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Introduction

We need men who can dream of things that never were, and ask, 
“why not?”

—John F. Kennedy, Speech to the Irish Parliament, June 1963

Today, the quest for data scientists is continuous, the data seems to be abundant, and 
cloud computing power is available. Is it the perfect world for the definitive triumph 

of machine learning? As we see things, we have all the necessary ingredients to cook up 
the “applied AI,” but we still lack a clear and effective method for combining them. 

The purpose of data science is, like the purpose of science, to show that something 
is possible. Data science, though, doesn’t productionize solutions. That’s the purpose of 
another branch of the machine learning universe—data engineering.

Companies are wildly looking for data scientists, but the outcome of a good data 
science team is typically a runnable model whose software quality is often that of a pro-
totype rather than of a production-ready artifact. Algorithms are tightly bound to data, 
and data must be complete, clean, and balanced. Who’s in charge of this part of the job 
is often unclear, and as a result, the job is often partially done at best. Yet, a data science 
team disconnected from the rest of the applied AI pipeline that makes it to production 
is still a due investment for a large organization whose business produces large quanti-
ties of data (such as energy utilities, financial institutions, and manufacturing farms). For 
smaller companies with significantly more limited budgets, the outcome of some applied 
data science can be cheaper to buy as a service.

From data science to production, there is usually a long way in between and a lot of 
work on data. Following are a few points to consider:

■■ How is data stored? On a daily or hourly basis? 

■■ Should data be temporarily copied in some intermediate format?

■■ What kind of transformation is required for the model to work? How can you 
automate that?

■■ How is the performance of the model once deployed to production?

■■ How often is the model expected to need retrained to stay adherent to live data?

■■ If retraining is a frequent operation, how to automate any related tasks?
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■■ What about collecting updated datasets, running the training, and deploying the 
up-to-date model?

The biggest issue we experience with machine learning models traces back to the 
data employed. In July 2021, the MIT Technology Review published an article about 
the impact of AI in facing the COVID pandemic. The article’s bottom line is that many of 
the problems uncovered by a large review of aptly developed models are linked to the 
poor data quality that researchers used to develop their tools. Hence, nearly all tools 
were of nearly no effective use. This leads to a better understanding of the role of data 
engineering and data quality. Treating data via CSV sparse files is sufficient for prob-
ing an idea, but in order to build a robust infrastructure, you need to switch to some 
database (relational, NoSQL or graph) and some serious query language, and for this 
purpose, likely move beyond Python and enter into classic programming. Data science 
is not enough without serious programming and database skills. On the other hand, isn’t 
searching for business-specific insights in data all that you do?

AI in general, and machine learning in particular, are now played as a tradeoff 
between commodity and direct solutions for vertical problems. Commoditized cloud 
services offer security, stability, and acceptable quality. They don’t cover every possible 
scenario, though. But they’re expanding, and more will expand in the near future.

All this is creating the environment for building the same old software but with more 
powerful tools. We’re not just talking about the primitives of programming languages 
and classes from some frameworks. We’re also talking about intelligent and predictive 
tools backed by machine learning algorithms and commoditized cloud (or containerized) 
services.

In this scenario, ML.NET acts as a perfect bridge between data engineering and 
commoditized data science, and it is fully integrated with the .NET framework. ML.NET 
commodities come in different forms: built-in algorithms for shallow learning, facilitated 
access to Azure cloud services, and integration with pre-trained models, such as Keras or 
TensorFlow networks.

Who Should Read This Book?

In our vision, if you adopt the .NET stack, then ML.NET is the perfect tool to do machine 
learning, whatever that ultimately means in terms of the internal gears of your chosen 
algorithms and models.

Hence, this book is for .NET developers willing (or needing) to approach the world 
of machine learning. It’s ideal if you’re a software developer adding data science and 
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machine learning skills to your arsenal. It’s ideal if you’re a data scientist willing to learn 
more about software beyond Python. Both categories, though, need to learn more and 
more about the other. 

Who Should Not Read This Book?

This book discusses machine learning through the lenses of ML.NET, which is a platform-
specific library. It is tailored more to data engineers and ML engineers than plain data 
scientists. To clarify, the core responsibilities of an ML engineer are to physically incor-
porate an externally trained model into client applications and perform the much more 
delicate task of supervising the building and training of a model based on data science 
specs. The book discusses the tools for doing this.

If you’re not much interested in the actual productionizing of the machine learning 
solution, this book is probably not the best you can get. It doesn’t open your mind to 
cutting-edge data science techniques, but it teaches you how to start leveraging what 
the ML.NET team has been doing for years—to integrate simple but effective machine 
learning solutions in .NET.

Organization of This Book

This book is divided into three sections. 

■■ Chapters 1-3 provide a foundational overview of the library.

■■ Chapters 4-10 outline the dedicated tasks for data processing, training, and 
evaluation for common problems, such as regression, classification, ranking, 
anomaly detection, and more.

■■ Chapters 11-13 are dedicated to neural networks that might come into play when 
none of the shallow learning tasks is found to be suitable. Also, we include an 
overview of neural networks and an example of passport recognition that uses 
both commoditized Azure cognitive services and a handmade custom Keras 
network.

Lastly, Appendix A discusses model explainability.
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System Requirements

You will need the following hardware and software to complete the practice exercises in 
this book:

■■ A computer running Windows 10, Linux, or macOS

■■ Visual Studio 2019, any edition, or superior; Visual Studio Code

■■ Internet connection to download software or chapter examples

Code Samples

All the code included in the book, including possible errata and extensions, can be 
found at MicrosoftPressStore.com/ProgrammingMLNET/downloads.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. 
You can access updates to this book—in the form of a list of submitted errata and their 
related corrections—at:

MicrosoftPressStore.com/ProgrammingMLNET/errata 

If you discover an error that is not already listed, please submit it to us at the 
same page.

For additional book support and information, please visit  
http://www.MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
http://support.microsoft.com.

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.
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C H A P T E R  2

An Architectural Perspective of 
ML.NET

“In mathematics, the art of asking questions is more valuable than solving problems.”
—Georg Cantor, Doctoral thesis, 1867

As consumers, we continuously experience the pleasant effects of cognitive AI (for example, 
Amazon, Google, Apple, Microsoft, and Netflix). As people, we hope to see the same power 

applied to healthcare. In the general enterprise sector, where companies much smaller and rich than 
the web giants strive, the adoption of AI is slow and steady. This is precisely the feeling that descends 
from the point of intelligent software. Very few running businesses need the same level of cognitive AI 
we find in, say, Alexa or Cortana. All running businesses, though, would benefit from smarter features. 

What is intelligent software, then?

Any software is statically designed to be aware of the context, but only intelligent software is 
designed to run while being dynamically aware of the business context. On the other hand, isn’t this 
just what intelligence is supposed to be—the ability to acquire knowledge and turn it into expertise? In 
a nutshell, intelligence combines cognitive capabilities, including perception, memory, language, and 
reasoning and uses a specific learning approach to extract, transform, and store information. Turning 
all this into code requires ad hoc tools that are different from the basic logical equipment provided in 
any programming language or core framework.

Marketing departments love to generally identify these tools as artificial intelligence, specifically in 
the machine learning (ML) section. How do we do ML? 

Most ML solutions today are built using tools from the Python ecosystem. It’s a matter of conve-
nience, however, rather than a matter of technological merit. In this chapter, we introduce the ML.NET 
platform—the .NET way to machine learning and the core topic of the book. More than just that, 
though, we will aim at providing an architectural perspective of a generic ML solution and presenting 
the reasons that, in our opinion, make ML.NET the right thing at the right time. 
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Life Beyond Python

In the collective imagination, ML is tightly coupled to using the Python programming language. 
Even from a surface-level look at job descriptions in tons of recruitment posts, this is clear. There are 
both historical and convenience reasons for languages like Python and C++ to be at the forefront of 
ML. However, there’s no strict business reason or technical argument that prevents .NET and related 
languages (C# and F#) from being effectively used to build ML models. 

