.

panic: test timed out after 10ms

goroutine 33 [running]:

testing.(*M).startAlarm.func1()

/usr/local/go/src/testing/testing.go:2029 +0x8c

created by time.goFunc

/usr/local/go/src/time/sleep.go:176 +0x3c

https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex.Lock
https://pkg.go.dev/sync#Mutex.Unlock
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex.Lock
https://pkg.go.dev/sync#Mutex

Synchronizing Access with a Mutex 457

goroutine 1 [chan receive]:

testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1405 +0x45c

testing.tRunner(0x140001361a0, 0x1400010fcb8)

/usr/local/go/src/testing/testing.go:1445 +0x14c

testing.runTests(0x1400001e1e0?, {0x100ec9ea0, 0x1, 0x1},

y{0xe00000000000000?, 0x100cf5218?, 0x100ed2640?})

/usr/local/go/src/testing/testing.go:1837 +0x3f0

testing.(*M).Run(0x1400001e1e0)

/usr/local/go/src/testing/testing.go:1719 +0x500

main.main()

_testmain.go:47 +0x1d0

goroutine 4 [semacquire]:

sync.runtime_SemacquireMutex(0x1400000e018?, 0x20?, 0x17?)

/usr/local/go/src/runtime/sema.go:71 +0x28

sync.(*Mutex).lockSlow(0x14000012140)

/usr/local/go/src/sync/mutex.go:162 +0x180

sync.(*Mutex).Lock(...)

/usr/local/go/src/sync/mutex.go:81

demo.Test_Mutex_Locks(0x0?)

./demo_test.go:25 +0x130

testing.tRunner(0x14000136340, 0x100e25298)

/usr/local/go/src/testing/testing.go:1439 +0x110

created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x300

exit status 2

FAIL demo 0.527s

Go Version: go1.19

Worse than a deadlock caused by waiting for a lock that will never be unlocked is
unlocking a lock that has not been locked.

In Listing 13.42, the result is a fatal error that crashes the application. The reason is that
we have not locked the sync.Mutex before attempting to unlock it.

Listing 13.42 A Panic while Trying to Unlock an Unlocked sync.Mutex

func Test_Mutex_Unlock(t *testing.T) {

t.Parallel()

// create a new mutex

var mu sync.Mutex

(continued)

https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#Mutex

458 Chapter 13 Synchronization

// unlock the mutex

mu.Unlock()

}

$ go test -v

=== RUN Test_Mutex_Unlock

=== PAUSE Test_Mutex_Unlock

=== CONT Test_Mutex_Unlock

fatal error: sync: unlock of unlocked mutex

goroutine 18 [running]:

runtime.throw(0x104573b02?, 0x1400005af18?)

/usr/local/go/src/runtime/panic.go:992 +0x50 fp=0x1400005aee0

ysp=0x1400005aeb0 pc=0x1044ba9a0

sync.throw(0x104573b02?, 0x1045b6260?)

/usr/local/go/src/runtime/panic.go:978 +0x24 fp=0x1400005af00

ysp=0x1400005aee0 pc=0x1044e5664

sync.(*Mutex).unlockSlow(0x140001280b0, 0xffffffff)

/usr/local/go/src/sync/mutex.go:220 +0x3c fp=0x1400005af30

ysp=0x1400005af00 pc=0x1044ef44c

sync.(*Mutex).Unlock(...)

/usr/local/go/src/sync/mutex.go:214

demo.Test_Mutex_Unlock(0x0?)

./demo_test.go:16 +0x74 fp=0x1400005af60 sp=0x1400005af30

ypc=0x10456d794

testing.tRunner(0x1400010b380, 0x1045c9298)

/usr/local/go/src/testing/testing.go:1439 +0x110 fp=0x1400005afb0

ysp=0x1400005af60 pc=0x104537660

testing.(*T).Run.func1()

/usr/local/go/src/testing/testing.go:1486 +0x30 fp=0x1400005afd0

ysp=0x1400005afb0 pc=0x1045383d0

runtime.goexit()

/usr/local/go/src/runtime/asm_arm64.s:1263 +0x4 fp=0x1400005afd0

ysp=0x1400005afd0 pc=0x1044ea2a4

created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1486 +0x300

goroutine 1 [chan receive]:

testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1405 +0x45c

testing.tRunner(0x1400010b1e0, 0x14000131cb8)

/usr/local/go/src/testing/testing.go:1445 +0x14c

testing.runTests(0x140001421e0?, {0x10466dea0, 0x1, 0x1}, {0xa500000000000000?,

Performing Tasks Only Once 459

y0x104499218?, 0x104676640?})

/usr/local/go/src/testing/testing.go:1837 +0x3f0

testing.(*M).Run(0x140001421e0)

/usr/local/go/src/testing/testing.go:1719 +0x500

main.main()

_testmain.go:47 +0x1d0

exit status 2

FAIL demo 0.260s

Go Version: go1.19

Wrapping Up Read/Write Mutexes
While there are pitfalls and areas of concern when using mutexes, such as deadlocks and
improper usage, sync.Mutex and sync.RWMutex are excellent tools for protecting shared
resources. They are also the most commonly used locking mechanisms in Go.

Performing Tasks Only Once
There are many times when you want to perform a task only once. For example, you
might want to create a database connection only once and then use it to perform a number
of queries. You can use the sync.Once23 type to do this.

As you can see from the documentation in Listing 13.43, the use of sync.Once is
very simple. You just need to create a variable of type sync.Once and then call the
sync.Once.Do24 method with a function that you want to run only once.

Listing 13.43 The sync.Once Type

$ go doc -all sync.Once

package sync // import "sync"

type Once struct {

// Has unexported fields.

}

Once is an object that will perform exactly one action.

A Once must not be copied after first use.

(continued)

23. https://pkg.go.dev/sync#Once
24. https://pkg.go.dev/sync#Once.Do

https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once.Do
https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once.Do

460 Chapter 13 Synchronization

func (o *Once) Do(f func())

Do calls the function f if and only if Do is being called for the first

ytime for this instance of Once. In other words, given

var once Once

if once.Do(f) is called multiple times, only the first call will invoke f,

yeven if f has a different value in each invocation. A new instance of

yOnce is required for each function to execute.

Do is intended for initialization that must be run exactly once. Since f

yis niladic, it may be necessary to use a function literal to capture the

yarguments to a function to be invoked by Do:

config.once.Do(func() { config.init(filename) })

Because no call to Do returns until the one call to f returns, if f

ycauses Do to be called, it will deadlock.

If f panics, Do considers it to have returned; future calls of Do return

ywithout calling f.

Go Version: go1.19

The Problem
Often we want to use sync.Once to perform some heavy, expensive tasks only once.

Consider Listing 13.44. The Build function can be called many times, but we only
want it to run once because it takes some time to complete.

Listing 13.44 The Build Method Is Slow and Should Be Called Only Once

type Builder struct {

Built bool

}

func (b *Builder) Build() error {

fmt.Print("building...")

time.Sleep(10 * time.Millisecond)

fmt.Println("built")

https://pkg.go.dev/sync#Once

Performing Tasks Only Once 461

b.Built = true

// validate the message

if !b.Built {

return fmt.Errorf("expected builder to be built")

}

// return the b.msg and the error variable

return nil

}

As you can see from the test output, Listing 13.45, every call to the Build function
takes a long time to complete, and each call performs the same task.

Listing 13.45 Output Confirming the Build Function Runs Every Time It Is Called

func Test_Once(t *testing.T) {

t.Parallel()

b := &Builder{}

for i := 0; i < 5; i++ {

err := b.Build()

if err != nil {

t.Fatal(err)

}

fmt.Println("builder built")

if !b.Built {

t.Fatal("expected builder to be built")

}

}

}

$ go test -v

=== RUN Test_Once

=== PAUSE Test_Once

=== CONT Test_Once

building...built

builder built

(continued)

462 Chapter 13 Synchronization

building...built

builder built

building...built

builder built

building...built

builder built

building...built

builder built

--- PASS: Test_Once (0.05s)

PASS

ok demo 0.265s

Go Version: go1.19

Implementing Once
As shown in Listing 13.46, you can use the sync.Once type inside the Build function to
ensure that the expensive task is only performed once.

