
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137392629
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137392629
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137392629

“Joe Emison is the apostle of leverage in technical decision-making: betting on
managed services for scale and speed while putting developers in positions to con-
tribute maximum business value. Leaders bold enough to follow Joe’s path in this
brilliant book will reap outsized rewards.”

—Forrest Brazeal, Head of Developer Media at Google Cloud

“Joe’s been telling the world for years that modern software architecture isn’t just
about getting rid of your servers, but deleting most of your server code. It’s a mes-
sage that bucks conventional wisdom, and the “best practices” of the kubernetes-
industrial complex. But here’s the weird thing—he might just be right.”

—Mike Roberts, Partner and Co-founder, Symphonia

“This book backs up theory with the real-world practices that Joe has been success-
fully implementing as a business strategy for years. It is a handbook for modern
development teams that want to deliver value faster, more securely, and with less
technical debt.”

—Jeremy Daly, CEO at Ampt and AWS Serverless Hero

“Serverless as a Game Changer is an indispensable book, guiding startups and
enterprises to better business outcomes. With its technical expertise, it unveils the
power of Serverless applications, focusing on organizational needs and risk mitiga-
tion. If you aim to embrace cutting-edge tech and build Serverless solutions, this is a
must-read.”

—Farrah Campbell, Head of Modern Compute Community, AWS

“A must-read for executives and technologists who want to go faster and capture
more business value for less. Serverless will change the way you build businesses with
technology, and this book will show you how.”

—Yan Cui, AWS Serverless Hero

This page intentionally left blank

Serverless as a Game
Changer

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
i n f o r m i t . c o m / c o n n e c t

http://informit.com/awss/vernon
http://informit.com/connect

Serverless as a Game
Changer

How to Get the Most Out of the Cloud

Joseph Emison

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023944699

Copyright © 2024 Pearson Education, Inc.

Hoboken, New Jersey

Cover image: Irina Soboleva S / Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-739262-9
ISBN-10: 0-13-739262-1

$PrintCode

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained
in the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all
warranties and conditions with regard to this information, including all warranties and conditions of merchantability,
whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft
and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of
or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within
the software version specified.

Trademarks

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and
Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we
work with authors to create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so
that everyone can achieve their potential through learning. As the world’s leading
learning company, we have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

•• Everyone has an equitable and lifelong opportunity to succeed through
learning

•• Our educational products and services are inclusive and represent the rich
diversity of learners

•• Our educational content accurately reflects the histories and experiences of
the learners we serve

•• Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

Please contact us with concerns about any potential bias at https://www.pearson.
com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

Contents

Foreword. . xv 

Part I:  The Serverless Mindset

Chapter 1:  Introduction. . 1

How Many Employees Does It Take to Make and Run a
Scalable Social Network? . 2

Leveraging Technology as It Improves . 4
Software Development Has Been Improving Constantly…. 4
…But Isn’t Being Adopted Effectively. 4

This Book Is For… . 5
Executives in Business and Technology. 5
Enterprises. 5
Startups and Smaller Businesses . 6

This Book Is Not About…. 6
Service-Oriented Architectures. 6
Monoliths and Microservices. 6
No-Code/Low-Code Platforms. 7

Structure of the Book . 8
References. 9

Chapter 2:  The Real Cost of Software Development. 11

Types of Costs. 11
Direct Costs. 12
Opportunity Costs . 14
Indirect Costs . 14
Fixed Costs . 14
Variable Costs. 15
Sunk Costs. 15
Controllable Costs. 16

Undifferentiated Heavy Lifting. 16
Code Is a Liability. 16

ix

The Experience Is the Asset. 18
References. 19

Chapter 3:  Serverless Architectures. . 21

The Amazon Way. 21
What Is Serverless? . 24

Serverless Is a Focus on Business Value . 24
Serverless Means Not Our Uptime . 25
Four Technical Criteria for Serverless . 26

Parts of Serverless Applications . 30
Managed Services . 30
Front Ends. 31
Back Ends and Functions. 31

References. 34

Chapter 4:   Serverless Objections, Serverless Success. 35

Loss of Control. 35
Other Common Objections . 37

Lock-In . 37
Performance and Cold Starts. 39
Security, Especially in Multitenancy. 40

Success Stories. 40
iRobot. 40
Lego . . 41
The COVID Tracking Project . 42

It Is Just the Beginning . 42
References. 43

Part II:  Real-World Serverless

Chapter 5:  Introducing Branch. . 45

Serverless from the Start. 45
The Problem to Solve. 46
Key Differentiators/What to Build . 46
What to Buy. 47
Minimize the Innovation Tokens. 48
Minimize the Number of Technologies. 49

Organizational Overview. 49
Top-Level Departments. 50
Technology Organization. 50

Contentsx

Architectural Overview and Cloud Bill. 51
Cloud Bills. 53

The Branch Software Development Lifecycle . 54
Problem Definition . 54
Design. 54
Software Product. 55
Development. 55
Deployment. 56
Infrastructure . 56
Running. 56

References. 57

Chapter 6:  Introducing Insureco . . 59

The History of Insureco. 59
Organizational Structure. 60
Key Performance Indicators . 60

Digital Transformation. 60
Marketing Organization. 62
Technology Organization. 62

Architectural Overview. 64
The Insureco Software Development Lifecycle. 65

UI/UX Design . 65
Product . 66
Developers. 66
Infrastructure . 66
Deploying . 66
Running. 67

Life at Insureco. 67
References. 68

Chapter 7:  The Clash of Cultures . . 69

The Drivers of the Business Benefits of Technology. 69
How U.S. Insurance Companies Drive Better Outcomes. 71

Launch New Products, New States. 71
Improve User Experience. 73
Speed of Information to Action. 74

Contents xi

How Serverless Drives Faster, Better Action. 75
Most Organizations View Software Development as

Too Slow. 76
The Importance of Organizational Attitude. 77

References. 79

Part III:  Getting to Serverless

Chapter 8:  Getting to Serverless. . 81

Winning Hearts and Minds. 81
Don’t Build . 82
Downscope . 84

The Metrics That Matter . 90
Change Lead Time (Cycle Time). 90
Deployment Frequency. 91
Change Fail Percentage. 92
Mean Time to Recovery . 92

Ready to Begin . 93
References. 94

Chapter 9:  Iterative Replacement. . 95

The Knife-Edge Cutover Doesn’t Work. 95
What Is Iterative Replacement?. 97

Event Interception (Reverse Proxy). 97
State-Harmonizing Synchronization (Asset Capture). 98
Build New Once . 99
A Very Long Time. 99

Iterative Replacement to Serverless Architectures. 100
Up-Front Research. 100
Databases and Datastores. 101
Scaffolding. 103

References. 104

Chapter 10:  Training and Continuing Education. . 105

Jobs and People Will Change . 105
Near-Term Job Changes. 109

Systems Administrator to Application Operations 109

Contentsxii

Database Administrator to Database Designer and Catalog
Manager . 110

Transitioning Titles. 110
How to (Re)train Your Workforce. 110
A New Hiring Advantage. 111
References. 113

