

Readers can download high-resolution, full-color versions of all this book's figures at

www.informit.com/title/9780133387520

and

www.servicetechbooks.com/cloud.

Praise for this Book

"Cloud computing, more than most disciplines in IT, suffers from too much talk and not enough practice. Thomas Erl has written a timely book that condenses the theory and buttresses it with real-world examples that demystify this important technology. An important guidebook for your journey into the cloud."

-Scott Morrison, Chief Technology Officer, Layer 7 Technologies

"An excellent, extremely well-written, lucid book that provides a comprehensive picture of cloud computing, covering multiple dimensions of the subject. The case studies presented in the book provide a real-world, practical perspective on leveraging cloud computing in an organization. The book covers a wide range of topics, from technology aspects to the business value provided by cloud computing. This is the best, most comprehensive book on the subject—a must-read for any cloud computing practitioner or anyone who wants to get an in-depth picture of cloud computing concepts and practical implementation."

-Suzanne D'Souza, SOA/BPM Practice Lead, KBACE Technologies

"This book offers a thorough and detailed description of cloud computing concepts, architectures, and technologies. It serves as a great reference for both newcomers and experts and is a must-read for any IT professional interested in cloud computing."

-Andre Tost, Senior Technical Staff Member, IBM Software Group

"This is a great book on the topic of cloud computing. It is impressive how the content spans from taxonomy, technology, and architectural concepts to important business considerations for cloud adoption. It really does provide a holistic view to this technology paradigm."

—*Kapil Bakshi, Architecture and Strategy, Cisco Systems Inc.*

"I have read every book written by Thomas Erl and *Cloud Computing* is another excellent publication and demonstration of Thomas Erl's rare ability to take the most complex topics and provide critical core concepts and technical information in a logical and understandable way."

> —Melanie A. Allison, Principal, Healthcare Technology Practice, Integrated Consulting Services

"Companies looking to migrate applications or infrastructure to the cloud are often misled by buzzwords and industry hype. This work cuts through the hype and provides a detailed look, from investigation to contract to implementation to termination, at what it takes for an organization to engage with cloud service providers. This book really lays out the benefits and struggles with getting a company to an IaaS, PaaS, or SaaS solution."

-Kevin Davis, Ph.D., Solutions Architect

"Thomas, in his own distinct and erudite style, provides a comprehensive and a definitive book on cloud computing. Just like his previous masterpiece, *Service-Oriented Architecture: Concepts, Technology, and Design*, this book is sure to engage CxOs, cloud architects, and the developer community involved in delivering software assets on the cloud. Thomas and his authoring team have taken great pains in providing great clarity and detail in documenting cloud architectures, cloud delivery models, cloud governance, and economics of cloud, without forgetting to explain the core of cloud computing that revolves around Internet architecture and virtualization. As a reviewer for this outstanding book, I must admit I have learned quite a lot while reviewing the material. A 'must have' book that should adorn everybody's desk!"

-Vijay Srinivasan, Chief Architect - Technology, Cognizant Technology Solutions

"This book provides comprehensive and descriptive vendor-neutral coverage of cloud computing technology, from both technical and business aspects. It provides a deepdown analysis of cloud architectures and mechanisms that capture the real-world moving parts of cloud platforms. Business aspects are elaborated on to give readers a broader perspective on choosing and defining basic cloud computing business models. Thomas Erl's *Cloud Computing: Concepts, Technology & Architecture* is an excellent source of knowledge of fundamental and in-depth coverage of cloud computing."

> —Masykur Marhendra Sukmanegara, Communication Media & Technology, Consulting Workforce Accenture

"The richness and depth of the topics discussed are incredibly impressive. The depth and breadth of the subject matter are such that a reader could become an expert in a short amount of time."

-Jamie Ryan, Solutions Architect, Layer 7 Technologies

"Demystification, rationalization, and structuring of implementation approaches have always been strong parts in each and every one of Thomas Erl's books. This book is no exception. It provides the definitive, essential coverage of cloud computing and, most importantly, presents this content in a very comprehensive manner. Best of all, this book follows the conventions of the previous service technology series titles, making it read like a natural extension of the library. I strongly believe that this will be another bestseller from one of the top-selling IT authors of the past decade."

-Sergey Popov, Senior Enterprise Architect SOA/Security, Liberty Global International

"A must-read for anyone involved in cloud design and decision making! This insightful book provides in-depth, objective, vendor-neutral coverage of cloud computing concepts, architecture models, and technologies. It will prove very valuable to anyone who needs to gain a solid understanding of how cloud environments work and how to design and migrate solutions to clouds."

-Gijs in 't Veld, Chief Architect, Motion10

"A reference book covering a wide range of aspects related to cloud providers and cloud consumers. If you would like to provide or consume a cloud service and need to know how, this is your book. The book has a clear structure to facilitate a good understanding of the various concepts of cloud."

-Roger Stoffers, Solution Architect

"Cloud computing has been around for a few years, yet there is still a lot of confusion around the term and what it can bring to developers and deployers alike. This book is a great way of finding out what's behind the cloud, and not in an abstract or highlevel manner: It dives into all of the details that you'd need to know in order to plan for developing applications on cloud and what to look for when using applications or services hosted on a cloud. There are very few books that manage to capture this level of detail about the evolving cloud paradigm as this one does. It's a must for architects and developers alike."

-Dr. Mark Little, Vice President, Red Hat

"This book provides a comprehensive exploration of the concepts and mechanics behind clouds. It's written for anyone interested in delving into the details of how cloud environments function, how they are architected, and how they can impact business. This is the book for any organization seriously considering adopting cloud computing. It will pave the way to establishing your cloud computing roadmap."

-Damian Maschek, SOA Architect, Deutsche Bahn

"One of the best books on cloud computing I have ever read. It is complete yet vendor technology neutral and successfully explains the major concepts in a well-structured and disciplined way. It goes through all the definitions and provides many hints for organizations or professionals who are approaching and/or assessing cloud solutions. This book gives a complete list of topics playing fundamental roles in the cloud computing discipline. It goes through a full list of definitions very clearly stated. Diagrams are simple to understand and self-contained. Readers with different skill sets, expertise, and backgrounds will be able to understand the concepts seamlessly."

-Antonio Bruno, Infrastructure and Estate Manager, UBS AG

"Cloud Computing: Concepts, Technology & Architecture is a comprehensive book that focuses on what cloud computing is really all about.... This book will become the foundation on which many organizations will build successful cloud adoption projects. It is a must-read reference for both IT infrastructure and application architects interested in cloud computing or involved in cloud adoption projects. It contains extremely useful and comprehensive information for those who need to build cloud-based architectures or need to explain it to customers thinking about adopting cloud computing technology in their organization."

-Johan Kumps, SOA Architect, RealDolmen

"This book defines the basic terminology and patterns for the topic—a useful reference for the cloud practitioner. Concepts from multitenancy to hypervisor are presented in a succinct and clear manner. The underlying case studies provide wonderful real-worldness."

-Dr. Thomas Rischbeck, Principal Architect, ipt

"The book provides a good foundation to cloud services and issues in cloud service design. Chapters highlight key issues that need to be considered in learning how to think in cloud technology terms; this is highly important in today's business and technology environments where cloud computing plays a central role in connecting user services with virtualized resources and applications."

—Mark Skilton, Director, Office of Strategy and Technology, Global Infrastructure Services, Capgemini

"The book is well organized and covers basic concepts, technologies, and business models about cloud computing. It defines and explains a comprehensive list of terminologies and glossaries about cloud computing so cloud computing experts can speak and communicate with the same set of standardized language. The book is easy to understand and consistent with early published books from Thomas Erl.... It is a must-read for both beginners and experienced professionals."

— Jian "Jeff" Zhong, Chief Technology Officer (Acting) and Chief Architect for SOA and Cloud Computing, Futrend Technology Inc.

"Students of the related specialties can fulfill their educational process with very easily understood materials that are broadly illustrated and clearly described. Professors of different disciplines, from business analysis to IT implementation—even legal and financial monitoring—can use the book as an on-table lecturing manual. IT specialists of all ranks and fields of application will find the book as a practical and useful support for sketching solutions unbound to any particular vendor or brand."

—Alexander Gromoff, Director of Science & Education, Center of Information Control Technologies, Chairman of BPM Chair in Business Informatics Department, National Research University "Higher School of Economics"

"Cloud Computing: Concepts, Technology & Architecture is a comprehensive compendium of all the relevant information about the transformative cloud technology. Erl's latest title concisely and clearly illustrates the origins and positioning of the cloud paradigm as the next-generation computing model. All the chapters are carefully written and arranged in an easy-to-understand manner. This book will be immeasurably beneficial for business and IT professionals. It is set to shake up and help organize the world of cloud computing."

—Pethuru Raj, Ph.D., Enterprise Architecture Consultant, Wipro

"A cloud computing book that will stand out and survive the test of time, even in one of the fastest evolving areas of technology. This book does a great job breaking down the high level of complexity of cloud computing into easy-to-understand pieces. It goes beyond the basic, often repeated, explanations. It examines the fundamental concepts and the components, as well as the mechanisms and architectures that make up cloud computing environments. The approach gradually builds the reader's understanding from the ground up.

"In a rapidly evolving area like cloud computing, it's easy to focus on details and miss the big picture. The focus on concepts and architectural models instead of vendor-specific details allows readers to quickly gain essential knowledge of complex topics. The concepts come together in the last part of the book, which should be required reading for any decision maker evaluating when and how to start a transition to cloud computing. Its thorough, comprehensive coverage of fundamentals and advanced topics makes the book a valuable resource to keep on your desk or your eBook reader, regardless if you're new to the topic or you already have cloud experience.

"I highly recommend the book to those looking to implement or evaluate cloud environments, or simply looking to educate themselves in a field that will shape IT over the next decade."

-Christoph Schittko, Principal Technology Strategist & Cloud Solution Director, Microsoft

"Cloud Computing: Concepts, Technology & Architecture is an excellent resource for IT professionals and managers who want to learn and understand cloud computing, and who need to select or build cloud systems and solutions. It lays the foundation for cloud concepts, models, technologies, and mechanisms. As the book is vendor-neutral, it will remain valid for many years. We will recommend this book to Oracle customers, partners, and users for their journey toward cloud computing. This book has the potential to become the basis for a cloud computing manifesto, comparable to what was accomplished with the SOA manifesto."

-Jürgen Kress, Fusion Middleware Partner Adoption, Oracle EMEA

Cloud Computing

Concepts, Technology & Architecture

Thomas Erl, Zaigham Mahmood, and Ricardo Puttini

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID CAPE TOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382-3419 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales international@pearsoned.com

Visit us on the Web: informit.com

The Library of Congress Cataloging-in-Publication data is on file.