Why Is Python So Popular in Machine Learning?
Python is an interpreted and object-oriented programming language created by Guido Van Rossum 
in the late 1980s with the declared goals of syntax minimalism and readability. The vision of Python as 
a programming language is that of a small core language engine with a large standard library and an 
easily extensible interpreter.

Python, which was born in a scientific environment, has become the de facto standard program-
ming language for scientists to practice, explore, and experiment with numbers. In a way, it took the 
place that Fortran held in the 1960s and ‘70s. In the beginning, using Python in a hot new scientific 
field such as machine learning was a natural choice, and over time—given the natural extensibility of 
the language—it led to the creation of a vast ecosystem of dedicated libraries and tools. In turn, that 
reinforced the belief that using Python for building computational models was the best option.

Today, most data scientists find Python comfortable to use for machine learning projects, and that 
is probably because of a combination of the language’s simplicity, the available tools, and plenty of 
examples. As developers, we also find Python comfortable to use to reshape data quickly to find the 
most appropriate format, test algorithms quickly, and explore different directions.

Once a clear path is outlined, the ML model must be trained and integrated into a runtime envi-
ronment, its performance with live data must be monitored, and due changes must be applied and 
redeployed. It’s the ML life cycle that is also known as MLOps. When you move away from experiment-
ing with tools and libraries and look just for what enterprises need—working and maintainable code—
Python shows structural limits. At the very minimum, it’s yet another stack to integrate into .NET or Java 
stacks, which is how most business applications are written.

 

NOTE  It’s difficult to go from ML experimentation (often done in Python and via Note-
books) to deployment. In fact, according to a 2020 State of Enterprise Machine Learning 
report, only 22 percent of companies using machine learning have successfully deployed a 
machine learning model into production. See https://bit.ly/3y8BxOH

That’s one of the advantages of ML.NET—.NET makes it super easy to bring projects to 
production.
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Taxonomy of Python Machine Learning Libraries
The ecosystem of tools and libraries available in Python can be divided into five main areas: data 
manipulation, data visualization, numerical computing, model training, and neural networks. It’s prob-
ably not an exhaustive list because many other libraries exist that perform other tasks and focus on 
some specific areas of machine learning, such as natural language processing and image recognition.

When using Python, the steps to build a machine learning pipeline are typically performed within 
the boundaries of a notebook. A notebook is a document created in a specific web or local interactive 
environment called Jupyter Notebook. (See https://jupyter.org.) Each notebook contains a combina-
tion of executable Python code, richly formatted text, data grids, charts, and pictures through which 
you build and share your development story. In some way, a notebook is comparable to a Visual Studio 
project solution.

In a notebook, you perform tasks such as data manipulation, plotting, and training, and you can use 
a number of predefined and battle-tested libraries.

Data Manipulation and Analysis
Pandas (https://pandas.pydata.org) is a library centered around the DataFrame object through which 
developers can load and manipulate in-memory tabular data. The object can import content from CSV 
files, text files, and SQL databases, and it provides core capabilities, such as conditional search, filter-
ing, indexing and sorting, data slicing, grouping, and column operations (such as add, remove, and 
rename). The DataFrame object has built-in capability to flexibly reshape and pivot data and merge 
multiple frames. It also works well with time-series data.

The Pandas library is ideal for data preparation operations. Its integration with interactive note-
books enables you to perform on-the-fly testing of different configurations and data groupings.

Data Visualization
Matplotlib (https://matplotlib.org) is a helper library that isn’t directly related to any of the common 
tasks of a machine learning pipeline, but it comes very handy to visually represent data during the vari-
ous phases of the data preparation step or metrics obtained after evaluating trained models.

In general terms, it’s a mere data visualization library built for Python code. It includes a 2D/3D ren-
dering engine and supports common types of graphs, such as histograms, pie charts, and bar charts. 
Graphs are fully customizable in terms of line styles, font properties, axes, legends, and the like. 

Numeric Computing
Because Python is a language that is largely used in scientific environments, it can’t be without a bunch 
of extensions specifically designed for numerical computation. In this area, NumPy and SciPy are popu-
lar libraries, though they have slightly different capabilities.
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12	 Programming ML.Net

NumPy (https://www.numpy.org) focuses on array operations and provides facilities to create, 
manipulate, and reshape one-dimensional and multidimensional arrays. Also, the library supplies linear 
algebra, Fourier transform, and random number operations.

SciPy (https://scipy.org) extends NumPy with polynomials, file I/O, image and signal processing, and 
more advanced features such as integration, interpolation, optimization, and statistics.

In the area of scientific computation, another Python library that is worth mentioning is Theano 
(https://github.com/Theano/Theano). Theano evaluates mathematical expressions based on multidi-
mensional arrays, very efficiently making transparent use of the GPU. It also does symbolic differentia-
tion for functions with one or more inputs.

Model Training
Though it was originally designed for data mining, today, scikit-learn (https://scikit-learn.org) is a library 
mainly focused on model training. It provides implementations of popular algorithms for regres-
sion, classification, and clustering. Also, scikit-learn provides methods for data preprocessing, such as 
dimensionality reduction, feature extraction, and normalization.

In a nutshell, scikit-learn is the Python foundation for shallow learning.

Neural Networks
Shallow learning is an area of machine learning that covers a broad array of fundamental problems 
such as regression and classification. Outside the realm of shallow learning, there are deep learning and 
neural networks. For building neural networks in Python, more specialized libraries exist.

TensorFlow (https://www.tensorflow.org) is probably the most popular library for training deep neu-
ral networks. It is part of a comprehensive framework that can be programmed at various levels. For 
example, you can use the high-level Keras API to build neural networks or manually build the desired 
topology and specify via code forward and activation steps, custom layers, and training loops. Overall, 
TensorFlow is an end-to-end machine learning platform providing facilities also to train and deploy.

Keras (https://keras.io) is probably the easiest way to get into the dazzling world of deep learning. It 
offers a very straightforward programming interface that at least comes in handy for quick prototyp-
ing. As mentioned, Keras can be used from within TensorFlow.

Yet another option is PyTorch, available at https://pytorch.org. PyTorch is the Python adaptation 
of an existing C-based library specialized in natural language processing and computer vision. Of the 
three neural network options, Keras is, by far, the ideal entry point and the tool of choice as long as it 
can deliver what you’re looking for. PyTorch and TensorFlow do the same job of building sophisticated 
neural networks, but they use different approaches to the task. TensorFlow requires you to define 
the entire topology of the network before you can train it. In contrast, PyTorch follows a more agile 
approach and provides a more dynamic method for making changes to the graph. In some ways, their 
differences can be summarized as “waterfall versus agile.” PyTorch is younger and doesn’t have Tensor-
Flow’s huge community behind it.
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End-to-End Solutions on Top of Python Models
With Python, you can easily find a way to build and train a machine learning model. Ultimately, a model 
is a binary file that must be loaded into a client application and invoked. Usually, a Java or .NET applica-
tion serves as the client application for an ML model. 

There are three main ways to consume a trained model:

■■ Hosting the trained model in a web service and making it accessible via a REST or gRPC API.

■■ Importing the trained model as a serialized file in the application and interacting with it through 
the programming interface provided by the infrastructure it is built upon (for example, Tensor-
Flow or scikit-learn). This is possible only if the founding infrastructure provides bindings for the 
language to which the client application.

■■ The trained model is exposed via the new universal ONNX format, and the client application 
incorporates a wrapper for consuming ONNX binaries.