Chapter 11:  Your Serverless Journey. . 115

Serverless As a Game Changer . 115
Serverless Steps in Startups. 116

Nontechnical Founder. 117
Technical Founder. 117
Founding Engineer. 118

Serverless Steps in Small or Medium-Size Organizations. 118
Nontechnical Executive. 119
Product Management . 119
Development Team. 119

Serverless Steps in the Enterprise for Executives. 120
Serverless Is the Ultimate Step. 120

Part IV:  Appendixes

Appendix A:  Directory: API Hubs. . 123

Appendix B:  Directory: Identity and Access Management. 135

Appendix C: Directory: Databases. . 143

Appendix D: Directory: Functions. . 159

Appendix E: Directory: Managed Services . . 165

Index. .   185

Contents xiii

This page intentionally left blank

xv

Foreword

When I was introduced to Joe Emison (nearly three years ago at the time of writing
this foreword) I was very impressed by his knowledge of serverless. It’s not that
Joe—a serial entrepreneur CTO—knows more about the entire topic than other
cloud experts, although he probably does in a lot of cases. What impressed me the
most is his understanding of how to use cloud serverless and managed services to
truly improve the software’s production behaviors and dependability, all while saving
a lot of money as a result. And when I say, “saving a lot of money,” I mean a stagger-
ing amount. I’ve heard of startups going under due to unexpected cloud costs, such
as the surprise invoice for US $100,000+ for one month. At the time that I met Joe,
his startup, Branch, was spending a whopping US $800 per month on everything
cloud and serverless. Try to beat that. Since then, he’s kept costs way down and com-
pany value way up by delivering good software with customer value that always stays
running. The bottom line is that Joe is solving business problems first by using tech-
nology intelligently. He’s been successful to the extent that his company became a
unicorn in 2022, just four years after starting up. Without a doubt, Joe knows busi-
ness and he knows the business of software. And his track record started long before
Branch. I explain more below about Joe’s stellar, success-rendering approaches to
cloud-native systems.

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part
these are used when referring to living things, but they are also used to describe inan-
imate things that feature some characteristics that resemble life forms. Organic

originates in Greek. Its etymology is with reference to a functioning organ of the
body. If you read the etymology of organ, it has a broader use, and in fact organic
followed suit: body organs; to implement; describes a tool for making or doing; a
musical instrument.

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organ-
ism, though, examples may not as readily pop into our mind. One example is an
organization, which includes the prefix of both organic and organism. In this use of
organism, I’m describing something that is structured with bidirectional dependen-
cies. An organization is an organism because it has organized parts. This kind of
organism cannot survive without the parts, and the parts cannot survive without the
organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system
unto itself but becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss
software model concepts using concrete scenarios, or draw an architecture diagram,
or write a unit test and its corresponding domain model unit, software starts to come
alive. It isn’t static, because we continue to discuss how to make it better, subjecting
it to refinement, where one scenario leads to another, and that has an impact on the
architecture and the domain model. As we continue to iterate, the increasing value in
refinements leads to incremental growth of the organism. As time progresses so does
the software. We wrangle with and tackle complexity through useful abstractions,
and the software grows and changes shapes, all with the explicit purpose of making
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well.
Even if they start out life in good health they tend to get diseases, become deformed,
grow unnatural appendages, atrophy, and deteriorate. Worse still is that these symp-
toms are caused by efforts to refine the software that go wrong instead of making
things better. The worst part is that with every failed refinement, everything that
goes wrong with these complexly ill bodies doesn’t cause their death. Oh, if they
could just die! Instead, we have to kill them, and killing them requires nerves, skills,
and the intestinal fortitude of a dragon slayer. No, not one, but dozens of vigorous
dragon slayers. Actually, make that dozens of dragon slayers who have really big
brains.

Forewordxvi

Register your copy of Serverless as a Game Changer on the InformIT site for con-
venient access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780137392629) and click Submit. Look on the
Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to
be notified of exclusive offers on new editions and updates, please check the box
to receive email from us.

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the asso-
ciated underlying technologies. It’s not accomplished at one fell swoop. It requires
organic refinement with purpose and skill. I and the other authors are here to help.
To that end, we’ve delivered our very best to achieve our goal.

Considering my goals, I couldn’t pass up the opportunity to include Joe’s book in
my Signature Series. “It’s not my uptime” is Joe’s fundamental thinking on using
serverless. It’s not a cliché. It’s smart computing.

I was impressed that Joe uses multiple cloud providers for what they do best. That
might sound obvious, but I don’t mean just AWS, Google Cloud, and Azure. Would
most CTOs consider using Netlify, and later switching to Vercel with little rework, to
serve Web content and application functionality? I doubt it, and in my experience,
no they wouldn’t. Yet, Joe has proven how powerful, practical, and cost effective that
is. How many chief architects would insist on using a fully managed cloud search
service rather than tweaking, contributing to, and self-managing ElasticSearch? In
my experience, not many. Every single time that Joe could use a cloud-managed ser-
vice rather than building a service or use a self-managed software product, he
chooses managed services. He weaved it into company culture. What CTO would
have the patience to hire and train JavaScript frontend developers to build serverless
applications? Joe does, and his people learn quickly. Which architect or developer
would choose to build a small-footprint monolith that’s deployed as a set of server-
less functions? Joe has delivered around 12 of those so far, rather than hundreds or
thousands of tiny functions. That’s not all. I’ve only scratched the surface. Joe is an
example in business computing and his book is a master class on Serverless as a
Game Changer. So read on and persuade others in technology leadership roles to do
the same.

—Vaughn Vernon, series editor

Foreword xvii

http://informit.com/register

This page intentionally left blank

xix

Acknowledgments

I would like to thank my wife, Abbie, and children, Seamus, Grace, and Amelia, who
have been a consistent source of support. It wouldn’t be possible or enjoyable to
write a book without you.

Special thanks to Vaughn Vernon, whose invitation to put my thoughts on how to
build Serverlessly several years ago pushed me into action.

Holly Tachovsky and Steve Lekas, thank you both for being amazing co-founders
who encouraged me to build software and run tech organizations in the way that I
saw would be best, as opposed to judging me by any past/other standards you had
encountered.

Thank you to all the reviewers of early drafts of this book: Ben Kehoe and Mike
Roberts, thank you for your subject-matter expertise and encouragement to make
the book stronger and more applicable to specific leaders and executives. Joel Gold-
berg, thank you for your stakeholder expertise and excellent questions about how to
apply the advice you read. And Geraldine Powell (my mother!), thank you for your
help in making the book much clearer for everyone.

I would like to thank everyone at Pearson, and especially Haze Humbert, for your
kindness and support along the way.

And finally, I would like to thank my parents, who supported me (financially and
emotionally) to pursue software development at an early age with Turbo Pascal 5.0
in 1994, and to my uncle, Jon Masters, who bought me Turbo Pascal by Example by
Greg Perry, which brought me over that huge initial hurdle every software developer
must overcome.