Copyright © 2013 Arcitura Education Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-338752-0 ISBN-10: 0-13-338752-6

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

Fourth Printing: October 2014

Readers can download high-resolution, full-color versions of all this book's figures at:

www.informit.com/title/9780133387520

and

www.servicetechbooks.com/cloud

Editor-in-Chief Mark L. Taub

Managing Editor Kristy Hart

Senior Project Editor Betsy Gratner

Copy Editor and Development Editor Maria Lee

Senior Indexer Cheryl Lenser

Proofreaders Maria Lee Williams Woods Publishing

Publishing Coordinator Kim Boedigheimer

Research Assistant Briana Lee

Cover Designer Thomas Erl

Compositor Bumpy Design

Photos Thomas Erl Dominika Sládkovičová

Graphics KK Lui Briana Lee *To my family and friends* —Thomas Erl

To Zoya, Hanya, and Ozair with love —Zaigham Mahmood

To Silvia, Luiza, Isadora, and Lucas —Ricardo Puttini

Contents at a Glance

	Foreword xxix
	CHAPTER 1: Introduction
	CHAPTER 2: Case Study Background13
P	ART I: FUNDAMENTAL CLOUD COMPUTING
	CHAPTER 3: Understanding Cloud Computing
	CHAPTER 4: Fundamental Concepts and Models51
	CHAPTER 5: Cloud-Enabling Technology
	CHAPTER 6: Fundamental Cloud Security117
P	ART II: CLOUD COMPUTING MECHANISMS
	CHAPTER 7: Cloud Infrastructure Mechanisms
	CHAPTER 8: Specialized Cloud Mechanisms169
	CHAPTER 9: Cloud Management Mechanisms
	CHAPTER 10: Cloud Security Mechanisms
P	ART III: CLOUD COMPUTING ARCHITECTURE
	CHAPTER 11: Fundamental Cloud Architectures
	CHAPTER 12: Advanced Cloud Architectures
	CHAPTER 13: Specialized Cloud Architectures
P	ART IV: WORKING WITH CLOUDS
	CHAPTER 14: Cloud Delivery Model Considerations 359
	CHAPTER 15: Cost Metrics and Pricing Models
	CHAPTER 16: Service Quality Metrics and SLAs 403
P	ART V: APPENDICES
	APPENDIX A: Case Study Conclusions
	APPENDIX B: Industry Standards Organizations
	APPENDIX C: Mapping Mechanisms to Characteristics
	APPENDIX D: Data Center Facilities (TIA-942)
	APPENDIX E: Cloud-Adapted Risk Management Framework
	APPENDIX F: Cloud Provisioning Contracts
	APPENDIX G: Cloud Business Case Template
	About the Authors
	About the Contributors
	Index

This page intentionally left blank

Contents

Forewordxxix
Acknowledgments xxxiii
CHAPTER 1: Introduction1
1.1 Objectives of This Book
1.2 What This Book Does Not Cover
1.3 Who This Book Is For4
1.4 How This Book Is Organized4
Part I: Fundamental Cloud Computing
Chapter 3: Understanding Cloud Computing
Chapter 4: Fundamental Concepts and Models
Chapter 5: Cloud-Enabling Technology
Chapter 6: Fundamental Cloud Security
Part II: Cloud Computing Mechanisms
Chapter 7: Cloud Infrastructure Mechanisms
Chapter 8: Specialized Cloud Mechanisms
Chapter 9: Cloud Management Mechanisms
Chapter 10: Cloud Security Mechanisms
Part III: Cloud Computing Architecture
Chapter 11: Fundamental Cloud Architectures 6
Chapter 12: Advanced Cloud Architectures
Chapter 13: Specialized Cloud Architectures
Part IV: Working with Clouds
Chapter 14: Cloud Delivery Model Considerations
Chapter 15: Cost Metrics and Pricing Models
Chapter 16: Service Quality Metrics and SLAs
Part V: Appendices
Appendix A: Case Study Conclusions
Appendix B: Industry Standards Organizations
Appendix C: Mapping Mechanisms to Characteristics
Appendix D: Data Center Facilities (TIA-942)8
Appendix E: Emerging Technologies
Appendix F: Cloud Provisioning Contracts
Appendix G: Cloud Business Case Template

1.5	Conventions9
	Symbols and Figures
	Summary of Key Points9
1.6	Additional Information
	Updates, Errata, and Resources (www.servicetechbooks.com)9
	Referenced Specifications (www.servicetechspecs.com)10
	The Service Technology Magazine (www.servicetechmag.com) .10
	International Service Technology Symposium (www.servicetechsymposium.com)10
	What Is Cloud? (www.whatiscloud.com) 10
	What Is REST? (www.whatisrest.com)
	Cloud Computing Design Patterns (www.cloudpatterns.org) 10
	Service-Orientation (www.serviceorientation.com)11
	CloudSchool.com™ Certified Cloud (CCP) Professional
	(www.cloudschool.com)
	SOASchool.com [®] SOA Certified (SOACP) Professional (www.soaschool.com)
	Notification Service
2: C	ase Study Background13
2.1	Case Study #1: ATN
	Technical Infrastructure and Environment
	Business Goals and New Strategy15
	Roadmap and Implementation Strategy15
2.2	Case Study #2: DTGOV
	Technical Infrastructure and Environment
	Business Goals and New Strategy18
	Roadmap and Implementation Strategy19
2.3	Case Study #3: Innovartus Technologies Inc
	Technical Infrastructure and Environment
	Business Goals and Strategy 20
	Roadmap and Implementation Strategy

CHAPTER

PART I: FUNDAMENTAL CLOUD COMPUTING

CHAPTER 3: U	Inderstanding Cloud Computing2	5
3.1	Origins and Influences 2 A Brief History 2 Definitions 2 Business Drivers 2 Capacity Planning 2 Cost Reduction 2 Organizational Agility 3 Technology Innovations 3 Clustering 3 Virtualization 3 Technology Innovations vs. Enabling Technologies 3	26 27 28 28 29 30 30 31 31 31
3.2	Basic Concepts and Terminology 3 Cloud 3 IT Resource 3 On-Premise 3 Cloud Consumers and Cloud Providers. 3 Scaling 3 <i>Horizontal Scaling</i> 3 Vertical Scaling 3 Cloud Service 3 Cloud Service Consumer 4	33 34 36 36 37 <i>37</i> <i>37</i> 38
3.3	Goals and Benefits	41 42
3.4	Risks and Challenges 4 Increased Security Vulnerabilities 4 Reduced Operational Governance Control 4 Limited Portability Between Cloud Providers 4 Multi-Regional Compliance and Legal Issues 4	45 45 47

CHAPTER 4: Fundamental Concepts and Models5	51
4.1 Roles and Boundaries 5 Cloud Provider 5 Cloud Consumer 5 Cloud Service Owner 5 Cloud Resource Administrator 6 Additional Roles 6 Organizational Boundary 6 Trust Boundary 6	52 52 53 54 56 56
4.2 Cloud Characteristics 5 On-Demand Usage 6 Ubiquitous Access 6 Multitenancy (and Resource Pooling) 6 Elasticity 6 Measured Usage 6 Resiliency 6	59 59 59 61 61
4.3 Cloud Delivery Models 6 Infrastructure-as-a-Service (IaaS) 6 Platform-as-a-Service (PaaS) 6 Software-as-a-Service (SaaS) 6 Comparing Cloud Delivery Models 6 Combining Cloud Delivery Models 6 IaaS + PaaS 6 IaaS + PaaS 6	64 65 66 67 69 <i>69</i>
4.4 Cloud Deployment Models	73 74 75 77

CHAPTER 5: C	loud-Enabling Technology	79
5.1	Broadband Networks and Internet Architecture	80
	Internet Service Providers (ISPs)	80
	Connectionless Packet Switching (Datagram Networks)	83
	Router-Based Interconnectivity	83
	Physical Network	
	Transport Layer Protocol	
	Application Layer Protocol	
	Technical and Business Considerations	
	Connectivity Issues	
	Cloud Carrier and Cloud Provider Selection	
Г О		
5.2	Data Center Technology	
	Virtualization	
	Standardization and Modularity	
	Automation	
	Remote Operation and Management.	
	High Availability	
	Security-Aware Design, Operation, and Management Facilities	
	Computing Hardware	
	Storage Hardware	
	Network Hardware	
	Carrier and External Networks Interconnection	
	Web-Tier Load Balancing and Acceleration	
	LAN Fabric	
	SAN Fabric	95
	NAS Gateways	95
	Other Considerations	96
5.3	Virtualization Technology	97
	Hardware Independence	98
	Server Consolidation	98
	Resource Replication	98
	Operating System-Based Virtualization	99
	Hardware-Based Virtualization	101
	Virtualization Management	102
	Other Considerations	102

5.4	Web Technology 103 Basic Web Technology 104
E E	Web Applications
	Multitenant Technology 106
5.6	Service Technology 108 Web Services 109 REST Services 110 Service Agents 111 Service Middleware 112
5.7	Case Study Example
CHAPTER 6: F	undamental Cloud Security
	Basic Terms and Concepts118Confidentiality118Integrity119Authenticity119Availability119Threat120Vulnerability120Risk120Security Controls120Security Mechanisms121Theorem121Security Policies121Theorem121
6.2	Threat Agents 121 Anonymous Attacker 122 Malicious Service Agent 123 Trusted Attacker 123 Malicious Insider 123
6.3	Cloud Security Threats124Traffic Eavesdropping124Malicious Intermediary124Denial of Service126Insufficient Authorization127Virtualization Attack127Overlapping Trust Boundaries128

6.4 Additional Considerations
Flawed Implementations13
Security Policy Disparity
Contracts
Risk Management13
6.5 Case Study Example

PART II: CLOUD COMPUTING MECHANISMS

CHAPTER 7: C	Cloud Infrastructure Mechanisms139
7.1	Logical Network Perimeter
7.2	Virtual Server
7.3	Cloud Storage Device
	Network Storage Interfaces .150 Object Storage Interfaces .151 Database Storage Interfaces .151 Relational Data Storage .151 Non-Relational Data Storage .152 Case Study Example .152
7.4	Cloud Usage Monitor. 155 Monitoring Agent 155 Resource Agent 155 Polling Agent 157 Case Study Example 157
7.5	Resource Replication161Case Study Example162
7.6	Ready-Made Environment166Case Study Example167

CHAPTER 8: Sp	ecialized Cloud Mechanisms169
	utomated Scaling Listener
	oad Balancer
	SLA Monitor 178 ase Study Example 180 SLA Monitor Polling Agent 180 SLA Monitoring Agent 180
	ay-Per-Use Monitor
	udit Monitor
Ad Ad	ailover System191ctive-Active191ctive-Passive194ase Study Example196
	lypervisor
	Resource Cluster.
	Julti-Device Broker. 208 ase Study Example 209
	State Management Database 210 ase Study Example 211

CHAPTER 9: CI	loud Management Mechanisms2	13
	Remote Administration System 2 Case Study Example 2	
	Resource Management System 2 Case Study Example 2	
	SLA Management System	
	Billing Management System	
CHAPTER 10: C	Cloud Security Mechanisms	29
	Encryption	231 231
10.2	2 Hashing	34
	B Digital Signature	
	Public Key Infrastructure (PKI)	
	Identity and Access Management (IAM)	
	Single Sign-On (SSO)	
	Cloud-Based Security Groups2	
	B Hardened Virtual Server Images2 Case Study Example	

PART III: CLOUD COMPUTING ARCHITECTURE

CHAPTER 11: I	Fundamental Cloud Architectures255
11.1	Workload Distribution Architecture
11.2	Resource Pooling Architecture
11.3	B Dynamic Scalability Architecture
11.4	Elastic Resource Capacity Architecture
11.5	Service Load Balancing Architecture
11.6	Cloud Bursting Architecture
11.7	Elastic Disk Provisioning Architecture
11.8	Redundant Storage Architecture
11.9	Case Study Example
CHAPTER 12:	Advanced Cloud Architectures281
12.1	Hypervisor Clustering Architecture
12.2	2 Load Balanced Virtual Server Instances Architecture288
12.3	Non-Disruptive Service Relocation Architecture 293
12.4	Zero Downtime Architecture
12.5	Cloud Balancing Architecture
12.6	8 Resource Reservation Architecture
12.7	Dynamic Failure Detection and Recovery Architecture 306
12.8	Bare-Metal Provisioning Architecture
12.9	Rapid Provisioning Architecture 312
12.1	0 Storage Workload Management Architecture
12.1	1 Case Study Example

CHAPTER 13:	Specialized Cloud Architectures
13	.1 Direct I/O Access Architecture
13	.2 Direct LUN Access Architecture
13	.3 Dynamic Data Normalization Architecture
13	.4 Elastic Network Capacity Architecture
13	.5 Cross-Storage Device Vertical Tiering Architecture332
13	.6 Intra-Storage Device Vertical Data Tiering Architecture .337
13	.7 Load Balanced Virtual Switches Architecture
13	.8 Multipath Resource Access Architecture
13	.9 Persistent Virtual Network Configuration Architecture 344
	.10 Redundant Physical Connection for Virtual Servers chitecture
13	.11 Storage Maintenance Window Architecture

PART IV: WORKING WITH CLOUDS

CHAPTER 14: Cloud Delivery Model Considerations.....359

14.1 Cloud Delivery Models: The Cloud Provider
Perspective
Building laaS Environments
Data Centers
Scalability and Reliability
Monitoring
Security
Equipping PaaS Environments
Scalability and Reliability
Monitoring
Security
Optimizing SaaS Environments
Security

14.2 Cloud Delivery Models: The Cloud Consumer Perspective	370 <i>372</i> 373 <i>373</i> 374
5: Cost Metrics and Pricing Models	
15.1 Business Cost Metrics	
Up-Front and On-Going Costs	
Additional Costs	
Case Study Example	
Product Catalog Browser	
On-Premise On-Going Costs	
Cloud-Based Up-Front Costs	
Cloud-Based On-Going Costs	
Client Database	
On-Premise Up-Front Costs	
On-Premise On-Going Costs	
Cloud-Based Up-Front Costs	385
Cloud-Based On-Going Costs	385
15.2 Cloud Usage Cost Metrics	87
Network Usage	387
Inbound Network Usage Metric	387
Outbound Network Usage Metric	388
Intra-Cloud WAN Usage Metric	388
Server Usage	389
On-Demand Virtual Machine Instance Allocation Metric	
Reserved Virtual Machine Instance Allocation Metric	
Cloud Storage Device Usage	
On-Demand Storage Space Allocation Metric	
I/O Data Transferred Metric	390

