

659

Index

A

Abstract pipes, 72
ACID (atomic, consistent, isolated, and

durable), 484
ACT (Asynchronous Completion Token),

418, 472
ActiveEnterprise,

see

 TIBCO
ActiveEnterprise

Activity diagrams, 21–22, 319
Adapters, 16, 19–20, 31–32, 86, 129–131,

140
connecting to existing systems, 344
database, 344
message bus, 139
messaging systems, 102
Web services, 132

Address Change message, 31
Addresses, 30–32
Aggregate interface, 280
Aggregating

loan broker system strategies, 368
responses to single message, 298–300

Aggregation algorithm, 270
Aggregator class, 276–279
Aggregator pattern, 24–27, 173, 226–227,

268–282, 352
aggregation algorithm, 270
collect data for later evaluation algo-

rithm, 273
completeness condition, 270
composed message processor, 296
condense data algorithm, 273
correlation, 270
correlation identifiers, 270–271
event-driven consumers, 278

External event strategy, 273
first best strategy, 273
implementation, 270–272
initialized, 274
JMS (Java Messaging Service), 276–282
listing active aggregates, 270
listing closed out aggregates, 271
loan broker, 275
loan broker system, 363, 368
loan broker system (ActiveEnterprise),

446–447, 458
loan broker system (MSMQ), 402, 422,

424
as missing message detector, 275–276
out-of-order messages, 284
parameters and strategy, 274
Publish-Subscribe Channel pattern, 22
scatter-gatherers, 300
selecting best answer algorithm, 273
sequentially numbered child messages,

262
splitters and, 274
stateful, 269
strategies, 272–274
timeout strategy, 272
timeout with override strategy, 273
wait for all strategy, 272

Apache Axis, 371, 376–378
Application integration

application coupling, 39–40
criteria, 39–41
data formats, 40
data sharing, 40
data timeliness, 40
encapsulation, 51–52

Hohpe_index.fm Page 659 Friday, September 19, 2003 2:54 AM

660

I

NDEX

Application integration,

continued

file transfer, 41, 43–46
intrusiveness, 40
messaging, 41, 53–56
options, 41–42
reliability, 41
remote communication, 41
remote procedure invocation, 41, 50–52
shared database, 41, 47–49
sharing functionality, 40
technology selection, 40

Application layer, 88
Applications

automatically consuming messages, 498
brokering between, 82–83
channels, 61
client for each messaging system, 134
as client of messaging server, 95–96
collaborating behaviorally, 55
communicating with messaging, 60–66
communicating with simple protocol,

127
connecting to messaging system, 56
consistency, 48
consuming messages, 494
coupling, 39–40
data integrity, 51
data types, 88
deadlocks, 49
decoupling, 88–89
deleting files, 45
design and encapsulation, 50
different conceptual models, 54
errors, 117
exchanging data, 127
explicitly communicating with other

applications, 323
file-naming conventions, 45
files, 44
handling different aspects of enterprise,

43
integration problems, 117
invalid request, 117
invoking procedures in, 145–146
logical entities, 88
messages, 67
much more decoupled, 55

multiple interfaces to data, 51
operating independently, 137–138
physical representation of data, 86
proprietary data models and data

formats, 85
semantic dissonance, 47, 54
sharing databases, 47–49
sharing information, 43, 50–52
specific core function, 2
spreading business functions across, 2
as standalone solution, 127
tightly coupled, 39–40
transferring data between, 147–150
transmitting events between, 151–153
two-way conversation, 100

Application-specific messages, 20
AppSpecific property, 288, 290, 405, 424
Architectural patterns, 225, 228
Aspects, 219, 221
Asynchronous callback, 155–156
Asynchronous Completion Token pattern,

167, 472
Asynchronous message channels, 27
Asynchronous messaging, 71
AsyncRequestReplyService class, 408–409
Attach() method, 207–209, 212
Auction class, 276, 279–280
Auction versus distribution, 366–368
AuctionAggregate class, 276, 278–280
Auction-style scatter-gathers, 298
Axis server, 376

B

BAM (Business Activity Monitoring), 537
BankConnection class, 422–423
BankConnectionManager class, 438
BankGateway class, 426
BankName parameter, 410
BankQuoteGateway class, 379
BeginReceive method, 234, 292
Bid class, 276
Bidirectional channels, 100
Big-endian format, 12–13
Billing addresses, 30
BitConverter class, 12
BizTalk Mapper editor, 93
BizTalk Orchestration Manager, 320–321

Hohpe_index.fm Page 660 Friday, September 19, 2003 2:54 AM

I

NDEX

661

Blocking gateways, 470–471
Body, 67
Body property, 68
BodyStream property, 68, 591
BodyType property, 68
BPEL4WS (Business Process Execution

Language for Web Services), 318, 634
Bridges, 134–136
Broadcasting

document messages, 148
messages, 106–110
messages to multiple recipients,

298–300
Buffers, 286–288
Business applications, 1, 129
Business logic adapters, 129
Business object identifier, 166
Business tasks, 166
Business-to-business integration, 9
Byte streams, 12, 66
BytesMessage subtype, 68

C

C#
content-based routers, 233–234
delegates, 84
dynamic recipient lists, 256–258
dynamic routers, 246–248
filters, 76–77
routers, 83–84
smart proxies, 561–568
splitting XML order document,

262–267
CanHandleLoanRequest method, 422
Canonical Data Model pattern, 67, 90,

130, 355–360
Canonical data models, 20, 31, 113

ActiveEnterprise, 360
data format dependencies, 359
designing, 358–359
double translation, 358
indirection between data formats, 356
message bus, 140
multiple applications, 357
transformation options, 357–358
WSDL, 359–360

Canonical messages, 20

Chain of Responsibility pattern, 231,
308

Chaining
envelope wrappers, 332
gateways, 414, 472–473
request-reply message pairs, 166–167
transformations, 89–90

Change notification, 151
Channel Adapter pattern, 63, 86, 97, 102,

127–132, 134–135, 139
Channel Purger pattern, 572–575
Channels, 14–15, 20, 26, 57, 60–66,

359
acting like multiple channels, 63
adapters, 127–132
asynchronous, 27
bidirectional, 100
concurrent threading, 213
cost of, 63
crash proof, 101–102
data types, 101, 112, 220–221
datatyped, 111–114
dead letter, 119–121
dead messages, 101
decisions about, 101–102
defining for recipients, 250–251
deployment time, 62
design in Publish-Subscribe example,

219–222
designing, 62–63
determining set of, 100
dynamic, 100
for each aspect, 221
eliminating dependences, 327–328
FIFO (First-In, First-Out), 74
fixed set of, 99–100
hierarchical, 100
input, 107
invalid messages, 63, 101, 115–118
item number as address, 231
JMS, 64
message priorities, 113
message sequences, 172
message types, 78
messages, 15
mixing data types, 63
MSMQ, 65

Hohpe_index.fm Page 661 Friday, September 19, 2003 2:54 AM

662

I

NDEX

Channels,

continued

multiple consumer coordination,
508–509

multiple data types sharing, 113
multiple receivers, 103–104
names, 63
non-messaging clients, 102
notifying subscriber about event once,

106
number needed, 220–222
one-to-one or one-to-many relation-

ships, 101–102
one-way, 154
output, 107
persistent, 63, 102
Pipes and Filters architecture, 72
planning, 61–62
point-to-point, 103–105
practical limit to, 63
preventing more than one receiver mon-

itoring, 103
publish-subscribe, 106–110
quality-of-service, 113
queuing requests, 14
routing, 79
separating data types, 63–64
static, 99
subscribing to multiple, 108
subscribing to relevant, 237
themes, 99–100
TIB/RendezVous Transport, 448
transmitting units of data, 66
two-way, 154
unidirectional, 100