While the web service option is the most commonly used, a direct API that is specific for the client 
language of choice might seem the fastest way to consume a trained model. There are a couple of 
aspects to review, however:

■■ Using a direct API can prevent you from taking advantage of hardware acceleration and net-
work distribution. In fact, if the API is hosted locally, any dedicated hardware (such as a GPU) 
is up to you. For this reason, if you want to invoke a graph at a very high rate in real-time, then 
you should consider using an ad hoc, hardware-accelerated cloud host. 

■■ A binding for the specific trained model might not exist for the language of your choice. For 
example, TensorFlow natively supports Python, C , C++, Go, Swift, and Java. 

Invoking a Python (or C++) library from within .NET code is not an unsurmountable technical issue. 
However, invoking a specific library, such as a trained machine learning model, is usually harder than 
calling a plain Python or C++ class. 

In summary, an ML solution doesn’t live on its own and must be framed in the context of an end-to-
end business solution. Because many business solutions are based on the .NET stack, it was about time 
that a platform for training ML models natively in .NET came out. Using ML.NET, you can stay in the 
.NET ecosystem and don’t have to deal with integrating Python into .NET applications.

Introducing ML.NET

First released in the spring of 2019, ML.NET is a free cross-platform and open-source .NET framework 
designed to build and train machine learning models and host them within .NET applications. See 
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet.
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ML.NET aims to provide the same set of capabilities that data scientists and developers can find in 
the Python ecosystem, as described earlier. Specifically built for .NET developers (for example, the API 
reflects common patterns of .NET frameworks and related development practices), ML.NET is built 
around the concept of the classic ML pipeline: collect data, set the algorithm, train, and deploy. In addi-
tion, any required programming steps sound familiar to anybody using the .NET framework and C# 
and F# programming languages.

The most interesting aspect of ML.NET is that it offers a quite pragmatic programming platform 
arranged around the idea of predefined learning tasks. The library comes equipped to make it relatively 
easy—even for machine learning newbies—to tackle common machine learning scenarios such as 
sentiment analysis, fraud detection, or price prediction as if they were just plain programming.

Compared to the pillars of the Python ecosystem presented earlier, ML.NET can be seen primarily 
as the counterpart of the scikit-learn model building library. The framework, however, also includes 
some basic facilities for data preparation and analysis that you can find in Pandas or NumPy. ML.NET 
also allows for the consumption of deep-learning models (specifically, TensorFlow and ONNX). Also, 
developers can train image classification and object detection models via Model Builder. It is remark-
able, though, that the whole ML.NET library is built atop the tremendous power of the whole .NET Core 
framework. 

The ML.NET framework is available as a set of NuGet packages. To start building models, you don’t 
need more than that. However, as of version 16.6.1, Visual Studio also ships the Model Builder wizard 
that analyzes your input data and chooses the best available algorithm. We return to Model Builder in 
Chapter 3, “The Foundation of ML.NET.”

The Learning Pipeline in ML.NET
A typical ML.NET solution is commonly articulated in three distinct projects:

■■ An application that orchestrates the steps of any machine learning pipeline: data collection, 
feature engineering, model selection, training, evaluation, and storage of the trained model

■■ A class library to contain the data types necessary to have the final model make a prediction 
once hosted in a client application. Note though that the input and output schemas do not 
strictly require its own project since these classes can be defined in the same project where 
training or consumption occurs

■■ A client application (website or a mobile or desktop application)

The orchestrator can be any type of .NET application, but the most natural choice is to have it coded 
as a console application.

It is worth noting, though, that this particular piece of code is not a one-off application that stops 
existing once it has given birth to the model. More often than not, the model has to be re-created 
many times before production and especially after being run in production. For this reason, the trainer 
application must be devised to be reusable and easy to configure and maintain.

9780137383658_print.indb   14 07/01/22   10:18 PM

http://ML.Net
http://ML.NET


	 Chapter 2  An Architectural Perspective of ML.NET	 15

Getting Started
As simple as it sounds, you can start by creating three such projects manually in Visual Studio and make 
them look like Figure 2-1. The figure presents three embryonal projects with many files and references 
missing but with sufficient details to deliver the big picture.

FIGURE 2-1  The skeleton of an ML.NET project in Visual Studio 

Aside from the core references to the .NET framework of choice (whether 3.x or 5), the only addi-
tional piece you need to bring in is the Microsoft.ML NuGet package.

The package is not comprehensive, meaning that depending on what you intend to do, installing 
more packages might be necessary. However, the package is sufficient to get you started and enables 
you to experiment with the library. Let’s focus on the trainer application and see what it takes to inter-
act with the ML.NET library.

The Pipeline Entry Point
The entry point in the ML.NET pipeline is the MLContext object. You use it in much the same way you 
use the Entity Framework DBContext object or the connection object to a database library. You need 
to have an instance of this class shared across the various objects that participate in the building of the 
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model. A common practice employed in most tutorials—including the sample code generated by the 
aforementioned Model Builder wizard—is wrapping the model building workflow in a dedicated class, 
often just named ModelBuilder.

public static class ModelBuilder
{
    private static MLContext Context = new MLContext();
 
    // Main method
    public static void CreateModel(string inputDataFileName, string outputModelFileName)
    {
        // Load data
 
        // Build training pipeline
 
        // Train Model
 
        // QUICK evaluation of the model 
 
        // Save the output model 
 
   } 
}

The instance of the MLContext class is global to the class methods, and the name of the files con-
taining train data and the final output file are passed as arguments. The body of the CreateModel 
method (or whatever name you choose for it) develops around a few steps that involve more specific 
classes of the ML.NET library for activities such as data transformation, feature engineering, model 
selection, training, evaluation, and persistence.

Data Preparation
The ML.NET framework can read data from a variety of data sources (for example, a CSV-style text file, 
a binary file, or any IEnumerable-based object) and does that through the services of a few special-
ized loaders built around a specific interface—the IDataView interface, a flexible and efficient way of 
describing tabular data.

An IDataView-based loader works as a database cursor and supplies methods to navigate around 
the data set at any acceptable pace. It also provides an in-memory cache and methods to write the 
modified content back to disk. Here’s a quick example:

// Create the context for the pipeline
Context = new MLContext();
 
// Load data into the pipeline via the DataView object
var dataView = Context.Data.LoadFromTextFile<ModelInput>(INPUT_DATA_FILE);

The sample code loads training data from the specified file and manages it as a collection of  
ModelInput types. Needless to say, the ModelInput type is a custom class that reflects the rows of 
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data loaded from the text file. The snippet below shows a sample ModelInput class. The LoadColumn 
attribute refers to the position of the CSV column to which the property binds.

public class ModelInput
{
  [LoadColumn(0)] 
  public string Month { get; set; }
 
  [LoadColumn(1)] 
  public float Sales { get; set; }
}

In the code, there’s an even more relevant point to emphasize. The code makes a key assumption 
that the loaded data is already in a format that is acceptable for machine learning operations. More 
often than not, instead, some transformation is necessary to perform on top of available data—the 
most important of which is that all data must be numeric because algorithms can only read numbers. 
Here’s a realistic scenario:

Your customer has a lot of data coming from a variety of data sources, whether timeline series, 
sparse Office documents, or database tables populated by online web frontends. In its raw format, the 
data—no matter the amount—might not be very usable. The appropriate format of the data depends 
on the desired result and the selected training algorithm. Therefore before mounting the final pipe-
line, a number of data transformation actions might be necessary, such as rendering data in columns, 
adding ad hoc feature columns, removing columns, aggregating and normalizing values, and adding 
density wherever possible. Depending on the context, these steps might be accomplished only once or 
every time the model is trained. 