Contents

CHAPTER

Cloud Service Usage 39
Application Subscription Duration Metric
Number of Nominated Users Metric
Number of Transactions Users Metric
15.3 Cost Management Considerations
Pricing Models
Additional Considerations 39
Case Study Example 39
Virtual Server On-Demand Instance Allocation
Virtual Server Reserved Instance Allocation
Cloud Storage Device40
WAN Traffic40
16: Service Quality Metrics and SLAs40
16.1 Service Quality Metrics40

16.1 Service Quality Metrics	404
Service Availability Metrics.	405
Availability Rate Metric	405
Outage Duration Metric	406
Service Reliability Metrics	407
Mean-Time Between Failures (MTBF) Metric	407
Reliability Rate Metric	407
Service Performance Metrics	407
Network Capacity Metric	408
Storage Device Capacity Metric	408
Server Capacity Metric	408
Web Application Capacity Metric	408
Instance Starting Time Metric	409
Response Time Metric	409
Completion Time Metric	409
Service Scalability Metrics	409
Storage Scalability (Horizontal) Metric	410
Server Scalability (Horizontal) Metric	410
Server Scalability (Vertical) Metric	410
Service Resiliency Metrics	411
Mean-Time to Switchover (MTSO) Metric	411
Mean-Time System Recovery (MTSR) Metric	412
16.2 Case Study Example.	412

16.3	SLA Guidelines
16.4	Case Study Example
	Scope and Applicability
	Service Quality Guarantees
	Definitions
	Usage of Financial Credits 417
	SLA Exclusions

PART V: APPENDICES

Appendix	A: Case Study Conclusions
	A.1 ATN
	A.2 DTGOV
	A.3 Innovartus
Appendix	B: Industry Standards Organizations427
	B.1 National Institute of Standards and Technology (NIST) $\ .$.428
	B.2 Cloud Security Alliance (CSA)429
	B.3 Distributed Management Task Force (DMTF)
	B.4 Storage Networking Industry Association (SNIA) 430
	B.5 Organization for the Advancement of Structured Information Standards (OASIS)430
	B.6 The Open Group
	B.7 Open Cloud Consortium (OCC)
	B.8 European Telecommunications Standards Institute (ETSI)
	B.9 Telecommunications Industry Association (TIA)431
	B.10 Liberty Alliance
	B.11 Open Grid Forum (OGF)432

Appendix C:	Mapping Mechanisms to Characteristics433
Appendix D:	Data Center Facilities (TIA-942)437
D.1	Primary Rooms
D.2	Environmental Controls440External Electrical Power Provider Interconnection.440Power Distribution.441Uninterruptible Power Source (UPS).441Power Engine-Generator.441
D.3	Infrastructure Redundancy Summary
	Cloud-Adapted Risk Management
E.1	Security Conservation Principle
E.2	The Risk Management Framework
Appendix F:	Cloud Provisioning Contracts
F.1	Cloud Provisioning Contract Structure

	Other Issues Legal and Compliance Issues Auditability and Accountability	
	Changes in the Contract Terms and Conditions	
	F.2 Cloud Provider Selection Guidelines	
	Cloud Provider Viability	460
Appendix	G: Cloud Business Case Template	463
	G.1 Business Case Identification	464
	G.2 Business Needs	464
	G.3 Target Cloud Environment	465
	G.4 Technical Issues	466
	G.5 Economic Factors	466
About the	Authors	467
	Thomas Erl	467
	Zaigham Mahmood	467
	Ricardo Puttini	468
About the	Contributors	469
	Pamela J. Wise-Martinez, MSc	469
	Gustavo Azzolin, BSc, MSc	470
	Dr. Michaela lorga, Ph.D.	470
	Amin Naserpour.	471
	Vinícius Pacheco, MSc	
	Matthias Ziegler	
Index		473

Foreword by Pamela J. Wise-Martinez

The idea of cloud computing isn't new, or overly complicated from a technology resources and internetworking perspective. What's new is the growth and maturity of cloud computing methods, and strategies that enable the goals of business agility.

Looking back, the phrase "utility computing" didn't captivate or create the stir in the information industry as the term "cloud computing" has in recent years. Nevertheless, appreciation of readily available resources has arrived and the utilitarian or servicing features are what are at the heart of *outsourcing* the access of information technology resources and services. In this light, cloud computing represents a flexible, cost-effective, and proven delivery platform for business and consumer information services over the Internet. Cloud computing has become an industry game changer as businesses and information technology leaders realize the potential in *combining and sharing* computing resources as opposed to *building and maintaining* them.

There's seemingly no shortage of views regarding the benefits of cloud computing nor is there a shortage of vendors willing to offer services in either open source or promising commercial solutions. Beyond the hype, there are many aspects of the cloud that have earned new consideration due to their increased service capability and potential efficiencies. The ability to demonstrate transforming results in cloud computing to resolve traditional business problems using information technology management best The architectural change from *client-server* to *service orientation* led to an evolution of composable and reusable code; though the practice had been around for many years, it is now the de facto approach used to lower cost and identify best practices and patterns for increasing business agility. This has advanced the computer software industry's design methods, components, and engineering. Comparatively, the wide acceptance and adoption of cloud computing is revolutionizing information and technology resource management. We now have the ability to outsource hardware and software capabilities on a large-scale to fulfill end-to-end business automation requirements. Marks and Lozano understood this emergence and the need for better software design: "…we now have the ability to collect, transport, process, store, and access data nearly anywhere in nearly arbitrary volume." The limitations depend largely on how "cloudy" or cloud-aware the service/component is, and hence the need for better software architecture. (Eric A. Marks and Roberto Lozano [*Executive Guide to Cloud Computing*]).

The reusable evolution through service architecture reinforces a focus on business objectives as opposed to the number of computing platforms to support. As a viable resource management alternative, cloud computing is fundamentally changing the way we think about computing solutions in retail, education, and public sectors. The use of cloud computing architecture and standards are driving unique ways in which computing solutions are delivered, as well as platform diversity to meet bottom-line business objectives.

Thomas Erl's body of work on service technology guided the technology industry through eloquent illustrations and literature over the past decade. Thomas' brilliant efforts on principles, concepts, patterns, and expressions gave the information technology community an *evolved* software architecture approach that now forms a foundation for cloud computing goals to be successfully fulfilled in practice. This is a key assertion, as cloud computing is no longer a far-reaching concept of the future, but rather a dominant information technology service option and resource delivery presence.

Thomas' *Cloud Computing: Concepts, Technology & Architecture* takes the industry beyond the definitions of cloud computing and juxtaposes virtualization, grid, and sustainment strategies as contrasted in day to day operations. Thomas and his team of authors take the reader from beginning to end with the essential elements of cloud computing,

Foreword

its history, innovation, and demand. Through case studies and architectural models they articulate service requirements, infrastructure, security, and outsourcing of salient computing resources.

Thomas again enlightens the industry with poignant analysis and reliable architecturedriven practices and principles. No matter the level of interest or experience, the reader will find clear value in this in-depth, vendor-neutral study of cloud computing.

Pamela J. Wise-Martinez, Inventor and Chief Architect Department of Energy, National Nuclear Security Administration

(Disclaimer: The views expressed are the personal views of the author and are not intended to reflect either the views of the U.S. Government, the U.S. Department of Energy, or the National Nuclear Security Administration.)

This page intentionally left blank

Acknowledgments

In alphabetical order by last name:

- Ahmed Aamer, AlFaisaliah Group
- Randy Adkins, Modus21
- Melanie Allison, Integrated Consulting Services
- Gabriela Inacio Alves, University of Brasilia
- Marcelo Ancelmo, IBM Rational Software Services
- Kapil Bakshi, Cisco Systems
- Toufic Boubez, Metafor Software
- Antonio Bruno, UBS AG
- Dr. Paul Buhler, Modus21
- Pethuru Raj Cheliah, Wipro
- Kevin Davis, Ph.D.
- Suzanne D'Souza, KBACE Technologies
- Yili Gong, Wuhan University
- Alexander Gromoff, Center of Information Control Technologies
- Chris Haddad, WSO2
- Richard Hill, University of Derby
- Michaela Iorga, Ph.D.
- Johan Kumps, RealDolmen
- Gijs in 't Veld, Motion10
- Masykur Marhendra, Consulting Workforce Accenture
- Damian Maschek, Deutshe Bahn
- Claynor Mazzarolo, IBTI
- Charlie Mead, W3C
- Steve Millidge, C2B2
- Jorge Minguez, Thales Deutschland
- Scott Morrison, Layer 7

Acknowledgments

xxxiv

- Amin Naserpour, HP
- Vicente Navarro, European Space Agency
- Laura Olson, IBM WebSphere
- Tony Pallas, Intel
- Cesare Pautasso, University of Lugano
- Sergey Popov, Liberty Global International
- Olivier Poupeney, Dreamface Interactive
- Alex Rankov, EMC
- Dan Rosanova, West Monroe Partners
- Jaime Ryan, Layer 7
- Filippos Santas, Credit Suisse
- Christoph Schittko, Microsoft
- Guido Schmutz, Trivadis
- Mark Skilton, Capgemini
- Gary Smith, CloudComputingArchitect.com
- Kevin Spiess
- Vijay Srinivasan, Cognizant
- Daniel Starcevich, Raytheon
- Roger Stoffers, HP
- Andre Toffanello, IBTI
- Andre Tost, IBM Software Group
- Bernd Trops, talend
- Clemens Utschig, Boehringer Ingelheim Pharma
- Ignaz Wanders, Archimiddle
- Philip Wik, Redflex
- Jorge Williams, Rackspace
- Dr. Johannes Maria Zaha
- Jeff Zhong, Futrend Technologies

Special thanks to the CloudSchool.com research and development team that produced the CCP course modules upon which this book is based.

Chapter 3

Understanding Cloud Computing

- **3.1** Origins and Influences
- 3.2 Basic Concepts and Terminology
- 3.3 Goals and Benefits
- 3.4 Risks and Challenges

 \mathbf{T} his is the first of two chapters that provide an overview of introductory cloud computing topics. It begins with a brief history of cloud computing along with short descriptions of its business and technology drivers. This is followed by definitions of basic concepts and terminology, in addition to explanations of the primary benefits and challenges of cloud computing adoption.

3.1 Origins and Influences

A Brief History

The idea of computing in a "cloud" traces back to the origins of utility computing, a concept that computer scientist John McCarthy publicly proposed in 1961:

"If computers of the kind I have advocated become the computers of the future, then computing may someday be organized as a public utility just as the telephone system is a public utility. ... The computer utility could become the basis of a new and important industry."

In 1969, Leonard Kleinrock, a chief scientist of the Advanced Research Projects Agency Network or ARPANET project that seeded the Internet, stated:

"As of now, computer networks are still in their infancy, but as they grow up and become sophisticated, we will probably see the spread of 'computer utilities' ...".

The general public has been leveraging forms of Internet-based computer utilities since the mid-1990s through various incarnations of search engines (Yahoo!, Google), e-mail services (Hotmail, Gmail), open publishing platforms (MySpace, Facebook, YouTube), and other types of social media (Twitter, LinkedIn). Though consumer-centric, these services popularized and validated core concepts that form the basis of modern-day cloud computing.

In the late 1990s, Salesforce.com pioneered the notion of bringing remotely provisioned services into the enterprise. In 2002, Amazon.com launched the Amazon Web Services (AWS) platform, a suite of enterprise-oriented services that provide remotely provisioned storage, computing resources, and business functionality.

3.1 Origins and Influences

A slightly different evocation of the term "Network Cloud" or "Cloud" was introduced in the early 1990s throughout the networking industry. It referred to an abstraction layer derived in the delivery methods of data across heterogeneous public and semi-public networks that were primarily packet-switched, although cellular networks used the "Cloud" term as well. The networking method at this point supported the transmission of data from one end-point (local network) to the "Cloud" (wide area network) and then further decomposed to another intended end-point. This is relevant, as the networking industry still references the use of this term, and is considered an early adopter of the concepts that underlie utility computing.