Channel-specific endpoints, 96–97
Channel-to-RDBMS adapters, 131
Child messages, 262
Claim Check pattern, 27, 90, 173,

346–351
Class diagrams, 88
Client-Dispatcher-Server pattern, 246
Clients, 62

concurrently processing messages, 502
non-messaging, 102
transaction control, 484–485

CLR (Common Language Runtime), 110
Coarse-grained interfaces, 32

COBOL, 44
Collect data for later evaluation algo-

rithm, 273
Collections and data types, 112
Command Message pattern, 23, 67, 104,

112, 117, 139, 143–147, 153, 156
invoking behavior, 148
JMS, 146
loan broker system (ActiveEnterprise),

452
routing, 140
SOAP (Simple Object Access Protocol),

146
Commands, common structure of, 139
Commercial EAI tools

channel adapters, 131
content-based routers, 234–236
Message Broker pattern, 82–83
message brokers, 326
message stores, 557
Message Translator pattern, 445
process Manager pattern, 445

Common command structure, 139
Common communication infrastructure,

139
Communications

assumptions, 13–14
availability of components, 14
big-endian format, 12–13
data formats, 14
little-endian format, 12–13
local method invocation, 10–11
location of remote machine, 13
loose coupling, 10
platform technology, 13
reducing assumptions about, 10
strict data format, 13
TCP/IP, 12
tight coupling, 10

Communications backbone, 102
Competing Consumers pattern, 74, 97,

104, 172, 502–507
JMS, 505–507
processors, 289

Components
decoupling, 72, 88–89
dependencies between, 71

Hohpe_index.fm Page 662 Friday, September 19, 2003 2:54 AM

I

NDEX

663

filtering out undesirable messages, 238
receiving only relevant messages,

237–238
two-way communication, 154

Composed Message Processor pattern, 25,
28, 227–228, 294–296

Composed routers, 225, 227–228
Composed service, 309–310
Composite messages, processing, 295–296
Computations and content enrichers, 339
ComputeBankReply method, 412
Computer systems

communications bus, 139
reliability, 124

ComputeSubject method, 235–236
Concurrency, 368–369
Concurrent threading, 213
Condense data algorithm, 273
Conflict resolution, 248
Consumers, 62, 515–516
Content, 111
Content Enricher pattern, 24–25, 90,

336–341
loan broker system, 363
loan broker system (ActiveEnterprise),

447
loan broker system (Java), 372

Content Filter pattern, 75, 90, 342–345
Content-Based Router pattern, 22–24,

81–82, 114, 225–226, 230–236
C#, 233–234
commercial EAI tools, 234–236
implementing functionality with filters,

240–242
knowledge about every recipient, 308
modifying for multiple destinations,

237–238
MSMQ, 233–234
reducing dependencies, 232–233
routing messages to correct validation

chain, 303–305
routing messages to dynamic list of

recipients, 249–250
routing rules associated with recipient,

308
special case of, 238
TIB/MessageBroker, 234–236

Context-Based Router, 82
ContextBasedRouter class, 594
Contivo, 93
Control Box pattern, 82
Control Bus pattern, 35, 407, 540–544
Control channels and dynamic routers,

244
ControlReceiver class, 594–595
Conway’s Law, 3
CORBA, 4, 10
Correlation

aggregators, 270
process managers, 315–316

Correlation Identifier pattern, 115, 143,
161, 163–169, 172, 197, 206

loan broker system (ActiveEnterprise),
457, 459–469

loan broker system (MSMQ), 405,
420–421, 439

replier, 195, 205
reply, 156

Correlation identifiers, 164–169,
270–271, 285, 315–316

CorrelationId property, 195, 205
CreditAgencyGateway class, 379
CreditBureauGateway class, 476
CreditBureauGatewayImp class, 442
CreditBureauRequest struct, 414
CreditBureauReply struct, 418
Criteria and application integration,

39–41
CSPs (Communicating Sequential

Processes), 75–76
Custom applications, sending and

receiving messages, 127–128

D

Data
byte stream, 66
changes to, 50
frequent exchanges of small amounts

of, 52
inconsistencies, 47
knowing where to send, 55–56
as message sequence, 171–179
moving between domain objects and

infrastructure, 477–480

Hohpe_index.fm Page 663 Friday, September 19, 2003 2:54 AM

664

I

NDEX

Data,

continued

multiple interfaces to, 51
sharing, 53
storage schema and details easily

changed, 54
storing in tree structure, 260–261
transferring between applications,

147–150
transformations, 327–329
transmitting large amounts,

170–171
units, 66
wrapping and unwrapping in envelope,

331–335
Data formats, 56

application integration, 40
changing, 85–86
changing application internal, 357
content, 111
dependencies, 359
designing for changes, 180–181
detecting, 353–354
distinguishing different, 180–181
evolution and extensibility, 40
foreign key, 181
format document, 181–182
format indicator, 181–182
integration, 16
internal, 16
minimizing dependencies, 355–356
not enforcing, 47
proprietary, 85
rate of change, 352
standardized, 85
transformations, 14
translation, 16, 86
translators, 353
version number, 181

Data models, proprietary, 85
Data packets, 55, 57
Data replication, 7, 31
Data Representation layer, 87–88, 90
Data sharing and latency, 40
Data structure content, 111
Data Structures layer, 87–88
Data transfer mechanism, 44, 54

Data types, 88
channels, 101, 112, 220–221
collections, 112
Datatype Channel pattern, 222
multiple sharing channel, 113

Data Types layer, 87
Database adapters, 129–130
Databases

adapters with content filters, 344–345
adding trigger to relevant tables, 129
changes to, 50
extracting information directly from,

129–130
performance bottleneck, 49
sharing, 47–49
suitable design for shared, 48

Datatype Channel pattern, 20, 63, 78,
101, 111–114, 139, 196, 353

data types, 220–222
Message Channel pattern, 115
request channel, 205
stock trading, 114

DCOM, 10
Dead Letter Channel pattern, 101,

117–121, 144
expired messages, 177
messaging systems, 120

Dead letter queue, 120
Dead message queue, 120
Dead messages, 101, 117–118, 120
Deadlocks, 49
Debugging Guaranteed Delivery pattern,

123–124
Decoupling, 88–89
DelayProcessor class, 288–290, 292
Detach() method, 207, 208
Detour pattern, 545–546
Detours, 545–546
Direct translation, 358
Dispatchers, 509–512

Java, 513–514
.NET, 512–513

Distributed environment and Observer
pattern, 208–209

Distributed query message sequences,
173

Hohpe_index.fm Page 664 Friday, September 19, 2003 2:54 AM

I

NDEX

665

Distributed systems
asynchronous messaging, 54
change notification, 151

Distribution versus auction, 366–368
DNS (Dynamic Naming Service), 13
Document binding, 375
Document Message pattern, 20, 67, 104,

143–144, 147–150, 153, 156
Document/event messages, 153
Double translation, 358
Duplicate messages and receivers, 528–529
Durable Subscriber pattern, 108, 124,

522–527
JMS, 525–527
observers, 213
stock trading, 125, 525

Dynamic channels, 100
Dynamic Recipient List pattern, 34,

252–253
C#, 256–258
MSMQ, 256–258

Dynamic Router pattern, 226, 233,
242–248

Dynamic routing slips, 309
DynamicRecipientList class, 256, 258

E

EAI (Enterprise Application Integration)
applications operating independently,

137–138
one-minute, 11
process manager component, 317–318
suites, 2–3

ebXML, 85
E-mail

data as discrete mail messages, 67
Encapsulation, 50–52

reply-to field, 161
encodingStyle attribute, 374
Endpoints, 19, 58, 62, 84

channel-specific, 96–97
customizing messaging API, 96
encapsulating messaging system from

rest of application, 96
message consumer patterns, 464–466
message endpoint themes, 466–467

send and receive patterns, 463–464
sending and receiving messages, 95–97
transactional, 84