 

NOTE  At first sight, it might seem that integrating data processing in the pipeline is a waste 
of time and that there’s no value in doing it every time the model is built. More in general, 
instead, it is a matter of trade-off. We’re usually talking about large quantities of data, and 
processing it to some intermediate format may be expensive. On the other hand, if the gap 
between raw and cleaned data is not that big, transforming data on each build of the model 
can deliver tremendous flexibility because you can change the transformation parameters 
as is convenient. It’s a pure speed versus flexibility trade-off.

Trainers and Their Categorization
Training is the crucial phase of a machine learning pipeline. The training consists of picking an algo-
rithm, setting in some way its configuration parameters, and running it repeatedly on a given (training) 
data set. The output of the training phase is the set of parameters that lead the algorithm to generate 
the best results. In the ML.NET jargon, the algorithm is called the trainer. More precisely, in ML.NET, 
a trainer is an algorithm plus a task. The same algorithm (say, L-BFGS) can be used for different tasks, 
such as regression or multiclass classification.

Table 2-1 lists some of the supported trainers grouped in a few tasks. We cover ML.NET tasks in 
more depth throughout the rest of the book and investigate their programming interface. 
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TABLE 2-1  ML.NET Tasks Related to Training

Task Description

AnomalyDetection Aims at detecting unexpected or unusual events or behaviors compared to the 
received training

BinaryClassification Aims at classifying data in one of two categories

Clustering Aims at splitting data in a number of possibly correlated groups without knowing 
which aspects could possibly make data items related

Forecasting Addresses forecasting problems

MulticlassClassification Aims at classifying data in three or more categories

Ranking Addresses ranking problems

Regression Aims at predicting the value of a data item

Figure 2-2 presents the list of ML.NET task objects as they show up through IntelliSense from the 
MLContext pipeline entry point.

FIGURE 2-2  The list of ML.NET task objects

Each of the task objects listed in Table 2-1 has a Trainers property that lists the predefined algo-
rithms supported by the framework. For example, for a prediction task, a good algorithm is the Online 
Gradient Descent algorithm. 

var dataProcessPipeline = mlContext.Transforms.Text.FeaturizeText(...);
var trainer = mlContext.Regression.Trainers.OnlineGradientDescent(...);
var trainingPipeline = dataProcessPipeline.Append(trainer); 

The code snippet selects an instance of the algorithm and then appends it to the data processing 
pipeline at the end of which the compiled model will come out. This short code contains the essence of 
the whole ML.NET programming model. This is the way in which the whole pipeline is built step by step 
and then run.
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It is also worth noting that ML.NET supports several specific algorithms for each predefined task. In 
particular, for the regression task the ML.NET framework also supports the “Poisson Regression” and 
the “Stochastic Dual Coordinate Ascent” algorithms, and many more can be added to the project at any 
time through new NuGet packages.

Once the pipeline is built and fully configured, it is ready to run on the provided data. In this regard, 
the pipeline is a sort of abstract workflow that processes data in a way comparable to how in .NET LINQ 
queryable objects work on collections and data sets.

Once trained, a model is nothing more than the serialization of a computation graph that represents 
some sort of mathematical expression or, in some cases, a decision tree. The exact details of the expres-
sion depend on the algorithm and to some extent, the nature of the problem’s category.

Model Training Executive Summary
Explaining the mechanics of model training is well beyond the scope of this book, which remains 
strictly focused on the ML.NET framework. However, at least a brief recap of what it means and how it 
works is in order. For an in-depth analysis, you can easily find online resources as well as books. In par-
ticular, you can take a look at our book Introducing Machine Learning (Microsoft Press, 2020), in which 
we mainly focus on the mathematics behind most problems and the algorithmic solutions discovered 
so far for each class.

Purpose of the Training Phase
Abstractly speaking, an algorithm is the sequence of steps that lead to the solution of a problem. In 
artificial intelligence, there are two main classes of problems: classification of entities and predictions. 
In each of these classes, we find several subclasses, such as ranking, forecasting, regression, anomaly 
detection, image and text analysis, and so forth.

In fact, the output of a machine learning pipeline is a software artifact made of an algorithm (or a 
chain of algorithms) whose parametric parts (settings and configurable elements) have been adjusted 
based on the provided training data. In other words, the output of a machine learning pipeline is the 
instance of an algorithm that, much like the instance of an object-oriented language class, has been 
initialized to hold a given configuration. The configuration to use for the instance of the algorithm is 
discovered during the training phase. The schema is outlined in Figure 2-3.

TRAINING
PHASE

Parameters

Algorithm

Pipeline

Training data set

Model

FIGURE 2-3  Overall schema of the training phase in a machine learning process
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The Computation Graph
As mentioned, the model is a mathematical black-box—a computation graph—that takes input and 
computes an output. Input and output are lists of numbers, and in an object-oriented context—as in 
.NET—they are modeled using classes.

Figure 2-4 presents an abstract and concrete view of how a client application ultimately uses a 
trained model. Input data flows in, and the gears of the graph crunch numbers and produce a response 
for the application to deal with. 

Input data

Details of a
financial

transaction

Result

Response
(valid or suspicious)

Computation
graph

Model trained for
fraud detection

FIGURE 2-4  Overall schema of a trained model being used in production

For example, if you have a model trained to detect possible fraudulent transactions in a financial 
application, the graph in the model will be called to process a numeric representation of the trans-
action and produce some values that could be interpreted as to whether the transaction should be 
approved, denied, or just flagged for further investigation.

Performance of the Model
The term machine learning sounds fascinating, but it is not always fully representative of what really 
happens in a low-level ML framework such as ML.NET or Python’s scikit-learn. At this level, the training 
phase just iteratively processes records in the training data set to minimize an error function.

■■ The function that produces values–the computation graph—is defined by the selected 
algorithm.

■■ The error function is yet another element added to the processing pipeline and also depends, 
to some extent, on the selected algorithm.

■■ The error function measures the distance between values produced by the graph on testing 
data and expected data embedded in the training data set.

■■ The graph enters the training phase with a default configuration that is updated if the measured 
error is too large for the desired goal.

■■ When a good compromise between speed and accuracy is reached, the training ends, and the 
current configuration of the graph is frozen and serialized for production.

The whole process develops iteratively in the training phase within the ML.NET framework. The 
steps are summarized in Figure 2-5.
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Training the Model

Testing the Model

Score
good

enough?

No
Change parameters
Hyperparameters, algorithm

Yes

Deploy to production

FIGURE 2-5  The generation of an ML model

It should be noted that the evaluation phase depicted here happens within the ML.NET framework 
and, more in general, within the boundaries of the ML framework of choice. The actual performance 
evaluated is obtainable on training data with a given set of algorithm parameters (referred to as hyper-
parameters) and internally computed coefficients.

This is not the same as measuring the performance of the model in production. At this stage, you 
only measure how good the model is at work on sample data. However, sample data is only expected 
to be a realistic snapshot of data the model will face once deployed to production. A more crucial 
evaluation phase will take place later and might even take to rebuilding the model based on different 
hyperparameters and—why not?—a different algorithm.

In ML.NET, the quality of the model during the training phase is measured using special compo-
nents called evaluators.

A Look at Evaluators
An evaluator is a component that implements a given metric. Evaluation metrics are specific to the class 
of the algorithm and, in ML.NET, to the ongoing ML task. A good introduction on which evaluator is 
deemed appropriate for each ML.NET task can be found at

https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/metrics. 

A more in-depth discussion about the mathematical reasons that make each metric qualified for a 
given task can be found in the aforementioned book Introducing Machine Learning. 

For example, for a prediction problem such as estimating the cost of a taxi ride (and in general for 
regression and ranking/recommendation problems), a key metric to consider is Squared Loss, also 
known as Mean Squared Error (MSE). This metric works by measuring how close a regression line is to 
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test expected values. For each input test value, the evaluator takes the distance between the computed 
and the expected response, squares it, and then calculates the mean. The squaring is applied to 
increase the relevance of larger differences.