It wasn't until 2006 that the term "cloud computing" emerged in the commercial arena. It was during this time that Amazon launched its Elastic Compute Cloud (EC2) services that enabled organizations to "lease" computing capacity and processing power to run their enterprise applications. Google Apps also began providing browser-based enterprise applications in the same year, and three years later, the Google App Engine became another historic milestone.

Definitions

A Gartner report listing cloud computing at the top of its strategic technology areas further reaffirmed its prominence as an industry trend by announcing its formal definition as:

"...a style of computing in which scalable and elastic IT-enabled capabilities are delivered as a service to external customers using Internet technologies."

This is a slight revision of Gartner's original definition from 2008, in which "massively scalable" was used instead of "scalable and elastic." This acknowledges the importance of scalability in relation to the ability to scale vertically and not just to enormous proportions.

Forrester Research provided its own definition of cloud computing as:

"...a standardized IT capability (services, software, or infrastructure) delivered via Internet technologies in a pay-per-use, self-service way."

The definition that received industry-wide acceptance was composed by the National Institute of Standards and Technology (NIST). NIST published its original definition back in 2009, followed by a revised version after further review and industry input that was published in September of 2011:

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics, three service models, and four deployment models."

This book provides a more concise definition:

"Cloud computing is a specialized form of distributed computing that introduces utilization models for remotely provisioning scalable and measured resources."

This simplified definition is in line with all of the preceding definition variations that were put forth by other organizations within the cloud computing industry. The characteristics, service models, and deployment models referenced in the NIST definition are further covered in Chapter 4.

Business Drivers

Before delving into the layers of technologies that underlie clouds, the motivations that led to their creation by industry leaders must first be understood. Several of the primary business drivers that fostered modern cloud-based technology are presented in this section.

The origins and inspirations of many of the characteristics, models, and mechanisms covered throughout subsequent chapters can be traced back to the upcoming business drivers. It is important to note that these influences shaped clouds and the overall cloud computing market from both ends. They have motivated organizations to adopt cloud computing in support of their business automation requirements. They have correspondingly motivated other organizations to become providers of cloud environments and cloud technology vendors in order to create and meet the demand to fulfill consumer needs.

Capacity Planning

Capacity planning is the process of determining and fulfilling future demands of an organization's IT resources, products, and services. Within this context, *capacity* represents the maximum amount of work that an IT resource is capable of delivering in a given period of time. A discrepancy between the capacity of an IT resource and its demand can result in a system becoming either inefficient (over-provisioning) or unable

to fulfill user needs (under-provisioning). Capacity planning is focused on minimizing this discrepancy to achieve predictable efficiency and performance.

Different capacity planning strategies exist:

- Lead Strategy adding capacity to an IT resource in anticipation of demand
- Lag Strategy adding capacity when the IT resource reaches its full capacity
- *Match Strategy* adding IT resource capacity in small increments, as demand increases

Planning for capacity can be challenging because it requires estimating usage load fluctuations. There is a constant need to balance peak usage requirements without unnecessary over-expenditure on infrastructure. An example is outfitting IT infrastructure to accommodate maximum usage loads which can impose unreasonable financial investments. In such cases, moderating investments can result in under-provisioning, leading to transaction losses and other usage limitations from lowered usage thresholds.

Cost Reduction

A direct alignment between IT costs and business performance can be difficult to maintain. The growth of IT environments often corresponds to the assessment of their maximum usage requirements. This can make the support of new and expanded business automations an ever-increasing investment. Much of this required investment is funneled into infrastructure expansion because the usage potential of a given automation solution will always be limited by the processing power of its underlying infrastructure.

Two costs need to be accounted for: the cost of acquiring new infrastructure, and the cost of its ongoing ownership. Operational overhead represents a considerable share of IT budgets, often exceeding up-front investment costs.

Common forms of infrastructure-related operating overhead include the following:

- technical personnel required to keep the environment operational
- upgrades and patches that introduce additional testing and deployment cycles
- utility bills and capital expense investments for power and cooling
- security and access control measures that need to be maintained and enforced to protect infrastructure resources
- administrative and accounts staff that may be required to keep track of licenses and support arrangements

The on-going ownership of internal technology infrastructure can encompass burdensome responsibilities that impose compound impacts on corporate budgets. An IT department can consequently become a significant—and at times overwhelming drain on the business, potentially inhibiting its responsiveness, profitability, and overall evolution.

Organizational Agility

Businesses need the ability to adapt and evolve to successfully face change caused by both internal and external factors. Organizational agility is the measure of an organization's responsiveness to change.

An IT enterprise often needs to respond to business change by scaling its IT resources beyond the scope of what was previously predicted or planned for. For example, infrastructure may be subject to limitations that prevent the organization from responding to usage fluctuations—even when anticipated—if previous capacity planning efforts were restricted by inadequate budgets.

In other cases, changing business needs and priorities may require IT resources to be more available and reliable than before. Even if sufficient infrastructure is in place for an organization to support anticipated usage volumes, the nature of the usage may generate runtime exceptions that bring down hosting servers. Due to a lack of reliability controls within the infrastructure, responsiveness to consumer or customer requirements may be reduced to a point whereby a business' overall continuity is threatened.

On a broader scale, the up-front investments and infrastructure ownership costs that are required to enable new or expanded business automation solutions may themselves be prohibitive enough for a business to settle for IT infrastructure of less-than-ideal quality, thereby decreasing its ability to meet real-world requirements.

Worse yet, the business may decide against proceeding with an automation solution altogether upon review of its infrastructure budget, because it simply cannot afford to. This form of inability to respond can inhibit an organization from keeping up with market demands, competitive pressures, and its own strategic business goals.

Technology Innovations

Established technologies are often used as inspiration and, at times, the actual foundations upon which new technology innovations are derived and built. This section briefly describes the pre-existing technologies considered to be the primary influences on cloud computing.

3.1 Origins and Influences

Clustering

A cluster is a group of independent IT resources that are interconnected and work as a single system. System failure rates are reduced while availability and reliability are increased, since redundancy and failover features are inherent to the cluster.

A general prerequisite of hardware clustering is that its component systems have reasonably identical hardware and operating systems to provide similar performance levels when one failed component is to be replaced by another. Component devices that form a cluster are kept in synchronization through dedicated, high-speed communication links.

The basic concept of built-in redundancy and failover is core to cloud platforms. Clustering technology is explored further in Chapter 8 as part of the *Resource Cluster* mechanism description.

Grid Computing

A computing grid (or "computational grid") provides a platform in which computing resources are organized into one or more logical pools. These pools are collectively coordinated to provide a high performance distributed grid, sometimes referred to as a "super virtual computer." Grid computing differs from clustering in that grid systems are much more loosely coupled and distributed. As a result, grid computing systems can involve computing resources that are heterogeneous and geographically dispersed, which is generally not possible with cluster computing-based systems.

Grid computing has been an on-going research area in computing science since the early 1990s. The technological advancements achieved by grid computing projects have influenced various aspects of cloud computing platforms and mechanisms, specifically in relation to common feature-sets such as networked access, resource pooling, and scalability and resiliency. These types of features can be established by both grid computing and cloud computing, in their own distinctive approaches.

For example, grid computing is based on a middleware layer that is deployed on computing resources. These IT resources participate in a grid pool that implements a series of workload distribution and coordination functions. This middle tier can contain load balancing logic, failover controls, and autonomic configuration management, each having previously inspired similar—and several more sophisticated—cloud computing technologies. It is for this reason that some classify cloud computing as a descendant of earlier grid computing initiatives.

Virtualization

Virtualization represents a technology platform used for the creation of virtual instances of IT resources. A layer of virtualization software allows physical IT resources to provide multiple virtual images of themselves so that their underlying processing capabilities can be shared by multiple users.

Prior to the advent of virtualization technologies, software was limited to residing on and being coupled with static hardware environments. The virtualization process severs this software-hardware dependency, as hardware requirements can be simulated by emulation software running in virtualized environments.

Established virtualization technologies can be traced to several cloud characteristics and cloud computing mechanisms, having inspired many of their core features. As cloud computing evolved, a generation of *modern* virtualization technologies emerged to overcome the performance, reliability, and scalability limitations of traditional virtualization platforms.

As a foundation of contemporary cloud technology, modern virtualization provides a variety of virtualization types and technology layers that are discussed separately in Chapter 5.

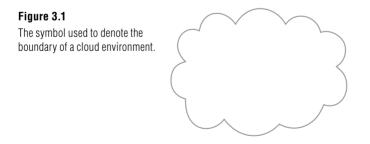
Technology Innovations vs. Enabling Technologies

It is essential to highlight several other areas of technology that continue to contribute to modern-day cloud-based platforms. These are distinguished as *cloud-enabling technologies*, the following of which are covered in Chapter 5:

- Broadband Networks and Internet Architecture
- Data Center Technology
- (Modern) Virtualization Technology
- Web Technology
- Multitenant Technology
- Service Technology

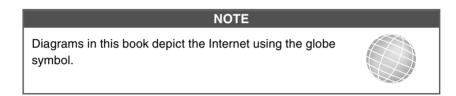
Each of these cloud-enabling technologies existed in some form prior to the formal advent of cloud computing. Some were refined further, and on occasion even redefined, as a result of the subsequent evolution of cloud computing.

SUMMARY OF KEY POINTS


- The primary business drivers that exposed the need for cloud computing and led to its formation include capacity planning, cost reduction, and organizational agility.
- The primary technology innovations that influenced and inspired key distinguishing features and aspects of cloud computing include clustering, grid computing, and traditional forms of virtualization.

3.2 Basic Concepts and Terminology

This section establishes a set of basic terms that represent the fundamental concepts and aspects pertaining to the notion of a cloud and its most primitive artifacts.

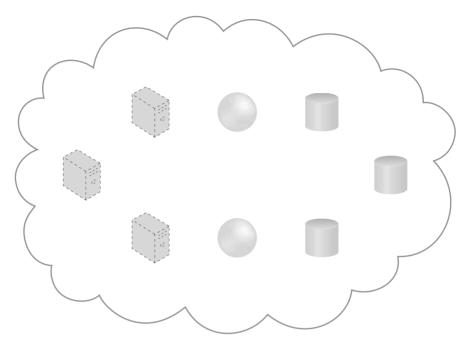

Cloud

A *cloud* refers to a distinct IT environment that is designed for the purpose of remotely provisioning scalable and measured IT resources. The term originated as a metaphor for the Internet which is, in essence, a network of networks providing remote access to a set of decentralized IT resources. Prior to cloud computing becoming its own formalized IT industry segment, the symbol of a cloud was commonly used to represent the Internet in a variety of specifications and mainstream documentation of Web-based architectures. This same symbol is now used to specifically represent the boundary of a cloud environment, as shown in Figure 3.1.

It is important to distinguish the term "cloud" and the cloud symbol from the Internet. As a specific environment used to remotely provision IT resources, a cloud has a finite boundary. There are many individual clouds that are accessible via the Internet. Whereas the Internet provides open access to many Web-based IT resources, a cloud is typically privately owned and offers access to IT resources that is metered.

Much of the Internet is dedicated to the access of content-based IT resources published via the World Wide Web. IT resources provided by cloud environments, on the other hand, are dedicated to supplying back-end processing capabilities and user-based access to these capabilities. Another key distinction is that it is not necessary for clouds to be Web-based even if they are commonly based on Internet protocols and technologies. Protocols refer to standards and methods that allow computers to communicate with each other in a pre-defined and structured manner. A cloud can be based on the use of any protocols that allow for the remote access to its IT resources.

IT Resource


An *IT resource* is a physical or virtual IT-related artifact that can be either softwarebased, such as a virtual server or a custom software program, or hardware-based, such as a physical server or a network device (Figure 3.2).

Examples of common IT resources and their corresponding symbols.

Figure 3.3 illustrates how the cloud symbol can be used to define a boundary for a cloud-based environment that hosts and provisions a set of IT resources. The displayed IT resources are consequently considered to be cloud-based IT resources.

Technology architectures and various interaction scenarios involving IT resources are illustrated in diagrams like the one shown in Figure 3.3. It is important to note the following points when studying and working with these diagrams:

- The IT resources shown within the boundary of a given cloud symbol usually do not represent all of the available IT resources hosted by that cloud. Subsets of IT resources are generally highlighted to demonstrate a particular topic.
- Focusing on the relevant aspects of a topic requires many of these diagrams to intentionally provide abstracted views of the underlying technology architectures. This means that only a portion of the actual technical details are shown.