EndReceive method, 204, 292
Enterprises

challenges to integration, 2–4
loose coupling, 9–11
need for integration, 1
services, 8

Entity-relationship diagrams, 88
Envelope Wrapper pattern, 69, 90,

330–335
adding information to raw data, 332
chaining, 332
headers, 331–332
postal system, 334–335
process of wrapping and unwrapping

messages, 331
SOAP messages, 332–333
TCP/IP, 333–334

Envoy Connect, 136
EnvoyMQ, 131
ERP (Enterprise Resource Planning)

vendors, 1
Errors, 117
Event Message pattern, 67, 123, 143, 148,

151–153, 156
Observer pattern, 153
Publish-Subscribe Channel, 108

Event-Driven Consumer pattern, 77, 84,
97, 498–501

aggregators, 278
gateways, 212
JMS MessageListener interface,

500–501
loan broker system (MSMQ), 417–418
.NET ReceiveCompletedEventHandler

delegate, 501
pull model, 217
replier, 195, 204

Event-driven gateways, 471–472
Events

content, 152
Guaranteed Delivery pattern, 152
Message Expiration pattern, 152
notify/acknowledge, 156

Hohpe_index.fm Page 665 Friday, September 19, 2003 2:54 AM

666

I

NDEX

Events,

continued

notifying subscriber once about, 106
timing, 152
transmitting between applications,

151–153
Exceptions, 156, 473
Expired messages, 176–179
External event strategy, 273
External packages and schemas, 49

F

FailOverHandler class, 599–600
FIFO (First-In, First-Out) channels, 74
File formats, standard, 44
File transfer, 33, 41, 43–46
File Transfer pattern, 50, 147

decoupling, 53–54
multiple data packets, 53–54
not enforcing data format, 47
reacting to changes, 50
sharing data, 47, 53

Files, 44–45
Filtering

built-in messaging system functions,
239–240

messaging, 71
reactive, 233
splitters, 344

Filters, 58, 71–72, 226, 238
aggregators, 269–270
combining, 227
composability, 312
connection with pipes, 72
decoupling, 79
directly connecting, 78
eliminating messages not meeting

criteria, 226
generic, 75
implementing router functionality,

240–242
loan broker system, 367
multiple channels, 72–73
parallelizing, 74
versus recipient lists, 254–255
sequence of processing steps as

independent, 301–302
single input port and output port, 72

stateful, 239
stateless, 239

Fine-grained interfaces, 32
First best strategy, 273
Fixed routers, 81
Foreign key, 181
Format document, 181–182
Format Indicator pattern, 112, 114,

180–182
Formatter property, 234

G

Gateways, 469
abstracting technical details, 403
asynchronous loan broker gateway

(MSMQ), 475–476
blocking, 470–471
chaining, 414, 472–473
event-driven, 471–472
Event-Driven Consumer pattern, 212
exceptions, 473
generating, 473–474
between observer and messaging

system, 212
pull model, 215–217
sending replies, 217–218
between subject and messaging system,

211
testing, 475

generateGUID method, 457
Generic filters, 75
getaddr method, 93
GetCreditHistoryLength method,

441–442
GetCreditScore method, 414, 420,

441–442, 477
GetLastTradePrice method, 146, 150
GetRequestBodyType method, 407, 409,

412
GetState() method, 207–209, 214, 218
getStateRequestor method, 218, 219
GetTypedMessageBody method, 407
Guaranteed delivery

built-in datastore, 123
debugging, 123–124
events, 152
large amount of disk space, 123

Hohpe_index.fm Page 666 Friday, September 19, 2003 2:54 AM

I

NDEX

667

redundant disk storage, 124
stock trading, 124–125
testing, 123–124
WebSphere MQ, 126

Guaranteed Delivery pattern, 102, 113,
122–126, 176

GUIDs (globally unique identifiers), 285
GUIs and message bus, 140

H

Half-Sync/Half-Async pattern, 472, 534
Header, 67
Hierarchical channels, 100
Host Integration Server, 135–136
HTTP Web services, 51
Hub-and-spoke architecture, 228,

313–314, 324–326

I

ICreditBureauGateway interface, 442
Idempotent Receiver pattern, 97, 528–531
Idempotent receivers, 252, 529–531
IMessageReceiver interface, 403, 442
IMessageSender interface, 403, 442
Incoming messages output channel

criteria, 81
Information Portal scenario, 32
Information portals, 6
Initialized aggregators, 274
Integration

application, 39–56
big-endian format, 12–13
broad definition, 5
business-to-business, 9
challenges, 2–4
channels, 14–5
data formats, 16
data replication, 7
distributed business processes, 8–9
existing XML Web services standards, 4
far-reaching implications on business, 3
information portals, 6
limited amount of control over partici-

pating applications, 3
little-endian format, 12–13
location of remote machine, 13
loose coupling, 9–11

loosely coupled solution, 15–16
message-oriented middleware, 15
messages, 15
middleware, 15
need for, 1–2
patterns, 4–5
redundant functionality, 7
remote data exchange into semantics as

local method call, 10
removing dependencies, 14–15
routing, 16
semantic differences between systems, 4
shared business functions, 7–8
significant shift in corporate politics, 3
skill sets required by, 4
SOAs (service-oriented architectures), 8
standard data format, 14
standards, 3–4
systems management, 16
tightly coupled dependencies, 11–14
user interfaces, 129

Integrators and files, 44–45
Interfaces, 32

loan broker system (Java), 371–372
Internal data formats, 16
Invalid application request, 117
Invalid Message Channel pattern, 101,

115–118, 196–197, 205–206
loan broker system (MSMQ), 405
messages out of sequence, 172
queues, 233

Invalid messages, 23, 63, 101, 115–118,
120

application integration problems, 117
ignoring, 116
JMS specification, 118
monitoring, 117
receiver context and expectations, 117
receivers, 120
Request-Reply example, 196–197
stock trading, 118

InvalidMessenger class, 196, 205
Inventory Check message, 26
Inventory systems, 22–23
IsConditionFulfilled method, 84
Iterating splitters, 260–261
Iterator, 261

Hohpe_index.fm Page 667 Friday, September 19, 2003 2:54 AM

668

I

NDEX

J

J2EE
EJBs (Enterprise JavaBeans), 535
messaging systems, 64

j2eeadmin tool, 64
Java

dispatchers, 513–514
document messages, 149
event messages, 152
loan broker system, 371–400

Java RMI, 10
JAX-RPC specification, 375
JMS (Java Messaging Service)

aggregators, 276–282
channel purgers, 574–575
channels, 64
command message, 146
competing consumers, 505–507
correlation identifiers, 167
Correlation-ID property, 167
document messages, 148
Durable subscribers, 525–527
event messages, 152
expired messages, 178
invalid messages, 118
mappers, 483
message selector, 521
message sequences, 174
MessageListener interface, 500–501
messages, 68
multiple message systems, 133
persistent messages, 125–126
point-to-point channels, 104–105
producer and consumer, 97
Publish-Subcribe example, 207–208
Publish-Subscribe Channel pattern, 109,

124, 186
receive method, 496
Reply-To property, 161
requestor objects, 157–158
Request-Reply example, 118, 187–197
Request/Reply pattern, 157–158
return addresses, 161
Time-To-Live parameter, 178
transacted session, 489

JndiUtil JNDI identifiers, 191
JWS (Java Web Service) file, 378

K

Kahn Process Networks, 74
Kaye, Doug, 9

L

Large document transfer message
sequences, 173

Legacy application routing slips imple-
mentation, 306

Legacy platform and adapters, 131
LenderGateway class, 379
Listens, 62
little-endian format, 12–13
Loan broker system