Interestingly, Model Builder, which is embedded in Visual Studio, does some of the work for you. It 
first lets you choose the class of the problem (the ML task) and indicate the training data set. Based on 
that, it automatically selects a few matching algorithms, trains them, and measures the performance 
according to automatically selected metrics. Then it makes a final call and recommends how you 
should start coding your machine learning solution.

In general, there are a few things that could possibly go bad in a machine learning project:

■■ The selected algorithm (or algorithm hyperparameters) might not be the most appropriate to 
explore the given data set.

■■ The original data set needs more (or less) column transformation.

■■ The original data set is too small for the intended purpose.

As an example, Table 2-2 summarizes the scores of various algorithms selected by Model Builder for 
a prediction (regression) task.

TABLE 2-2  Multiple algorithms (and scores) for a sample regression task

Algorithm Squared Loss Absolute Loss RSquared RMS Loss

LightGbmRegression 4.49 0.38 0.9513 2.12

FastTreeTweedieRegression 4.70 0.44 0.9491 2.17

FastTreeRegression 4.83 0.41 0.9486 2.19

SdcaRegression 10.52 0.87 0.8845 3.27

After a test run of Model Builder, it shows that all featured algorithms ended up with good marks, 
but Model Builder ranked them in the order shown, thus suggesting we use the LightGbmRegression  
algorithm based on the evidence provided by metrics. Look in particular at the Squared Loss column.  
The score is acceptably good for the first three ranked algorithms and significantly worse for  
SdcaRegression. On the other hand, SdcaRegression is much faster to train. The golden rule  
of machine learning is that everything is a trade-off.

 

NOTE  Another aspect to consider is that once the model goes to production—even with 
the best metrics—there might still be chances that things go wrong and the predictions are 
not in line with business expectations. When this happens, the odds are that an inadequate 
set of data rows was used for training. Inadequate, at least, in comparison to the real data 
the model was called to manage in production.
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Consuming a Trained Model

At the end of the training phase, you have a model that contains instructions on which algorithm to run 
and which configuration to use. The model file is a zipped file in some serialization format. Note that a 
universal, interoperable format exists and is the ONNX format. ML.NET supports it. 

As is, however, the model is a dead thing. To bring it to life, you need to load it in a runtime environ-
ment so that an API can be exposed to invoke the computation from the outside. 

Making the Model Callable from the Outside
Once saved to a file—typically a ZIP file—the model is simply the flat description of a computation to 
be done on some input data. The first step is wrapping it into a framework engine that knows how to 
deserialize the graph and execute it on some input data.

ML.NET has a tailor-made set of methods ready to use. Here’s the skeleton of the code you need to 
invoke a previously trained model in ML.NET.

public ModelOutput RunModel(string modelFileName, ModelInput input)
{
    var ml = new MLContext();
    var model = ml.Model.Load(modelFileName, out var schema);
    var engine = ml.Model.CreatePredictionEngine<ModelInput, ModelOutput>(model);
    return engine.Predict(input);
}

The sample function takes the path to the serialized model file and the input data to which a predic-
tion is made. If the model estimates the cost of a taxi ride, then the class Modelnput describes the 
ride for which a quote is required. Typically, you will find that the model uses details such as distance, 
time of day, type of service requested, traffic conditions, area of the city involved, and whatever else is 
established. The ModelOutput class describes the output of the algorithm used for training. Usually, 
it’s a simple C# class with just a few numeric properties. Here’s an example:

public class ModelOutput
{
  public double Prediction { get; set; }
}

The ML.NET shell code creates an instance of a prediction engine that will carry the task of deserial-
izing and executing the graph and return the calculated value. From the software developer’s perspec-
tive, invoking an ML model is in no way different from calling a class library method.

Other Deployment Scenarios
Direct embedding of a trained model in the client application is one—and by far the simplest— 
deployment scenario. There are a couple of potentially sore points to emphasize. 
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One is the cost of deserializing the model and turning it into an executable computation graph for 
the runtime environment of choice—in this case, the .NET framework. The other is the (related) cost of 
setting up a prediction engine. Both operations can be quite expensive to perform if the client appli-
cation is, say, a web application subject to thousands of calls per second. This is where an artifact like 
PredictionEnginePool comes in handly. 

Therefore, the code snippet shown earlier is great for understanding the process but not necessarily 
good for production. More realistically, a company trains a model to expose a business-critical process 
as a service to various running software applications. This means that the model should be incorpo-
rated in a kind of web service, and proper layers of caching and balancing should be used to ensure 
proper performance.

In a nutshell, a trained model can be seen as a business black box to be used as a local class library, 
as a web service, or even as a microservice with its own storage and micro frontend. No option is favor-
able over the others, but all are feasible options for the architect to choose.

From Data Science to Programming
If you look at the trained model as an autonomous, black-boxed artifact integrated in a given type of 
software application, you should be able to see also the frontier between data science and program-
ming. Data science contributes the model; programming makes it usable. Both aspects are strictly 
needed and unavoidable. 

A trained model is nothing if not surrounded by a decent programming interface, whether in the 
form of a class library or a web service. To build an effective model, specific skills are required. First, you 
need domain expertise. Second, statistics and mathematics and the ability to discern between algo-
rithms and metrics and interpret numbers are required. In extreme cases, the ability to develop new 
algorithms (including neural networks) or customize existing ones are also required. These skills very 
rarely belong to developers.

In much the same way, exposing a functional model requires due attention to the overall perfor-
mance and scalability of the host application and care of the user experience. A taxi ride predictor 
model ultimately needs numbers to represent any sort of information. But you can hardly expect that 
people using the app on the go enter their destination through numbers. This is programming work.

In this scenario, ML.NET takes an interesting challenge: enabling developers to code their own 
machine learning tasks autonomously at least for relatively simple instances of problems and where a 
sharp precision is not the goal. This is just the ultimate purpose of ML tasks and AutoML—the engine 
that lies behind Model Builder. In this book, we deeply cover ML tasks but also dedicate a few final 
chapters to give problems a more real-world perspective. High precision, if necessary, comes at a cost!
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Summary

ML.NET is now slated to become the reference platform for machine learning in the .NET space. It is 
mainly limited to shallow learning and doesn’t offer direct support for building neural networks and 
deep learning (the support is only for consuming existing networks). On the other hand, also in the 
Python space there are libraries for shallow learning (scikit-learn) and libraries for building neural 
networks.

It is, instead, much more interesting and promising is the overall approach aimed at making 
machine learning easy to consume and relatively easy to design for developers. No developers will turn 
into expert data scientists overnight—not even after digesting the content of this book—but any savvy 
developer passionate about newer technologies and artificial intelligence would be incredibly comfort-
able with getting into the dazzling world of machine learning through ML.NET.

We’ve already mentioned something, but it helps to reinforce the concept: Although Python is quite 
popular among data scientists, there’s no strict reason why machine learning models can’t be devel-
oped and tested in .NET (or other languages, including Java and Go). It’s all about the ecosystem and 
ease of use. ML.NET relies on the .NET Core infrastructure and Visual Studio.