This page intentionally left blank

xxi

About the Author

Joe Emison is the co-founder and CTO of Branch, a personal lines insurance com-
pany. Before Branch, Joe built five other companies as a technical co-founder, across
many industries, including consumer electronics, local government, big data analy-
sis, and commercial real estate. Joe graduated with degrees in English and Mathe-
matics from Williams College and has a law degree from Yale Law School.

Figure Credits

Figure 2.2: Quora, Inc
Figures 5.1a, B.3: Amazon Web Services, Inc
Figure 6.2, C.3: Microsoft Corporation
Figures A.2, B.1, C.2: Google LLC
Figure B.2: Okta, Inc
Figure E.1: Algolia
Figure E.2: Cloudinary
Figure E.3: Twilio Inc
Figure E.4: Peaberry Software, Inc
Figure E.5: Lob
Figure E.6: Smarty
Figure E.7: Expected Behavior, LLC
Figure E.8: Prismic
Figure E.9: Flatfile
Figure E.10: QuotaGuard
Figure E.11: Basis Theory, Inc
Figure E.12: Upstash, Inc

1

Chapter 1

Introduction

The gap between the best software development teams and average software devel-
opment teams is enormous. The best teams deliver delightful, scalable, stable soft-
ware to users quickly and regularly. Average teams deliver acceptable software that
works most of the time, with months or even years between significant improve-
ments. Many teams even struggle to deliver anything but small, iterative changes,
with even those taking surprising amounts of time. Software development and cloud
services and tools make developing and deploying software increasingly cheaper,
faster, and better—but very few organizations take advantage of these innovations.
This book lays out the principles, strategies, and tactics that can propel your organi-
zation or teams to world-class output by harnessing a Serverless mindset.

Historically, to deliver web-scale applications with wonderful customer experi-
ence, organizations have had to hire expensive, superior talent in many disciplines:
networking, infrastructure, systems administration, software architecture, back-end
software development, API design, and front-end application design. The demand
for these talented employees has always exceeded the number of them, and most
companies have simply been unable to acquire talent that would enable them to build
products such as a Google or Netflix.

That world has changed, and building web-scale, world-class applications is
now possible without needing to hire any “ninja” or “rockstar” developers. Server-
less applications leverage the immense talent within cloud providers and managed
services to solve the hard problems of building and scaling complex infrastructure
and software systems. The average developer today is more capable of delivering
the next Gmail or TikTok than the most talented, expensive team of developers 10
years ago. Organizations with solid, attainable development teams can leapfrog their

Chapter  1  Introduction2

competitors by leveraging a Serverless approach and building applications differ-
ently, to deliver like the top-notch software teams in the world.

Perhaps most important, building Serverlessly enables organizations to concen-
trate on what makes them unique and to focus investments on differentiated projects.
Organizations can stop spending enormous amounts of budget on projects that no
one except the software development team can even understand. Customers do not
care that an organization is running a world-class Kubernetes cluster with hundreds
of thousands of lines of customization; customers want their experience to be world
class. Just as cloud adoption over the past 15 years has enabled every organization
to build web-scale applications, Serverless enables every organization to deliver soft-
ware as efficiently and effectively as the best software teams in the world.

The winners will be the organizations that change their games by recognizing
how to build Serverlessly first. These companies will be able to accelerate the deliv-
ery of new products, services, and features for their customers because they will not
be focusing on the commodity plumbing that underpins world-class software. They
will leverage managed services with the best software developers in the world for ser-
vices that are non-differentiating for their business, to allow them to focus more on
building highly specific interfaces and logic for their customers. Ultimately, they will
outpace, outmaneuver, and create unmatchable cost structures over any competitors
that are slow to adapt to this new way of working.

How Many Employees Does It Take to Make and
Run a Scalable Social Network?

In the recent history of software development, one of the hardest services to build
and launch has been a scalable social network. Social networks need to be fast,
always be online, and scale to ever-increasing traffic as they become more successful.
One of the first popular social networks, Friendster, famously lost its lead because of
its inability to scale[1] and was subsequently eclipsed by Myspace and Facebook,
both of which had hundreds of employees supporting their builds.

Fast-forward to 2014, and a curiously simple social network called Yo launched.
Members could sign up quickly, choose people or organizations to follow, and send
only one message: “Yo!” In the first few days after its public launch on both iOS and
Android, Yo scaled successfully to more than a million users; more than 100 million
“Yo!” messages were delivered before it shut down in 2016.[2]

Yo was built by one developer (initially in about 8 hours) and never needed sys-
tems administrators, operations teams, or even full-time developers for its initial
ramp existence.[3] Somewhat ironically, all the Yo code was being run and scaled
by Facebook, which had acquired one of the first Backend as a Service companies,

3How Many Employees Does It Take to Make and Run a Scalable
Social Network?

Parse. Yo leveraged Facebook’s engineering and operational expertise in its Parse
division, paying only $100 a month to handle 40 requests per second with 1 million
unique push-notification recipients.[4, 5]

You can see this same leverage of managed services by Instagram, which had 13
employees at the time Facebook acquired it for $1 billion.[6] Of the 13, only 3 were
full-time software developers; Instagram had no dedicated systems administrators or
operations staff.

A relatively short time after Friendster was crushed by its inability to handle web
traffic with hundreds of employees, two startups with only a handful of software
developers conquered the same challenges with ease (see Figure 1.1).[7, 8] They did
so by outsourcing much of the required expertise to newly created managed-service
providers, who handled the “running and scaling infrastructure” expertise.[9]

An easy answer to the question posed by the title of this section, then, is that the
number of employees needed to make and run a scalable social network approaches
zero over time (absent moderation). Many components that both Instagram and Yo
had to build are now much easier to handle, around a decade later. Many organiza-
tions spend so much time and effort building infrastructure, systems, and code that
they could rent at a fraction of the price, with no dedicated personnel and with sub-
stantially better performance and uptime. It is amazing that organizations continue
to compete on the playing field against Amazon, Google, or Microsoft when they
could simply incorporate Amazon or Google’s great players into their own teams by
going Serverless.

Figure 1.1  Number of Employees Needed to Make and Run a Scalable Social Network
over Time

Chapter  1  Introduction4

Leveraging Technology as It Improves

Software Development Has Been Improving Constantly…

Technology moves quickly. Moore’s Law, that the number of transistors that can fit
on a chip doubles every two years, has an equivalent in the software development
world: The best way to build a piece of software from scratch gets a little bit easier
every year. Often these small incremental changes are missed.

Everyone sees and recognizes that big tectonic shifts such as the public cloud
have changed the game. Organizations that were slow to adapt have fallen behind,
whereas others that recognized this shift and adapted have been able to win in the
marketplace. But these big shifts are only part of the story. Hundreds of new services
launched every year improve software development and provide meaningful benefits
to organizations willing to incorporate them into their software.