ActiveEnterprise, 445–462
addressing, 366–368
aggregating strategies, 368
Aggregator pattern, 363, 368
aggregators, 275
asynchronous timing, 364–366
bank component, 578
Content Enricher pattern, 363
control buses, 544
credit bureau component, 578
credit bureau failover, 579, 592–595
designing message flow, 362–364
distribution versus auction, 366–368
enhancing management console,

595–602
instrumenting, 578–579
Java, 371–400
loan broker component, 578
loan broker quality of service, 578–587
management console, 578, 579
managing concurrency, 368–369
Message Channel pattern, 367–368
Message Filter pattern, 367
Message Translators pattern, 364
MSMQ, 401–444
normalizer pattern, 364
obtaining loan quote, 361–362
patterns, 363
Point-to-Point pattern, 368
process managers, 320
Publish-Subscribe Channel pattern, 363,

366–368
Recipient List pattern, 366–367

Hohpe_index.fm Page 668 Friday, September 19, 2003 2:54 AM

I

NDEX

669

recipient lists, 256
Scatter-Gather pattern, 363, 366
scatter-gatherers, 299
Selective Consumer pattern, 367
sequencing, 364–366
synchronous implementation with Web

services, 371–400
synchronous timing, 364–366
system management, 577–602
test client component, 578
verifying credit bureau operation, 579,

587–592
wire taps, 549
XML Web services, 371–400

Loan broker system (ActiveEnterprise)
Aggregator pattern, 446–447, 458
architecture, 445–447
Command Message pattern, 452
Content Enricher pattern, 447
Correlation Identifier pattern, 457,

459–460
design considerations, 455
execution, 460–461
implementing synchronous services,

452–454
interfaces, 451–452
managing concurrent auctions,

459–460
Message Translator pattern, 457–458
process model implementation,

456–459
Publish-Subscribe pattern, 446
Request-Reply pattern, 446, 452
Return Address pattern, 452

Loan broker system (Java), 379–381
accepting client requests, 378–384
Apache Axis, 376–378
Bank1.java file, 393–394
Bank1WS.jws file, 395
Bank.java file, 391–392
BankQuoteGateway.java file, 390–391,

396
client application, 396–397
Content Enricher pattern, 372
CreditAgencyGateway.java file,

385–386
CreditAgencyWS.java file, 386–388

implementing banking operations,
394–3945

interfaces, 371–372
JWS (Java Web Service) file, 378
LenderGateway.java file, 389–390
Message Translators pattern, 372
Normalizer pattern, 372
obtaining quotes, 388–3889
performance limitations, 399–400
Recipient List pattern, 372
running solution, 397–399
Service Activator pattern, 372, 379
service discovery, 379
solution architecture, 371–372
Web services design considerations,

372–376
Loan broker system (MSMQ), 401

accepting requests, 428–431
Aggregator pattern, 402, 422, 424
bank design, 410–412
bank gateway, 421–428
Bank.cs file, 411–412
base classes, 405–409
Control Bus pattern, 407
Correlation Identifier pattern, 405,

420–421, 439
credit bureau design, 412–413
credit bureau gateway, 414–421
CreditBureau.cs file, 413
CreditBureauGateway.cs file, 418–420
designing, 413–431
Event-Driven Consumer pattern,

417–418
external interfaces, 401–402
IMessage Sender.cs file, 403–404
improving performance, 435–540
Invalid Message Channel pattern, 405
limitations, 443–444
LoanBroker.cs file, 430–431
Message Translator pattern, 402
message types for bank, 410
Messaging Gateway pattern, 402–405
MQService.cs file, 406–409
Process Manager pattern, 402, 434
Recipient List pattern, 402, 422,

424–425
refactoring, 431–434

Hohpe_index.fm Page 669 Friday, September 19, 2003 2:54 AM

670

I

NDEX

Loan broker system (MSMQ),

continued

Return Address pattern, 405
Scatter-Gather pattern, 402, 422
Service Activator pattern, 412
testing, 440–443

LoanBroker class, 428–431
LoanBrokerPM class, 433–434
LoanBrokerProcess class, 432–433
LoanBrokerProxy class, 582–583
LoanBrokerProxyReplyConsumer class,

584–585
LoanBrokerProxyRequestConsumer class,

584
LoanBrokerWS class, 379
Local invocation, 145
Local method invocation, 10–11
Local procedure calls, 52
Logical entities, 88
Loose coupling, 9–11

M

ManagementConsole class, 597–598
MapMessage subtype, 68
Mapper pattern, 480
Mapper task, 457–458
Mappers, 480–483
match attribute, 93
MaxLoanTerm parameter, 410
Mediator pattern, 509
Mediators, 481
Message Broker pattern, 228, 322–326

brokering between applications, 82–83
central maintenance, 324
commercial EAI tools, 82–83, 326
hierarchy, 325
stateless, 324–325
translating message data between

applications, 325–326
Message bus, 102, 139–141
Message Bus pattern, 64, 137–141
Message Channel pattern, 19, 55, 57, 62,

73, 78, 106
Apache Axis, 377
availability, 100
Datatype Channel pattern, 115
decisions about, 101–102
decoupling applications, 89

fixed set of, 99–100
load-balancing capabilities, 82
loan broker system, 367–368
monitoring tool, 108
as pipe, 66
security policies, 108
unidirectional or bidirectional, 100

Message class, 68
Message Consumer patterns, 464–466
Message Dispatcher pattern, 97, 113,

508–514
Message dispatchers, 172
Message Endpoint pattern, 56, 58, 61,

173
Apache Axis, 376
data format translation, 86
Selective Consumer pattern, 226

Message endpoints, 16, 62, 95–97,
134–135

Message Expiration pattern, 67, 108, 119,
123, 144, 176–179

Message Filter pattern, 75, 80, 237–242
Publish-Subscribe Channel pattern, 226

Message History pattern, 81, 551–554
Message ID, 166
Message identifiers, 285
Message pattern, 57–58, 78
Message Router pattern, 34, 58, 75, 89,

139, 225, 228
capabilities, 139
Content-Based Router pattern, 232
Message Filter pattern, 238

Message Sequence pattern, 67, 115, 144,
156, 170–175

Message sequences, 171–179
channels, 172
Competing Consumers pattern, 172
distributed query, 173
end indicator field, 171
identification fields, 171
identifiers, 167
JMS, 174
large document transfer, 173
Message Dispatcher pattern, 172
multi-item query, 173
.NET, 174
position identifier field, 171

Hohpe_index.fm Page 670 Friday, September 19, 2003 2:54 AM

I

NDEX

671

Request-Reply pattern, 172
sending and receiving, 172
sequence identifier field, 171
size field, 171

Message Store pattern, 555–557
Message stores, 26–27, 34, 556–557
Message Translator pattern, 58

Channel Adapters, 130
commercial EAI products, 445
data in incoming message, 336
loan broker system, 364
loan broker system (ActiveEnterprise),

457–458
loan broker system (Java), 372
loan broker system (MSMQ), 402
metadata, 130

MessageConsumer class, 191, 278,
562–563

MessageConsumer type, 97
MessageGateway, 414
message-id property, 195, 205
MessageListener interface, 195, 212, 217,

500–501
Message-oriented middleware, 15
Message-processing errors, 117
MessageProducer class, 125, 191, 195
MessageProducer type, 97
MessageQueue class, 97, 105, 126, 167,

201, 204
MessageQueue instance, 65
MessageReceiverGateway class, 404
Messages, 14–15, 66, 159

aggregating, 24
applications, 67
application-specific, 20
augmenting with missing information,

338–341
authentication information, 70
body, 67
breaking data into smaller parts, 67
broadcasting, 106–110
canonical, 20
channels, 78
checking in data for later use, 27
collecting and storing, 269–270
combining related to process as whole,