Furthermore, some diagrams will display IT resources outside of the cloud symbol. This convention is used to indicate IT resources that are not cloud-based.

NOTE

The virtual server IT resource displayed in Figure 3.2 is further discussed in Chapters 5 and 7. Physical servers are sometimes referred to as *physical hosts* (or just *hosts*) in reference to the fact that they are responsible for hosting virtual servers.

On-Premise

As a distinct and remotely accessible environment, a cloud represents an option for the deployment of IT resources. An IT resource that is hosted in a conventional IT enterprise within an organizational boundary (that does not specifically represent a cloud) is considered to be located on the premises of the IT enterprise, or *on-premise* for short. In other words, the term "on-premise" is another way of stating "on the premises of a controlled IT environment that is not cloud-based." This term is used to qualify an IT resource as an alternative to "cloud-based." An IT resource that is on-premise cannot be cloud-based, and vice-versa.

Note the following key points:

- An on-premise IT resource can access and interact with a cloud-based IT resource.
- An on-premise IT resource can be moved to a cloud, thereby changing it to a cloud-based IT resource.
- Redundant deployments of an IT resource can exist in both on-premise and cloudbased environments.

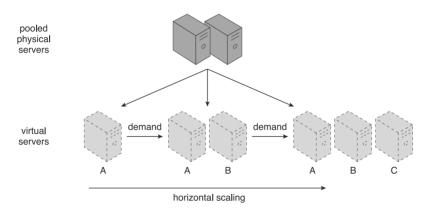
If the distinction between on-premise and cloud-based IT resources is confusing in relation to private clouds (described in the *Cloud Deployment Models* section of Chapter 4), then an alternative qualifier can be used.

Cloud Consumers and Cloud Providers

The party that provides cloud-based IT resources is the *cloud provider*. The party that uses cloud-based IT resources is the *cloud consumer*. These terms represent roles usually assumed by organizations in relation to clouds and corresponding cloud provisioning contracts. These roles are formally defined in Chapter 4, as part of the *Roles and Boundaries* section.

Scaling

Scaling, from an IT resource perspective, represents the ability of the IT resource to handle increased or decreased usage demands.


The following are types of scaling:

- Horizontal Scaling scaling out and scaling in
- Vertical Scaling scaling up and scaling down

The next two sections briefly describe each.

Horizontal Scaling

The allocating or releasing of IT resources that are of the same type is referred to as *horizontal scaling* (Figure 3.4). The horizontal allocation of resources is referred to as *scaling out* and the horizontal releasing of resources is referred to as *scaling in*. Horizontal scaling is a common form of scaling within cloud environments.

Figure 3.4

An IT resource (Virtual Server A) is scaled out by adding more of the same IT resources (Virtual Servers B and C).

Vertical Scaling

When an existing IT resource is replaced by another with higher or lower capacity, *vertical scaling* is considered to have occurred (Figure 3.5). Specifically, the replacing of an IT resource with another that has a higher capacity is referred to as *scaling up* and the replacing an IT resource with another that has a lower capacity is considered *scaling down*. Vertical scaling is less common in cloud environments due to the downtime required while the replacement is taking place.

4 CPUs

2 CPUs

Figure 3.5

An IT resource (a virtual server with two CPUs) is scaled up by replacing it with a more powerful IT resource with increased capacity for data storage (a physical server with four CPUs).

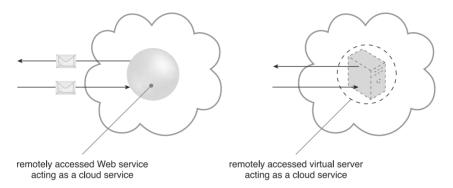
Table 3.1 provides a brief overview of common pros and cons associated with horizontal and vertical scaling.

В

vertical scaling

Horizontal Scaling	Vertical Scaling
less expensive (through commodity hardware components)	more expensive (specialized servers)
IT resources instantly available	IT resources normally instantly available
resource replication and automated scaling	additional setup is normally needed
additional IT resources needed	no additional IT resources needed
not limited by hardware capacity	limited by maximum hardware capacity

Table 3.1


A comparison of horizontal and vertical scaling.

Cloud Service

Although a cloud is a remotely accessible environment, not all IT resources residing within a cloud can be made available for remote access. For example, a database or a physical server deployed within a cloud may only be accessible by other IT resources that are within the same cloud. A software program with a published API may be deployed specifically to enable access by remote clients.

A *cloud service* is any IT resource that is made remotely accessible via a cloud. Unlike other IT fields that fall under the service technology umbrella—such as service-oriented architecture—the term "service" within the context of cloud computing is especially broad. A cloud service can exist as a simple Web-based software program with a technical interface invoked via the use of a messaging protocol, or as a remote access point for administrative tools or larger environments and other IT resources.

In Figure 3.6, the yellow circle symbol is used to represent the cloud service as a simple Web-based software program. A different IT resource symbol may be used in the latter case, depending on the nature of the access that is provided by the cloud service.

Figure 3.6

A cloud service with a published technical interface is being accessed by a consumer outside of the cloud (left). A cloud service that exists as a virtual server is also being accessed from outside of the cloud's boundary (right). The cloud service on the left is likely being invoked by a consumer program that was designed to access the cloud service's published technical interface. The cloud service on the right may be accessed by a human user that has remotely logged on to the virtual server.

The driving motivation behind cloud computing is to provide IT resources as services that encapsulate other IT resources, while offering functions for clients to use and leverage remotely. A multitude of models for generic types of cloud services have emerged, most of which are labeled with the "as-a-service" suffix.

NOTE litions are typically expr

Cloud service usage conditions are typically expressed in a service-level agreement (SLA) that is the human-readable part of a service contract between a cloud provider and cloud consumer that describes QoS features, behaviors, and limitations of a cloud-based service or other provisions.

An SLA provides details of various measurable characteristics related to IT outcomes, such as uptime, security characteristics, and other specific QoS features, including availability, reliability, and performance. Since the implementation of a service is hidden from the cloud consumer, an SLA becomes a critical specification. SLAs are covered in detail in Chapter 16.

Cloud Service Consumer

The *cloud service consumer* is a temporary runtime role assumed by a software program when it accesses a cloud service.

As shown in Figure 3.7, common types of cloud service consumers can include software programs and services capable of remotely accessing cloud services with published service contracts, as well as workstations, laptops and mobile devices running software capable of remotely accessing other IT resources positioned as cloud services.

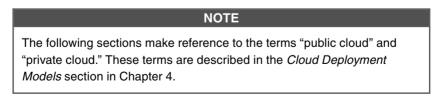


Figure 3.7

Examples of cloud service consumers. Depending on the nature of a given diagram, an artifact labeled as a cloud service consumer may be a software program or a hardware device (in which case it is implied that it is running a software program capable of acting as a cloud service consumer).

3.3 Goals and Benefits

The common benefits associated with adopting cloud computing are explained in this section.

Reduced Investments and Proportional Costs

Similar to a product wholesaler that purchases goods in bulk for lower price points, public cloud providers base their business model on the mass-acquisition of IT resources that are then made available to cloud consumers via attractively priced leasing packages. This opens the door for organizations to gain access to powerful infrastructure without having to purchase it themselves.

The most common economic rationale for investing in cloud-based IT resources is in the reduction or outright elimination of up-front IT investments, namely hardware and software purchases and ownership costs. A cloud's Measured Usage characteristic represents a feature-set that allows measured operational expenditures (directly related to business performance) to replace anticipated capital expenditures. This is also referred to as *proportional costs*.

This elimination or minimization of up-front financial commitments allows enterprises to start small and accordingly increase IT resource allocation as required. Moreover, the reduction of up-front capital expenses allows for the capital to be redirected to the core business investment. In its most basic form, opportunities to decrease costs are derived from the deployment and operation of large-scale data centers by major cloud providers. Such data centers are commonly located in destinations where real estate, IT professionals, and network bandwidth can be obtained at lower costs, resulting in both capital and operational savings.

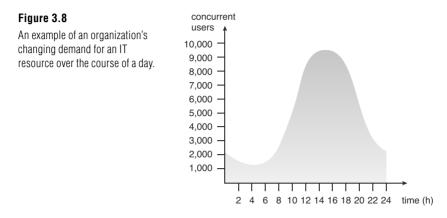
The same rationale applies to operating systems, middleware or platform software, and application software. Pooled IT resources are made available to and shared by multiple cloud consumers, resulting in increased or even maximum possible utilization. Operational costs and inefficiencies can be further reduced by applying proven practices and patterns for optimizing cloud architectures, their management, and their governance.

Common measurable benefits to cloud consumers include:

- On-demand access to pay-as-you-go computing resources on a short-term basis (such as processors by the hour), and the ability to release these computing resources when they are no longer needed.
- The perception of having unlimited computing resources that are available on demand, thereby reducing the need to prepare for provisioning.
- The ability to add or remove IT resources at a fine-grained level, such as modifying available storage disk space by single gigabyte increments.

• Abstraction of the infrastructure so applications are not locked into devices or locations and can be easily moved if needed.

For example, a company with sizable batch-centric tasks can complete them as quickly as their application software can scale. Using 100 servers for one hour costs the same as using one server for 100 hours. This "elasticity" of IT resources, achieved without requiring steep initial investments to create a large-scale computing infrastructure, can be extremely compelling.


Despite the ease with which many identify the financial benefits of cloud computing, the actual economics can be complex to calculate and assess. The decision to proceed with a cloud computing adoption strategy will involve much more than a simple comparison between the cost of leasing and the cost of purchasing. For example, the financial benefits of dynamic scaling and the risk transference of both over-provisioning (under-utilization) and under-provisioning (over-utilization) must also be accounted for. Chapter 15 explores common criteria and formulas for performing detailed financial comparisons and assessments.

NOTE

Another area of cost savings offered by clouds is the "as-a-service" usage model, whereby technical and operational implementation details of IT resource provisioning are abstracted from cloud consumers and packaged into "ready-to-use" or "off-the-shelf" solutions. These services-based products can simplify and expedite the development, deployment, and administration of IT resources when compared to performing equivalent tasks with on-premise solutions. The resulting savings in time and required IT expertise can be significant and can contribute to the justification of adopting cloud computing.

Increased Scalability

By providing pools of IT resources, along with tools and technologies designed to leverage them collectively, clouds can instantly and dynamically allocate IT resources to cloud consumers, on-demand or via the cloud consumer's direct configuration. This empowers cloud consumers to scale their cloud-based IT resources to accommodate processing fluctuations and peaks automatically or manually. Similarly, cloud-based IT resources can be released (automatically or manually) as processing demands decrease. A simple example of usage demand fluctuations throughout a 24 hour period is provided in Figure 3.8.

The inherent, built-in feature of clouds to provide flexible levels of scalability to IT resources is directly related to the aforementioned proportional costs benefit. Besides the evident financial gain to the automated reduction of scaling, the ability of IT resources to always meet and fulfill unpredictable usage demands avoids potential loss of business that can occur when usage thresholds are met.

NOTE When associating the benefit of Increased Scalability with the capacity planning strategies introduced earlier in the *Business Drivers* section, the Lag and Match Strategies are generally more applicable due to a cloud's ability to scale IT resources on-demand.

Increased Availability and Reliability

The availability and reliability of IT resources are directly associated with tangible business benefits. Outages limit the time an IT resource can be "open for business" for its customers, thereby limiting its usage and revenue generating potential. Runtime failures that are not immediately corrected can have a more significant impact during high-volume usage periods. Not only is the IT resource unable to respond to customer requests, its unexpected failure can decrease overall customer confidence. A hallmark of the typical cloud environment is its intrinsic ability to provide extensive support for increasing the availability of a cloud-based IT resource to minimize or even eliminate outages, and for increasing its reliability so as to minimize the impact of runtime failure conditions.

Specifically:

- An IT resource with increased availability is accessible for longer periods of time (for example, 22 hours out of a 24 hour day). Cloud providers generally offer "resilient" IT resources for which they are able to guarantee high levels of availability.
- An IT resource with increased reliability is able to better avoid and recover from exception conditions. The modular architecture of cloud environments provides extensive failover support that increases reliability.

It is important that organizations carefully examine the SLAs offered by cloud providers when considering the leasing of cloud-based services and IT resources. Although many cloud environments are capable of offering remarkably high levels of availability and reliability, it comes down to the guarantees made in the SLA that typically represent their actual contractual obligations.