Tasks that were extremely challenging 10 years ago, such as reliably resizing
images, performing a fuzzy text search with tens of gigabytes of data, or handling
hundreds of millions of monthly visitors from around the globe in milliseconds,
are now often as simple to achieve as plugging a lamp into a wall. This is because
technological improvements are not built in isolation; they are built on top of other
technological innovations.

Thus, if one innovation per year can double output, then after 10 years, output
could be increased by 210 = 1,024 times, not 2 × 10 = 20 times. This rate of innova-
tion far exceeds what any one organization can build, so the benefit of learning how
to harness it for an organization far exceeds the value of being the most innovative
organization, building the maximum that the organization can build.

…But Isn’t Being Adopted Effectively

If innovation in technology—specifically, in how to build software more efficiently
and effectively—is happening and making development so much easier, why are
these changes not being widely adopted?

Sadly, there is no continuing education in information technology. Most manag-
ers, architects, and senior staff in IT departments also have no set expectations that
they should be regularly changing how they do their job, as new technology comes
out. It is torture for someone to learn how to do something at the start of their career
and then, after several successful years, throw out that knowledge and start again.
The benefits of change must be intuitively obvious because so much personal and
organizational inertia surrounds the industry. Even then, real change often requires
significant changes in culture, mindset, architecture, coding practices, and technol-
ogy leadership.

This Book Is For… 5

Additionally, even if teams identify significant changes they want to make, they
still are called upon to deliver new features and functionality within their existing
technology stacks. An organization that identifies changes it wants to make in how it
builds and runs software must have buy-in and coordination at all levels in order to
make significant changes.

The most successful people do two jobs: the job they were hired to do and the
job of figuring out how to do that primary job better. This is a required mentality
for everyone working on, in, and around the best software development teams. It
is especially difficult in software development because of the rapid rate of change.
Constantly thinking about how to do a job better, even if it requires learning brand
new skills and doing jobs differently, is the only way to take full advantage of
technology—and is the right way to approach reading this book.

This Book Is For…

Executives in Business and Technology

I have written this book for both business-minded technologists and technology-
minded businesspeople. Increasingly, if you are a businessperson, you must be tech-
nology minded because, as is often quoted, “software is eating the world.”[10] More
companies are increasingly becoming software companies. Whether you are a
business-minded technologist or a technology-minded businessperson, this book
teaches you how to build and deploy software better, faster, cheaper, and more effec-
tively than most companies in the world.

If you are a senior business leader, this book helps you bring technological change
into your organization by showing you how a Serverless approach drives better busi-
ness outcomes. If you are a technical team lead, this book helps you think like an
executive leader and focus more on delivering value than optimizing for tech, to set
you apart from your peers. You will increase your focus on what matters to your
organization, release new features and functionality more quickly, and spend less
money, time, and effort doing it. You will learn how to do all this while also learn-
ing how to mitigate the risks that are inherent when you rely on third parties to be
successful.

Enterprises

I have run technology at companies of all sizes, and Serverless is just as beneficial for
enterprises as brand-new startups. Enterprises will likely get the most benefit of
adopting a Serverless mindset over their similarly sized competitors than startups

Chapter  1  Introduction6

because most enterprises suffer from more technical debt and an internal discontent
with software development velocity. The journey within an enterprise to build fully
Serverless applications is a long one that involves as much cultural as technical trans-
formation. Part III of this book, “Getting to Serverless,” focuses on the key steps to
drive Serverless adoption within an enterprise.

Startups and Smaller Businesses

Serverless is a game changer for startups and smaller businesses because it enables
them to run lean budgets and use small numbers of developers to deliver software
and services that look like they come from teams orders of magnitude larger. Branch,
which I founded (and which is discussed in more detail in Part II, “Real-World Server-
less”), has operated with approximately 1/30th (that is, around 97% less) the devel-
oper payroll of an insurance startup that launched fewer products in fewer states
than Branch. Part III is mainly targeted at larger and more established organizations,
but it is also useful for startups because the cultural and technical transitions are
much the same.

This Book Is Not About…

Service-Oriented Architectures

Serverless applications generally have service-oriented architectures (SOAs), with
some custom code calling managed services and other custom code acting as a ser-
vice (as opposed to using a lot of repeated code in different, similar features).[11]
Using unnecessarily repeated code or repeated bespoke functionality within Server-
less applications is difficult because leveraging managed services is native and simple
within Serverless architectures.

However, this book does not spend significant time talking about SOAs in the con-
text of building Serverless applications. Much of the discussion surrounding SOAs is
predicated on older, non-Serverless methods of building software. Once an organiza-
tion adopts a Serverless mindset, developers are highly unlikely to stray from SOA
patterns because of how natural the patterns are in Serverless.

Monoliths and Microservices

The monolith vs. microservice debate has raged for more than a decade. That age is
increasingly apparent when viewed in light of Serverless development. Serverless
architectures tend to muddy the definitional waters between the two strategies; many
Serverless applications, including those at Branch, have characteristics of both.

This Book Is Not About… 7

For example, one factor that drove a lot of initial microservice development was
concern about the uptime and scalability of databases. Netflix famously imple-
mented microservices to increase the resilience of other systems, giving stateful
microservices their own databases to prevent other database failures from impact-
ing their uptime.[12] However, many Serverless applications use managed, resilient,
global databases such as AWS DynamoDB that have incredible historical uptime and
low latency. When using DynamoDB, the traditional microservice motivations for
separation of concerns around the datastore no longer exist.

Another operational motivation for separation of concerns within microservices
has been preventing cascading failures due to traffic overload on a particular service.
However, if service code is running on a service such as AWS Lambda, Google Cloud
Functions, or Azure Functions, those cloud providers have proven that they can pre-
vent any kind of cascading failure because of the capacity and architecture they have
built for running code.

Nevertheless, Serverless applications often feel more like microservice applica-
tions because of how they use services and how they tend to separate business con-
cerns. In my experience, most Serverless applications are too broken up into separate
functions (more on this in Chapter 3, “Serverless Architectures”). Branch’s architec-
ture at the time of publication consists of around 100 Lambda functions and 5 React
applications, but all in a monorepo designed to be deployed monolithically. Defini-
tionally, that’s not a monolith or a microservices architecture, and I don’t think the
distinction is helpful when building Serverlessly.

No-Code/Low-Code Platforms

This book is built on the assumption that the organization has software developers
who will use software development languages, frameworks, and environments. My
experiences with no-code and low-code platforms have led me to believe that the
only ones that really work are those that use standard languages and function as a
higher-level framework that can be “ejected” (for example, Expo for React Native, or
AWS Amplify for web applications)[13] so that the application can continue develop-
ment in a more traditional development and/or hosting environment.

I believe that no- and low-code platforms have their place. We used one to build
our initial interactive demo for Branch, which was a much faster and easier route
than building it in code (and also less likely to lead us to technical debt). But ulti-
mately, there is no comparison between what is possible with no- and low-code plat-
forms versus fully fledged languages and frameworks. Building a customer-facing,
business-critical application in a no- or low-code platform is risky because of how
inherently limited the platforms are. Therefore, this book does not address any tools
or services that I consider no- or low-code (that is, proprietary language and/or IDE
combined with proprietary hosting and no ability to eject).