268–269

common format, 86
conforming to data types, 101
containing commands, 146
contents are semantically incorrect, 117
correlation ID, 166
data formats, 56
data packets, 57
dead, 101, 117–118
decoupling destination of, 322–323
decrypting, 70–71
delivering, 57–58
demultiplexing, 113
destination of, 80
different types of, 67
directing, 56
document/event, 153
duplicate, 70
elements requiring different processing,

259–260, 294–295
encrypted, 70
endpoints, 58
expired, 176–179
format data, 67
formatting in proprietary formats, 31
guaranteed delivery, 122–126
header, 67
high frequency of, 55
huge amounts of data, 144
improper datatype or format, 115
“incoming message massaging module,”

70
intent, 143
invalid, 101, 115–118, 120
JMS, 68
large amounts of data, 170–171
message ID, 166
messaging system, 67
missing properties, 115
monitoring, 34–36
multiple recipients with multiple replies,

297
.NET, 68
order ID, 24–25
out-of-sequence, 227, 283–284
peek functions, 108
persistent, 122–126
private, 358

Hohpe_index.fm Page 671 Friday, September 19, 2003 2:54 AM

672

I

NDEX

Messages,

continued

processing in type-specific ways,
113–114

processing steps, 71
public, 358
recombining, 226–227
recursive nature, 69
reducing data volume, 346
removing unimportant data from,

343–345
removing valuable elements from,

342–343
reordering, 284–293
response, 143–144
retry timeout parameter, 123
return address, 161
routing, 58, 80, 85
routing slips, 305–306
routing to correct recipient based on

content, 232–236
semantically equivalent in different

format, 352–353
sending and receiving, 95–97
sent time, 178
sequence numbers, 285
simplifying structure, 343
slow, 144
SOAP, 68–69
splitting, 24, 226, 260–267
state reply, 153
state request, 153
storing data between, 28
storing data in central database, 27
storing data in tree structure, 260–261
testing, 34–36
timestamp, 177–178
transformation, 54, 58, 327–329
transformation levels, 87–88
two-way, 154
types, 68, 78
unable to deliver, 118–121
update, 153
Wire Tap, 27

MessageSenderGateway class, 404
Messaging, 41, 53–56

asynchronous, 54, 71
basic concepts, 57–58

filtering, 71
invoking procedure in another applica-

tion, 145–146
one-way communication, 154
remote procedure invocation, 156
remote query, 156
transfering data between applications,

147–150
transmitting discrete units of data, 66

Messaging API, 96
Messaging Bridge pattern, 102, 131,

133–136
Messaging Gateway pattern, 19–20, 72,

97, 117, 211, 468–476
loan broker system (MSMQ), 402–405

Messaging Mapper pattern, 97, 477–483
Messaging mappers, 357–358
Messaging pattern, 45–46, 49, 52, 57–58,

163
Messaging server, applications as clients

of, 95–96
Messaging services, 8

dynamic discovery, 245
invoking with messaging and non-

messaging technologies, 532
request-reply, 28–29
reuse, 29
shared business functions as, 28

Messaging systems
adapters, 102
applications communicating with,

60–66
built-in datastore, 123
channel adapters, 63
communicating without required data

items, 336–338
communications backbone, 102
connecting application to, 56
connecting multiple, 133–136
connections, 60–61
Dead Letter Channel, 120
decoupling, 54
delivering messages, 57–58
encapsulating access to, 468–469
filtering built-in functions, 239–240
filters, 58
hierarchical channel-naming scheme, 63

Hohpe_index.fm Page 672 Friday, September 19, 2003 2:54 AM

I

NDEX

673

implementation of single function
spread across, 230–232

inconsistency, 55
interoperability, 133–134
invalid messages, 330
J2EE, 64
logical addresses, 61
managing channels, 95
messages, 67
pipes, 58
Pipes and Filters architecture, 70–77
planning channels, 61–62
receivers inspecting message properties,

79
reducing data volume of messages, 346
sending and receiving messages, 95–97
specific messaging requirements, 330–331
store-and-forward process, 122
uneconomical or impossible to adjust

components, 79
valid messages, 330
WebSphere MQ for Java, 64–65

Metadata
management and transformations,

328–329
Message Translators pattern, 130

Metadata adapter, 130–131
MetricsSmartProxy class, 566
Meunier, Regine, 74
Middleware, 15
MIDL (Microsoft Interface Definition

Language), 531
Missing messages

aggregators as detector of, 275–276
stand-in messages for, 287–288

MockQueue, 404
Model-View-Controller architecture, 151
Monitor class, 589–592
MonitorStatusHandler class, 598
MQSend class, 288
MQSequenceReceive class, 289
MQService class, 405–409, 412
MSMQ (Microsoft Messaging Queuing

Service)
asynchronous loan broker gateway,

475–476
bridges, 135–136

content-based routers, 233–234
distribution lists, 110
dynamic recipient lists, 256–258
dynamic routers, 246–248
filters, 76–77
loan broker system, 401–444
maximum message size, 173
message channels, 65
multiple-element format names, 110
one-to-many messaging model, 109
persistent channels, 124
queues, 65
real-time messaging multicast, 109
resequencers, 288–293
routers, 83–84
smart proxies, 561–568
splittering order document, 264–267
Transactional Clients pattern, 124
transactional filter, 490–493

Multi-item queries and message sequences,
173

Multiple asynchronous responses, 174
Multiplexing, 113

N

.NET
CLR (Common Language Runtime),

110
correlation identifiers, 167–168
Correlation-Id property, 167–168
delegates, 418
dispatchers, 512–513
document messages, 148
event messages, 152
expired messages, 179
message sequences, 174
MessageQueue class, 97
messages, 68
persistent messages, 126
point-to-point channels, 105
Receive method, 496–497
ReceiveCompletedEventHandler

delegate, 501
Request-Reply example, 118, 198–206
resequencers, 288–293
Response-Queue property, 162
return addresses, 162

Hohpe_index.fm Page 673 Friday, September 19, 2003 2:54 AM

674

I

NDEX

.NET,

continued

selective consumers, 521
serialization and deserialization, 416
Time-To-Be-Received property, 179
Time-To-Reach-Queue property, 179
transactional queue, 490

.NET Framework, 404–405

.NET Framework SDK, 415

.NET Remoting, 10
Networks, inefficiencies and recipient lists,

253–254
Neville, Sean, 375
New Order message, 22, 27, 30
Normalizer pattern, 90, 352–354

loan broker system, 364
loan broker system (Java), 372

Normalizers, 353–354
Notify() method, 207, 208, 211, 213
notifyNoState() method, 217
Null Object, 238

O

OAGIS, 85
ObjectMessage class, 196
ObjectMessage subtype, 68
Objects, notifying dependents of change,

207–208
Observer pattern, 106, 110, 151

distributed environment, 208–209
Event Message pattern, 153
implementing, 209–212
JMS Publish-Subcribe example,

207–208
.NET Framework, 404
pull model, 153
push model, 153

ObserverGateway class, 212, 218
Observers, 207–208

concurrent threading, 213
Durable Subscriber pattern, 213
implementing, 209–213
losing notification, 209
multiple aspects, 219
receiving messages, 213
reply channels, 214–215
subscribing and unsubscribing from

channels, 213

OnBestQuote method, 431
OnCreditReply method, 431
OnCreditReplyEvent delegate, 476
OnCreditReplyEvent event, 420
One-minute EAI (Enterprise Application

Integration) suites, 11
One-way channels, 154
OnMessage event, 404
onMessage method, 84, 195, 197, 212,

217, 234, 264, 278, 407–408
OnMsgEvent delegate, 404
OnReceiveCompleted method, 77, 204
Operating environment, 339
ORB (object request broker) environment,

208
Order ID, 24–25
Order Item Aggregator, 25
Order Item messages, 24–25
Order message, 24–25, 263
Ordered or unordered child messages,