SUMMARY OF KEY POINTS

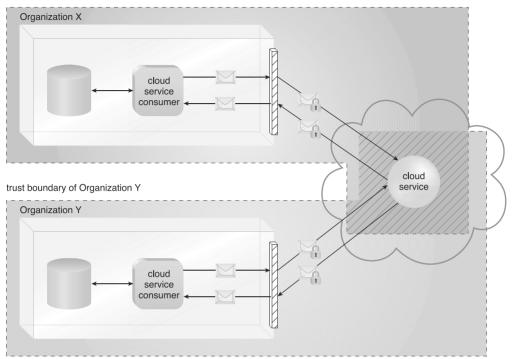
- Cloud environments are comprised of highly extensive infrastructure that
 offers pools of IT resources that can be leased using a pay-for-use model
 whereby only the actual usage of the IT resources is billable. When compared to equivalent on-premise environments, clouds provide the potential
 for reduced initial investments and operational costs proportional to measured usage.
- The inherent ability of a cloud to scale IT resources enables organizations to accommodate unpredictable usage fluctuations without being limited by pre-defined thresholds that may turn away usage requests from customers. Conversely, the ability of a cloud to decrease required scaling is a feature that relates directly to the proportional costs benefit.
- By leveraging cloud environments to make IT resources highly available and reliable, organizations are able to increase quality-of-service guarantees to customers and further reduce or avoid potential loss of business resulting from unanticipated runtime failures.

3.4 Risks and Challenges

Several of the most critical cloud computing challenges pertaining mostly to cloud consumers that use IT resources located in public clouds are presented and examined.

Increased Security Vulnerabilities

The moving of business data to the cloud means that the responsibility over data security becomes shared with the cloud provider. The remote usage of IT resources requires an expansion of trust boundaries by the cloud consumer to include the external cloud. It can be difficult to establish a security architecture that spans such a trust boundary without introducing vulnerabilities, unless cloud consumers and cloud providers happen to support the same or compatible security frameworks—which is unlikely with public clouds.


Another consequence of overlapping trust boundaries relates to the cloud provider's privileged access to cloud consumer data. The extent to which the data is secure is now limited to the security controls and policies applied by both the cloud consumer and cloud provider. Furthermore, there can be overlapping trust boundaries from different cloud consumers due to the fact that cloud-based IT resources are commonly shared.

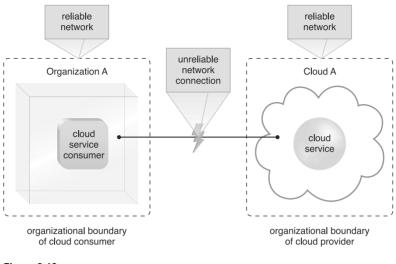
The overlapping of trust boundaries and the increased exposure of data can provide malicious cloud consumers (human and automated) with greater opportunities to attack IT resources and steal or damage business data. Figure 3.9 illustrates a scenario whereby two organizations accessing the same cloud service are required to extend their respective trust boundaries to the cloud, resulting in overlapping trust boundaries. It can be challenging for the cloud provider to offer security mechanisms that accommodate the security requirements of both cloud service consumers.

Overlapping trust boundaries is a security threat that is discussed in more detail in Chapter 6.

Reduced Operational Governance Control

Cloud consumers are usually allotted a level of governance control that is lower than that over on-premise IT resources. This can introduce risks associated with how the cloud provider operates its cloud, as well as the external connections that are required for communication between the cloud and the cloud consumer.

trust boundary of Organization X


Figure 3.9

The shaded area with diagonal lines indicates the overlap of two organizations' trust boundaries.

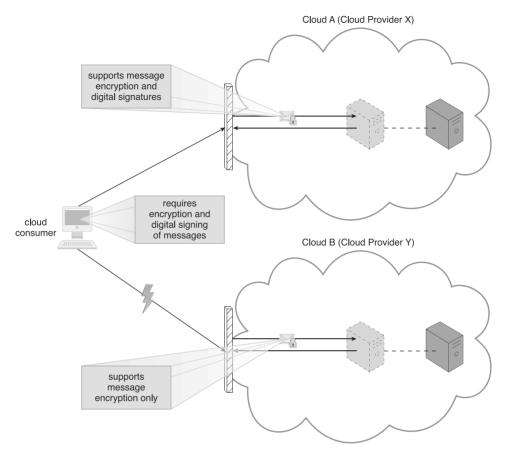
Consider the following examples:

- An unreliable cloud provider may not maintain the guarantees it makes in the SLAs that were published for its cloud services. This can jeopardize the quality of the cloud consumer solutions that rely on these cloud services.
- Longer geographic distances between the cloud consumer and cloud provider can require additional network hops that introduce fluctuating latency and potential bandwidth constraints.

The latter scenario is illustrated in Figure 3.10.

Figure 3.10

An unreliable network connection compromises the quality of communication between cloud consumer and cloud provider environments.


Legal contracts, when combined with SLAs, technology inspections, and monitoring, can mitigate governance risks and issues. A cloud governance system is established through SLAs, given the "as-a-service" nature of cloud computing. A cloud consumer must keep track of the actual service level being offered and the other warranties that are made by the cloud provider.

Note that different cloud delivery models offer varying degrees of operational control granted to cloud consumers, as further explained in Chapter 4.

Limited Portability Between Cloud Providers

Due to a lack of established industry standards within the cloud computing industry, public clouds are commonly proprietary to various extents. For cloud consumers that have custom-built solutions with dependencies on these proprietary environments, it can be challenging to move from one cloud provider to another.

Portability is a measure used to determine the impact of moving cloud consumer IT resources and data between clouds (Figure 3.11).

Figure 3.11

A cloud consumer's application has a decreased level of portability when assessing a potential migration from Cloud A to Cloud B, because the cloud provider of Cloud B does not support the same security technologies as Cloud A.

Multi-Regional Compliance and Legal Issues

Third-party cloud providers will frequently establish data centers in affordable or convenient geographical locations. Cloud consumers will often not be aware of the physical location of their IT resources and data when hosted by public clouds. For some organizations, this can pose serious legal concerns pertaining to industry or government regulations that specify data privacy and storage policies. For example, some UK laws require personal data belonging to UK citizens to be kept within the United Kingdom.

Another potential legal issue pertains to the accessibility and disclosure of data. Countries have laws that require some types of data to be disclosed to certain government agencies or to the subject of the data. For example, a European cloud consumer's data that is located in the U.S. can be more easily accessed by government agencies (due to the U.S. Patriot Act) when compared to data located in many European Union countries.

Most regulatory frameworks recognize that cloud consumer organizations are ultimately responsible for the security, integrity, and storage of their own data, even when it is held by an external cloud provider.

SUMMARY OF KEY POINTS

- Cloud environments can introduce distinct security challenges, some of which pertain to overlapping trust boundaries imposed by a cloud provider sharing IT resources with multiple cloud consumers.
- A cloud consumer's operational governance can be limited within cloud environments due to the control exercised by a cloud provider over its platforms.
- The portability of cloud-based IT resources can be inhibited by dependencies upon proprietary characteristics imposed by a cloud.
- The geographical location of data and IT resources can be out of a cloud consumer's control when hosted by a third-party cloud provider. This can introduce various legal and regulatory compliance concerns.

This page intentionally left blank

Index

Α

acceptable use policy (cloud provisioning contract), 454-455 active-active failover system (specialized mechanism), 191 active-passive failover system (specialized mechanism), 194 Advanced Research Projects Agency Network (ARPANET), 26 Advanced Telecom Networks (ATN) case study. See case study examples agent deployment, 310 discovery, 310 monitoring, 155 polling, 155 resource, 155 service, 111 malicious, 123 threat, 121-124 anonymous attacker, 122 application configuration baseline, 314 layer protocol, 85 multitenant, 106-108 package, 313 packager, 313

subscription duration metric, 390-391 usage, 370 Web, 104-106 architectures bare-metal provisioning, 309-312 cloud balancing, 299-301, 321-322 cloud bursting, 271, 277-279 cross-storage device vertical tiering, 332-337 direct I/O access, 324-326 direct LUN access, 326-327 dynamic data normalization, 329-330 dynamic failure detection and recovery, 306-309 dynamic scalability, 262-264 elastic disk provisioning, 272-274 elastic network capacity, 330-332 elastic resource capacity, 265-267 hypervisor clustering, 282-287 intra-storage device vertical data tiering, 337-339 load balanced virtual server instances, 288-291 load balanced virtual switches, 340-341 multipath resource access, 342-343 non-disruptive service relocation, 293-29

persistent virtual network configuration, 344-346 rapid provisioning, 312-315 redundant physical connection for virtual servers, 347-349 redundant storage, 275-277 resource pooling, 257-262 resource reservation, 301-305 service load balancing, 268-270 storage maintenance window, 350-356 storage workload management, 315-321 workload distribution, 256-257 zero downtime, 298-299 **ARPANET** (Advanced Research Projects Agency Network), 26 "as-a-service" usage model, 42 asymmetric encryption (security mechanism), 231-232 asymmetric distribution, 176 ATN (Advanced Telecom Networks) case study. See case study examples attack. See threat attacker. See threat agent audit monitor mechanism (specialized), 189-190 authentication IAM (identity and access management), 243 weak, 127 authenticity (characteristic), 119 authorization IAM (identity and access management), 243 insufficient, 127 automated scaling listener mechanism (specialized), 170-172 automation (data center), 91

availability (characteristic), 119 data center, 92 IT resource, 43-44 availability rate metric, 405-406

В

bare-metal provisioning architecture, 309-312 billing management system mechanism (management), 225-227 boundary logical network perimeter, 58 organizational, 56 overlapping trust, 57 broadband networks, 80-89 business case mapping to SLA, 413 template, 464-466 business cost metrics, 380-387 business drivers, cloud computing, 28-30

С

CA (certificate authority), 240 capacity planning, 28-29 capacity watchdog system, 289 carrier and external networks interconnection, 95 case study examples ATN (Advanced Telecom Networks), 14 background, 14-16 business cost metrics, 382-387 cloud bursting architecture, 277-279 cloud security, 135 conclusion, 422 hashing, 235 IAM (identity and access management), 244 load balancer, 177

ready-made environment, 167-168 SSO (single sign-on), 246 state management database, 211-212 DTGOV.14 automated scaling listener, 172 background, 16-19 billing management system, 227 cloud delivery model, 375-377 cloud storage device, 152-154 cloud usage monitor, 157-159 conclusion, 422-424 digital signature, 238 failover system, 196-198 hardened virtual server images, 252 hypervisor, 201 logical network perimeter, 142 service technologies, 113-115 pay-per-use monitor, 187 PKI (public key infrastructure), 242 pricing models, 396-401 remote administration system, 219 resource cluster. 206-207 resource management system, 221-222 resource replication, 162 resource segmentation, 249 SLA management system, 224 SLA monitor, 180-183 SLA template, 416-418 virtual server, 145-147 Innovartus Technologies Inc., 14 audit monitor, 189-190 background, 20-21 cloud balancing architecture, 321-322 conclusion, 424-425 encryption, 233 multi-device broker, 209 service quality metrics, 412-413

certificate authority (CA), 240 characteristics. See cloud characteristics cipher. 230 ciphertext, 230 cloud architectures. See architectures cloud characteristic. 58-63 elasticity, 61 measured usage, 61 multitenancy, 59 resource pooling, 59 resiliency, 61 ubiquitous access, 59 mapped to cloud computing mechanisms, 434-435 **Cloud-Adapted Risk Management** Framework (NIST), 444-448 cloud auditor (role), 56 cloud balancing architecture, 299-301 Innovartus case study, 321-322 cloud-based IT resource, 34 usage cost metrics, 387-391 versus on-premise IT resource, 86-88 versus on-premise IT resource in private clouds, 76 cloud-based security group mechanism (security), 247-249 cloud broker (role), 56 cloud bursting architecture, 271-272 ATN case study, 277-279 cloud carrier (role), 56 selection, 89 cloud computing, 27-28 business drivers, 28-30 history, 26-27 mechanisms, mapped to cloud characteristics, 434-435 risks and challenges, 45-49 technology innovations, 31-33 terminology, 33-40

cloud consumer (role), 36, 40, 52 perspective in cloud delivery models, 370-375 cloud delivery models, 63-73 cloud consumer perspective, 370-375 cloud provider perspective, 360-370 combining, 69-73 comparing, 67-69 IaaS (Infrastructure-as-a-Service), 64 PaaS (Platform-as-a-Service), 65-66 SaaS (Software-as-a-Service), 66-67 cloud deployment models, 73-78 community, 74 hybrid, 77-78 inter, 78 private, 75-76 public, 73-74 virtual private, 78 cloud-enabling technologies, 32 cloud mechanisms. See mechanisms cloud provider (role), 36, 52 perspective in cloud delivery models, 360-370 portability, 47 selection, 89, 460-461 cloud provisioning contract, 452-459 cloud resource administrator (role), 54-56 Cloud Security Alliance (CSA), 429 cloud service, 38-39 lifecycle phases, 391-392 cloud service consumer (role), 40 cloud service owner (role), 53 cloud service usage cost metrics, 390-391 cloud storage device mechanism (infrastructure), 149-154 in bare-metal provisioning architecture, 310 in multipath resource access architecture, 343

in storage maintenance window architecture, 350-356 usage cost metrics, 390 cloud storage gateway, 209 cloud usage monitor mechanism (infrastructure), 155-159 in cross-storage device vertical tiering architecture, 337 in direct I/O access architecture, 326 in direct LUN access architecture, 327 in dynamic scaling architecture, 264 in elastic disk provisioning architecture, 274 in elastic network capacity architecture, 331 in elastic resource capacity architecture, 265 in load balanced virtual switches architecture, 341 in non-disruptive service relocation architecture, 297 in resource pooling architecture, 260 in resource reservation architecture, 305 in service load balancing architecture, 268 in storage workload management architecture, 321 in workload distribution architecture, 257 in zero downtime architecture, 299 clustering, 31-33 cluster database, 203 HA (high-availability), 205 large dataset, 204 load balanced, 205 resource, 203-207 server, 203 community cloud, 74