Chapter  1  Introduction8

Structure of the Book

The first part of this book explains the Serverless mindset. The Serverless mindset is
a way of developing, deploying, and running software in which an organization
retains the responsibility for building differentiated experiences for its customers
and uses managed services for everything else. The key to the Serverless mindset is
separating assets versus liabilities and differentiated versus undifferentiated capabili-
ties. The book walks through several detailed technical examples of Serverless archi-
tectures. Many technologists take a narrow view of Serverless; these examples help
explain the broader picture and value that Serverless delivers. The last chapter in
Part I, “The Serverless Mindset,” addresses common objections to Serverless archi-
tectures and features several real-world case studies of Serverless in practice.

Part II compares Branch, the insurance company that I started in 2018, with the
fictional Insureco, a representative enterprise insurance company. The goal of this
part of the book is to give specific details on exactly how Branch handles all the
intricacies of being a regulated, for-profit financial services company while being
Serverless. This part also illustrates the massive benefits delivered over what might be
considered a “best practices” enterprise today.

Part III tackles this question: “Okay, I buy all of this, but how can we get to Server-
less from where we are now?” It considers the best metrics to use to align every-
one across the business on how to measure success. It explains why the only viable
method for making changes to existing systems is iterative replacement. Finally, it
talks about continuing education and job retraining, which are critical parts of out-
sourcing functions that you no longer should have in-house.

Part III concludes with Chapter 11, “Your Serverless Journey,” which brings
together everything that was previously discussed. It lays out a high-level set of
observations on how generally to think about building serverless applications, as
well as a tactical outline for how you can approach building serverless applications.

Finally, Part IV, “Appendixes,” and the companion website to this book feature
a comprehensive listing of managed services, organized by category. Most people
building software have no idea how much software developer time can be saved by
leveraging managed services. Managed services can handle many functions of appli-
cations, from the core of an application, to authentication, search, image manipula-
tion, customer communication, and even software development functions such as
code review and testing. The directory provided herein gives examples and details
that will help technologists and business leaders alike understand which services they
can leverage today.

References 9

References

	 [1]	 Hoff, Todd. “Friendster Lost Lead Because of a Failure to Scale.” http://high-
scalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-
scale.html

	 [2]	 “MobileBeat 2014: How Did a Stupidly Simple App Get Such Stupidly Huge
Growth?” (2014). www.youtube.com/watch?v=ZA-Hnd1j_II

	 [3]	 Shontell, Alyson. “The Inside Story of Yo: How a ‘Stupid’ App Attracted
Millions of Dollars and Rocketed to the Top of the App Store.” (June 21, 2014)
www.businessinsider.com/the-inside-story-of-yo-there-isnt-actually-1-million-
in-the-bank-2014-6

	 [4]	 Parse Plans and Pricing. (2014) http://web.archive.org/web/20140714210913/
https://parse.com/plans

	 [5]	 Amazon Web Services Case Study: Yo. https://aws.amazon.com/solutions/
case-studies/yo/

	 [6]	 “Instagram Is Celebrating Its 10th Birthday. A Decade After Launch, Here Is
Where Its Original 13 Employees Have Ended Up.” www.businessinsider.com/
instagram-first-13-employees-full-list-2020-4

	 [7]	 Facebook Number of Employees. https://statinvestor.com/data/22188/
facebook-number-of-employees/

	 [8]	 Yo (app). https://en.wikipedia.org/wiki/Yo_(app)

	 [9]	 Cutler, Kim-Mai, and Josh Constine. “Facebook Buys Parse to Offer Mobile
Development Tools as Its First Paid B2B Service.” (2003) https://techcrunch.
com/2013/04/25/facebook-parse/

	[10]	 Andreesen, Marc. “Software Is Eating the World.” (2011) www.wsj.com/
articles/SB10001424053111903480904576512250915629460

	[11]	 Amazon: Service-Oriented Architectures. https://aws.amazon.com/what-is/
service-oriented-architecture/

	[12]	 “A Design Analysis of Cloud-based Microservices at Netflix.” https://medium
.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-
netflix-98836b2da45f

	[13]	 “Being Free from ‘expo’ in React Native Apps.” https://medium.com/
reactbrasil/being-free-from-expo-in-react-native-apps-310034a3729

http://high-scalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://high-scalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://high-scalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://www.youtube.com/watch?v=ZA-Hnd1j_II
http://www.businessinsider.com/the-inside-story-of-yo-there-isnt-actually-1-million-in-the-bank-2014-6
http://www.businessinsider.com/the-inside-story-of-yo-there-isnt-actually-1-million-in-the-bank-2014-6
http://web.archive.org/web/20140714210913/
https://aws.amazon.com/solutions/case-studies/yo/
https://aws.amazon.com/solutions/case-studies/yo/
http://www.businessinsider.com/instagram-first-13-employees-full-list-2020-4
http://www.businessinsider.com/instagram-first-13-employees-full-list-2020-4
https://statinvestor.com/data/22188/facebook-number-of-employees/
https://statinvestor.com/data/22188/facebook-number-of-employees/
https://en.wikipedia.org/wiki/Yo_(app)
https://techcrunch.com/2013/04/25/facebook-parse/
https://techcrunch.com/2013/04/25/facebook-parse/
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
http://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://aws.amazon.com/what-is/service-oriented-architecture/
https://aws.amazon.com/what-is/service-oriented-architecture/
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/reactbrasil/being-free-from-expo-in-react-native-apps-310034a3729
https://medium.com/reactbrasil/being-free-from-expo-in-react-native-apps-310034a3729

This page intentionally left blank

185

Index

A
Accelerate: The Science of Lean Software and

DevOps: Building and Scaling High
Performing Technology Organizations,
90–91

Access, IAM
Amazon Cognito, 140–142
Auth0, 138–140
directory, 135–136
Google Firebase Authentication, 136–138
managed services, 135

accounting costs, software development,
11–12

code as a liability, 16–17
controllable costs, 16
direct costs, 12–13
expensive failed software projects, 13
experience as an asset, 18
fixed costs, 14–15
indirect costs, 14
opportunity costs, 14
sunk costs, 15
undifferentiated heavy lifting, 16
variable costs, 15

action
serverless and faster, better actions, 75
speed of information to action, 74

adaptation metrics, 90–91
Change Fail Percentage, 92
Change Lead Time (Cycle Time), 91
Deployment Frequency, 91–92
MTTR, 92–93

advantages of new hiring, 111–112
Algolia

dashboards, 165–166
iterative replacement, 102
managed services, 165–167

Amazon
AWS AppSync/Amplify, 125–127
AWS DynamoDB, 144–146

AWS Lambda, 160
cloud bills, 53–54
Cognito, 140–142
Serverless architectures, 21

Android development, Insureco architectural
example, 64

API (Application Programming Interface)
Hubs

AWS AppSync/Amplify, 125–127
defined, 123–124
directory, 125
Fauna, 129–132
Google Firebase, 128–129
Snapbase, 132–134

managed services, 88–89
teams, Insureco architectural example, 64

Application Operations, 109
applications (overview), parts of, 30
architectures

Amazon Serverless, 21–24
Branch architecture example, 57

architectural overview, 51–54
buying components, 47–48
cloud bills, 53–54
corollaries, 45–46
deployments, 56
design, 50–51
determining build components, 46–47
infrastructures, 56
innovation tokens, 48–49
key differentiators, 46–47
missing roles, 51
number of technologies, 49
organizational overviews, 49
primary principles, 45–46
problem definition, 54
problem to solve, 46
running, 56–57
SDLC, 54–57