262
Orders, checking status, 26–29
Out-of-order messages, 283–284
Out-of-sequence messages, 227

P

Parallelizing filters, 74
Pattern matching, 93
Patterns

combining with scatter-gatherers,
299–300

comparing Process Manager pattern
with, 319–320

loan broker system, 363
pattern form, xliii–xlvi

Peek functions, 108
PeekByCorrelationId() method, 168
Persistence, 123
Persistent channels, 63, 102, 126
Persistent messages, 122–126

JMS, 125–126
.NET, 126

Persistent recipient lists, 252
Persistent store, 29, 347–348
PGM (Pragmatic General Multicast),

109
Pipeline processing, 73–74

Hohpe_index.fm Page 674 Friday, September 19, 2003 2:54 AM

I

NDEX

675

Pipes, 58
abstract, 72
composability, 312
connection with filters, 72
managing state, 316
Message Channel pattern, 66
simple in-memory queue to implement,

72
Pipes and Filters architecture, 58

directly connecting filters, 78
history of, 74–75
large number of required channels, 72

Pipes and Filters pattern, 227
chaining transformations, 89
composability of individual compo-

nents, 79
composability of processing units, 312
distributed, 317
pipeline processing, 73–74
processing messages, 73–74
processing steps, 230
sequence of processing steps as indepen-

dent filters, 301–302
testability, 73

Point-to-Point Channel pattern, 63,
73–74, 101, 124, 147, 368

Point-to-Point channels, 20, 23, 26–27,
103–105

broadcasting messages, 153
command messages, 146
document messages, 148
eavesdropping, 107–108
inspecting messages, 547–550
JMS, 104–105
.NET, 105
request channel, 155
stock trading, 104

Polling Consumer pattern, 97, 155,
494–497

Port, 72
Postal service

data as discrete mail messages, 67
envelope wrappers, 334–335

Predictive routing, 80
Private messages, 358
Procedures, invoking in another

application, 145–146

Process definitions, 315
process managers creation of, 317–318
TIB/IntegrationManager Process Man-

ager Tool, 449
Process instances, 28

process managers, 314–315
TIB/IntegrationManager Process

Manager Tool, 449
Process Manager pattern, 312–321

commercial EAI products, 445
comparing with other patterns,

319–320
loan broker system (MSMQ), 402,

434
Process managers, 27–31, 309, 313

BizTalk Orchestration Manager,
320–321

central, 317
claim checks, 350–351
correlation, 315–316
hub-and-spoke pattern, 313–314
keeping state in messages, 316–317
loan broker, 320
process definition, 315, 317–318
process instances, 314–315
state maintenance, 314
storing intermediate information, 314
trigger message, 313
versatility, 314

Process method, 77
Process template, 28
Processes

marshaling and unmarshaling data, 66
passing piece of data, 66
synchronizing with IO (input-output),

75
Processing

composite messages, 295–296
orders, 20–23

Processing pipeline, 73–74
ProcessMessage method, 76–77, 290, 292,

408–412, 431
Processor class, 76, 290, 292
Processors competing with consumers,

289
Producers, 62
Protocols, tunneling, 330

Hohpe_index.fm Page 675 Friday, September 19, 2003 2:54 AM

676

I

NDEX

Provider, 62
Public messages, 358
Publisher, 62
Publish-Subscribe Channel pattern, 62–63,

80, 101, 104, 139, 147, 153, 207,
209

loan broker system (ActiveEnterprise),
446

Publish-subscribe channels, 23, 26, 31,
33–34, 106–110, 249–250

announcing address changes, 220
basic routing, 323
as debugging tool, 107
document messages, 148
eavesdropping, 107–108
Event Message pattern, 108
filters versus recipient lists, 254–255
hierarchical structure, 239
implementing router functionality

with filters, 240–242
JMS, 109, 124, 186
loan broker system, 363, 366–368
Message Filters pattern, 226
multiple output channels, 107
one input channel, 107
out-of-product announcements, 220
receiving change notification code,

211–212
request channel, 155
Scatter-Gather pattern, 228
special wildcard characters, 108
stock trading, 108–109
storing messages, 108
subscription to, 237

Publish-Subscribe example
channel design, 219–222
code to announce change, 210–211
Command Message pattern, 185
comparisons, 212–213
Datatype Channel pattern, 185
distributed notification between

applications, 212–213
Document Message pattern, 185
Durable Subscriber pattern, 185
Event Message pattern, 185
Event-Driven Consumer pattern, 185
implementing observers, 209–212

Java using JMS, 186
Messaging Gateway pattern, 185
Observer pattern, 185
Publish-Subscribe Channel pattern, 185
pull model, 213–219
push model, 213–219
Request-Reply pattern, 185
Return Address pattern, 185
serialization, 213

Pull model, 153, 207–208
Event-Driven Consumer pattern, 217
gateways, 215–217
Publish-Subscribe example, 213–219

PullObserverGateway class, 218
PullSubjectGateway class, 217
Push model, 153, 207–208

Publish-Subscribe example, 213–219

Q

Quality-of-Service Channel pattern, 113
Queries, 173
Queue instance, 64
Queue interface, 104
QueueRequestor class, 192
Queues

Invalid Message Channel pattern, 233
peek functions, 108

R

RatePremium parameter, 410
Reactive filtering, 80, 233
ReceiveByCorrelationID() method, 168
ReceiveCompleted event, 404
ReceiveCompletedEventHandler class,

204
ReceiveCompletedEventHandler delegate,

501
Receive() method, 192, 202
Receivers, 62

communicating message type to, 112
content data structure and data format,

111
dead messages, 120
duplicate messages, 528–529
Event-Driven Consumer pattern, 97
idempotent receivers, 529–531
inspecting message properties, 79

Hohpe_index.fm Page 676 Friday, September 19, 2003 2:54 AM

I

NDEX

677

invalid messages, 120
multiple on channel, 103–104
Polling Consumer pattern, 97
response from, 154–158
type of messages received, 111

ReceiveSync() method, 192, 202
Receiving sequences, 172
Recipient List pattern, 110, 226, 249–258

loan broker system (Java), 372
loan broker system (MSMQ), 402, 422,

424–425
Recipient lists, 242, 250–251

dynamic, 252–253
idempotent receivers, 252
list of recipients, 251
loan broker, 256
network inefficiencies, 253–254
persistent, 252
versus publish-subscribe channels and

filters, 254–255
restartable, 252
robustness, 252
routing, 439
scatter-gathers, 298
sending copy of message to all

recipients, 251
sending preferences to, 253
single transaction, 252

Recipients
broadcasting messages to multiple,

298–300
defining channel for, 250–251
list of, 251
multiple with multiple replies, 297
routing messages to dynamic list,

249–250
sending copy of message to all, 251

Recombining messages, 226–227
Redundant functionality, 7
Relational databases, SQL-based, 48
Relationships and entities, 88
Reliability of Web services, 375–376
Remote invocation, 145
Remote Procedure Call pattern, 209
Remote procedure calls, 52
Remote Procedure Invocation pattern, 46,

49, 62, 145, 147, 151

Remote procedure invocations, 41
failure of, 53–54
messaging, 156
sharing functionality, 53
synchronous, 163
two-way communication, 147

Remote query and messaging, 156
Web services, 375

Reordering messages, 284–293
Replier class, 183, 187, 198
Repliers, 155

agreeing on details, 165
correlation identifier, 164
Correlation Identifier pattern, 195, 205
Event-Driven Consumer pattern, 195,

204
Return Address pattern, 195, 204

Replies
callback processor to process, 160
correlation identifier, 164–169, 165
Correlation Identifier pattern, 156
document messages, 148
exceptions, 156
gateway sending, 217–218
from multiple recipients, 297
one-to-one correspondence with

request, 159
pointer or reference to request, 164
processing, 195
reassembling multiple into one, 228
result value, 156
return address, 159–162
token, 166
void, 156
where to send, 159–162
which requests they are for, 163–169