Index

completion time metric, 409 computational grid, 31 computer room (data center), 439 computing hardware, 93 confidentiality (characteristic), 118, 232 connectionless packet switching (datagram networks), 83 content-aware distribution, 176 cost(s) archiving, 396 integration, 381 locked-in, 381-382 management of, 391-396 of capital, 381 on-going, 380-381 proportional, 41-43, 61 reduction, 29-30 sunk, 381 up-front, 380 CPU pool, 258 credential management, 243 cross-storage device vertical tiering architecture. 332-337 cryptography, 230-233 CSA (Cloud Security Alliance), 429

D

database cluster, 203 state management, 210-212 storage interface, 151-152 data block, 151 data center, 90-96 automation, 91 component redundancy, 442 availability, 92 environmental controls, 440-441 facilities, 92-93, 437-442

hardware, 93-96 computing, 93 network, 95-96 storage, 93-94 persistence, 367 remote operation and management, 92 security awareness, 92 standardization and modularity, 90 technical and business considerations. 96 data normalization, 152 data storage, 363, 151 non-relational (NoSQL), 152 relational, 151 datagram networks (connectionless packet switching), 83 dedicated cloud (virtual private cloud), 78 delivery models, 63-73 denial of service (DoS), 126 deployment agent, 310 deployment component, 310 deployment data store, 314 deployment models, 73-78 design constraints, REST, 111 design patterns, Web site, 10 digital signature mechanism (security), 236-238 in PKI (public key infrastructure), 240-242 direct I/O access architecture, 324-326 direct LUN access architecture, 326-327 discovery agent, 310 discovery section, 310 **Distributed Management Task Force** (DMTF), 429 DoS (denial of service), 126 DTGOV case study. See case study examples dynamic data normalization architecture, 329-330

dynamic failure detection and recovery architecture, 306-309 dynamic horizontal scaling, 262 dynamic relocation, 262 dynamic scalability architecture, 262-264 dynamic vertical scaling, 262

Ε

eavesdropping, traffic, 124 EDM (equipment distribution area) (data center), 439 Elastic Compute Cloud (EC2) services, 27 elastic disk provisioning architecture, 272-274 elasticity (cloud characteristic), 61 mapped to cloud computing mechanisms, 435 elastic network capacity architecture, 330-332 elastic resource capacity architecture, 265-267 electrical power interconnections (data center), 440 electrical room (data center), 438 encryption mechanism (security), 230-233 asymmetric, 231-232 symmetric, 231 enterprise service bus (ESB) platform, 112 environmental controls (data center), 440-441 equipment distribution area (EDM) (data center), 439 errata, Web site, 9 ESB (enterprise service bus) platform, 112 **European Telecommunications Standards** Institute (ETSI), 431 event triggers, 364, 367

F

failover system mechanism (specialized), 191-198 active-active, 191 active-passive, 194 in dynamic failure detection architecture, 309 in redundant physical connection for virtual servers architecture, 349 in zero downtime architecture, 298-299 failure conditions, 364, 367 fast data replication mechanisms, 94 figures (conventions), 9 flawed implementations (IT security), 131

G–H

gateway cloud storage, 209 mobile device, 209 XML, 209 grid computing, 31-33 HA (high-availability), 406 cluster. 205 hard disk arrays, 94 hardened virtual server image mechanism (security), 251-252 hardware computing, 93 independence, 98 network, 95-96 obsolescence, 96 storage, 93-94 hardware-based virtualization, 101 hashing mechanism (security), 234-235 HDM (horizontal distribution area) (data center), 439 heartbeats, 282 high-availability (HA). See (HA) high availability

history, cloud computing, 26-27 horizontal distribution area (HDM) (data center), 439 horizontal scaling, 37-38 hosted cloud (virtual private cloud), 78 host operating system, 99 host (physical server), 36 hot-swappable hard disks, 94 HTML, 104 HTTP (Hypertext Transfer Protocol), 104 HTTPS, 232 hybrid cloud, 77-78 hypermedia, 104 Hypertext Transfer Protocol (HTTP), 104 hypervisor mechanism (specialized), 97-98, 101, 200-201 in bare-metal provisioning architecture, 310 in dynamic scaling architecture, 264 in elastic network capacity architecture, 331 in hypervisor clustering architecture. 282 in load balanced virtual switches architecture, 341 in multipath resource access architecture, 343 in persistent virtual network configuration architecture, 346 in redundant physical connection for virtual servers architecture, 349 in resource pooling architecture, 260 in resource reservation architecture, 305 in workload distribution architecture, 257 in zero downtime architecture, 299 hypervisor clustering architecture, 282-287

IaaS (Infrastructure-as-a-Service), 64-65 cloud provider perspective of, 360-364 cloud consumer perspective of, 370-373 in combination with PaaS, 69-70 in combination with PaaS and SaaS, 72 in comparison with SaaS and PaaS, 67-69 pricing models, 394 IAM (identity and access management) mechanism (security), 243-244 identity and access management (IAM) mechanism (security), 243-244 inbound network usage cost metric, 387-388 infrastructure redundancy summary, data center, 442 Innovartus Technologies Inc. case study. See case study examples instance starting time metric, 409 insufficient authorization, 127 integration costs, 381 integrity (IT security), 119 intelligent automation engine, 265 inter-cloud, 78 International Service Technology Symposium conference series, 10 Internet architecture, 80-89 service provider (ISP), 80-83 versus cloud, 33-34 internetworks (Internet), 80 intra-cloud WAN usage metric, 388 intra-storage device vertical data tiering architecture, 337-339 I/O caching, 94 data transferred metric, 390 ISP (Internet service provider), 80-83

IT resource, 34-36 cloud-based versus on-premise, 86-88 cloud-based versus on-premise, costs, 380-387 provisioning considerations of IaaS environments, 372-373 of PaaS environments, 373-374 virtualization, 97-103 versus Web resource, 103

J-K-L

lag strategy (capacity planning), 29 LAN fabric, 95 large dataset cluster, 204 lead strategy (capacity planning), 29 Liberty Alliance, 432 live VM migration, 283 load balanced cluster. 205 load balanced virtual server instances architecture, 288-291 load balanced virtual switches architecture. 340-341 load balancer mechanism (specialized), 176-177 in load balanced virtual server instances architecture, 290 in load balanced virtual switches architecture, 341 in service load balancing architecture, 268 in storage workload management architecture, 321-322 in workload distribution architecture, 257 locked-in costs, 381 logical network perimeter mechanism (infrastructure), 58, 140-142 in bare-metal provisioning architecture, 310 in direct I/O access architecture, 326

in elastic network capacity architecture, 332 in hypervisor clustering architecture, 288 in load balanced virtual server instances architecture, 291 in load balanced virtual switches architecture, 341 in multipath resource access architecture, 343 in persistent virtual network configuration architecture, 346 in redundant physical connection for virtual servers architecture, 349 in resource pooling architecture, 261 in resource reservation architecture, 305 in storage workload management architecture, 321 in workload distribution architecture, 257 in zero downtime architecture, 299 logical unit number (LUN), 275 LUN (logical unit number), 275 in direct LUN access architecture, 326-327 migration, 315

Μ

main distribution area (MDA), 439 malicious insider, 123 malicious intermediary threat, 124-125 malicious service agent, 123 malicious tenant, 123 management loader, 310 markup languages, 104 match strategy (capacity planning), 29 MDA (main distribution area), 439 mean-time between failures (MTBF) metric, 407 mean-time system recovery (MTSR) metric, 412 mean-time to switchover (MTSO) metric, 411 measured usage (cloud characteristic), 61 mapped to cloud computing mechanisms, 435 mechanical room (data center), 438 mechanisms specialized, 170-212 audit monitor, 189-190 automated scaling listener, 170-172 failover system, 191-199 hypervisor, 200-202 load balancer, 176-178 multi-device broker, 209-209 pay-per-use monitor, 184-188 resource cluster, 203-207 SLA monitor, 178-184 state management database, 210-212 infrastructure, 140-186 cloud storage device, 149-154 cloud usage monitor, 155-160 logical network perimeter, 140-143 ready-made environment, 166-168 resource replication, 161-165 virtual server, 144-147 management, 214-227 billing management system, 225-227 remote administration system, 214-219 resource management system, 219-222 SLA management system, 222-224 security, 230-252 cloud-based security groups, 247-250 digital signature, 236-239

encryption, 230-233 hardened virtual server images, 251-252 hashing, 234-235 identity and access management (IAM), 243-244 public key infrastructure (PKI), 240-242 single sign-on (SSO), 244-246 message digest, 234 metrics application subscription duration, 390-391 availability rate, 405-406 business cost, 380-387 completion time, 409 inbound network usage cost, 387-388 instance starting time, 409 intra-cloud WAN usage, 388 I/O data transferred. 390 mean-time between failures (MTBF), 407 mean-time system recovery (MTSR), 412 mean-time to switchover (MTSO), 411 network capacity, 408 network usage cost, 387-388 number of nominated users, 391 number of transactions users, 391 on-demand storage space allocation, 390 on-demand virtual machine instance allocation. 389 outage duration, 406 outbound network usage, 388 reserved virtual machine instance allocation, 389 response time, 409 server capacity, 408 service performance, 407-409

service quality, 404-413 service reliability, 407 service resiliency, 411-412 service scalability, 409-410 storage device capacity, 408 usage cost, 387-391 Web application capacity, 408-409 middleware platforms, 112 enterprise service bus (ESB), 112 orchestration, 112 middleware, service, 112 migration LUN, 315 virtual server, 293-297 live VM, 283 mobile device gateway, 209 model "as-a-service" usage, 42 delivery, 63-73, 375-377 deployment, 73-78, 370-375 pricing, 393-394, 396-401 monitoring agent, 155 monitor audit, 189-190 cloud usage, 155-159 pay-per-use, 184-187 SLA, 178-183 MTBF (mean-time between failures) metric, 407 MTSO (mean-time to switchover) metric, 411 MTSR (mean-time system recovery) metric. 412 multi-device broker mechanism (specialized), 208-209 multipath resource access architecture, 342-343 multitenancy, 59-61 and resource pooling, 59-61 mapped to cloud computing mechanisms, 434

supported by service grids, 448 versus virtualization, 108 multitenant application, 106-108

Ν

NAS (network-attached storage), 94 gateway, 95 National Institute of Standards and Technology (NIST), 428, 444-448 network-attached storage (NAS), 94 network capacity in elastic network capacity architecture, 330-332 metric, 408 network hardware, 95-96 network pool, 258 network storage interface, 150-151 network traffic, 363 network usage, 367 network usage cost metrics, 387-388 NIST (National Institute of Standards and Technology), 428, 444-448 NIST Cloud Computing Security Reference Architecture, 444-448 NIST Cloud Reference Architecture, 27-28, 444-448 NIST Guide for Applying the Risk Management Framework to Federal Information Systems, 447 NIST Guidelines on Security and Privacy in Public Cloud Computing, 447 non-disruptive service relocation architecture, 293-297 non-relational (NoSQL) data storage, 152 normalization, data, 152 NoSQL (non-relational) data storage, 152 notification service, 11 number of nominated users metric, 391 number of transactions users metric, 391