Listing 13.46 Using sync.Once to Run a Function Once

type Builder struct {

Built bool

once sync.Once

}

func (b *Builder) Build() error {

var err error

b.once.Do(func() {

fmt.Print("building...")

time.Sleep(10 * time.Millisecond)

fmt.Println("built")

b.Built = true

// validate the message

if !b.Built {

https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once

Performing Tasks Only Once 463

err = fmt.Errorf("expected builder to be built")

}

})

// return the b.msg and the error variable

return err

}

As you can see from the test output, Listing 13.47, the Build function now performs
the expensive task only once, and subsequent calls to the function are very fast.

Listing 13.47 Output Confirming the Build Function Runs Only Once

$ go test -v

=== RUN Test_Once

=== PAUSE Test_Once

=== CONT Test_Once

building...built

builder built

builder built

builder built

builder built

builder built

--- PASS: Test_Once (0.01s)

PASS

ok demo 0.248s

Go Version: go1.19

Closing Channels with Once
The sync.Once type is useful for closing channels. When you want to close a channel, you
need to ensure that the channel is closed only once. If you try to close the channel more
than once, you get a panic, and the program crashes.

Consider the example in Listing 13.48. The Quit method on the Manager is in charge
of closing the quit channel when the Manager is no longer needed.

https://pkg.go.dev/sync#Once

464 Chapter 13 Synchronization

Listing 13.48 If Called Repeatedly, the Quit Function Panics and Closes an
Already-Closed Channel

type Manager struct {

quit chan struct{}

}

func (m *Manager) Quit() {

fmt.Println("closing quit channel")

close(m.quit)

}

If, however, the Quit method is called more than once, we are trying to close the
channel more than once. We get a panic, and the program crashes.

As you can see in Listing 13.49, the tests failed as a result of trying to close the channel
more than once and caused a panic.

Listing 13.49 Panicking When Trying to Close a Channel Multiple Times

func Test_Closing_Channels(t *testing.T) {

t.Parallel()

func() {

// defer a function to catch the panic

defer func() {

// recover the panic

if r := recover(); r != nil {

// mark the test as a failure

t.Fatal(r)

}

}()

m := &Manager{

quit: make(chan struct{}),

}

// close the manager's quit channel

m.Quit()

// try to close the manager's quit channel again

// this will panic

m.Quit()

Performing Tasks Only Once 465

}()

}

$ go test -v

=== RUN Test_Closing_Channels

=== PAUSE Test_Closing_Channels

=== CONT Test_Closing_Channels

closing quit channel

closing quit channel

demo_test.go:31: close of closed channel

--- FAIL: Test_Closing_Channels (0.00s)

FAIL

exit status 1

FAIL demo 0.667s

Go Version: go1.19

In Listing 13.50, we use the sync.Once type to ensure that the Quit method, regardless
of how many times it is called, only closes the channel once.

Listing 13.50 Using sync.Once to Close a Channel Only Once

type Manager struct {

quit chan struct{}

once sync.Once

}

func (m *Manager) Quit() {

// close the manager's quit channel

// this will only close the channel once

m.once.Do(func() {

fmt.Println("closing quit channel")

close(m.quit)

})

}

As you can see from the test output, Listing 13.51, the Quit method now closes the
channel only once, and subsequent calls to the Quit method have no effect.

https://pkg.go.dev/sync#Once
https://pkg.go.dev/sync#Once

466 Chapter 13 Synchronization

Listing 13.51 Output Confirming the Quit Method Closes the Channel Only Once

func Test_Closing_Channels(t *testing.T) {

t.Parallel()

m := &Manager{

quit: make(chan struct{}),

}

// close the manager's quit channel

m.Quit()

// try to close the manager's quit channel again

// this will now have no effect

m.Quit()

}

$ go test -v

=== RUN Test_Closing_Channels

=== PAUSE Test_Closing_Channels

=== CONT Test_Closing_Channels

closing quit channel

--- PASS: Test_Closing_Channels (0.00s)

PASS

ok demo 0.523s

Go Version: go1.19

Summary
In this chapter, we took a look at just a few of the synchronization types and functions in
Go. First, we explored how to use a sync.WaitGroup to wait for a number of goroutines
to finish. Then we explained how to use sync.ErrGroup to wait for a number of
goroutines to finish and return an error if any of them failed. Next, we discussed how to
use sync.Mutex and sync.RWMutex to synchronize access to a shared resource. Finally,
we covered how to use sync.Once to ensure a function is only executed one time.

https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#ErrGroup
https://pkg.go.dev/sync#Mutex
https://pkg.go.dev/sync#RWMutex
https://pkg.go.dev/sync#Once

Index

SYMBOLS
<- channel operator, 344–345
%d verb, 63–66
%f verb, 66–67
//go:embed directive, 518, 521–522
\n escape sequence, 61–62
[N] syntax, 71–72
%q verb, 63
%s verb, 63
\t escape sequence, 61–62
%T verb, 67
∼ (tilde) constraint operator, 325–326
%v verb, 67–69
%#v verb, 69–70
%+v verb, 169, 185
%w verb, 294, 301

A
abbreviations in package names, 6
accessing struct fields, 172–173
adding goroutines to waitgroups

negative number of, 425–426
positive number of, 423–424
zero number of, 424–425

aliases, resolving name conflicts, 16, 56–57
All method, 208–209
anonymous functions, 150, 159–160
any keyword, 242–243
APIs, scope, 10
append function, 85–90, 97
appending

to files, 500–503
to slices, 85–90, 97

architecture-independent numeric types, 31
arguments, 141–142

accepting from other functions, 151
functions as, 148–149
return arguments, 143–144

capturing panic values, 269–273
error handling, 262–263
multiple, 144–145
named returns, 145–147

of same type, 142–143
variadic arguments, 151–152

passing slices with, 153–154
position of, 152–153
when to use, 154–156

arrays
avoiding out-of-bounds errors, 287–289
converting to slices, 102–104
creating, 79
data types in, 82–83
indexing, 81–82
initializing, 79–80
iteration over, 105
purpose of, 77
setting values of, 85
slices versus, 77–79
subsets of, 103–104
type definitions, 83–84
zero values, 81

AsError interface, 303–304
asserting

interface implementation, 241–242
with type assertions, 250–251

avoiding panics, 284–287
concrete type verification, 252
generics and, 329–331
with switch statement, 252–254
usage example, 255–257
validating, 251–252

assigning
functions to variables, 283–284
multiple values to variables, 45–46
variables, 41–42

B
binaries, embedding files in, 520–521
bitwise operators, 135
blocking channels, 343–344
boolean logic

boolean operators, 134
comparison operators, 135
equality comparison, 129–130

break keyword, 107–108
buffered channels, 358–359

message delivery and, 360–362
reading closed, 362–363
usage example, 359–360

byte numeric type, 31

524 Index

C

callback interfaces, defining, 255–256
calling

functions without interfaces, 235–237
generics, 316–317
methods, 177

cancellation deadlines on contexts, 374
cancellation events

on contexts, 396
canceling contexts, 398–400
creating cancelable contexts, 397–398
deadlines, 405–406
errors on, 409–410
listening for, 375–376
listening for confirmation, 400–405
timeouts, 407–408

on error groups, listening for, 439–440
cap function, 92, 96–97, 112–113
capacity

of maps, 112–113
of slices, 91–92, 96–97

capitalization for exporting variables, 57
capturing

panic values, 269–273
system signals, 363

implementing graceful shutdown, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
os/signals package, 363–365
timing out nonresponsive shutdown, 370–371

casting values, 45
chan keyword, 343
channels

blocking/unblocking, 343–344
buffered, 358–359

message delivery and, 360–362
reading closed, 362–363
usage example, 359–360

capturing system signals, 363
implementing graceful shutdown, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
os/signals package, 363–365
timing out nonresponsive shutdown, 370–371

characteristics of, 343
closing, 352–354

closing already-closed, 357
reading buffered, 362–363
reading closed, 354–357
with sync.Once type, 463–466
writing closed, 358