Reply channels and observers, 214–215
Request channel, 155, 205
Requestor class, 183, 187, 198
Requestor.receiveSync() method, 197
Requestors, 62, 155

agreeing on details, 165
callback processor to process replies,

160
correlation identifier, 164
map of request IDs and business object

IDs, 166

Hohpe_index.fm Page 677 Friday, September 19, 2003 2:54 AM

678

I

NDEX

Requestors,

continued

receiving reply messages, 192, 202
sending request messages, 192, 202

Request-replies
asynchronous callback, 155–156
chaining message pairs, 166–167
channels to transmit messages, 214
loan broker system (ActiveEnterprise),

446, 452
message sequences, 172
replier, 155
requestor, 155
synchronous block, 155

Request-Reply example
Command Message pattern, 188
Correlation Identifier pattern, 184, 189,

200
Datatype Channel pattern, 184
Document Message pattern, 184, 188
Event Driven Consumer pattern, 184
Invalid Message Channel pattern, 184
Invalid Message example, 196–197,

205–206
JMS, 187–197
JMS API in Java J2EE, 184
jms/InvalidMessages queue, 187
jms/ReplyQueue queue, 187, 188
jms/RequestQueue queue, 187
Message Channel pattern, 184
MSMQ API in Microsoft .NET using

C#, 184
.NET, 198–206
Point-to-Point Channel pattern, 184
Polling Consumer pattern, 184
.\private$\InvalidQueue queue, 198
.\private$\ReplyQueue queue, 198
.\private$\RequestQueue queue, 198
Replier class, 183, 187, 198
Requestor class, 183, 187, 198
Request-Reply code, 189–196, 200–205
Request-Reply pattern, 184
Return Address pattern, 184, 188–189,

199, 204
Request-Reply pattern, 67, 104, 108,

143–144, 154–158
JMS, 157–158
reply channel, 100

RequestReplyService class, 408–409, 412,
424

Request-Response Message Exchange
pattern

return addresses, 162
SOAP 1.2, 157, 162, 168–169
Web services, 162, 168–169

Requests
correlation identifier, 165
messaging query, 156
notify/acknowledge messages, 156
pointer or reference to, 164
remote procedure invocation messages,

156
Return Address pattern, 100, 156
return addresses, 167, 195
sent and received timestamps, 199
unique ID, 166
which replies are for, 163–169

Resequencer class, 289
Resequencer pattern, 74, 164, 227,

283–293
Resequencers, 227, 284

avoiding buffer overrun, 286–288
buffers, 286
internal operations, 285–286
MSMQ, 288–293
.NET, 288–293
out-of-sequence messages, 285–286
sequence numbers, 285
stand-in messages for missing messages,

287–288
throttling message producer with active

acknowledgment, 287
ResponseQueue property, 202
Responses, 143–144

aggregating to single message, 298–300
delivered out of order, 268
from receivers, 154–158

Retry timeout parameter, 123
Return Address pattern, 115, 143, 159–162

loan broker system (ActiveEnterprise),
452

loan broker system (MSMQ), 405
replier, 195, 204
request message, 100
requests, 156

Hohpe_index.fm Page 678 Friday, September 19, 2003 2:54 AM

I

NDEX

679

Return addresses, 29, 35, 36, 159–162
JMS, 161
.NET, 162
Request-Response Message Exchange

pattern, 162
requests, 167

RIP (Routing Information Protocol), 245
RMI (Remote Method Invocation), 10
RosettaNet, 85
Router slips, 308–309
Routers, 25, 56, 58, 73, 78–84, 140, 359

abuse of, 81
architectural patterns, 225, 228
avoiding dependency, 243
built-in intelligence, 82
C#, 83–84
combining variants, 228
composed, 225, 227–228
content-based, 81–82, 225–226,

230–236
context-based, 82
Control Bus pattern, 82
decoupling filters, 80
degrading performance, 81
destination based on environment

conditions, 82
destination of message, 80–82
dynamic, 244–248
eliminating dependencies, 327–328
filters, 238
fixed, 81
fixed rules for destination of in-coming

message, 226
hard-coded logic, 82
implementing functionality with filters,

240–242
knowledge of all destination channels,

80
loosely coupled systems, 81
maintaining efficiency, 243
maintenance bottleneck, 80
MSMQ, 83–84
multiple in parallel, 81
parallel processing, 82
performance bottleneck, 81
selecting correct for purpose, 228–229
self-configuring, 244–248

simple, 225–227
stateful, 82, 227
stateless, 82, 233
variants, 81–82

Routing, 16, 58
basic form, 79
channels, 79
command messages, 140
to correct recipient based on content,

232–236
flexibility, 302
maintaining state of sequence, 313–321
message flow efficiency, 302
moving logic to middleware layer, 323
recipient lists, 439
resource usage efficiency, 302
simple maintenance, 302
unknown non-sequential processing

steps, 312–313
Routing messages, 80, 85

based on criteria, 226
to correct translator, 353–354
to dynamic list of recipients, 249–250
with multiple elements, 259–260
for system management, 545–546
through series of unknown steps,

301–305
Routing Slip pattern, 301–311
Routing slips

acting as chain of responsibility, 308
binary validation steps, 307
as composed service, 309–310
decision postponed until end, 307
dynamic, 309
legacy application implementation, 306
limitations, 306
processing steps, 312
stateless transformation steps, 307
WS-Routing (Web Services Routing

Protocol), 310–311
RPC (Remote Procedure Call), 10, 51, 103

asynchronous messaging, 122
binding, 375
marshaling, 66

RPC-style SOAP messaging, 149
RPC-style Web services, 10
Run method, 412

Hohpe_index.fm Page 679 Friday, September 19, 2003 2:54 AM

680

I

NDEX

S

SASE (Self-Addresses Stamped Envelope)
pattern, 219

Scatter-Gather pattern, 228, 297–300
loan broker system, 363, 366
loan broker system (ActiveEnterprise),

446
loan broker system (MSMQ), 402, 422
Publish-Subscribe Channel pattern, 228

Scatter-gatherers, 298–300
Schemas, 49
Security and Web services, 375–376
Selecting best answer algorithm, 273
Selective Consumer pattern, 63, 119, 168,

222, 226, 239–240, 515–521
JMS message selector, 521
loan broker system, 367
.NET, 521
separating types, 520

Selectors, 239–240
Semantic dissonance, 47, 54–55
Semantic enrichment, 414
Send and receive patterns, 463–464
SendConsecutiveMessages method,

290
Senders, 62

communicating message type to
receiver, 112

decoupling message destination from,
322–323

Send() method, 192, 202
SendReply method, 408, 433
Sent time, 178
Sequence identifier, 172
Sequence numbers, 285
Sequencer, 261
Sequencing, 364–366
Serializable command object, 146
Serialization in Publish-Subscribe

example, 213
Service Activator pattern, 97, 117, 139,

532–535
Service activators, 140, 533–534

Axis server, 376
loan broker system (Java), 379
loan broker system (MSMQ), 412

Service stubs, 403

Service-oriented architecture (SOA), 8, 140
Shared business functions, 7–8
Shared Database pattern, 46–50, 147
Shared databases, 29, 41, 53

avoiding semantic dissonance, 55
unencapsulated data structure, 50

Sharing data, 53
Sharing information, 43
Shipping addresses, 30
Silly Window Syndrome, 287
Simple routers, 225–227, 308–309
SimpleRouter class, 84
Slow messages, 144
Smart proxies, 29, 35, 36, 559–560

C#, 561–568
MSMQ, 561–568

Smart Proxy pattern, 558–568
SmartProxyBase class, 563
SmartProxyReplyConsumer class, 565
SmartProxyReplyConsumerMetrics class,