Ο

OASIS (Organization for the Advancement of Structured Information Standards), 430 object storage interface, 151 OCC (Open Cloud Consortium), 431 office area (data center), 438 OGF (Open Grid Forum), 432 on-demand storage space allocation metric, 390 on-demand usage (cloud characteristic), 59,434 on-demand virtual machine instance allocation metric, 389 on-going cost, 380-381 on-premise IT resource, 36 versus cloud-based IT resource, 380-387 in private cloud, 76 Open Cloud Consortium (OCC), 431 Open Grid Forum (OGF), 432 The Open Group, 430 operating system-based virtualization, 99-101 operating system baseline, 313 operations center (data center), 438 orchestration platform, 112 organizational agility, 30 organizational boundary, 56 Organization for the Advancement of Structured Information Standards (OASIS), 430 outage duration metric, 406 outbound network usage metric, 388 overlapping trust boundaries, 129-130

Ρ

```
PaaS (Platform-as-a-Service), 65-66
cloud consumer perspective, 373-374
cloud provider perspective, 364-367
combination with IaaS, 69-70
```

combination with IaaS and SaaS, 72 comparison with IaaS and SaaS, 67-69 pricing models, 394 pay-per-use monitor mechanism (specialized), 184-187 in cross-storage device vertical tiering architecture, 337 in direct I/O access architecture, 326 in direct LUN access architecture, 327 in dynamic scaling architecture, 264 in elastic network capacity architecture, 332 in elastic resource capacity architecture, 265 in non-disruptive service relocation architecture, 297 in resource pooling architecture, 261 performance overhead (virtualization), 102 persistent virtual network configuration architecture, 344-346 physical host, 36 physical network, 84 physical RAM pool, 258 physical server pool, 258 PKI (public key infrastructure) mechanism (security), 240-242 plaintext, 230 polling agent, 157 pool (resource), 258-259 CPU, 258 network, 258 physical RAM, 258 physical server, 258 storage, 258 virtual server, 258 portability cloud provider, 47 virtualization solution, 102 requirements, 466

portal

self-service, 215 usage and administration, 215 power distribution system (data center), 441 power engine-generator, 441 power usage effectiveness (PUE), 441 pricing and billing (cloud provisioning contract), 459 pricing models, 393-394 DTGOV case study, 396-401 primary rooms (data center), 438-439 private cloud, 75-76 proportional costs, 41-42 public cloud, 73-74 public key cryptography, 231 public key identification, 240 public key infrastructure (PKI) mechanism (security), 240-242 PUE (power usage effectiveness), 441

Q-R

quality of service (QoS), 404-413. See also SLA rapid provisioning architecture, 312-315 ready-made environment mechanism (infrastructure), 166-168 instances, 367 recovery point objective (RPO), 459 recovery time objective (RTO), 459 reduction, cost, 29-30 redundant physical connection for virtual servers architecture, 347-349 redundant storage architecture, 275-277 relational data storage, 151 reliability rate metric, 407 remote administration system mechanism (management), 214-219 in resource pooling architecture, 261 remote operation and management (data center), 92

renewal (cloud provisioning contract), 458 reserved virtual machine instance allocation metric, 389 resiliency (cloud characteristic), 59, 61 mapped to cloud computing mechanisms, 435 resilient watchdog system, 306 resource agent, 155 resource cluster mechanism (specialized), 203-207 in service load balancing architecture, 268 in workload distribution architecture, 257 in zero downtime architecture, 299 resource constraints, 301 resource management system mechanism (management), 219-222, 262 resource pool, 257-259 resource pooling (multitenancy), 59-61 mapped to cloud computing mechanisms, 434 resource pooling architecture, 257-262 resource replication mechanism (infrastructure), 161-162 in bare-metal provisioning architecture, 312 in direct I/O access architecture, 326 in direct LUN access architecture, 327 in elastic disk provisioning architecture, 274 in elastic network capacity architecture, 332 in elastic resource capacity architecture, 265 in hypervisor clustering architecture, 288 in load balanced virtual server instances architecture, 291

Index

in load balanced virtual switches architecture, 341 in multipath resource access architecture, 343 in non-disruptive service relocation architecture, 297 in persistent virtual network configuration architecture, 346 in redundant physical connection for virtual servers architecture, 349 in resource pooling architecture, 262 in resource reservation architecture, 305 in service load balancing architecture, 268 in storage maintenance window architecture, 356 in workload distribution architecture, 257 in zero downtime architecture, 299 resource reservation architecture, 301-305 resource, Web, 103 versus IT resource, 103 resources. Web site. 9 response time metric, 409 **REST service**, 110 **REST** design constraints, 111 rights and responsibilities (cloud provisioning contract), 457-458 risk (IT security), 120 risk assessment, 133 risk control, 134 risk management, 133-134, 444-448 risk treatment, 134 roles, 52-56 cloud auditor, 56 cloud broker, 56 cloud carrier, 56 cloud consumer, 52-53 cloud provider, 52

cloud resource administrator, 54 cloud service owner, 53-54 router-based interconnectivity, 83-85 RPO (recovery point objective), 459 RTO (recovery time objective), 459

S

SaaS (Software-as-a-Service), 66-67 cloud consumer perspective, 374-375 cloud provider perspective, 367-370 combination with IaaS and PaaS, 72 comparison with PaaS and IaaS, 67-69 pricing models, 394 SAN (storage area network), 94 SAN fabric, 95 scalability cloud-based IT resource, 42-43 supported by multitenant applications, 107 scaling, 37-38 dynamic horizontal, 62 dynamic vertical, 62 horizontal, 37 vertical, 37-38 secret key cryptography, 231 secure sockets layer (SSL), 232 security ATN case study, 135 controls, 120 mechanisms, 121 terminology, 118-121 security conservation principle (NIST), 446 security policy, 121 in cloud provisioning contracts, 455-457 disparity, 132 self-service portal, 215 sequence logger, 313 sequence manager, 313

server capacity metric, 408 cluster, 203 consolidation, 98 images, 313 scalability (horizontal) metric, 410 scalability (vertical) metric, 410 templates, 312 usage, 389 virtual (physical host), 36 virtualization, 97, 144-147 service, 108-112 agent, 111 middleware, 112 **REST**, 110 Web, 109 Web-based, 108 service agent, 111 malicious, 123 service availability metrics, 405-406 service-level agreement. See SLA service load balancing architecture, 268-270 service performance metrics, 407-409 service quality metrics, 404-413 service reliability metrics, 407 service resiliency metrics, 411-412 service scalability metrics, 409-410 Service Technology Magazine, 10 service usage (acceptable use) policy (cloud provisioning contract), 454-455 Simple Object Access Protocol (SOAP), 109 single sign-on (SSO) mechanism (security), 244-246 SLA management system mechanism (management), 222-224 in bare-metal provisioning architecture, 312

in dynamic failure detection architecture, 309 in non-disruptive service relocation architecture, 297 SLA monitor mechanism (specialized), 178-183 in dynamic failure detection architecture, 309 in non-disruptive service relocation architecture, 297 SLA (service-level agreement), 39, 404 in cloud provisioning contract, 458-459 DTGOV case study, 416-418 guidelines, 413-415 snapshotting, 94, 361 SNIA (Storage Networking Industry Association), 430 SOAP-based Web service, 109 **SOAP, 109** Software-as-a-Service. See SaaS (Software-as-a-Service) software, virtualization (hypervisor), 97-98, 101.200-201 specifications (cloud provisioning contract), 458-459 SSL (secure sockets layer), 232 SSO (single sign-on) mechanism (security), 244-246 state management database mechanism (specialized), 210-212 storage hardware, 93-94 replication, 276 virtualization, 94, 97 storage device, 149-154 capacity metric, 408 levels, 149 usage, 390

486

Index

storage area network (SAN), 94 storage interface, 150-151 database, 151-152 object, 151 network, 150 storage maintenance window architecture, 350-356 Storage Networking Industry Association (SNIA), 430 storage pool, 258 storage room (data center), 438 storage workload management architecture, 315-321 sunk costs, 381 symbols (conventions), 9 symmetric encryption mechanism (security), 231

Т

telecommunications entrance (data center), 438 **Telecommunications Industry Association** (TIA), 431 tenant application functional module, 370 tenant subscription period, 370 termination (cloud provisioning contract), 458 terms of service (cloud provisioning contract), 454-458 threat, 120 DoS (denial of service), 126 insufficient authorization, 127 malicious intermediary, 124-125 overlapping trust boundaries, 129-130 traffic eavesdropping, 124 virtualization attack, 127-129 threat agent, 121-124 anonymous attacker, 122 malicious insider, 123

malicious service, 123 trusted attacker, 123 TIA (Telecommunications Industry Association), 431 TIA-942 Telecommunications Infrastructure Standard for Data Centers, 438 TLS (transport layer security), 232 traffic eavesdropping, 124 transport layer protocol, 84 transport layer security (TLS), 232 trust boundary, 57 overlapping, 45, 129-130 trusted attacker, 123

U

ubiquitous access (cloud characteristic), 59 mapped to cloud computing mechanisms, 434 uniform resource locator (URL), 104 uninterruptible power source (UPS), 441 Universal Description, Discovery, and Integration (UDDI), 109 updates, Web site, 9 up-front costs, 380 UPS (uninterruptible power source), 441 URL (uniform resource locator), 104 usage and administration portal, 215 usage cost metrics, 387-391 cloud service, 390-391 cloud storage device, 390 inbound network, 387-388 network. 387-388 server, 389 user management, 243 utility computing, 2, 26

V

vertical scaling, 37-38 VIM (virtual infrastructure manager), 219 virtual firewall, 141 virtual infrastructure manager (VIM), 219 virtual machine (VM), 97 virtual machine manager (VMM), 98 virtual machine monitor (VMM), 98 virtual network, 141 virtual private cloud, 78 virtual server mechanism (infrastructure), 144-147 images, hardened, 251-252 in elastic network capacity architecture, 332 in load balanced virtual server instances architecture, 288-291 in load balanced virtual switches architecture, 341 in non-disruptive service relocation architecture, 293-297 in multipath resource access architecture, 343 in persistent virtual network configuration architecture, 344-346 in redundant physical connection for virtual servers architecture, 347-349 in zero downtime architecture, 298-299 lifecycles, 363 virtual server pool, 258 virtual switch in elastic network capacity architecture, 331 in load balanced virtual switches architecture, 340-341 in persistent virtual network configuration architecture, 344-346 in redundant physical connection for virtual servers architecture, 347-349

virtualization, 32, 90, 97-103 attack, 127-129 hardware-based, 101 operating system-based, 99-101 management, 102 software (hypervisor), 97-98, 101, 200-201 storage, 94 versus multitenancy, 108 VIM (virtual infrastructure manager), 219 VM (virtual machine), 97 VMM (virtual machine manager), 98 volume cloning, 94 vulnerability (IT security), 120. See also threat

W

weak authentication, 127 Web application, 104-106 Web application capacity metric, 408-409 Web-based resource, 372 service, 108 Web resource, 103 Web Service Description Language (WSDL), 109 Web service, 109 SOAP-based, 109 Web sites errata, 9 resources, 9 updates, 9 www.cloudpatterns.org, 10 www.cloudschool.com, 11 www.cloudsecurityalliance.org, 429 www.dmtf.org, 429 www.nist.gov, 428 www.oasis-open.org, 430 www.ogf.org, 432

Index

www.opencloudconsortium.org, 431 www.opengroup.org, 430 www.projectliberty.org, 432 www.serviceorientation.com, 11 www.servicetechbooks.com, 9, 11, 109, 111, 364 www.servicetechmag.com, 10 www.servicetechspecs.com, 10, 105 www.servicetechsymposium.com, 10 www.snia.org, 430 www.tiaonline.org, 432 www.whatiscloud.com, 10 www.whatisrest.com, 10, 111 Web technology, 103-106 Web-tier load balancing, 95 workload distribution architecture, 256-257 workload prioritization, 176 WSDL (Web Service Description Language), 109

X-Z

XML, 104, 109 XML gateway, 209 XML Schema Definition Language, 109 zero downtime architecture, 298-299