creating, 343–344
listening with select statements, 348–349
message queues versus, 349–351
range loops and, 348
sending/receiving values, 344–345
unidirectional, 351–352
usage example, 345–347

choosing numeric types, 32
cleaning up test helpers, 227–229
closing channels, 352–354

closing already-closed, 357
reading buffered, 362–363
reading closed, 354–357
with sync.Once type, 463–466
writing closed, 358

closures, 149–150
code coverage

coverage profiles, 203–204
editor support for, 206
go test command, 202–203
go tool cover command, 204–205
HTML coverage reports, 205–206

comparison operators, 135
compiled languages, 28–30
complex values in maps, 123–124

updating, 125–126
complex64 numeric type, 31
complex128 numeric type, 31
concrete types

compilation errors for type assertions, 330–331
interfaces versus, 231–233
verifying via type assertions, 252

concurrency. See also synchronization
channels

blocking/unblocking, 343–344
buffered, 358–359
buffered message delivery, 360–362
buffered usage example, 359–360
capturing system signals, 363
characteristics of, 343
closing, 352–354
closing already-closed, 357
creating, 343–344
implementing graceful shutdown, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
listening with select statements, 348–349
message queues versus, 349–351
os/signals package, 363–365
range loops and, 348
reading closed, 354–357
reading closed buffered, 362–363
sending/receiving values, 344–345
timing out nonresponsive shutdown,

370–371
unidirectional, 351–352
usage example, 345–347
writing closed, 358

contexts
cancellation events, 375–376, 396–410
deadlines on, 374
default implementation, 379–380
error messages, 376, 408–411
exporting keys, 393–394
key security, 394–396
listening for system signals, 411–413
nodal hierarchy, 381–387

Index 525

retrieving values, 376–378
rules for, 380–381
string keys, 388–393
testing system signals, 413–416
wrapping with values, 382, 384–386
dog feeding metaphor, 336–338
goroutines, 338

memory management, 339
runtime.GOMAXPROCS function, 341–342
scheduling, 339–342
usage example, 342
work sharing, 339–340
work stealing, 341

parallelism versus, 335–336
concurrent monitors, starting, 401–402
const keyword, 48
constants, 48–51

declaring, 48
modifying, 48
typed, 49
untyped, 50–51

constraints. See type constraints
constraints package, 326–328
constraints.Integer constraint, 327
constraints.Ordered constraint, 327–328
constraints.Signed constraint, 327
context package, 373, 378. See also contexts
context.Background function, 378–380
context.Canceled error, 409–410
context.CancelFunc function, 397–398, 402–403
context.Context interface, 374, 379–380
context.Context.Deadline method, 374
context.Context.Done method, 375–376, 398–399
context.Context.Err method, 376, 408–409
context.Context.Value method, 376–378, 386–387
context.DeadlineExceeded error, 410–411
contexts

cancellation events, 396
canceling contexts, 398–400
creating cancelable contexts, 397–398
deadlines, 405–406
errors on, 409–410
listening for, 375–376
listening for confirmation, 400–405
timeouts, 407–408

deadlines on, 374
default implementation, 379–380
error messages

context.Canceled error, 409–410
context.Context.Err method, 376, 408–409
context.DeadlineExceeded error, 410–411

exporting keys, 393–394
key security, 394–396
listening for system signals, 411–413
nodal hierarchy, 381

context.WithValue function, 382, 384–386
key resolution, 386–387
usage example, 382–384

retrieving values, 376–378

rules for, 380–381
string keys, 388

custom types, 390–393
key collisions, 388–390

testing system signals, 413–416
wrapping with values, 382, 384–386

context.WithCancel function, 397
context.WithDeadline function, 405–406
context.WithTimeout function, 407–408
context.WithValue function, 382, 384–386
continue keyword, 107–108
control structures

if statements
else if statements, 131–132
else statements, 130–131
explained, 129–130
variable scope, 132–134

logic and math operators, 134–135
switch statements, 135–138

default blocks, 138–139
fallthrough keyword, 139–140

converting
arrays to slices, 102–104
strings to/from numbers, 72–75

copy function, 101–102
copying

map values on insert, 124–125
slices, 101–102

coverage profiles, 203–204
custom data types, 167–168
custom errors

defining, 291–293
error interface, 289
standard errors versus, 289–291
unwrapping, 298–301

custom string key types, 390–393
cyclical imports, 24–25

D
data races

detecting in tests, 447–449
-race flag, 445–447
shared access example, 443–445

data types
in arrays, 82–83
concrete types versus interfaces, 231–233
constants, 49–51
declaring new, 167–168
in function arguments, 141–143
functions as, 147, 180–181
generics, 332–334
inheritance, 181–182
numeric, 31–35
architecture-independent, 31
choosing, 32
implementation-specific, 31

526 Index

overflow versus wraparound, 32–34
saturation, 34–35

in slices, 82–83
static versus dynamic typing, 27–28
string literals, 35–37

interpreted, 35
quotation marks for, 35
raw, 36–37

third-party, methods on, 178–179
UTF-8 characters, 37–40

iterating over, 38–40
runes, 38

deadlines on contexts, 374, 405–406,
410–411

debug.PrintStack function, 307
debug.Stack function, 307
declaring. See also defining

constants, 48
data types, 167–168
methods, 176
slices, 95–96
variables, 40, 44–45

decrementing integers, 122
default blocks, 138–139
default implementations of contexts, 379–380
defer keyword, 156, 229, 266
deferring function calls, 156

anonymous functions, 159–160
exit and fatal messages, 158–159
with multiple returns, 156–157
order of execution, 157
panics and, 158
scope, 160–162
testing.TB.Cleanup method versus, 229

defining. See also declaring
callback interfaces, 255–256
custom errors, 291–293
interfaces, 243–247
structs, 168–169
test helpers, 222–226
type constraints, 321–322

delete function, 118–119
deleting map keys, 118–119
dependencies, 16–22

go.sum file, 20–21
requiring, 18–20
updating, 21–22
usage, 17–18

directories. See also files
creating, 481–483, 499–500
creating multiple, 489–492
creating structure with file path helpers,

486–487
errors with file path helpers, 488–489
fixing walk tests, 497–500
names, retrieving, 486
reading, 468–470
skipping, 477–481
special, 467–468
for specific files, retrieving, 485

walking, 473–477, 510–513
Windows filepaths, 505–506

disabling test caching, 221
discarding variables, 47
do while loops, 108–109
dog feeding metaphor (concurrency), 336–338
dynamic typing, 27–28

E
else if statements, 131–132
else statements, 130–131
embed package, 517
embedding

files, 517
in binaries, 520–521
modifying, 521–522
as strings/byte slices, 522
usage example, 518–519

interfaces, 249–250
embed.FS type, 518–519
empty interfaces, 242–243
encoding with struct tags, 173–176
equality comparison, 129–130
errgroup.Group type, 436, 440–442
errgroup.Group.Go method, 437
errgroup.Group.Wait method, 437–439
errgroup.WithContext function, 439–440
error groups

errgroup.Group type, 436, 440–442
errgroup.Group.Go method, 437
errgroup.Group.Wait method, 437–439
errgroup.WithContext function, 439–440
golang.org/x/sync/errgroup package, 434
problem solved by, 434–436

error interface, 261, 289
errors. See also testing

arrays versus slices, 103
in compilation, 18, 29–30, 34
context error messages

context.Canceled error, 409–410
context.Context.Err method, 376,

408–409
context.DeadlineExceeded error, 410–411

custom
defining, 291–293
error interface, 289
standard errors versus, 289–291
unwrapping, 298–301

errors.As function, 302–304
errors.Is function, 304–306
with file path helpers, 488–489
with formatting verbs, 70–71
nil receivers, 192–193
out of bounds, 81–82
panics

assigning functions to variables, 283–284
avoiding, 273
capturing and returning values, 269–273