Index186

software development, 51
software product, 55
technical products, 50
technology organization, 50–51
top-level departments, 50

EA, Insureco architectural example, 62–63
Insureco architectural example, 67

Android development, 64
API teams, 64
architectural overview, 64–65
back-end development, 63–64
databases, 63
deployments, 66
design, 62
development teams, 63–64, 66
digital transformation plans, 60–62
EA, 62–63
front-end development, 63
history, 59–60
infrastructures, 64, 66
iOS development, 64
KPI, 60
marketing organization, 62
organizational overviews, 60–61
product management, 66
project management, 62
QA, 64
running, 67
software development, 63–64, 65
technology organization, 62–64
UI/UX design, 65

Microsoft Azure reference architecture, 65
assets

capturing (state-harmonizing
synchronization), 98–99

experience as an asset, 18
Auth0, 138–140
automatic scaling, 27–28
AWS AppSync/Amplify, 125–127
AWS DynamoDB, 144–146
AWS Lambda, 160
Azure Functions, 161–162
Azure Storage, iterative replacement, 102

B
back ends, 31–33, 63–64
Bash Theory, managed services, 181–182
better business outcomes, achieving, 78–79

Bezos, Jeff, 21–24
Branch architecture example, 57

architectural overview, 51–54
build components, determining, 46–47
buying components, 47–48
cloud bills, 53–54
corollaries, 45–46
deployments, 56
design, 50–51
infrastructures, 56
innovation tokens, 48–49
key differentiators, 46–47
missing roles, 51
number of technologies, 49
organizational overviews, 49
primary principles, 45–46
problem definition, 54
problem to solve, 46
running, 56–57
SDLC, 54–57
software development, 51
software product, 55
technical products, 50
technology organization, 50–51
top-level departments, 50

building
Branch architecture example, determining

build components, 46–47
new once (iterative replacement), 99
projects, guidelines, 19

business outcomes, achieving better, 78–79
business/technology drivers, 69–71

Serverless and faster, better actions, 75
software development, 76–77
speed of information to action, 74
U.S. insurance companies, 71–74
user experience, 73–74

business/technology executives, 5
business value, Serverless and, 24–25
buying components

Branch architecture example, 47–48
off-the-shelf SaaS, 86–87

C
careers, 105–106

Application Operations, 109
Catalog Managers, 110
Database Administrators, 110

Index 187

Database Designers, 110
managing Portfolios of Technical

Investments, 108–109
near-term job changes, 109–110
new hiring advantages, 111–112
New Ops Jobs, The, 106–109
product engineering, 107–108
sociotechnical/systems engineering, 108
Systems Administrators, 109
training/retraining workforces, 110–111,

113
transitioning job titles, 110
vendor engineering, 107

Catalog Managers, 110
change, optimizing for, 82

downscoping, 84–90
managed services API, 88–89
metrics, 90–93
off-the-shelf SaaS, 86–87
open-source libraries, 89
“This is v1,” 85–86
“top today,” 83–84

Change Fail Percentage, 92
Change Lead Time (Cycle Time), 91
changeable code, writing, 89–90
cloud bills, Branch architecture example,

53–54
Cloudflare Workers, 164
Cloudinary

dashboards, 167–169
managed services, 88–89, 167–169

CockroachDB Serverless, 151–153
coding

as a liability, software development, 16–17
writing changeable code, 89–90

Cognito, 140–142
cold starts, 39
company culture and Serverless adaptation,

81–83
componentization, 70
continuing education, 105–106

Application Operations, 109
Catalog Managers, 110
Database Administrators, 110
Database Designers, 110
managing Portfolios of Technical

Investments, 108–109
near-term job changes, 109–110
new hiring advantages, 111–112

New Ops Jobs, The, 106–109
product engineering, 107–108
sociotechnical/systems engineering, 108
Systems Administrators, 109
training/retraining workforces, 110–111,

113
transitioning job titles, 110
vendor engineering, 107

control, loss of, 35–37
controllable costs, software development, 16
corollaries, Branch architecture example,

45–46
CosmosDB, 102, 148–150
costs of software development, 11–12

code as a liability, 16–17
controllable costs, 16
direct costs, 12–13
expensive failed software projects, 13
experience as an asset, 18
fixed costs, 14–15
indirect costs, 14
opportunity costs, 14
pay for value, 28–29
sunk costs, 15
undifferentiated heavy lifting, 16
variable costs, 15

COVID Tracking Project, The, 42
Customer.io, managed services, 171–172
Cycle Time (Change Lead Time), 91

D
Dabit, Nadir, 51
dashboards

Algolia, 165–166
Cloudinary, 167–169
Lob, 172–173
QuotaGuard, 179–180
Segment, 169

Database Administrators, 110
Database Designers, 110
databases, 143

AWS DynamoDB, 144–146
CockroachDB Serverless, 148–150
directory, 143–144
FaunaDB, 150–151
Google Firebase, 146–147
Google Firestore, 146–147
Insureco architectural example, 63

http://Customer.io

Index188

iterative replacement, 101–102
managed services, 143
Microsoft Azure CosmosDB, 148–150
Neon, 156
PlanetScale, 154–156
SurrealDB, 156

datastores, iterative replacement, 101–102
Debrie, Alex, 110
defining problems, SDLC, 54
deployments

frequency of, 91–92
Insureco architectural example, 66
SDLC, 56

design
Branch architecture example, 50–51
Insureco architectural example, 62
SDLC, 54–55

development teams
Insureco architectural example, 63–64, 66
SDLC, 55
SMB, 119–120

digital transformation plans, Insureco
architectural example, 60–62

direct costs, software development, 12–13
directories

API Hubs, 125
databases, 143–144
functions, 159–160
IAM, 135–136

DocRaptor, managed services, 88–89, 175–177
downscoping, 84–90
drivers of business/technology, 69–71

Serverless and faster, better actions, 75
software development, 76–77
speed of information to action, 74
U.S. insurance companies, 71–74
user experience, 73–74