Let’s now go with a simple but not-so-trivial and complete example: taxi fare prediction. The next 
chapter includes a bit of feature engineering, feature selection, and, more importantly, a client web 
application.
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B
backpropagation algorithm, 195–196
binary classification, 73

calibrators, 74–75
choosing the algorithm, 81
dataset, 75–77

partitioning, 77–78
evaluating the model, 82
metrics, 83
programmatic holdout, 78–79
for sentiment analysis, 75
setting up a client application, 84
supported algorithms, 73–74
text featurization, 79–81
trainers, 74
validation techniques, 75

binning, 60
Bombe, the, 2
bulk rating, 173

C
calculus rationator, 1
calibrators, binary classification, 74–75
change points, 125, 130–131
choosing, algorithms, 36, 62–63, 81, 90–91
Church, Alonzo, 2–3
Church-Turing thesis, 2
classes

binding output columns to, 112
datasets and, 31–32
helper, 147
ImageData, 179
ModelBuilder, 15–16
modeling data to, 103
ModelInput, 16–17

classification, 19, 45, 73, 97
binary, 73

algorithms, 74
calibrators, 74–75
choosing the algorithm, 81
dataset, 75–77
evaluating the model, 82
metrics, 83
partitioning the dataset, 77–78
programmatic holdout, 78–79
for sentiment analysis, 75
setting up a client application, 84
supported algorithms, 73–74
text featurization, 79–81
validation techniques, 75

modeling data to classes, 103
multiclass, 85, 87–88

confusion matrix, 94–95
dataset, 88
metrics, 93–94
object pooling, 96
setting up a client application, 95–96
supported algorithms, 85
text featurization, 89–90
trainers, 85–86, 90–91

naïve Bayesian, 86
One-Versus-All, 86–87
One-Versus-One, 87
supervised, 123

client application, 67–68
anomaly detection, 134–136
binary classification, 84
clustering, 111
forecasting, 151–152

creating a time series engine, 152
creating checkpoints, 152–154
discount factor, 154

image classification
skeleton of the app, 182–183
user interface, 183–184

multiclass classification, 95–96
recommender system, 170

skeleton of the app, 170–171
user interface, 171–172

cloud computing, 5, 217
clustering, 99, 114–115

algorithms
DBSCAN, 107–108, 124
K-Means, 105–106, 109–111
K-Modes, 106
OPTICS, 106–108

applying persistent transformations, 101–102
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datasets

binding output columns to a C# class, 112
composing the training pipeline, 109
customer segmentation, 100
elbow method, 106
feature engineering, 104
inspecting the transformed dataset, 111
purpose of data in, 103–104
reducing the number of features, 115–116
reducing the number of rows, 116
saving clusters to separate files, 113–114
setting up a client application, 111
silhouette method, 106
unsupervised, 124
unsupervised learning and, 99–100, 115

CNN (convolutional neural networks), 199–202
cognitive services, 6
collaborative filtering, 162, 172
collective outliers, 121
Colossus, 2
combined metrics, 83
commoditization of solutions, 216–217
computing machines, 2. See also AI (artificial 
intelligence)

Bombe, the, 2
calculus rationator, 1
Church-Turing thesis, 2
engineering of, 3
ENIAC computer, 2
Enigma, 2
Godel’s theorems of incompleteness, 1
human brain and, 3
Lorenz machine, 2
software and, 2
Turing machine, 1–2
Von Neumann architecture, 4

confusion matrix, 94–95
consuming a trained model, 23, 39

deployment options, 23–24
getting the model file, 39
making the model callable from the outside, 23

contextual outliers, 121
CopyColumns method, 59
CPU (central processing unit), 4
credit cards, fraud detection, 139–140
CrossValidate method, 65–66, 75
CrossValidateNonCalibrated method, 75
cross-validation, 38, 65–66

binary classification and, 75
holdout, 52
k-fold, 52–53

custom solutions, 217
cybernetics, 3
cycles, 142

D
data engineering, 29
data science, 24–28, 30–31
data trend, 123
data views, 34, 40–41, 46–47, 61
data visualization, Matplotlib library, 11
datasets, 33–35, 54–55. See also ETL  
(Extract-Transform-Load) pipeline; time series

accessing, 60
augmenting, 55–56
binary classification, 75–78
classes and, 31–32
clustering, 99, 100–101

applying persistent transformations, 101–102
customer segmentation, 100
modeling data to classes, 103
reducing the number of features, 115–116
reducing the number of rows, 116

data science and, 31
feature engineering, 58

clustering and, 104
preliminary physical operations, 58–59
text featurization, 79–81

image classification, 178–180
loading, 34, 56–57
memory and, 61–62
multiclass classification, 88

mapping target classes to numerical values, 90
text featurization, 89

normalization, 33
outliers, 58–59
preparing, 51
recommender system, 163

feature engineering, 165
schema, 163–164
selecting columns of data, 164–165

schema, 57
splitting, 78–79
supported data sources, 57–58
test, 77–78
time series, univariate and multivariate, 126–127
training, 77
transformers, 47
validation, 77–78
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DBSCAN algorithm, 124
decomposition algorithms, 144

SSA (Singular Spectrum Analysis), 144
decomposition step, 144–145
reconstruction step, 145

deep learning, 12, 192
density algorithms, 107, 123
DetectIidChangePoint method, 131
DetectIidSpike method, 128–129
DetectSpikeBySsa method, 132

E
elbow method, 106
energy production prediction, 156

forecasting pipeline, 157
power plant data, 156–157
weather forecasts, 156

ENIAC computer, 2
Enigma machine, 2
error function, 63–64
estimators, 47–48
ETL (Extract-Transform-Load) pipeline, 29, 32, 34–35

data views, 46–47
loading data, 34, 56–57

scalability concerns, 42
supported data sources, 57–58

transformations, 33, 35
algorithms, 33
feature engineering, 58–60
normalization, 33
transformers, 47

Evaluate method, 38, 64, 82
evaluators, 21–22
expert systems, 7

F
F1-score, 83
feature engineering, 58

anomaly detection and, 127–128
binning, 60
building the transformation pipeline, 59
clustering and, 104
key-value mapping, 60
normalization, 59–60
one hot encoding, 60
preliminary physical operations, 58–59
recommendation and, 165

text featurization, 79–80
mapping target classes to numerical values, 90
multiclass classification and, 89

feature importance, 53–54
feed-forward neural networks, 189, 192, 197
FilterRowsByColumn method, 149
Fit method, 36, 48, 63, 129
ForecastBySsa method, 149–150
forecasting, 141–142, 146

applying the algorithm, 149–150
dataset, 146–147
helper classes, 147
loading data from a database source, 148
saving and evaluating the model, 150–151
separating training and testing data, 148–149
setting up a client application, 151–154

creating a time series engine, 152
creating checkpoints, 152–154
discount factor, 154

in a time series, 154–155
weather, 156

Fortran, 10
fraud detection, 139–140
Frege, Gottlob, 1

G
general recursive function, 2
GetOutputSchema method, 47, 48
GetRowCursor method, 34
Godel’s theorems of incompleteness, 1, 2

H
hashing, 60
helper classes, 147
Hoare, Tony, 37
holdout cross-validation, 37, 52
human brain, the

computing machines and, 3
object detection, 187

Hyndman, Rob, 126

I
IDataView loader, 16
IEstimator interface, 47
image classification, 175. See also neural networks; 
passport recognition system
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methods

composing the training pipeline, 180
adding the TensorFlow model to the pipeline, 
181
retraining the TensorFlow model, 181–182

dataset, 178–180
mapping to a canonical classification problem, 178
NuGet packages, 177
retraining and, 188
setting up a client application, 182

skeleton of the app, 182–183
user interface, 183–184

transfer learning and, 175
Image Classification API, 184, 185–186

bottleneck phase, 185
training phase, 185

ImageData class, 179
Inception v3, 176
information retrieval systems, 159–160
instantiation, 67, 68–70
intelligent software, 9
interface

IDataView, 60
IEstimator, 47
ITransformer, 47

Internet, 4
Introducing Machine Learning, 19, 21
IoT (Internet of Things), anomaly detection and, 
137–138
isolation forest, 124
ITransformer interface, 47