http://golang.org/x/sync/errgrouppackage

Index 527

checking for nil receivers, 274–275
checking type assertions, 284–287
initializing interfaces, 280–283
initializing maps, 275–278
initializing pointers, 278–280
log.Fatal function, 273
from out-of-bounds errors, 264–265, 287–289
raising, 265
recovering from, 265–269

returning, 144
stack traces, 307–308
types of, 296
unwrapping, 297–301
as values, 259–261

error interface, 261
errors.New function, 261
fmt.Errorf method, 262
handling, 262–263
usage example, 263–264

in walk tests, fixing, 497–500
wrapping, 294–297

errors.As function, 302–304
errors.Is function, 304–306, 489
errors.New function, 261
errors.Unwrap function, 297–301
escape characters

escaping, 62–63
for formatting strings, 61–62
in raw string literals, 36

exceptions, 259–260
exits, deferred function calls and, 158–159
expanding slices with variadic operator, 153–154
explicit argument indexes, 71–72
explicit implementation of interfaces, 233–234
exporting

context keys, 393–394
variables, 57

extensions, retrieving, 485

F
failing fast when testing, 220–221
fallthrough keyword, 139–140
fatal message, deferred function calls and, 158–159
file systems

fs package, 506–507
fs.File interface, 509
fs.FS interface, 508, 510–513

mocking, 513–517
file tree, example of, 467–468
filepath package, 484
filepath.Base function, 486
filepath.Dir function, 485, 486–487
filepath.Ext function, 485, 486–487
filepath.Join function, 505–506
filepath.WalkDir function, 473–474, 475–477
files. See also directories

appending to, 500–503

creating, 492–495, 499–500
directory of, retrieving, 485
embedding, 517

in binaries, 520–521
modifying, 521–522
as strings/byte slices, 522
usage example, 518–519

errors with file path helpers, 488–489
extensions, retrieving, 485
fixing walk tests, 497–500
metadata on, 471–473
names, retrieving, 486
naming, 9
reading, 494–495, 503–505
skipping, 477
truncating, 495–497
Windows filepaths, 505–506

first-class functions, 147
float32 numeric type, 31–32
float64 numeric type, 31–32
floats, formatting with formatting verbs, 66–67
fmt package, functions in, 57–58

errors with formatting verbs, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
float formatting verbs, 66–67
formatting verbs, 61
Fprint functions, 59
integer formatting verbs, 63–66
multiple Println arguments, 61
new lines, 60
Print functions, 59
Sprint functions, 58–59
string formatting verbs, 63
value Go-syntax printing, 69–70
value printing, 67–69
value type printing, 67

fmt.Errorf method, 262, 294, 301
fmt.Stringer interface, 241
folders, package folder structure, 4, 6–13. See also directories

multiple packages, 7–9
naming files, 9
organization, 9–13

for loops
appending to slices, 88–89
break keyword, 107–108
continue keyword, 107–108
explained, 104–105
iteration over arrays and slices, 105
range keyword, 105–106

formatting
floats with formatting verbs, 66–67
integers with formatting verbs, 63–66
strings

errors with formatting verbs, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
with formatting verbs, 61, 63
list of functions, 57–58
Sprint functions, 58–59

528 Index

verbs for, 61
errors with, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
floats, 66–67
integers, 63–66
strings, 63
value type printing, 67

Fprint functions, 59
fs package, 506–507
fs.DirEntry type, 469–470
fs.ErrExit error, 489
fs.File interface, 509
fs.FileInfo interface, 471–472
fs.FS interface, 508, 510–513
fs.SkipDir error, 478–479
fstest.MapFile type, 509, 515
fstest.MapFS type, 514, 515–517
fs.WalkDir function, 510–512
fs.WalkDirFunc function, 474–475
functions. See also interfaces

anonymous, 150
arguments, 141–142

accepting from other functions, 151
capturing panic values, 269–273
error handling, 262–263
functions as, 148–149
multiple return arguments, 144–145
named returns, 145–147
passing slices with, 153–154
position of variadic arguments, 152–153
return arguments, 143–144
of same type, 142–143
variadic arguments, 151–152
when to use variadic arguments, 154–156

assigning to variables, 283–284
calling without interfaces, 235–237
closures, 149–150
as data types, 180–181
deferring calls, 156

anonymous functions, 159–160
exit and fatal messages, 158–159
with multiple returns, 156–157
order of execution, 157
panics and, 158
scope, 160–162
testing.TB.Cleanup method versus, 229

definitions, 141
as first class, 147
in fmt package, 57–58

errors with formatting verbs, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
float formatting verbs, 66–67
formatting verbs, 61
Fprint functions, 59
integer formatting verbs, 63–66
multiple Println arguments, 61
new lines, 60

Print functions, 59
Sprint functions, 58–59
string formatting verbs, 63
value Go-syntax printing, 69–70
value printing, 67–69
value type printing, 67

generics, 311
calling, 316–317
constraints package, 326–328
defining constraints, 321–322
instantiating, 320–321
mixing type and method constraints, 331
multiple type constraints, 322–323
multiple types, 317–320
type assertions, 329–331
type constraints, 315–317
underlying type constraints, 324–326

init, 162–163
multiple, 163–164
order of execution, 164
for side effects, 164–166

methods on, 181
methods versus, 177
new, 189–190
in strconv package, 72–75
test function signatures, 196
test helpers, 222

cleaning up, 227–229
defining, 222–226
marking functions as, 226–227

as variables, 147–148

G
garbage collection, 28
generic functions, 311

calling, 316–317
constraints package, 326–328
defining constraints, 321–322
instantiating, 320–321
mixing type and method constraints, 331
multiple type constraints, 322–323
multiple types, 317–320
type assertions, 329–331
type constraints, 315–317
underlying type constraints, 324–326

generic package names, avoiding, 6
generic types, 332–334
getting pointers, 185–186
go build command, 29
go get command, 4, 18–20
go get -u command, 21–22
go help mod command, 2
go help test command, 477
go mod command, 2
go mod init command, 3
go test command, 202–203

Index 529

go tool cover command, 204–205
go vet command, 71
golang.org/x/exp/constraints package, 326–328
golang.org/x/sync/errgroup package, 434
go.mod file, 2
goroutines, 338. See also channels; contexts; synchronization

memory management, 339
messages and, 350–351
runtime.GOMAXPROCS function, 341–342
scheduling, 339–342
usage example, 342
work sharing, 339–340
work stealing, 341

go.sum file, 20–21
Go-syntax of value, printing, 69–70
graceful shutdown

implementing, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
rules for, 363
timing out nonresponsive shutdown, 370–371

growing slices, 92–94, 97–99

H
handling errors, 262–263
heap, 183
helper functions

in context package, 378
test helpers, 222

cleaning up, 227–229
defining, 222–226
marking functions as, 226–227

.hidden directory, 467–468
HTML coverage reports, 205–206
http.HandlerFunc type, 181

I
identifiers. See constants; variables
if statements, 129–130

else if statements, 131–132
else statements, 130–131
variable scope, 132–134

_ignore directory, 467–468
implementation-specific numeric types, 31
implicit implementation of interfaces, 234–235
import aliases, 16
import keyword, 14
importing

modules, 13–16, 22
packages, 13–16

cyclical imports, 24–25
multiple versions, 23–24
for side effects, 164–166

incrementing integers, 122
indexing

arrays, 81–82
avoiding out-of-bounds errors, 287–289
slices, 81–82

inferred typing, 50–51
inheritance, 181–182
init functions, 162–163

multiple, 163–164
order of execution, 164
for side effects, 164–166

initializing
arrays, 79–80
interfaces, 280–283
maps, 113, 275–278
modules, 3
packages. See init functions
pointers, 278–280
slices, 79–80
structs, 169–172
variables, 44–45

instantiating generics, 320–321
int numeric type, 31–32
int8 numeric type, 31
int16 numeric type, 31
int32 numeric type, 31
int64 numeric type, 31
integers

formatting with formatting verbs, 63–66
incrementing/decrementing, 122
padding, 64–66

interfaces
AsError interface, 303–304
asserting implementation, 241–242
callback, 255–256
calling functions without, 235–237
concrete types versus, 231–233
context.Context interface, 374
defining, 243–247
drawbacks of, 311–315
embedding, 249–250
empty, 242–243
error interface, 261, 289
explicit implementation, 233–234
implementing, 247–249
implicit implementation, 234–235
initializing, 280–283
io.Writer interface, 237–240
IsError interface, 305–306
multiple, 241
type assertions, 250–251

concrete type verification, 252
with switch statement, 252–254
usage example, 255–257
validating, 251–252