566
SmartProxyRequestConsumer class, 564
SOAP (Simple Object Access Protocol)

binding styles, 375
command messages, 146
document messages, 148, 149–150
encoding style, 374
messages, 68–69
recursive nature of messages, 69
transport protocol, 373
Web services, 372–373

SOAP 1.2 and Request-Response Message
Exchange pattern, 157, 162, 168–169

SOAP messages
envelope wrappers, 332–333
Request-Reply pairs, 157

SOAP request messages, 168, 174
SOAP response messages

correlation to original request, 168–169
sequencing and correlation to original

request, 174–175
SonicMQ Bridges, 136
Splitter pattern, 173, 226, 259–267
Splitters, 24, 25

aggregators and, 274
C# XML order document, 262–267
filtering, 344

Hohpe_index.fm Page 680 Friday, September 19, 2003 2:54 AM

I

NDEX

681

iterating, 260–261
MSMQ XML order document,

264–267
ordered or unordered child messages,

262
static, 261

Splitting messages, 226, 260–267
SQL-based relational databases, 48
Stale information, 45
Standard file formats, 44
Standardized data formats, 85
State

aspects, 219
keeping in messages, 316–317
process manager maintenance, 314

State request messages, 153
Static channels, 99
Static splitters, 261, 343–344
Stock trading

bridges, 135
channel adapter, 131
Datatype Channel pattern, 114
dead letter channels, 121
Durable Subscriber pattern, 125
guaranteed delivery, 124–125
invalid messages, 118
message bus, 141
Publish-Subscribe Channel pattern,

108–109
Store-and-forward process, 122
StreamMessage subtype, 68
Structural transformations, 90–93
SubjectGateway class, 211, 217
Subscribers, 62

avoiding missing messages, 522–523
durable or nondurable, 108
multiple channels, 108
notifying once about event, 106
special wildcard characters, 108

Synchronous block, 155
Synchronous implementation of loan bro-

ker system, 371–400
Syntax layer, 88
System management, 537

analyzing and debugging message flow,
551–554

avoiding infinite loops, 554

internal faults, 569
leftover messages, 572–575
loan broker system, 577–602
monitoring and controlling, 538
observing and analyzing message traffic,

538
reporting against message information,

555–557
routing messages for, 545–546
testing and debugging, 539
tracking messages, 558–568
widely distributed system, 540–541

Systems
data transfer between, 87–88
management, 16
out of synchronization, 45

T

Taking orders, 18–19, 24–25
Talks, 62
TCP/IP, 12–13, 88

ensuring in-sequence delivery of mes-
sages, 287

envelope wrappers, 333–334
tightly coupled dependencies, 11–12
Tee, 547

Template methods, 292, 404
TemporaryQueue class, 215
Test data generator, 36
Test data verifier, 36
Test Message pattern, 569–571
Test messages, 36, 569–571
Testing

gateways, 475
Guaranteed Delivery pattern, 123–124
loan broker system (MSMQ), 440–443

Text-based files, 44
TextMessage subtype, 68
TIBCO ActiveEnterprise

canonical data models, 360
loan broker system, 445–462
message history, 553–554

TIBCO Repository for Metadata Manage-
ment Integration, 450–451

TIB/IntegrationManager Process Manager
Tool, 448–450

TIB/MessageBroker, 234–236

Hohpe_index.fm Page 681 Friday, September 19, 2003 2:54 AM

682

I

NDEX

TIB/RendezVous Transport, 448
Tight coupling, 10, 32
Tightly coupled applications, 39–40
Tightly coupled dependencies

integration, 11–14
TCP/IP, 11–12

Timeout strategy, 272
Timeout with override strategy, 273
Topic interface, 109
TopicPublisher class, 109, 209
TopicSubscriber class, 109
Transactional Client pattern, 77, 84, 97,

131, 172, 484–493
JMS transacted session, 489
message groups, 487–488
message/database coordination, 488
message/workflow coordination, 488
MSMQ, 124
.NET transactional queue, 490
send-receive message pairs, 487
transactional filter with MSMQ, 490–493

Transactions, 172, 484–485
Transform method, 265
Transformations, 54, 58

chaining, 89–90
changing application internal data

format, 357
changing at individual level, 90
content enrichers, 338–341
Data Representation layer, 87, 88
Data Structures layer, 87, 88
Data Types layer, 87, 88
decoupling levels, 88–89
dragging and dropping, 94
eliminating dependencies, 327–328
external translators, 357–358
implementing messaging mapper,

357–358
levels of, 87–88
metadata management, 328–329
at multiple layers, 89
options, 357–358
outside of messaging, 329
structural, 90–93
Transport layer, 87–88
visual tools, 93–94
XML documents, 90–93

Translators, 20, 23, 31, 56, 85–94
chaining multiple units, 89–90
data formats, 353
double translation, 358
external, 357–358
versus mappers, 482
resolving data format differences,

355–356
routing messages to correct, 353–354

Transport protocols, 87
Tree structure, 260–261
Trigger message, 313
Tunneling, 330, 334
Two-way channels, 154
Two-way messages, 154

U

UDDI (Universal Description, Discovery
and Integration), 379

UML (Unified Modeling Language)
activity diagrams, 21–22

Unidirectional adapters, 130
Unidirectional channels, 100
Universal storage mechanism, 44
Update messages, 153
updateConsumer method, 218
Update() method, 151, 207–209, 213–214
updateNoState() method, 218–219
Updating files, 45
User interface adapters, 129
User interfaces, 129

V

Validated Order message, 26
Verify Customer Standing message, 27
Visual transformation tools, 93–94
Void replies, 156

W

Wait for all strategy, 272
Web services, 3

adapters, 132
Apache AXIS toolkit, 371
architecture usage scenarios, 174–175
asynchronous versus synchronous

messaging, 373–374
discovery, 379

Hohpe_index.fm Page 682 Friday, September 19, 2003 2:54 AM

I

NDEX

683

encoding style, 374
existing standards, 4
HTTP, 51
loan broker system (Java) design

considerations, 372–376
reliability, 375–376
Remote Procedure Invocation pattern,

375
Request-Response Message Exchange

pattern, 162, 168–169
security, 375–376
SOAP (Simple Object Access Protocol),

372–373
synchronous implementation of loan

broker system, 371–400
transport protocol, 373

Web Services Gateway, 132
WebSphere Application Server, 132
WebSphere MQ for Java

Guaranteed Delivery, 126
messaging systems, 64–65
persistent channels, 126
queues, 65

WGRUS (Widgets & Gadgets ’R Us), 17
announcements, 17, 33–34
changing addresses, 17, 30–32
channels to interact with customers, 18
checking order status, 17
checking status, 26–29
internal systems, 18
inventory systems, 22–23
processing orders, 17, 20–25
requirements, 17

SOAs (service-oriented architectures), 8
taking orders, 17, 18–20
testing and monitoring, 17, 34–36
updating catalog, 17, 32–33

Wire Tap pattern, 547–550
World Wide Web Consortium Web site,

373, 374
Wrapping and unwrapping data in enve-

lope, 331–335
WSDD (Web Services Deployment

Descriptor), 378
WSDL (Web Services Definition Lan-

guage), 374
canonical data models, 359–360
Command Message pattern, 146
document messages, 149–150

WSFL (Web Services Flow Language), 318
WS-Routing (Web Services Routing

Protocol), 310–311

X

XLANG, 318, 634
XML, 3, 149, 182
XML documents, 68, 90–93
XML files, 44
XML schema, 374–375
XML Schema Definition Tool, 415
XML Web services, 371–400
XML Splitter class, 263–264
XmlMessageFormatter class, 201
XSL, 3, 90–93
XSLT (XSL Transformation) language, 90
XslTransform class, 265

Hohpe_index.fm Page 683 Friday, September 19, 2003 2:54 AM