J-K
Jupyter Notebook, 11
Keras, 12
kernel matrix, 200–201
key-value mapping, 60
k-fold cross-validation, 52–53
K-Means algorithm, 105–106, 109–111
K-Modes algorithm, 106
KNN (K-nearest neighbor) algorithm, 123, 169–170
KPI (key performance indicators), 120

L
lambda calculus, 2
learning tasks, ML.NET, 14
Leibniz, Gottfried, 1

libraries
NimbusML, 109
OpenCV, 211–212
Python, 11

Matplotlib, 11
model training, 12
neural network, 12
numeric computing, 11–12
Pandas, 11
scikit-learn, 12, 14

LightGbmRegression algorithm, 36
linear algorithms, 91–92
linear regression, 71
LoadFromTextFile method, 179
loading data, 34, 56–58
LOF (Local Outlier Factor) algorithm, 124
logistic neuron, 193
logistic regression, 81–82
Lorenz machine, 2
LSTM (Long Short-Term Memory) neural network, 
155, 157, 199

M
MakePrediction method, 41
Matplotlib, 11
McCarthy, John, 3
McCulloch, Warren, 189
memory

context, 197–198
datasets and, 61–62
LSTM, 155

methods
Append, 47
AppendCacheCheckpoint, 90–91
CopyColumns, 59
CrossValidate, 65–66, 75
CrossValidateNonCalibrated, 75
DetectIidChangePoint, 131
DetectIidSpike, 128–129
DetectSpikeBySsa, 132
Evaluate, 38, 64, 82
FilterRowsByColumn, 149
Fit, 36, 48, 63, 129
ForecastBySsa, 149–150
GetOutputSchema, 47–48
GetRowCursor, 34
LoadFromTextFile, 179
MakePrediction, 41
Plain, 134
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methods

Predict, 68
Preview, 47
Transform, 47
Zip, 151

metrics, 21–22, 38
binary classification, 83
combined, 83
multiclass classification, 93–94
regression, 64

MF (Matrix Factorization) algorithm, 166–168
ML (machine learning), 7, 9, 20–21. See also Python

consuming a trained model, 13
engineer, 29–30
models, 13
neural networks, 45
prediction, 48
Python and, 9–10
roles, 35

data engineer, 29
data scientist, 28
ML engineer, 29–30

shallow learning, 12
training, 12, 17–19. See also training

performance and, 20–21
purpose of, 19

ML.NET, 7, 10, 13–14. See also tasks
algorithms, 15–17, 18–19
cross-validation, 65–66
data views, 34, 46–47, 61
datasets, accessing, 60
estimators, 47–48
evaluators, 21–22
GetRowCursor method, 34
learning pipeline, 14

data preparation, 16–17
entry point, 15–16
error function, 20
evaluation phase, 21
trainers, 17–19

learning tasks, 14
Model Builder, 14
NuGet package, 15
orchestrator, 14
pipelines, 48
projects, 15, 39
tasks, 49
trainers, 49–51
transfer learning, 177
transformers, 47

MLOps, 10

Model Builder, 22, 24
ModelBuilder class, 15–16
ModelInput class, 16–17
model(s). See also Inception v3; testing; training

composition, 176, 178
computational graph, 20
cross-validation, 65–66
error function, 63–64
explainability, 222–223
feature importance, 53–54
fitting, 63
instantiation, 68–70
interpretability, 221–222
packaging, 66–67
regularization, 53
TensorFlow, 181–182
training, 12, 17–19

performance and, 20–21
purpose of, 19

user interface, 42–43
validation, 64–65

moving average, 122–123
MRZ (Machine-Readable Zone), 212–214
multiclass classification, 85, 87–88

composing the training pipeline, 90
evaluating the model, 92–94
selecting the algorithm, 90–91
switching back to text, 92

confusion matrix, 94–95
dataset, 88
metrics, 93–94
object pooling, 96
setting up a client application, 95–96
supported algorithms, 85
text featurization, 89
trainers, 85–86, 90–91

multivariate time series, 126–127

N
naïve Bayesian classification, 86
NAND gate, 191
Netflix prize challenge, 167, 169, 172
.NET, 9
neural networks, 7, 12, 45, 165, 178, 187, 189, 191, 211

activation function, 190–191
artificial neurons, 190
auto-encoders, 202

applications, 202–203
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schema, 202
building, 178
checkpoints, 152–154
convolutional, 199–202
crafting your own, 210
custom, 217
enabling to learn, 193
feed-forward, 189
handcrafting, 187
hidden layers, 192
image processing, 176
Inception v3, 176
logistic neuron, 193–194
LSTM (Long Short-Term Memory), 155, 157, 199
NAND gate, 191
perceptron, 190
predictive maintenance, 137–138
Python libraries, 12
recurrent, 197

architecture, 198
“deep”, 199
memory context, 197–198

stateful, 197
topology, 211
training, 194, 215

backpropagation algorithm, 195–196
using an MRZ generator, 215–216
using TensorFlow generators, 216

Newton, Isaac, 1
NimbusML library, 109
noise removal, 124
nonlinear regression, 71
normalization, 59–60
notebook, 11
NuGet packages, image classification, 177
numeric computing libraries, 11–12
NumPy, 12

O
object

detection, 175, 187
pooling, 42, 96

OCR (optical character recognition), 205, 206–207
OCSVM (One Class Support Vector Machine) 
algorithm, 125
one hot encoding, 60
One-Versus-All classification, 86–87
One-Versus-One classification, 87

OpenCV library, 211–212
OPTICS algorithm, 106–108
orchestrator, 14
outliers

change points and, 125
collective, 121
contextual, 121
point, 121
in a time series, 121–122

overfitting, 53

P
Pandas, 11
partitioning a dataset, 77–78. See also clustering
passport recognition system, 205–206

extracting the MRZ region, 212–214
form recognizer service, 207–210
image input, 206
MRZ (Machine-Readable Zone), 206
OCR (optical character recognition), 205–207
processing the input image, 211
recognizing the MRZ content, 214–215
text detection, 206
training

using an MRZ generator, 215–216
using TensorFlow generators, 216

PCA (principle component analysis), 132–134
perceptron, 1, 190–191
personalization, 161–162
pipelines, 48

chain of estimators, 66
multiple, 65–66

Pitts, Walter, 189
Plain method, 134
point outliers, 121
Predict method, 68
prediction, 19, 21–22, 45, 141. See also forecasting

algorithms, 22, 35, 36
data science and, 31
energy production, 156

forecasting pipeline, 157
power plant data, 156–157
weather forecasts, 156

regression, 48, 54
augmenting the dataset, 55–56
datasets, 54–55

taxi fare, 40–41
predictive maintenance, 137–138
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Preview method, 47
programmatic holdout, 78–79
programming languages, 4, 9–10. See also Python
projects, 39
Python, 9–10

libraries, 11, 14
Matplotlib, 11
model training, 12
neural network, 12
NimbusML, 109
numeric computing, 11–12
Pandas, 11
scikit-learn, 12

notebook, 11
popularity of, 10

PyTorch, 12

Q-R
Quicksort algorithm, 37
random forest algorithm, 155
random walk, 154–155
randomized PCA (principle component analysis), 
132–134
ranking, 159–161, 162

information retrieval systems, 159–160
versus recommendation, 161

recommender system, 161, 163
accuracy and, 173
bulk rating, 173
collaborative filterring, 162, 172
composing the training pipeline, 166
dataset, 163

schema, 163–164
selecting columns of data, 164–165

evaluating the model, 168–169
feature engineering, 165
information retrieval systems, 159–160
KNN (K-nearest neighbor) algorithm, 169–170
MF (Matrix Factorization) algorithm, 166–168
personalization and, 161–162
versus ranking, 161
relevance by date, 166
setting up a client application, 170

skeleton of the app, 170–171
user interface, 171–172

regression, 48–49, 54, 70
dataset, 54–56
linear, 71

logistic, 81–82
metrics, 38, 64
nonlinear, 71
time series, 71
trainers, 49–50

regularization, 53
retraining, 188. See also transfer learning
RNN (recurrent neural network), 197

architecture, 198
“deep”, 199
memory context, 197–198

roles
data engineer, 29
data scientist, 28
ML engineer, 29–30

Russell, Bertrand, 1

S
schema, 57

auto-encoder, 202
time series data, 127

scikit-learn, 12, 14
SciPy, 12
SDCA (Stochastic Dual Coordinate Ascent) trainer, 
91–92, 99
SdcaMaximumEntropy trainer, 92
seasonality, 142
semi-supervised learning, 124–125
sentiment analysis, 75, 98
shallow learning, 12
sigmoid function, 193–194
silhouette method, 106
software, 1–2, 4