Unwrapper interface, 299
usage example, 237–239
validatable, 250

interpreted languages, 28–29

http://golang.org/x/exp/constraintspackage
http://golang.org/x/sync/errgrouppackage

530 Index

interpreted string literals, 35
io.Reader interface, 503–505
io.ReadWriteCloser interface, 249–250
io.Writer interface, 237–240, 503–505
IsError interface, 305–306
iterating over UTF-8 characters, 38–40
iteration

of arrays and slices, 105
do while loops, 108–109
for loops

appending to slices, 88–89
break keyword, 107–108
continue keyword, 107–108
explained, 104–105
range keyword, 105–106

of maps, 116–118

J
JSON encoding with struct tags, 173–176

K
keys

in contexts
collisions, 388–390
custom string key types, 390–393
exporting, 393–394
resolving, 386–387
security, 394–396
string keys, 388

in maps, 114–116
deleting, 118–119
interface drawbacks, 311–315
listing, 126–127
nonexistent, 120–121
sorting, 127–129
testing presence of, 122–123

keywords, list of, 30

L
len function, 91, 96–97, 112
length

of maps, 112–113
of slices, 91–92, 96–97

listener function, 353
listening

for cancellation events on contexts, 375–376
to channels

with select statements, 348–349
for shutdown confirmation, 368–370
for system signals, 367–368

for context cancellation confirmation, 400–405
for error group cancellation, 439–440
for system signals with contexts, 411–413

listing map keys, 126–127
listings

accessing struct fields, 172–173
adding negative number of goroutines to waitgroups,

425–426
adding positive number of goroutines to waitgroups,

423–424
adding zero number of goroutines to waitgroups,

424–425
a.go file, 8
All method, 208–209
anonymous functions, 150
any keyword, 242–243
appending to files, 501–503
appending to slices, 86–90
array of four strings, 78
AsError interface, 303–304
asserting interface implementation, 242
assigning functions to variables, 283–284
assigning multiple values, 45–46
assigning variables, 41–42
bad folder files listing, 8
bad identifier names, 52
bad package build, 9
bad.go file, 10–11
bar/bar.go file, 15
bar.go file, 24–25
b.go file, 8
blocking/unblocking channels, 345
boolean equality comparison, 129–130
break keyword, 107–108
buffered channel message delivery, 361–362
buffered channel usage example, 359–360
calling functions without interfaces, 235–237
calling generics, 316–317
calling methods, 177
cap function, 92, 112–113
capturing and returning panic values, 269–273
casting values, 45
channel usage example, 345–347
checking for nil receivers, 193, 274–275
checking type assertions, 285–287
closing already-closed channels, 357
closing channels, 353–354, 463–466
closures, 149–150
code coverage, 203
compilation errors, 18, 29–30, 34
complex if/else if statements, 135–136
complex values in maps, 123–124
concrete types versus interfaces, 231–233
constraints.Integer constraint, 327
constraints.Ordered constraint, 328
constraints.Signed constraint, 327
context key collisions, 389–390
context key security, 394–396
context package, 373, 378

Index 531

context.Background function, 378–380
context.Canceled error, 409–410
context.CancelFunc function, 397–398, 402–403
context.Context interface, 374
context.Context.Deadline method, 374
context.Context.Done method, 375–376, 398–399
context.Context.Err method, 376, 408–409
context.Context.Value method, 376–378
context.DeadlineExceeded error, 410–411
context.WithCancel function, 397
context.WithDeadline function, 405–406
context.WithTimeout function, 407–408
context.WithValue function, 385–386
continue keyword, 107–108
converting arrays to slices, 102–104
converting strings to/from numbers, 74–75
copying map values on insert, 124–125
copying slices, 101–102
coverage profiles, 203–204
coverage profiles on per-function basis, 207
crafting failure messages, 201–202
creating arrays versus slices, 79
creating directory structure, 486–487
creating files/directories, 499–500
custom data type usage, 168
custom string key types, 391–393
cyclical imports, 24–25
data types in arrays and slices, 83
debug.PrintStack function, 307
debug.Stack function, 307
declaring constants, 48
declaring methods, 176
declaring new data types, 167
declaring slices, 95–96
declaring variables, 40
default blocks in switch statements, 138–139
deferred function calls and exit/fatal message, 159
deferred function calls and panics, 158
deferring anonymous functions, 159–160
deferring function calls, 156
deferring function calls with multiple returns, 156–157
defining custom errors, 292–293
defining interfaces, 243–247
defining structs, 169
defining test helpers, 223–226
defining type constraints, 321–322
delete function, 118
deleting map keys, 118–119
demo module files listing, 15
detecting race conditions in tests, 447–449
disabling test caching, 221
discarding variables, 47
do while loops, 109
else if statements, 132
else statements, 130–131
embed package, 517
embedding files as strings/byte slices, 522
embedding files in binaries, 520–521
embed.FS type, 518–519

empty interface, 242, 243
encoding with struct tags, 173–175
errgroup.Group type, 436, 441–442
errgroup.Group.Go method, 437
errgroup.Group.Wait method, 437–439
errgroup.WithContext function, 439–440
error interface, 261, 289
error types, 296
error usage example, 263–264
errors as values, 260–261
errors with file path helpers, 488–489
errors with formatting verbs, 70
errors.As function, 302–303
errors.Is function, 305, 489
errors.New function, 261
errors.Unwrap function, 297–301
escape characters \n and \t, 62
escaping escape characters, 62–63
exceptions, 259–260
expanding slices with variadic operator, 154
explicit argument indexes, 71–72
explicit implementation of interfaces, 233–234
exporting context keys, 393–394
exporting variables, 57
external dependencies file structure, 20
failing fast when testing, 221
fallthrough keyword, 139–140
file tree example, 467–468
filepath package, 484
filepath.Base function, 486
filepath.Dir function, 485
filepath.Ext function, 485
filepath.Join function, 505–506
filepath.WalkDir function, 473–474, 475–477
fixing walk tests, 497–500
flect.Dasherize function, 17
float formatting verbs, 66
fmt package, 58
fmt.Errorf method, 262
fmt.Fprint function, 59
fmt.Print function, 59
fmt.Println function, 60
fmt.Sprint function, 58–59
fmt.Stringer interface, 241
foo type, 25
foo/bar/bar.go file, 15
foo.go file, 13
for loops, 105
fs package, 507
fs.DirEntry type, 469–470
fs.File interface, 509
fs.FileInfo interface, 471–472
fs.FS interface, 508
fs.SkipDir error, 478–479
fstest.MapFile type, 509, 515
fstest.MapFS type, 514, 515–517
fs.WalkDir function, 510–512
fs.WalkDirFunc function, 474–475
function arguments, 142–143