DynamoDB, 144–146
DynamoDB Book, The, 110

E
EA (Enterprise Architectures), Insureco

architectural example, 62–63
education, continuing, 105–106

Application Operations, 109
Catalog Managers, 110
Database Administrators, 110

Database Designers, 110
managing Portfolios of Technical

Investments, 108–109
near-term job changes, 109–110
new hiring advantages, 111–112
New Ops Jobs, The, 106–109
product engineering, 107–108
sociotechnical/systems engineering, 108
Systems Administrators, 109
training/retraining workforces, 110–111,

113
transitioning job titles, 110
vendor engineering, 107

employee operations, scalable social
networks, 2–4

engineering
product engineering, 107–108
sociotechnical/systems engineering, 108
vendor engineering, 107

enterprises, 5–6
event interception (reverse proxies), 97–98
executive enterprises, 120
expectations of software development, 76
expensive failed software projects, 13
experience as an asset, software

development, 18

F
Farley, David, 82, 89–90
Fauna, 128–129
FaunaDB, 150–151
Firebase

API Hubs, 128–129
Authentication, 136–138
databases, 146–147

Firestore, 146–147
fixed costs, software development, 14–15
Flatfile, managed services, 178–179
Forsgren, Dr. Nicole, 90–91
founders

nontechnical founders, 117
technical founders, 117–118

founding engineers, startups, 118
Fowler, Martin, 97
frequency of deployments, 91–92
front ends, 31, 63
Full Stack Serverless, 51

Index 189

functions
AWS Lambda, 160
Azure Functions, 161–162
Cloudflare Workers, 164
directories, 159–160
Google Functions, 160–161
Netlify Functions, 162–163
Serverless, 31–33
Vercel Functions, 163–164

functions services, defined, 159
future change, optimizing for, 82

downscoping, 84–90
managed services API, 88–89
metrics, 90–93
off-the-shelf SaaS, 86–87
open-source libraries, 89
“This is v1,” 85–86
“top today,” 83–84

G
game changer, Serverless as a, 115–116
Google Firebase

API Hubs, 128–129
databases, 146–147

Google Firebase Authentication, 136–138
Google Firestore, 146–147
Google Functions, 160–161
guidelines in building software projects, 19

H
hearts/minds (Serverless adaptation), winning,

81–83
heavy lifting, undifferentiated, 16
high availability, Serverless, 29
hiring (new), advantages, 111–112
Humble, Jez, 90–91

I
IAM (Identity and Access Management)

Amazon Cognito, 140–142
Auth0, 138–140
directory, 135–136
Google Firebase Authentication, 136–138
identity

Amazon Cognito, 140–142
Auth0, 138–140

directory, 135–136
Google Firebase Authentication,

136–138
managed services, 135

managed services, 135
indirect costs, software development, 14
information to action, speed of, 74
infrastructures

Insureco architectural example, 64, 66
provisioning, 26–27
SDLC, 56

innovation tokens, Branch architecture
example, 48–49

Insureco architectural example, 67
Android development, 64
API teams, 64
architectural overview, 64–65
back-end development, 63–64
databases, 63
deployments, 66
design, 62
development teams, 63–64, 66
digital transformation plans, 60–62
EA, 62–63
front-end development, 63
history, 59–60
infrastructures, 64, 66
iOS development, 64
KPI, 60
marketing organization, 62
organizational overviews, 60–61
product management, 66
project management, 62
QA, 64
running, 67
software development, 63–64, 65
technology organization, 62–64
UI/UX design, 65

insurance companies, business/technology
drivers, 71–74

intercepting events (reverse proxies), 97–98
iOS development, Insureco architectural

example, 64
iRobot, 40–41
iterative replacement, 103

building new once, 99
databases, 101–102
datastores, 101–102

Index190

defined, 97
event interception (reverse proxies), 97–98
scaffolding, 103
state-harmonizing synchronization (asset

capture), 98–99
system replacements, 100
up-front research, 100–101

J
jobs/careers, 105–106

Application Operations, 109
Catalog Managers, 110
Database Administrators, 110
Database Designers, 110
managing Portfolios of Technical

Investments, 108–109
near-term job changes, 109–110
new hiring advantages, 111–112
New Ops Jobs, The, 106–109
product engineering, 107–108
sociotechnical/systems engineering, 108
Systems Administrators, 109
training/retraining workforces, 110–111,

113
transitioning job titles, 110
vendor engineering, 107

K
Kehoe, Ben, 24–25
key differentiators, Branch architecture

example, 46–47
Kim, Gene, 90–91
Kissane, Erin, 42
knife-edge cutovers, 95–96
KPI, Insureco architectural example, 60

L
Lambda, 160
LEGO, 41–42
liability, code as a, 16–17
libraries, open-source, 89
LinearB, 91
Lob

dashboards, 172–173
managed services, 172–174

lock-ins, 37–39

loss of control, 35–37
low-code/no-code platforms, 7

M
maintainability, 82–83
Majors, Charity, 105–109
managed services, 30, 165

Algolia, 165–167
API, 88–89
Bash Theory, 181–182
Cloudinary, 88–89, 167–169
Customer.io, 171–172
DocRaptor, 88–89, 175–177
Flatfile, 178–179
IAM, 135
Lob, 172–174
Prismic, 177–178
QuotaGuard, 179–180
Segment, 169–170
Smarty, 174–175
Upstash, 182–183

managing
Portfolios of Technical Investments,

108–109
products, Insureco architectural example,

66
projects

Insureco architectural example, 62
SMB, 119

marketing organization, Insureco architectural
example, 62

metrics, Serverless adaptation, 90–91
Change Fail Percentage, 92
Change Lead Time (Cycle Time), 91
Deployment Frequency, 91–92
MTTR, 92–93

microservices, 6–7
Microsoft Azure, reference architecture, 65
Microsoft Azure CosmosDB, 148–150
minds/hearts (Serverless adaptation), winning,

81–83
missing roles, Branch architecture example, 51
Modern Software Engineering, 82, 89–90
monoliths, 6–7
motorist coverage, uninsured, 72
MTTR (Mean Time To Recovery), 92–93
multitenancy, security, 40
Murray, Jonathon, 49

http://Customer.io

Index 191

N
near-term job changes, 109–110
Neon, 156
Netlify Functions, 162–163
new hiring advantages, 111–112
new once (iterative replacement), building, 99
New Ops Jobs, The, 106–109
no-code/low-code platforms, 7
nontechnical executives, SMB, 119
nontechnical founders, startups, 117
“not our uptime,” Serverless development,

25–26

O
objections

cold starts, 39
lock-ins, 37–39
loss of control, 35–37
multitenancy, 40
performance, 39
security, 40

off-the-shelf SaaS, 86–87
open-source libraries, 89
opportunity costs, software development, 14
optimizing for future change, 82

downscoping, 84–90
managed services API, 88–89
metrics, 90–93
off-the-shelf SaaS, 86–87
open-source libraries, 89
“This is v1,” 85–86
“top today,” 83–84

organization steps to Serverless, 93–94
organizational attitudes, importance of, 77–78
organizational overviews