AI and, 7
in cars, 5–6
cognitive services, 6
empowerment and, 6
goals of, 5
Godel’s theorems of incompleteness, 1
intelligent, 9
programming languages, 4
role of, 4–5

solutions
commoditization of, 216–217
custom, 217

spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional Neural 
Network), 132
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tasks

SSA (Singular Spectrum Analysis) algorithm, 132, 144, 
149–150, 154

decomposition step, 144–145
reconstruction step, 145

stateful neural networks, 197. See also RNN (recurrent 
neural network)
stationarity, 143
statistical market analysis, 31
supervised classification, 123
SVD (Singular Value Decomposition), 132–133
SVM (Support Vector Machine) algorithm, 81–82, 99
symbolic calculation, 1

T
tasks, 49

anomaly detection, 119–120
change points, detecting, 130–131
composing the training pipeline, 128
fraud and, 139–140
loading data and feature engineering, 127–128
outliers in time series data, 121–122
semi-supervised learning, 124–125
setting up a client application, 134–136
spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional 
Neural Network), 132
SSA (Singular Spectrum Analysis), 132
statistical techniques, 122–123
supervised classification, 123
in a time series, 120–121
unsupervised clustering, 124

binary classification, 73
calibrators, 74–75
choosing the algorithm, 81
dataset, 75–77
evaluating the model, 82
metrics, 83
partitioning the dataset, 77–78
programmatic holdout, 78–79
for sentiment analysis, 75
setting up a client application, 84
supported algorithms, 73–74
text featurization, 79–81
trainers, 74
validation techniques, 75

classification, unsupervised learning, 99–100
clustering, 114–115

applying persistent transformations, 101–102

binding output columns to a C# class, 112
customer segmentation, 100
DBSCAN algorithm, 107–108
elbow method, 106
feature engineering, 104
inspecting the transformed dataset, 111
K-Means algorithm, 109–111
K-Modes algorithm, 106
modeling data to classes, 103
OPTICS algorithm, 106–108
purpose of data in, 103–104
reducing the number of features, 115–116
reducing the number of rows, 116
saving clusters to separate files, 113–114
setting up a client application, 111
silhouette method, 106

forecasting, 146
applying the algorithm, 149–150
dataset, 146–147
helper classes, 147
loading data from a database source, 148
saving and evaluating the model, 150–151
separating training and testing data, 148–149
weather, 156

image classification, 175
composing the training pipeline, 180, 181–182
dataset, 178–179
mapping to a canonical classification problem, 
178
setting up a client application, 182–184
transfer learning and, 175

multiclass classification, 85, 87–88
confusion matrix, 94–95
dataset, 88
metrics, 93–94
object pooling, 96
setting up a client application, 95–96
supported algorithms, 85
trainers, 85–86

naïve Bayesian classification, 86
One-Versus-All classification, 86–87
One-Versus-One classification, 87
ranking, 160–162

information retrieval systems, 159–160
versus recommendation, 161

recommendation, 159, 161, 163
accuracy and, 173
bulk rating, 173
client application, 170–172
collaborative filtering, 162, 172
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tasks

composing the training pipeline, 166
dataset, 163–165
evaluating the model, 168–169
feature engineering, 165
information retrieval systems, 159–160
KNN (K-nearest neighbor) algorithm, 169–170
MF (Matrix Factorization) algorithm, 166–168
personalization and, 161–162
versus ranking, 161
relevance by date, 166

regression, 49–50, 54
TensorFlow model, 12, 181

neural network training, 216
retraining, 181–182

testing, 37, 52
cross-validation, 38, 65–66

holdout, 37, 52
k-fold, 52–53

datasets, 77–78
metrics, 38
validation, 64–65

text featurization, 79–81
mapping target classes to numerical values, 90
multiclass classification and, 89

Theano, 12
thinking machines, 3. See also AI (artificial 
intelligence)
time series

anomaly detection
change points, detecting, 130–131
randomized PCA (principle component 
analysis), 132–134
spikes, detecting, 128–130
SR-CNN (Spectral Residual and Convolutional 
Neural Network), 132
SSA (Singular Spectrum Analysis), 132
statistical techniques, 122–123

cycles, 142
multivariate, 126–127
outliers, 121–122
random walk, 154–155
regression, 71
seasonality, 142
stationarity, 143
trends, 142
univariate, 126–127
usual pattern, 120–121

trainers
binary classification, 74
configuration, 50–51

multiclass classification, 85–86, 90–91
regression, 49–50
SDCA (Stochastic Dual Coordinate Ascent), 91

training, 12, 17–19. See also consuming a trained 
model;  ETL (Extract-Transform-Load) pipeline; 
testing

algorithms, 35
choosing, 36
measuring the value of, 36–37

anomaly detection, 128
detecting change points, 130–132
detecting spikes, 128–130
setting up a client application, 134–136
using randomized PCA, 132–134
using the SR-CNN service, 132

classification, 90–92
confusion matrix, 94–95
evaluating the model, 92–94
managing multiple prediction engine  
pools, 96
selecting the algorithm, 90–91
setting up a client application, 95–96
switching back to text, 92

clustering, 109
inspecting the transformed dataset, 111
running the K-Means algorithm, 109
setting up a client application, 111

data transformation, 17
dataset, 77
forecasting, 148

applying the algorithm, 149–150
loading data from a database source, 148
saving and evaluating the model, 150–151
separating training and testing data, 148–149

image classification, 180
adding the TensorFlow model to the  
pipeline, 181
retraining the TensorFlow model, 181–182

multiclass classification, 90–91
neural networks, 194

backpropagation algorithm, 195–196
using an MRZ generator, 215–216
using TensorFlow generators, 216

overfitting, 53
performance and, 20–21
prediction, 62

cross-validation of the model, 65–66
fitting the model, 63
identifying the training algorithm, 62–63
invoking a trained model, 68–70

9780137383658_print.indb   234 07/01/22   10:19 PM



Zip method

	 235

loss function of the model, 63–64
packaging the trained model, 66–67
setting up a client application, 67–68
validation of the model, 64–65

preparing the dataset, 51
purpose of, 19
recommender system, 166

evaluating the model, 168–169
MF (Matrix Factorization) algorithm, 166–168

regularization, 53
transfer learning, 175, 178

dataset, 178–179
in ML.NET, 177
via composition, 176

Transform method, 47
trends, 142
T-shaped skill set, 30
Turing, Alan, 1, 3, 29
Turing machine, 1–2

U
univariate time series, 126–127
unsupervised clustering, 124

unsupervised learning, 99–100, 115
user interface, 42–43

V
validation. See also cross-validation

binary classification and, 75
dataset, 77–78

Van Rossum, Guido, 10
variance, 52, 58
vertical solutions, 216–217
Visual Studio, 15, 22, 62–63
Von Neumann architecture, 4
von Neumann, John, 2–3

W-X-Y-Z
weather forecasting, 156
Y-shaped skill set, 30
Zip method, 151
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