532 Index

function definitions, 141
function types, 180–181
functions accepting other function arguments, 151
functions as arguments, 148–149
functions as variables, 147–148
generic types, 332–334
generics, 316
getting pointers, 185–186
//go:embed directive, 518, 521–522
go get command, 4, 18–19
go help test command, 477
go mod command, 2
go mod init command, 3
Go module files listing, 1
go tool cover command, 204–205
go vet command, 71
golang.org/x/exp/constraints package, 326
golang.org/x/sync/errgroup package, 434
go.mod file, 2, 18
go.mod file updates, 20
good folder files listing, 7–8, 11–12
goroutine usage example, 342
goroutines, 338
go.sum file, 21
growing slices, 92–94
handling errors, 263
HTML coverage reports, 205–206
http.HandlerFunc type, 181
if statements, 130
implementing graceful shutdown, 365–367
implementing interfaces, 247–249
implicit implementation of interfaces, 234–235
importing modules with semantic versioning, 22
importing multiple packages, 14, 23–24
improper mutex usage, 456–459
indexing arrays and slices, 81–82
inferred typing, 50–51
inheritance, 182
init function, 162–163
init functions for side effects, 165–166
initializing arrays and slices, 80
initializing interfaces, 280–283
initializing maps, 113, 276–278
initializing pointers, 278–280
initializing structs, 169–172
initializing variables, 44
instantiating generics, 320–321
integer formatting verbs, 64
interface usage example, 238–239
interpreted string literals, 35
io.ReadWriteCloser interface, 249–250
io.Writer interface, 237, 239–240
IsError interface, 305–306
iterating over maps, 116–118
iterating over UTF-8 characters, 39–40
key resolution in contexts, 386–387
len function, 91, 112
listener function, 353
listening for shutdown confirmation, 368–370

listening for system signals, 367–368, 412–413
listing map keys, 126–127
log.Fatal function, 273
logging in tests, 215
main.go file, 14, 17
make function, 95, 113, 344
make function with append function, 97
make function with length and capacity, 96–97
managing goroutines with sync.WaitGroup, 434–436
map keys, 114–115, 311–315
messages and goroutines, 350–351
method receivers, 188–189
methods on third-party types, 178–179
mixing type and method constraints, 331
modifying constants, 48
modifying variables, 48–49
multiple generic types, 317–319
multiple goroutines for one task, 419–420
multiple init functions, 163–164
multiple interfaces, 241
multiple Println arguments, 61
multiple return arguments, 144–145
multiple type constraints, 322–323
mutating subsets of slices, 100
name conflicts between variables and packages, 54–55
name conflicts when importing packages, 15–16
named returns, 146–147
names folder files listing, 13
naming files, 9
naming packages, 5–6
naming variables, 53
new function, 189–190
new lines, 60
nil receivers, 191–192
nodal hierarchy for contexts, 381–384
nonexistent map keys, 120–121
order of execution for deferred function calls, 157
order of execution for init functions, 164
os.Create function, 492–494, 495–496
os.DirEntry type, 468
os.DirFS function, 512
os.FileMode type, 482
os.Interrupt type, 365
os.Mkdir function, 481–483
os.MkdirAll function, 490–492
os.OpenFile function, 501
os.ReadDir function, 468, 470
os.ReadFile function, 494–495
os.Signal type, 364
os.Stat function, 472–473
overflow example, 33–34
package folder structure, 4, 6–7
padding integers, 64–66
panic from out-of-bounds error, 264–265, 287–289
panic function, 265
passing by value, 184
path package, 54
pointer usage, 187
printing stack traces, 308

http://golang.org/x/exp/constraintspackage
http://golang.org/x/sync/errgrouppackage

Index 533

printing value Go-syntax, 69–70
printing value type, 67
printing values, 68–69
problem solved by single task execution, 460–462
-race flag, 445–446
range keyword, 106
range loops, 348
raw string literals, 36–37
reading closed buffered channels, 362–363
reading closed channels, 354–355
reading files, 504–505
receiving pointers, 184
recover function, 266
recovering from panics, 266–269
resolving name conflicts, 55–57
return arguments, 143
returning errors, 144
runes, 38
running package tests, 213
running specific tests, 218–219
running tests with subpackages, 213–214
runtime.GOMAXPROCS function, 341–342
saturation example, 34–35
scope of deferred functions, 160–162
select statements, 349
sending TEST_SIGNAL signal, 416
sending/receiving values via channels, 345
setting and retrieving map values, 111–112
shared access example, 443–445, 449
signal.Notify function, 364
signal.NotifyContext function, 412
slice of four strings, 78–79
smtp package, 7
sort package, 127–128
sorting map keys, 128–129
sound package, 7
standard error examples, 290–291
starting concurrent monitors, 401–402
strconv.ParseInt function, 73
string formatting verbs, 63
string keys in contexts, 388
struct tags, 173
structs as map keys, 115–116
structure of subtests, 211–212
structure of table driven tests, 208
subsets of slices, 99
subtests, 212–213
switch statements, 136–138
sync package, 447
sync.Locker interface, 450
sync.Locker.Lock method, 450
sync.Locker.Unlock method, 451
sync.Mutex type, 451–453
sync.Once type, 459–460, 462–463, 465
sync.RWMutex type, 453–455
sync.Waitgroup type, 421, 432–433
sync.WaitGroup.Add method, 422
sync.WaitGroup.Done method, 427–431
sync.WaitGroup.Wait method, 422

syntactic sugar for methods, 177–178
table driven tests, 209–210
test file naming conventions, 196
test function signatures, 196
testing map key presence, 122–123
testing system signals, 414–416
testing.Short function, 216–217
testing.T type, 197
testing.TB interface, 222–223
testing.TB.Cleanup method, 227–229
testing.TB.Helper method, 226
testing.T.Error method, 198–200
testing.T.Fatal method, 198, 200–201
testing.T.Parallel method, 217–218
testing.T.Run method, 211
theoretical representation of slices, 91
time.Ticker function, 351
timing out nonresponsive shutdown, 370–371
timing out tests, 219–220
type assertion usage example, 255–257
type assertions, 251, 329–330
type assertions with switch statements, 253–254
type definitions for arrays and slices, 83–84
typed constants, 49
underlying type constraints, 324–326
unidirectional channels, 352
uninitialized maps, 114
unused variables, 47
Unwrapper interface, 299
unwrapping errors, 297–301
updating complex values in maps, 125–126
updating dependencies, 21–22
UTF-8 character example, 37–38
validating type assertions, 252
variable declarations, 27–28
variable scope in if statements, 132–134
variadic arguments, 151–153
verbose test output, 214
verifying concrete types with type assertions, 252
when to use variadic arguments, 154–156
work sharing, 339–340
work stealing, 341
wraparound example, 33
wrapping errors, 294–297
writing to closed channels, 358
zero values for arrays and slices, 81
zero values for closed channels, 355–357
zero values for maps, 121–122
zero values for variables, 42–44

lists
arrays

converting to slices, 102–104
creating, 79
data types in, 82–83
indexing, 81–82
initializing, 79–80
iteration over, 105
purpose of, 77
setting values of, 85

534 Index

slices versus, 77–79
subsets of, 103–104
type definitions, 83–84
zero values, 81

slices
appending to, 85–90, 97
arrays versus, 77–79
converting arrays to, 102–104
copying, 101–102
creating, 79, 95–97
data types in, 82–83
declaring, 95–96
growing, 92–94, 97–99
indexing, 81–82
initializing, 79–80
iteration over, 105
length and capacity, 91–92, 96–97
purpose of, 77
setting values of, 85
subsets of, 99–100
theoretical representation of, 91
type definitions, 83–84
zero values, 81

locking resources
improper mutex usage, 455–459
sync.Locker interface, 449–451
sync.Mutex type, 451–453
sync.RWMutex type, 453–455

log.Fatal function, 273
logging in tests, 215
logic. See boolean logic; control structures
loops

do while loops, 108–109
for loops

appending to slices, 88–89
break keyword, 107–108
continue keyword, 107–108
explained, 104–105
iteration over arrays and slices, 105
range keyword, 105–106

over channels, 348

M
make function, 95–97, 113, 278, 344
maps

explained, 111
initializing, 113, 275–278
iteration over, 116–118
keys in, 114–116

deleting, 118–119
interface drawbacks, 311–315
listing, 126–127
nonexistent, 120–121
sorting, 127–129
testing presence of, 122–123

length and capacity, 112–113
uninitialized, 114

values
complex values, 123–124
copying on insert, 124–125
updating complex values, 125–126

zero values, 121–122
mathematical operators, 134
memory management, 28

array and slice memory spaces, 85
cleaning up test helpers, 227–229
goroutines, 339
heap, 183
pointers and, 190–191
stack, 183, 186

message delivery, buffered channels and, 360–362
message queues, channels versus, 349–351
metadata on files, 471–473
methods

calling, 177
declaring, 176
on functions, 181
functions versus, 177
inheritance, 181–182
mixing type and method constraints, 331
syntactic sugar, 177–178
for test failures, 198–202
on third-party types, 178–179
value versus pointer receivers, 188–189