Branch architecture example, 49
Insureco architectural example, 60–61

P
pay for value, Serverless development, 28–29
performance

Insureco architectural example, 60
objections, 39

PlanetScale, 154–156
Portfolios of Technical Investments,

managing, 108–109

primary principles, Branch architecture
example, 45–46

Prismic, managed services, 177–178
problem definition, SDLC, 54
problem to solve, Branch architecture

example, 46
product engineering, 107–108
product management

Insureco architectural example, 66
SMB, 119

project management, Insureco architectural
example, 62

provisioning, infrastructure, 26–27
purchasing components

Branch architecture example, 47–48
off-the-shelf SaaS, 86–87

Q
QA, Insureco architectural example, 64
QuotaGuard

dashboards, 179–180
managed services, 179–180

R
rebuilding software

iterative replacement, 103
building new once, 99
databases, 101–102
datastores, 101–102
defined, 97
event interception (reverse proxies),

97–98
scaffolding, 103
state-harmonizing synchronization

(asset capture), 98–99
system replacements, 100
up-front research, 100–101

knife-edge cutovers, 95–96
recovery, MTTR, 92–93
research (up-front), iterative replacement,

100–101
retraining workforces, 110–111, 113
reverse proxies (event interception),

97–98
roles (missing), Branch architecture

example, 51

Index192

running
Branch architecture example, 56–57
Insureco architectural example, 67

S
SaaS (Software-as-a-Service), 86–87
scaffolding, 103
scalable social networks, employee operations,

2–4
scaling, automatic, 27–28
SDLC (Software Development Lifecycle)

Branch architecture example, 54–57
deployments, 56
design, 54–55
development teams, 55
infrastructures, 56
problem definition, 54
running, 56–57
software product, 55

security
multitenancy, 40
objections, 40
Serverless, 29

Segment
dashboards, 169
managed services, 169–170

Serverless
adaptation metrics, 90–93
adapting to, 81–83
applications (overview), parts of, 30
architectures, Amazon, 21–24
automatic scaling, 27–28
back ends, 31–33
business value, 24–25
company culture and Serverless

adaptation, 81–83
defined, 24, 33
executive enterprises, 120
front ends, 31
functions, 31–33
as a game changer, 115–116
hearts/minds (Serverless adaptation),

winning, 81–83
high availability, 29
infrastructure provisioning, 26–27
maintainability, 82–83
managed services, 30
“not our uptime,” 25–26

objections
cold starts, 39
lock-ins, 37–39
loss of control, 35–37
multitenancy, 40
performance, 39
security, 40

optimizing for future change, 82
organizational steps, 93–94
pay for value, 28–29
security, 29
SMB, 118–119

development teams, 119–120
nontechnical executives, 119
project management, 119

startups, 116
founding engineers, 118
nontechnical founders, 117
technical founders, 117–118

successes, 42
COVID Tracking Project, The, 42
iRobot, 40–41
LEGO, 41–42

as ultimate step, 120–121
service-oriented architectures, 6
services

IAM, 135
managed services, 30
microservices, 6–7

smaller businesses/startups, 6
Smarty, managed services, 174–175
SMB, Serverless steps, 118–119

development teams, 119–120
nontechnical executives, 119
project management, 119

Snapbase, 132–134
sociotechnical/systems engineering, 108
software development

Branch architecture example, 51
building projects, guidelines, 19
costs of, 11–12

code as a liability, 16–17
controllable costs, 16
direct costs, 12–13
expensive failed software

projects, 13
experience as an asset, 18
fixed costs, 14–15
indirect costs, 14

Index 193

opportunity costs, 14
sunk costs, 15
undifferentiated heavy lifting, 16
variable costs, 15

evolution of, 4–5
expectations, 76
Insureco architectural example, 63–64, 65
organizational attitudes, 77–78
speed of, 76–77

software product, SDLC, 55
software, rebuilding

iterative replacement, 103
building new once, 99
databases, 101–102
datastores, 101–102
defined, 97
event interception (reverse proxies),

97–98
scaffolding, 103
state-harmonizing synchronization

(asset capture), 98–99
system replacements, 100
up-front research, 100–101

knife-edge cutovers, 95–96
solving problems, Branch architecture

example, 46
speed of information to action, 74
Spolsky, Joel, 96
Squandered, Computer, The, 70
starts, cold, 39
startups, Serverless steps, 116

founding engineers, 118
nontechnical founders, 117
technical founders, 117–118

startups/smaller businesses, 6
state-harmonizing synchronization (asset

capture), 98–99
storage, iterative replacement, 102
Strassman, Paul, 70
successes, 42

COVID Tracking Project, The, 42
iRobot, 40–41
LEGO, 41–42

sunk costs, software development, 15
SurrealDB, 156
system replacements (iterative replacement

strategies), 100
Systems Administrators, 109

T
technical founders, startups, 117–118
Technical Investments, managing Portfolios of,

108–109
technical products, Branch architecture

example, 50
technology organization

Branch architecture example, 50–51
Insureco architectural example, 62–64

technology/business drivers, 69–71
Serverless and faster, better actions, 75
software development, 76–77
speed of information to action, 74
U.S. insurance companies, 71–74
user experience, 73–74

technology/business executives, 5
“This is v1,” 85–86
titles (job), transitioning, 110
“top today,” 83–84
top-level departments, Branch architecture

example, 50
training, 105–106

Application Operations, 109
Catalog Managers, 110
Database Administrators, 110
Database Designers, 110
managing Portfolios of Technical

Investments, 108–109
near-term job changes, 109–110
new hiring advantages, 111–112
New Ops Jobs, The, 106–109
product engineering, 107–108
sociotechnical/systems engineering, 108
Systems Administrators, 109
transitioning job titles, 110
vendor engineering, 107
workforces, 110–111, 113

transitioning job titles, 110

U
UI/UX design, Insureco architectural example,

65
undifferentiated heavy lifting, 16
uninsured motorist coverage, 72
up-front research, iterative replacement,

100–101
Upstash, managed services, 182–183

Index194

U.S. insurance companies, business/technology
drivers, 71–74

user experience, business/technology drivers,
73–74

V
v1 downscoping, 85–86
value (Serverless development), pay for, 28–29
variable costs, software development, 15
vendor engineering, 107

Vercel Functions, 163–164

W
Wardley, Simon, 70
workforces, training/retraining, 110–111, 113

X - Y - Z
Yegge, Steve, Amazon Serverless architectures,

21–24

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Part I: The Serverless Mindset
	Chapter 1: Introduction
	How Many Employees Does It Take to Make and Run a Scalable Social Network?
	Leveraging Technology as It Improves
	Software Development Has Been Improving Constantly…
	…But Isn’t Being Adopted Effectively

	This Book Is For…
	Executives in Business and Technology
	Enterprises
	Startups and Smaller Businesses

	This Book Is Not About…
	Service-Oriented Architectures
	Monoliths and Microservices
	No-Code/Low-Code Platforms

	Structure of the Book
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