mocking file systems, 513–517
modifying

constants, 48
embedded files, 521–522
variables, 48–49
modules, 1–4

commands for, 2
definition of, 1
dependencies, 16–22

go.sum file, 20–21
requiring, 18–20
updating, 21–22
usage, 17–18

importing, 13–16, 22
initializing, 3
VCS and, 3–4

monitors, starting concurrent, 401–402
multiline strings in raw string literals, 36–37
multiple arguments with Println function, 61
multiple directories, creating, 489–492
multiple generic types, 317–320
multiple init functions, 163–164
multiple interfaces, 241
multiple packages

in folder structure, 198
importing, 14, 23–24

multiple return arguments, 144–145
multiple type constraints, 322–323
multiple values, assigning to variables, 45–46
mutating subsets of slices, 100
mutexes, synchronization with

detecting race conditions in tests, 447–449
improper usage, 455–459

Index 535

locking resources, 449–451
sync.RWMutex type, 453–455
usage example, 451–453

N
name conflicts

between variables and packages, 53–57
when importing packages, 14–16

named returns, 145–147
names of files/directories, retrieving, 486
naming

files, 9
packages, 5–6
test files, 195–196
variables, 51–57

bad examples, 52
capitalization, 57
package name conflicts, 53–57
rules for, 51–52
styles for, 53

negative number of goroutines, adding to waitgroups,
425–426

new function, 189–190
new lines

escape characters for, 61–62
printing, 60

nil receivers, 191–193, 274–275
nil value for variables, 42
nodal hierarchy for contexts, 381

context.WithValue function, 382, 384–386
key resolution, 386–387
usage example, 382–384

nonexistent map keys, 120–121
nonresponsive shutdown, timing out, 370–371
numbers, converting strings to/from, 72–75
numeric types, 31–35

architecture-independent, 31
choosing, 32
implementation-specific, 31
overflow versus wraparound, 32–34
saturation, 34–35

O
operators

list of, 30
logic and math, 134–135

order of execution
for deferred function calls, 157
for init functions, 164

os.Create function, 492–494, 495–496, 499–500
os.DirEntry type, 468
os.DirFS function, 512
os.FileMode type, 482
os.Interrupt type, 365

os.Mkdir function, 481–483, 488–489
os.MkdirAll function, 489–492, 499–500
os.OpenFile function, 501
os.ReadDir function, 468, 470
os.ReadFile function, 494–495
os.Signal type, 364
os/signals package, 363–365
os.Stat function, 472–473
out-of-bounds errors, 81–82, 264–265, 287–289
overflow in numeric types, 32–34

P
package aliases, resolving name conflicts, 16, 56–57
package keyword, 5
packages, 4–6

definition of, 4
dependencies, 16–22

go.sum file, 20–21
requiring, 18–20
updating, 21–22
usage, 17–18

folder structure, 4, 6–13
multiple packages, 7–9
naming files, 9
organization, 9–13

importing, 13–16
cyclical imports, 24–25
multiple versions, 23–24
for side effects, 164–166

initializing. See init functions
name conflicts

with variables, 53–57
when importing, 14–16

naming, 5–6
running tests, 213, 217

padding integers, 64–66
panic function, 265
panics

avoiding, 273
assigning functions to variables, 283–284
checking for nil receivers, 274–275
checking type assertions, 284–287
initializing interfaces, 280–283
initializing maps, 275–278
initializing pointers, 278–280
from out-of-bounds errors, 287–289

capturing and returning values, 269–273
closing channels, 464–465
decrementing sync.WaitGroup, 431
deferred function calls and, 158
log.Fatal function, 273
from out-of-bounds errors, 264–265, 287–289
raising, 265
recovering from, 265–269

parallelism
concurrency versus, 335–336
running tests in parallel, 217–218

536 Index

ParseInt function, 73
passing

by reference, 186
by value, 183–184

path for importing packages, 13–14
performance, pointers and, 190–191
pointer receivers, value receivers versus,

188–189
pointers, 182–183

getting, 185–186
initializing, 278–280
new function, 189–190
nil receivers, 191–193
passing by reference, 186
passing by value, 183–184
performance, 190–191
printing, 185
receiving, 184
usage example, 186–187

positive number of goroutines, adding
to waitgroups, 423–424

Print functions, 59
printing

pointers, 185
runes, 38
stack traces, 308
strings

Fprint functions, 59
multiple Println arguments, 61
new lines, 60
Print functions, 59

structs, 169
values

with formatting verbs, 67–69
Go-syntax of value, 69–70
type of value, 67

Println function
adding new lines, 60
multiple arguments, 61

Q
quotation marks for string literals, 35

R
race conditions

detecting in tests, 447–449
-race flag, 445–447
shared access example, 443–445

-race flag, 445–447
raising panics, 265
range keyword, 39–40, 105–106, 116–118, 348
raw string literals, 36–37
reading

closed buffered channels, 362–363
closed channels, 354–357

directories, 468–470
files, 494–495, 503–505

receivers
nil, 191–193
value versus pointer, 188–189

receiving
pointers, 184
values via channels, 344–345

recover function, 265–269
recovering from panics, 265–269
requiring dependencies, 18–20
return arguments, 143–144

accepting in functions, 151
capturing panic values, 269–273
error handling, 262–263
multiple, 144–145
named returns, 145–147

rune numeric type, 31, 38
running tests, 213

disabling test caching, 221
failing fast, 220–221
logging in tests, 215
package tests, 213, 217
in parallel, 217–218
short tests, 216–217
specific tests, 218–219
with subpackages, 213–214
timing out, 219–220
verbose output, 214

runtime.GOMAXPROCS function, 341–342

S
saturation in numeric types, 34–35
scheduling goroutines, 339–342
scope

of APIs, 10
of deferred functions, 160–162
of variables in if statements, 132–134

security of context keys, 394–396
select statements, 348–349
selecting numeric types, 32
semantic versioning, 22
sending

TEST_SIGNAL signal, 416
values via channels, 344–345

shared access
improper mutex usage, 455–459
locking resources, 449–451
mutex usage example, 451–453
race conditions, 443–445, 447–449
sync.RWMutex type, 453–455

short tests, 216–217
shutdown, graceful

implementing, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
rules for, 363
timing out nonresponsive shutdown, 370–371

Index 537

shutdown confirmation, listening for, 368–370
side effects, init functions for, 164–166
signal.Notify function, 364
signal.NotifyContext function, 412
single execution of task

closing channels, 463–466
problem solved by, 460–462
sync.Once type, 459–460, 462–463

skipping
directories, 477–481
files, 477

slices
appending to, 85–90, 97
arrays versus, 77–79
avoiding out-of-bounds errors, 287–289
converting arrays to, 102–104
copying, 101–102
creating, 79, 95–97
data types in, 82–83
declaring, 95–96
embedding files as, 522
expanding with variadic operator, 153–154
growing, 92–94, 97–99
indexing, 81–82
initializing, 79–80
iteration over, 105
length and capacity, 91–92, 96–97
purpose of, 77
setting values of, 85
subsets of, 99–100
theoretical representation of, 91
type definitions, 83–84
zero values, 81

sort package, 127–129
sorting map keys, 127–129
specific tests, running, 218–219
Sprint functions, 58–59
stack, 183, 186
stack traces, 307–308
standard errors, custom errors versus, 289–291
starting concurrent monitors, 401–402
static typing, 27–28
strconv package, 72–75
string keys in contexts, 388

custom types, 390–393
key collisions, 388–390

string literals, 35–37
converting to/from numbers, 72–75
embedding files as, 522
formatting

errors with formatting verbs, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
with formatting verbs, 61, 63
list of functions, 57–58
Sprint functions, 58–59

interpreted, 35
printing

Fprint functions, 59
multiple Println arguments, 61
new lines, 60
Print functions, 59

quotation marks for, 35
raw, 36–37

struct tags, encoding with, 173–176
structs, 167

accessing fields, 172–173
defining, 168–169
initializing, 169–172
as map keys, 115–116
printing, 169

structural typing, 235
subdirectories, creating, 481–483
subpackages, running tests with, 213–214
subsets

of arrays, 103–104
of slices, 99–100

subtests, 211–213
switch statements, 135–138

default blocks, 138–139
fallthrough keyword, 139–140
type assertions with, 252–254

sync package, 447
synchronization

error groups
errgroup.Group type, 436, 440–442
errgroup.Group.Go method, 437
errgroup.Group.Wait method, 437–439
errgroup.WithContext function, 439–440
golang.org/x/sync/errgroup package, 434
problem solved by, 434–436

with mutexes
detecting race conditions in tests, 447–449
improper usage, 455–459
locking resources, 449–451
sync.RWMutex type, 453–455
usage example, 451–453

race conditions
-race flag, 445–447
shared access example, 443–445

single execution of task closing channels,
463–466

problem solved by, 460–462
sync.Once type, 459–460, 462–463

sync package, 447
waitgroups

problem solved by, 419–421
sync.Waitgroup type, 421, 432–433
sync.WaitGroup.Add method, 422–426
sync.WaitGroup.Done method, 426–431
sync.WaitGroup.Wait method, 421–422

sync.Locker interface, 449–451
sync.Locker.Lock method, 450
sync.Locker.Unlock method, 451
sync.Mutex type, 451–453
sync.Once type, 459–460, 462–463, 465

http://golang.org/x/sync/errgrouppackage

538 Index

sync.RWMutex type, 453–455
sync.Waitgroup type, 421, 432–433
sync.WaitGroup.Add method, 422–426
sync.WaitGroup.Done method, 426–431
sync.WaitGroup.Wait method, 421–422
syntactic sugar for methods, 177–178
system signals
capturing, 363

implementing graceful shutdown, 365–367
listening for shutdown confirmation, 368–370
listening for system signals, 367–368
os/signals package, 363–365
timing out nonresponsive shutdown, 370–371

listening with contexts, 411–413
testing, 413–416

T
tab character, escape characters for, 61–62
table driven testing, 206–207

structure of, 207–208
subtests, 211–213
writing, 208–210

test caching, disabling, 221
test failures

crafting failure messages, 201–202
marking, 198
testing.T.Error method, 198–200
testing.T.Fatal method, 200–201

test files, naming, 195–196
test function signatures, 196
test helpers, 222

cleaning up, 227–229
defining, 222–226
marking functions as, 226–227

TEST_SIGNAL signal, sending, 416
testdata directory, 467–468, 480–481
testing

map key presence, 122–123
system signals, 413–416

testing framework, 195
code coverage

coverage profiles, 203–204
editor support for, 206
go test command, 202–203
go tool cover command, 204–205
HTML coverage reports, 205–206

running tests, 213
disabling test caching, 221
failing fast, 220–221
logging in tests, 215
package tests, 213, 217
in parallel, 217–218
short tests, 216–217
specific tests, 218–219
with subpackages, 213–214
timing out, 219–220

verbose output, 214
table driven testing, 206–207

structure of, 207–208
subtests, 211–213
writing, 208–210

test failures
crafting failure messages, 201–202
marking, 198
testing.T.Error method, 198–200
testing.T.Fatal method, 200–201

test file naming conventions, 195–196
test helpers, 222

cleaning up, 227–229
defining, 222–226
marking functions as, 226–227

testing.T type, 196–197
testing.Short function, 216–217
testing.T type, 196–197
testing.TB interface, 222–223
testing.TB.Cleanup method, 227–229
testing.TB.Helper method, 226
testing.T.Error method, 198–200
testing.T.Fatal method, 198, 200–201
testing.T.Log method, 215
testing.T.Parallel method, 217–218
testing.T.Run method, 211
third-party types, methods on, 178–179
threads. See goroutines
time.Ticker function, 351
timing out

contexts, 407–408
nonresponsive shutdown, 370–371
tests, 219–220

truncating files, 495–497
type assertions, 250–251

avoiding panics, 284–287
concrete type verification, 252
generics and, 329–331
with switch statement, 252–254
usage example, 255–257
validating, 251–252

type constraints, 315–317
constraints package, 326–328
defining, 321–322
mixing with method constraints, 331
multiple, 322–323
underlying, 324–326

type definitions for arrays and slices, 83–84
type inference, 50–51
type keyword, 167–168
type of value, printing, 67
typed constants, 49
types. See data types; interfaces

U
uint numeric type, 31–32
uint8 numeric type, 31

Index 539

uint16 numeric type, 31
uint32 numeric type, 31
uint64 numeric type, 31
uintptr numeric type, 31
unblocking channels, 343–344
underlying type constraints, 324–326
unidirectional channels, 351–352
uninitialized maps, 114
untyped constants, 50–51
unused variables, 46–47
Unwrapper interface, 299
unwrapping errors, 297–301
updating

complex values in maps, 125–126
dependencies, 21–22

UTF-8 characters, 37–40
iterating over, 38–40
runes, 38

V
validatable interfaces, 250
validating type assertions, 251–252
value receivers, pointer receivers versus, 188–189
values

of arrays and slices, setting, 85
converting strings to/from, 72–75
errors as, 259–261

error interface, 261
errors.New function, 261
fmt.Errorf method, 262
handling, 262–263
usage example, 263–264

lists of. See lists
in maps

complex values, 123–124
copying on insert, 124–125
updating complex values, 125–126

panic values, capturing and returning,
269–273

printing
with formatting verbs, 67–69
Go-syntax of value, 69–70
type of value, 67

receiving pointers, 184
retrieving from contexts, 376–378
sending/receiving via channels, 344–345
wrapping contexts with, 382, 384–386

var keyword, 40
variables, 40–47

assigning, 41–42
functions to, 283–284
multiple values, 45–46

closures, 149–150
declaring, 40, 44–45
discarding, 47
exporting, 57

functions as, 147–148
getting pointers, 185–186
initializing, 44–45
modifying, 48–49
naming, 51–57

bad examples, 52
capitalization, 57
package name conflicts, 53–57
rules for, 51–52
styles for, 53

nil value, 42
scope in if statements, 132–134
unused, 46–47
values

converting strings to/from, 72–75
lists of. See lists
printing, 67–69
printing Go-syntax of, 69–70
printing type of, 67

zero values, 42–44
variadic arguments, 151–152

with append function, 89–90
passing slices with, 153–154
position of, 152–153
when to use, 154–156

VCS (version control systems), modules and, 3–4
verbose test output, 214
verbs, formatting, 61

errors with, 70–71
escape characters, 61–63
explicit argument indexes, 71–72
floats, 66–67
integers, 63–66
strings, 63
value type printing, 67

W
waitgroups

problem solved by, 419–421
sync.Waitgroup type, 421, 432–433
sync.WaitGroup.Add method, 422–426
sync.WaitGroup.Done method, 426–431
sync.WaitGroup.Wait method, 421–422

walk test errors, fixing, 497–500
walking directories, 473–477, 510–513
Windows filepaths, 505–506
work sharing, 339–340
work stealing, 341
wraparound in numeric types, 32–34
wrapping

contexts with values, 382, 384–386
errors, 294–297

writing
to closed channels, 358
subtests, 212–213
table driven testing, 208–210

540 Index

Z
zero number of goroutines, adding to waitgroups, 424–425
zero values

for arrays and slices, 81
for closed channels, 355–357
for maps, 121–122
for variables, 42–44

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	Aboutthe Authors
	13 Synchronization
	Waiting for Goroutines with a WaitGroup
	The Problem
	Using a WaitGroup
	The Wait Method
	The Add Method
	The Done Method
	Wrapping Up Wait Groups

	Error Management with Error Groups
	The Problem
	The Error Group
	Listening for Error Group Cancellation
	Wrapping Up Error Groups

	Data Races
	The Race Detector
	Most, but Not All
	Wrapping Up the Race Detector

	Synchronizing Access with a Mutex
	Locker
	Using a Mutex
	RWMutex
	Improper Usage
	Wrapping Up Read/Write Mutexes

	Performing Tasks Only Once
	The Problem
	Implementing Once
	Closing Channels with Once

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

